
Priority-Based Consolidation of
Parallel Workloads in the Cloud

Xiaocheng Liu, Chen Wang, Bing Bing Zhou, Junliang Chen,

Ting Yang, and Albert Y. Zomaya, Fellow, IEEE

Abstract—The cloud computing paradigm is attracting an increased number of complex applications to run in remote data centers.

Many complex applications require parallel processing capabilities. Parallel applications of certain nature often show a decreasing

utilization of CPU resources as parallelism grows, mainly because of the communication and synchronization among parallel

processes. It is challenging but important for a data center to achieve a certain level of utilization of its nodes while maintaining the level

of responsiveness of parallel jobs. Existing parallel scheduling mechanisms normally take responsiveness as the top priority and need

nontrivial effort to make them work for data centers in the cloud era. In this paper, we propose a priority-based method to consolidate

parallel workloads in the cloud. We leverage virtualization technologies to partition the computing capacity of each node into two tiers,

the foreground virtual machine (VM) tier (with high CPU priority) and the background VM tier (with low CPU priority). We provide

scheduling algorithms for parallel jobs to make efficient use of the two tier VMs to improve the responsiveness of these jobs. Our

extensive experiments show that our parallel scheduling algorithm significantly outperforms commonly used algorithms such as

extensible argonne scheduling system in a data center setting. The method is practical and effective for consolidating parallel workload

in data centers.

Index Terms—Cloud computing, parallel computing, parallel job scheduling, resource consolidation, parallel discrete event simulation

Ç

1 INTRODUCTION

THE cloud computing paradigm promises a cost-effective
solution for running business applications through the

use of virtualization technologies, highly scalable distrib-
uted computing, and data management techniques as well
as a pay-as-you-go pricing model. In recent years, it also
offers high-performance computing capacity for applica-
tions to solve complex problems [1]. Improving resource
utilization is essential for achieving cost effectiveness. Low
utilization has long been an issue in data centers. Servers in
a typical data center are operated at 10 to 50 percent of their
maximum utilization level [2]. 10 to 20 percent utilization is
common in data centers [3]. For a data center, or a subset of
servers in a data center that mainly handles applications
with high-performance computing needs and runs parallel
jobs most of the time, the problem can be significant.

There are two factors that may reduce the utilization of

nodes that run parallel jobs:

1. A parallel job often requires a certain number of
nodes to run. A set of nodes is likely to be
fragmented by parallel jobs with different node
number requirement. If the number of available
nodes cannot satisfy the requirement of an incoming
job, these nodes may remain idle [4], [5], [6].

2. Typical parallel programming models, such as BSP [7]
often involve computing, communication, and syn-
chronization phase. A process in a parallel job may
frequently wait for the data from other processes.
During waiting, the utilization of the node is low.

The most basic but popular batch scheduling algorithm
for parallel jobs is first come first serve (FCFS) [8]. Each job
specifies the number of nodes required and the scheduler
processes jobs according to the order of their arrival. When
there is a sufficient number of nodes to process the job at the
head of the queue, the scheduler dispatches the job to run
on these nodes; otherwise, it waits till jobs currently
running finish and release enough nodes for the job. FCFS
may cause node fragmentation and methods such as
backfilling [9] and Gang scheduling [10] were proposed to
improve it. However, they do not target on the utilization
degradation caused by parallelization itself.

In this paper, we focus on improving resource utilization
for data centers that run parallel jobs, particularly we intend
to make use of the remaining computing capacity of data
center nodes that run parallel processes with low resource
utilization to improve the performance of parallel job
scheduling. The parallel jobs we deal with have the
following characteristics:

1. The job execution time is unknown.
2. Saving and restoring the state of a job is relatively

cheap with checkpoint support.

1874 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

. X. Liu is with the Information and Management School, National
University of Defense Technology, Changsha 410073, China.
E-mail: nudt200203012007xcl@gmail.com.

. C. Wang is with the CSIRO ICT Centre, PO Box 76, Epping, NSW 1710,
Australia. E-mail: chen.wang@csiro.au.

. B.B. Zhou, J. Chen, and A.Y. Zomaya are with the Centre for Distributed
and High Performance Computing, School of Information Technologies,
University of Sydney, NSW 2006, Australia. E-mail: {bing.zhou, jche7466,
albert.zomaya}@sydney.edu.au.

. T. Yang is with the School of Electrical Engineering and Automation,
Tianjin University, Tianjin 300072, China.
E-mail: yangting@tju.edu.cn.

Manuscript received 25 Apr. 2012; revised 8 Aug. 2012; accepted 20 Aug. 2012;
published online 6 Sept. 2012.
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-04-0415.
Digital Object Identifier no. 10.1109/TPDS.2012.262.

3. The CPU usage of the processes of a job can be
estimated either during design phase or through the
historical data [11], [12].

