
Efficient Two-Server Password-Only
Authenticated Key Exchange

Xun Yi, San Ling, and Huaxiong Wang

Abstract—Password-authenticated key exchange (PAKE) is where a client and a server, who share a password, authenticate each

other and meanwhile establish a cryptographic key by exchange of messages. In this setting, all the passwords necessary to

authenticate clients are stored in a single server. If the server is compromised, due to, for example, hacking or even insider attack,

passwords stored in the server are all disclosed. In this paper, we consider a scenario where two servers cooperate to authenticate a

client and if one server is compromised, the attacker still cannot pretend to be the client with the information from the compromised

server. Current solutions for two-server PAKE are either symmetric in the sense that two peer servers equally contribute to the

authentication or asymmetric in the sense that one server authenticates the client with the help of another server. This paper presents

a symmetric solution for two-server PAKE, where the client can establish different cryptographic keys with the two servers,

respectively. Our protocol runs in parallel and is more efficient than existing symmetric two-server PAKE protocol, and even more

efficient than existing asymmetric two-server PAKE protocols in terms of parallel computation.

Index Terms—Password-authenticated key exchange, dictionary attack, Diffie-Hellman key exchange, ElGamal encryption

Ç

1 INTRODUCTION

NOWADAYS, passwords are commonly used by people
during a log in process that controls access to

protected computer operating systems, mobile phones,
cable TV decoders, automated teller machines and so on. A
computer user may require passwords for many purposes:
logging in to computer accounts, retrieving e-mail from
servers, accessing programs, databases, networks, web
sites, and even reading the morning newspaper online.

Earlier password-based authentication systems trans-
mitted a cryptographic hash of the password over a public
channel which makes the hash value accessible to an
attacker. When this is done, and it is very common, the
attacker can work offline, rapidly testing possible pass-
words against the true password’s hash value. Studies have
consistently shown that a large fraction of user-chosen
passwords are readily guessed automatically. For example,
according to Bruce Schneier, examining data from a 2006
phishing attack, 55 percent of MySpace passwords would
be crackable in 8 hours using a commercially available
Password Recovery Toolkit capable of testing 200,000
passwords per second in 2006 [26].

Recent research advances in password-based authentica-
tion have allowed a client and a server mutually to
authenticate with a password and meanwhile to establish

a cryptographic key for secure communications after
authentication. In general, current solutions for password-
based authentication follow two models.

The first model, called PKI-based model, assumes that
the client keeps the server’s public key in addition to share a
password with the server. In this setting, the client can send
the password to the server by public key encryption. Gong
et al. [15], [22] were the first to present this kind of
authentication protocols with heuristic resistant to offline
dictionary attacks, and Halevi and Krawczyk [16] were the
first to provide formal definitions and rigorous proofs of
security for PKI-based model.

The second model is called password-only model.
Bellovin and Merritt [4] were the first to consider
authentication based on password only, and introduced a
set of so-called “encrypted key exchange” protocols, where
the password is used as a secret key to encrypt random
numbers for key exchange purpose. Formal models of
security for the password-only authentication were first
given independently by Bellare et al. [3] and Boyko et al. [8].
Katz et al. [19] were the first to give a password-only
authentication protocol which is both practical and prova-
bly secure under standard cryptographic assumption.

Based on the identity-based encryption technique [5], [6],
Yi et al. [32], [33], [34] suggested an identity-based model
where the client needs to remember the password only
while the server keeps the password in addition to private
keys related to its identity. In this setting, the client can
encrypt the password based on the identity of the server.
This model is between the PKI-based and the password-
only models.

Typical protocols for password-based authentication
assume a single server stores all the passwords necessary
to authenticate clients. If the server is compromised, due to,
for example, hacking, or installing a “Trojan horse,” or even
insider attack, user passwords stored in the server are

. X. Yi is with the School of Engineering and Science, Victoria University,
PO Box 14428, Melbourne, Victoria 8001, Australia.
E-mail: xun.yi@vu.edu.au.

. S. Ling and H. Wang are with the Division of Mathematical Sciences,
School of Physical and Mathematical Sciences, Nanyang Technological
University, SPMS-04-01, 21 Nanyang Link, Singapore 637371.
E-mail: {lingsan, hxwang}@ntu.edu.sg.

Manuscript received 30 June 2012; revised 22 Aug. 2012; accepted 7 Sept.
2012; published online 21 Sept. 2012.
Recommended for acceptance by W. Lou.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-06-0606.
Digital Object Identifier no. 10.1109/TPDS.2012.282.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS VOL:24 NO:9 YEAR 2013

disclosed. To address this issue, two-server password-based
authentication protocols were introduced in [9], [20], [29],
[30], [31], and [18], where two servers cooperate to
authenticate a client on the basis of password and if one
server is compromised, the attacker still cannot pretend to be
the client with the information from the compromised server.

Current solutions for two-server PAKE are either
symmetric in the sense that two peer servers equally
contribute to the authentication, such as [20], or asymmetric
in the sense that one server authenticates the client with the
help of another server, such as [30], [18]. A symmetric two-
server PAKE protocol, for example, Katz et al.’s protocol
[20], can run in parallel and establishes secret