Parallel discrete event simulation [13] belongs to this
category of jobs, and there are efforts [14], [15], [16] to run
this type of jobs in the cloud. In this paper, we propose a
priority-based consolidation method for scheduling this
type of parallel jobs with the following goals: 1) improve
the utilization of servers allocated to these jobs; 2) preserve
the FCFS order of jobs when available resources satisfy the
needs of these jobs. Our method gives a systematic way to
consolidate parallel workload. The basic idea is to put a
background virtual machine (VM) in each node so that the
background VM can use computing resources when
the foreground VM cannot fully utilize them. We make
the following contributions:

1. We conduct extensive experiments for workload
consolidation. We found that using virtualization
technologies with appropriate assignment of prio-
rities to VMs, we can effectively allow jobs collo-
cated in a physical node to efficiently use the
computing capacity without significant impact to
the performance of the high-priority job.

2. Built on the above observation, we give a priority-
based workload consolidation method with the
support of underlying VM collocation mechanism.
We partition the computing capacity of each
physical node into two tiers, namely foreground
VM (with high CPU priority) and background VM
(with low CPU priority) by pinning two VMs to the
node. They can simultaneously process different
jobs. The background job can therefore use the
underutilized computing capacity whenever the
foreground job cannot fully use it. Our method
supports backfilling in such a two-tier setting.

Our evaluation results show that our consolidation-
based algorithm (Aggressive Migration and Consolidation
supported BackFilling (AMCBF)) significantly outperforms
FCFS and Extensible Argonne Scheduling sYstem (EASY)
(accurate job execution time is available for EASY in our
experiment) on well-known traces. In addition, our method
outperforms EASY even when it only knows the informa-
tion of the jobs’ node number requirement. Finally, our
algorithm can achieve two commonly conflicting goals in
parallel job scheduling: improving the system utilization
and the job responsiveness.

The remainder of this paper is organized as follows:
Section 2 discusses some related work. Section 3 presents our
priority-based workload consolidation method. Detailed
descriptions of our job scheduling algorithms are given in
Section 4. Section 5 evaluates the performance of our
algorithms. Section 6 concludes the paper and discusses
future work.

2 RELATED WORK

There have been many efforts on scheduling mechanisms for
parallel jobs in clusters [17]. FCFS is the basic but popularly
used batch scheduling algorithm. Backfilling [9], which was
developed as the EASY for IBM SP1, is a technique that

allows short/small jobs to use idle nodes while the job at the
head of the queue does not have enough number of nodes to
run. Backfilling can improve node utilization, but it requires
each job to specify its maximum execution time so that only
jobs that will not delay the start of the job at the head of the
queue are backfilled. Furthermore, a preempted job is often
given a reservation for a future time to run. Different
methods of assigning reservations differentiate several
variances of backfilling techniques [9], [18], [19]. Backfilling
techniques address the low-utilization problem caused
by different node number requirements of parallel jobs.
However, backfilling does not deal with low resource
utilization due to parallel jobs themselves.

Gang scheduling [10] allows resource sharing among
multiple parallel jobs. The computing capacity of a node is
divided into time slices for sharing among the processes of
jobs. The gang scheduling algorithm manages to make all
the processes of a job progress together so that one process
will not be in sleep state when another process needs to
communicate with it. The allocation of time slices of
different nodes to parallel processes is coordinated, which
requires OS support. Some gang scheduling algorithms,
such as paired gang scheduling [20] investigate how to
place processes with complement resource needs together
to minimize their interference, e.g., when a process per-
forms I/O activities and leaves CPU idle, the paired gang
scheduling algorithm can find a process to use the idle CPU
resources. A similar strategy is used in cloud resource
consolidation through correlation analysis of resource use
among VMs [21]. Processes of parallel jobs share the
computing capacity of a node equally in common gang
scheduling algorithms. This approach can improve the
utilization to a certain degree, but is likely to stretch the
execution time of individual jobs. There is attempt to
integrate backfilling and gang scheduling [22], but it only
results in a comparable performance to that of the simple
backfilling algorithm [23].

Both backfilling and gang scheduling intend to im-
prove utilization caused by node fragmentation. They do
not target on the utilization degradation caused by
parallelization itself.

3 WORKLOAD CONSOLIDATION METHOD

For a parallel application with dependency among its
parallel processes, achieving high utilization on the nodes
on which these processes run is often difficult. For a cloud
service provider that runs this kind of applications, how to
address this issue is important for its competitiveness in the
market. We do two workload consolidation experiments in
attempting to improve node utilization and examine the
impact to the execution time of parallel jobs.

In the first experiment, we collocate two VMs in each
physical node and give these VMs the same priority, i.e.,
each VM is assigned a weight of 256. In the second
experiment, the collocated two VMs have different prio-
rities, in which one is assigned a weight of 10,000 and the
other is assigned a weight of 1. We call the high-priority one
foreground VM and the low-priority one background VM. In
this setting, the background VM only runs when the
foreground VM is idle.

Throughout the experiments,1 we made the following

observations:

1. Priority-based VM collocation incurs trivial perfor-
mance impact to jobs running in the high-priority
VMs. The average performance loss of jobs running
in the foreground tier is between 0.0 and 3.7 percent
compared to those running in the nodes exclusively
(one-tier VM). We simply model the loss as a
uniform distribution.

2. When a foreground VM runs a job with a CPU
utilization higher than 96 percent, collocating a VM
to run in background does not benefit either the
foreground or the background job due to that
context switching incurs overhead and the back-
ground VM has very small chance to get physical
resource to run.

3. When a foreground VM runs a job with low CPU
utilization, the job running in the collocated back-
ground VM can get significant share of physical
resources to run. For a single-process background
job, the utilization of the idle CPU cycles is between
80 and 100 percent and roughly follows uniform
distribution; for a multi-processes background job,
the value is between 19.8 and 76.6 percent and can be
modeled by a normal distribution with � ¼ 0:428
and � ¼ 0:144.

Based on these observations, we will discuss our

scheduling algorithms in the following section.

4 SCHEDULING ALGORITHMS

In this section, we describe our scheduling algorithms for

priority-based workload consolidation. We first discuss the

basic scheduling algorithms and then give our consolida-

tion strategies based on these algorithms.

4.1 Basic Algorithms

Our basic scheduling algorithm, Conservative Migration

supported BackFilling (CMBF) is backfill based. The

algorithm assumes that the state of a job can be saved and

restored; therefore, the scheduler is able to suspend a job

and resume it on other nodes in a later time.
CMBF schedules jobs to run according to their arrival

time when there is enough number of nodes. When the

number of idle nodes is not sufficient for a job, another job

with a later arrival time but smaller node number require-

ment may be scheduled to run via backfilling. To avoid

starving a preempted job, CMBF uses the following policy:

A preempted job is scheduled to run whenever it sees the total

number of nodes that are either idle or occupied by jobs with a later

arrival time is equal or greater than the number of nodes it needs.

The job may preempt jobs arriving later but being scheduled

on some nodes. The scheduler instructs these jobs to save

states, suspends their execution, and moves them back to

the job queue.

Algorithm 1 describes the detail of the process. The
algorithm is activated when a new job arrives or a job finishes
execution.

4.1.1 CMBF Example

We illustrate how CMBF works using an example in Fig. 1a.
JiðS; LÞ in Fig. 1 represents the job arrival order with i, the
number of nodes requested by the job with S, and the
execution time of the job with L. For simplicity of
description, we here assume that the job suspension and
restoring incur trivial cost in this example.

At time 0, there are six jobs in the queue. We consider
that there are six nodes, labeled from P1 to P6 allocated to
jobs in this queue. The node allocation layout is shown in
the row labeled as t ¼ 0. J3 and J4 are not allocated due to
that their node requirements exceed the number of
available nodes. As a result, J5 and J6 are backfilled into
node P4, P5, and P6.

When J2 finishes its execution at time 5, CMBF tries to
dispatch job J3 to run. J3 requests six nodes, but there are
only two idle nodes and three additional nodes used by
backfilling jobs J3 can preempt. J3 cannot be allocated
according to CMBF (line 13 in Algorithm 1). However, J4
can be allocated as its request of four nodes can be satisfied
through the combination of two idle nodes and two nodes
used by a job (J5) it can preempt. Steps 1, 2, and 3 show the
process that CMBF evicts backfilling jobs to make room for
J4. First, collect the nodes used by J6, then J5, but only
evicting J5 is enough for J4, thus, J6 remains in its original
position without being removed. Then, the final allocation
layout at time 5 is shown in step 4.

1876 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

1. The detail of our experiments can be found in Section 1 in the
supplementary materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2012.262.

When J4 and J6 finish execution at time 10, J5 is

backfilled and resumes its execution as there is not enough

number of nodes for J3 to run. J3 is only dispatched at time

20 when J1 and J5 finish execution.

4.1.2 Aggressive Migration Supported BackFilling

(AMBF): A Simplified CMBF

In the worst case, CMBF requires tracking backfilling jobs

for each job in the queue when making preemption

decisions. When the number of jobs in the queue is large,

the cost can be high. We here give a simplified algorithm

called AMBF to address this problem.
Different to CMBF, AMBF only tracks backfilling jobs for

the job at the head of the queue and allows the head-of-

queue job to preempt other jobs. The rest of jobs in the

queue are not allowed to preempt jobs, in another word,

they can only be dispatched to idle nodes. The algorithm

pseudocode of AMBF is similar to that of CMBF except that

only the head-of-queue job executes the else (line 11 in

Algorithm 1) code block.
We use a similar example in Fig. 1b to illustrate AMBF.

After J2 departs at time 5 and J6 departs at time 10, J3 is at

the head of the queue but the number of nodes it requests

cannot be satisfied. There is no backfilling job for it to

preempt either. As AMBF does not allow none-head-of-

queue jobs to preempt, J4 cannot preempt J5 and is only

dispatched to run when there is enough idle nodes at time 15.
As a job is less likely to preempt other jobs, AMBF

also incurs job suspension and resuming less frequently

than CMBF.

4.2 Scheduling with Workload Consolidation

The basic algorithms described above only consider map-

ping one parallel process to one node. As we described in

Sections 1 and 3, node utilization can be low for these nodes

due to that high efficiency in parallel computing is often

difficult to achieve. In this section, we extend the basic

algorithms to be node utilization aware in attempting to
improve the overall node utilization in the cloud.

Based on our observation in Section 3, we divide the
computing capacity of a physical node into two tiers,
namely foreground and background. We assume that a
physical node can run at most two VMs with one in the
foreground and one in the background. The VM running in
foreground is assigned a high CPU priority while the VM
running in background is assigned a low CPU priority. In
the following, we give a scheduling algorithm to handle
two types of VM resources.

Conservative Migration and Consolidation supported
BackFilling (CMCBF), as shown in three parts as Algo-
rithms 2, 3, and 4, is based on the policy used in CMBF. It
ensures that a job is dispatched to run in foreground VMs
whenever the number of foreground VMs that are either
idle or occupied by jobs arriving later than it satisfies its
node requirement. Meanwhile, it allows jobs to run in
background VMs simultaneously with those foreground
VMs to improve node utilization. Compared to CMBF,
CMCBF also deals with how to ensure that the background
workload does not affect the foreground job. Note, CMCBF
only dispatches a job to run in background VMs when the
corresponding foreground VMs have a utilization lower
than a given threshold (96 percent in our paper according to
Section 3). The foreground VM utilization can be obtained
from the profile of foreground jobs, or from the runtime
monitoring data.

We use an example in Fig. 2 to illustrate the algorithm.
We consider five nodes (P1-P5) for the job queue that has
job J1 to J10 at the time of consideration. Each node has
two-tier computing capacity denoted as fg and bg in Fig. 2.
For simplicity of description in this example, we assume the
cost of saving and restoring incur trivial cost, the process in
a single-process job incurs a node utilization of 100 percent
and the processes within a multiprocesses job involve a
node utilization less than 96 percent, the VMs both in
background and foreground have enough capacity to
support the run of jobs.

Fig. 1. Example of CMBF and AMBF.

At time 0, job J1, J2, and J3 are allocated to five nodes
and run in foreground VMs according to Algorithm 4. As
J1 is a single-process job, therefore P1 cannot accommodate
another VM running in background. However, J4 and J5
can run in background VMs at node P2-P5. How to collocate
a background VM with which a foreground VM is
determined through a simple process. The process matches
the background VM that is likely to incur high node
utilization to the foreground VM that is likely to incur low
node utilization. The process is shown in the dispatch
function in Algorithm 2. This matchmaking process

balances the load on physical nodes and minimizes the
interference between background and foreground jobs.

At time 5, J2 finishes and departs the system. As there is
not enough foreground VMs for J4 to run, J5 is backfilled
from background to run in foreground according to lines
10-16 in Algorithm 2. As J5 is also a single-process job,
therefore P2 cannot accommodate a background VM either.
J4 is evicted and put back into the queue. J6 requests only
one node and is backfilled to run on P3. J6 incurs a
utilization above the threshold; therefore, P3 cannot
accommodate a background VM. As there are only two
background VMs available, J4 cannot run on them and J7
is placed to run on P4 and P5 as background job.

At time 10, J1 and J3 finish execution. J4 is at the head
of the queue and dispatched to run in foreground. J10 is
dispatched to run in background at P1.

At time 15, J4 finishes and J10 is moved to run in
foreground due to that there are not enough foreground
VMs for J8 and J9.

At time 20, J6 finishes. The total number of idle fore-
ground VMs and VMs running backfilling jobs (J10 in this
case) satisfies the needs of J9. As a result, J10 is evicted and
J9 is allocated to run on P1, P3-P5. Subsequently, J10 is put to
run as a background job in P1 (J10 is actually switched from

1878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

the foreground to the background VM by swapping the CPU
priorities of the foreground VM and background VM of P1).

At time 25, J8 is allocated when other jobs finish and
foreground VMs are available.

The handling of background job departure and job arrival
are straightforward as Algorithms 3 and 4 show. When a job
arrives, if enough idle VMs exist in foreground, this newly
arrival job will be placed into foreground, else if enough idle
VMs exist in background, the destination of the newly arrival
job is background, otherwise, push it at the end of the job
queue.

CMCBFtreats jobsrunninginbackgroundequally. Inother
words, a job running in the background will not be preempted
by other jobs if the foreground situation does not change. This
reduces suspension and state restoring cost of background
jobs. When a background job departs, the scheduler just scans
the queue according to job arrival time and place a matching
job to run in the available background VMs.

CMCBF is similar to CMBF when it comes the way it
handles foreground jobs; however, CMCBF differs to CMBF
in the following two ways:

1. CMCBF considers the jobs both running in back-
ground and waiting in the queue when making
scheduling decisions, not only jobs in the queue.

2. When moving a job from background to foreground in
CMCBF, some parallel processes of the job do not have
to be suspended and restored, instead they can be
switched to run in foreground through the change of
VM priority.

CMCBF faces similar problem as CMBF when tracking
backfilling jobs for each job. To reduce the cost, we also

simplify the process in a way similar to AMBF by only
keeping the backfilling job list for the job at the head of the
queue. We call the modified algorithm AMCBF.

Fig. 2 also includes how the example case is handled in
AMCBF. When J6 departs at time 15, J9 can not preempt
J10 as J8 is at the head of the queue and only the head-of-
queue job can preempt other jobs in AMCBF.

Similar to CMBF, CMCBF has the following property: A
job is dispatched immediately whenever it has sufficient
resource to run. The resource includes idle nodes and those
nodes occupied by jobs arriving later than it. CMCBF
improves the node utilization by allowing jobs to run in
background. AMBF and AMCBF slightly relax the dis-
patching order of CMBF and CMCBF by preventing none
head-of-the-queue jobs from preempting.

5 EVALUATION

5.1 Settings

We evaluate our algorithms using trace-driven simulation.
Running a foreground VM and a background VM

simultaneously on a physical node incurs overhead due to
context switch. According to our experimental results in our
cluster, we model the overhead to the process running in the
foreground VM as a random number varying from 0 to
3.7 percent of the length of a time slice. In a time slice, the
progress of a background process is calculated as below:

t ¼

T if its fg VMs are all idle
T � eff if CPUidle � CPUreq
T � eff � CPUidle

CPUreq
if CPUidle < CPUreq;

8>><
>>:

in which T is the length of a time slice, denoting the progress
of the background process running on a dedicated node in a
time slice. eff is a variable between 0 and 1 that measures
how much time in the slice effectively contributes to the
progress of the process. A background process is frequently
preempted and eff characterizes the overhead associated.
For a single-process job, eff is a random number between
0.8 and 1; for a multiprocesses job, eff (between 0.2 and 0.8)
is randomly generated by a normal distribution with � ¼
0:428 and � ¼ 0:144. CPUreq is the CPU utilization of the
background process on a dedicated node. CPUidle is the
portion of unused CPU cycles in the node, i.e., the portion
that is not fully utilized by the foreground VM. We set the
lower bound of CPUidle as 4 percent. When the portion of
idle CPU cycles in a node is equal to or below the threshold,
no process will be dispatched to the node to run as a
background process. The threshold setting is obtained from
the observation in our experiments.

Furthermore, the progress of a job depends on the
progress of the slowest process in the job.

In our simulation, we set the job migration cost to
20 seconds. The total number of nodes is 320 and the
number of parallel processes in a job is set between 1 and
256 when using workload models.

5.2 Workload and Performance Metrics

We use the following commonly used workload models in
our simulation:

1. Feitelson workload, denoted by FWorkload: A gen-
eral model based on data from six different traces
[24], [18]. It contains 20,000 jobs in our simulation.

Fig. 2. Example of CMCBF and AMCBF.

2. Jann workload, denoted by JWorkload: A workload
model for MPP and it fits the actual workload of
Cornell Theory Center Supercomputer [25]. It con-
tains 10,000 jobs in our simulation.

As the generated workload does not contain CPU usage
information for each process, we assign the CPU usage to a
process according to the following rule: 1) if a job has only one
process, the process is assigned a CPU usage of 100 percent;
2) if a job has more than one processes, the CPU usage of each
process is a random number between 40 to 100 percent.

The workload is then characterized as the following:

. tri : the execution time of job i in a dedicated node.

. tai : the arrival time of job i.

. tfi : the finish time of job i.

. bi: the number of nodes requested by job i.

. CPUj
i : the average CPU usage of process j of job i.

We use the following performance metrics to evaluate

our algorithms:

. rpt ¼
Pn

i¼1
ðtfi �tai Þ
n : the average response time.

. b sld ¼
Pn

i¼1

t
f
i
�ta
i

maxð�;tr
i
Þ

n : the average bounded slowdown.
Compared with slowdown, the bounded slowdown

metric is less affected by very short jobs as it contains
a minimal execution time element � [18], [26].
According to [18], we set � to 10 seconds.

. mig num: the average number of migrations per job.

. utilization: the average node utilization, which is the
fraction of busy CPU cycles in the total simulation
time.

5.3 The Results

Figs. 3 and 4 show the performance of our algorithms for
FWorkload and JWorkload. In comparison, we give the
EASY scheduler accurate estimation of job execution time,
but keep the execution time unknown from our algo-
rithms. We have the following observations from Figs. 3
and 4:

1. Our basic algorithms, CMBF and AMBF, outperform
FCFS in big margin but produce worse response
time and bounded slowdown than EASY. It is not a
surprise as EASY performs well when the estimation
of job execution time is accurate. However, our
algorithms that consolidate parallel workload,
CMCBF and AMCBF, significantly outperform
FCFS, CMBF, AMBF, and EASY on response time
and bounded slowdown.

1880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 3. Performance comparison using FWorkload.

2. The two consolidation algorithms lead to better node
utilization compared to other algorithms. Compared
with EASY, a utilization improvement up to 2.4
and 3.1 percent can be gained in FWorkload and
JWorkload, respectively. And, moreover, the im-
provements on the saturation CPU utilization are 11
and 16 percent, respectively.

3. By relaxing the job execution order and only
disallowing preemption to the head-of-the-queue
job, AMBF achieves better performance than CMBF,
the one that preserves the order in terms of job
response time and bounded slowdown. This can be
explained by that short jobs get more chances to run
with the relaxation. AMCBF also shows slightly
better performance than CMCBF. The improvement
is not significant due to that the consolidation
mechanism in CMCBF already gives short jobs
enough chance to run in the background.

4. The average number of job migrations in AMCBF is
slightly less than that in CMCBF for both FWorkload
and JWorkload. But, AMBF results in significantly
less number of job migrations than CMBF for the two
workloads. Generally, the two algorithms with

relaxed job execution order often require less number
of job migrations than those preserving the order. It is
due to that AMBF and AMCBF treat all none-head-
of-the-queue jobs equally, thus the chance that a job
preempts another is reduced to a certain degree. We
note that there are more job migrations in CMBF than
in AMCBF and CMCBF, as shown in the JWorkload
results. This is due to that the computing capacity left
by the foreground VMs allows many short jobs to be
accommodated in the background VMs without
incurring job migration. We also note that the
average number of job migrations in JWorkload is
larger than that in FWorkload. It is because of the
characteristic of JWorkload. JWorkload contains
about 40 percent of single-process jobs and there
are about 86 percent of jobs with less than 20 pro-
cesses in JWorkload [25]. The large number of small
jobs triggers many backfilling operations, thus
increases the chance of job migrations.

In the results described above, AMCBF shows better

performance than other algorithms especially in terms of

response time and bounded slowdown. We will use

AMCBF for comparison in the following discussions.

Fig. 4. Performance comparison using JWorkload.

5.4 Discussions

AMCBF uses the CPU usage information of parallel
processes to make scheduling decisions. We study the
impact of the accuracy of CPU usage information on the
performance of AMCBF. In addition, job migration cost and
the amount of remaining computing capacity on each node
also have impact on the performance of our scheduling
algorithms. We further investigate the impact of these two
factors on the scheduling performance. Our experimental
results2 show the following:

1. AMCBF’s performance improves as the accuracy of
CPU usage estimation increases. And, moreover,
AMCBF performs better than EASY in most cases
even without any CPU usage information of
parallel processes.

2. The performance of AMCBF degrades as the migra-
tion cost increases, but AMCBF bears high migration
cost. For FWorkload, even with a migration cost at
600 seconds (24 percent of the average job execution
time), AMCBF can still outperform EASY in most
cases; for JWorkload, the threshold is 360 seconds
(3.2 percent of the average job execution time).

3. The benefit gained from consolidation is inversely
proportional to the average CPU usage of parallel
processes. For FWorkload, if the average CPU usage
is less than 95 percent, AMCBF outperforms EASY in
most cases. But for JWorkload, the upper threshold
reduces to about 80 percent.

6 CONCLUSION

As an increasing number of complex applications leverages
the computing power of the cloud for parallel computing, it
becomes important to efficiently manage computing re-
sources for these applications. Due to the difficulty in
realizing parallelism, many parallel applications show a
pattern of decreasing resource utilization along with the
increase of parallelism. Scheduling parallel jobs for both
efficient resource use and job responsiveness is challenging.

Workload consolidation supported by virtualization
technologies is commonly used for improving utilization
in data centers. In this paper, we gave a priority-based
workload consolidation method to schedule parallel jobs in
data centers to make use of under utilized node computing
capacity to improve responsiveness. Our method partitions
a node’s computing capacity into the foreground VM (with
high CPU priority) tier and the background VM (with low
CPU priority) tier. The performance of jobs running in the
foreground VMs is close to that of jobs running in dedicated
nodes (less than 3.7 percent performance loss in our
experiments); meanwhile, the idle CPU cycles can be well
used by the jobs running in background VMs. The
algorithms we gave integrated backfilling and migration
techniques to make effective use of the two types of VMs.
Our extensive simulation showed that our consolidation-
based algorithm (AMCBF), even without knowing the job
execution time, significantly outperforms the commonly
used EASY algorithm. In addition, AMCBF is robust in

terms that it allows inaccurate CPU usage estimation of
parallel processes.

In our future work, we will exploit mechanisms that can
effectively partition the computing capacity of a data center
node into k-tiers, which may further improve the node
utilization and responsiveness for parallel workload in the
cloud. Another issue is that in a large data center, processes
of a job may need to be allocated to nodes that are close to
each other to minimize the communication cost. Our
current method does not take this into account. As the
future work, we will exploit buddy allocation mechanisms
[27], [28] to tackle this issue.

ACKNOWLEDGMENTS

The work was supported by the National Natural Science
Foundation of China (Nos. 91024030, 61074108, 61172014,
and 60702037). Professors Albert Y. Zomaya and Bing Bing
Zhou would like to acknowledge the support of the
Australian Research Council Discovery Grant (DP1097111).

REFERENCES

[1] “High Performance Computing (HPC) on AWS,”Amazon Inc.,
http://aws.amazon.com/hpc-applications/, 2011.

[2] L. Barroso and U. Holzle, “The Case for Energy-Proportional
Computing,” Computer, vol. 40, no. 12, pp. 33-37, Dec. 2007.

[3] J. Hamilton, “Cloud Computing Economies of Scale,” Proc. AWS
Genomics Cloud Computing Workshop, http://www.mvdirona.
com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud
20100608.pdf, 2010.

[4] D. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel
Systems. IBM TJ Watson Research Center, 1994.

[5] D. Feitelson and B. Nitzberg, “Job Characteristics of a Production
Parallel Scientific Workload on the Nasa Ames ipsc/860,” Proc.
Workshop Job Scheduling Strategies for Parallel Processing, pp. 337-
360, 1995.

[6] J. Jones and B. Nitzberg, “Scheduling for Parallel Supercomput-
ing: A Historical Perspective of Achievable Utilization,” Proc.
Workshop Job Scheduling Strategies for Parallel Processing, pp. 1-16,
1999.

[7] L.G. Valiant, “A Bridging Model for Parallel Computation,”
Comm. ACM, vol. 33, no. 8, pp. 103-111, 1990.

[8] U. Schwiegelshohn and R. Yahyapour, “Analysis of First-Come-
First-Serve Parallel Job Scheduling,” Proc. Ninth Ann. ACM-SIAM
Symp. Discrete Algorithms, pp. 629-638, 1998.

[9] D. Lifka, “The Anl/Ibm SP Scheduling System,” Proc. Workshop Job
Scheduling Strategies for Parallel Processing, pp. 295-303, 1995.

[10] D. Feitelson and M. Jettee, “Improved Utilization and Respon-
siveness with Gang Scheduling,” Proc. Workshop Job Scheduling
Strategies for Parallel Processing, pp. 238-261, 1997.

[11] Y. Lin, “Parallelism Analyzers for Parallel Discrete Event
Simulation,” ACM Trans. Modeling and Computer Simulation, vol.
2, no. 3, pp. 239-264, 1992.

[12] Z. Juhasz, S. Turner, K. Kuntner, and M. Gerzson, “A Performance
Analyser and Prediction Tool for Parallel Discrete Event Simula-
tion,” J. Simulation, vol. 4, no. 1, pp. 7-22, 2003.

[13] R. Fujimoto, “Parallel and Distributed Simulation,” Proc. 31st Conf.
Winter Simulation: Simulation—A Bridge to the Future, vol. 1,
pp. 122-131, 1999.

[14] A. Malik, A. Park, and R. Fujimoto, “Optimistic Synchronization
of Parallel Simulations in Cloud Computing Environments,” Proc.
IEEE Int’l Conf. Cloud Computing (CLOUD ’09), pp. 49-56, 2009.

[15] R. Fujimoto, A. Malik, and A. Park, “Parallel and Distributed
Simulation in the Cloud,” Int’l Simulation Magazine, Soc. for
Modeling and Simulation, vol. 1, no. 3, 2010.

[16] G. D’Angelo, “Parallel and Distributed Simulation from Many
Cores to the Public Cloud,” Proc. Int’l Conf. High Performance
Computing and Simulation (HPCS), pp. 14-23, 2011.

[17] Y. Etsion and D. Tsafrir, “A Short Survey of Commercial Cluster
Batch Schedulers,” Technical Report 2005-13, The Hebrew Univ.
of Jerusalem, May 2005.

1882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

2. For details, please refer to Section 2 in the supplementary materials,
available online.

[18] A. Mu’alem and D. Feitelson, “Utilization, Predictability, Work-
loads, and User Runtime Estimates in Scheduling the IBM sp2
with Backfilling,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 6, pp. 529-543, June 2001.

[19] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of the
Maui Scheduler,” Proc. Workshop Job Scheduling Strategies for
Parallel Processing, pp. 87-102, 2001.

[20] Y. Wiseman and D. Feitelson, “Paired Gang Scheduling,” IEEE
Trans. Parallel and Distributed Systems, vol. 14, no. 6, pp. 581-592,
June 2003.

[21] A. Do, J. Chen, C. Wang, Y. Lee, A. Zomaya, and B. Zhou,
“Profiling Applications for Virtual Machine Placement in
Clouds,” Proc. IEEE Int’l Conf. Cloud Computing (CLOUD),
pp. 660-667, 2011.

[22] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An
Integrated Approach to Parallel Scheduling Using Gang-Schedul-
ing, Backfilling, and Migration,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 14, no. 3, pp. 236-247, Mar. 2003.

[23] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling Using System-
Generated Predictions Rather than User Runtime Estimates,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 6, pp. 789-803,
June 2007.

[24] D. Feitelson, “Packing Schemes for Gang Scheduling,” Proc.
Workshop Job Scheduling Strategies for Parallel Processing, pp. 89-
110, 1996.

[25] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan,
“Modeling of Workload in Mpps,” Proc. Workshop Job Scheduling
Strategies for Parallel Processing, pp. 95-116, 1997.

[26] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P.
Wong, “Theory and Practice in Parallel Job Scheduling,” Proc.
Workshop Job Scheduling Strategies for Parallel Processing, pp. 1-34,
1997.

[27] E. Von Puttkamer, “A Simple Hardware Buddy System Memory
Allocator,” IEEE Trans. Computers, vol. C-100, no. 10, pp. 953-957,
Oct. 1975.

[28] K. Knowlton, “A Fast Storage Allocator,” Comm. ACM, vol. 8,
no. 10, pp. 623-624, 1965.

Xiaocheng Liu received the PhD degree
from the National University of Defense
Technology and he is now a lecturer at the
same university. His recent research interests
include resource allocation in the cloud,
parallel and distributed simulation, compo-
nent-based modeling. He had a year’s (from
November 2010 to November 2011) training
in cloud computing at the Centre for Dis-
tributed and High Performance Computing,

School of Information Technologies, the University of Sydney.

Chen Wang received the PhD degree from
Nanjing University. He is a senior research
scientist at Commonwealth Scientific and In-
dustrial Research Organisation ICT Centre,
Australia. His research interests are primarily in
distributed, parallel and trustworthy systems. His
current work focuses on resource management
in cloud computing, accountable distributed
systems and demand response algorithms in
the smart grid.

Bing Bing Zhou received the BS degree from
the Nanjing Institute of Technology, China, and
the PhD degree in computer science from
Australian National University. He is currently
an associate professor at the University of
Sydney. His research interests include parallel/
distributed computing, grid and cloud computing,
peer-to-peer systems, parallel algorithms, and
bioinformatics. He has a number of publications
in leading international journals and conference

proceedings. His research has been funded by the Australian Research
Council through several Discovery Project grants.

Junliang Chen is currently working toward the
PhD degree at the University of Sydney. His
research interests include resource manage-
ment and job scheduling in distributed systems,
economic models in cloud computing and soft-
ware as a service.

Ting Yang is currently an associate professor at
the School of Electrical Engineering and Auto-
mation, Tianjin University, China. His scientific
interests include robust communication net-
works (interlayer/interdomain protocols and
quality of service in data center network),
reliable cloud computing infrastructure and
parallel and distributed algorithms. His research
has been supported by the National Science
Foundation of China and the Ministry of Educa-

tion of China. He has published more than 60 papers in major journals
and refereed conference proceedings. He is also the coauthor of book
Modern Sensor Technology. He is a senior member of the Chinese
Institute of Electronic, the fellow of Graph Theory Research and
Application committee, and the member of International Society for
Industry and Applied Mathematics.

Albert Y. Zomaya is currently the chair profes-
sor of High Performance Computing and Net-
working and Australian Research Council
Professorial fellow at the School of Information
Technologies, The University of Sydney. He is
also the director of the Centre for Distributed and
High Performance Computing which was estab-
lished in late 2009. He is the author/coauthor of
seven books, more than 400 publications in
technical journals and conferences, and the

editor of nine books and 11 conference volumes. His research interests
are in the areas of parallel and distributed computing and complex
systems. He is currently the editor-in-chief of the IEEE Transactions on
Computers and serves as an associate editor for 19 journals including
some of the leading journals in the field. He was the chair the IEEE
Technical Committee on Parallel Processing (1999-2003) and currently
serves on its executive committee. He also serves on the advisory board
of the IEEE Technical Committee on Scalable Computing, the advisory
board of the Machine Intelligence Research Labs. He served as general
and program chair for more than 60 events and served on the
committees of more than 500 ACM and IEEE conferences. He delivered
more than 100 keynote addresses, invited seminars and media
briefings. He is a fellow of the IEEE, AAAS, the Institution of Engineering
and Technology, United Kingdom, a distinguished engineer of the ACM
and a chartered engineer. He received the 1997 Edgeworth David Medal
from the Royal Society of New South Wales for outstanding contribu-
tions to Australian Science. He also received the IEEE Computer
Society’s Meritorious Service Award and Golden Core Recognition in
2000 and 2006, respectively. Also, he received the IEEE TCPP
Outstanding Service Award and the IEEE TCSC Medal for Excellence
in Scalable Computing, both in 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

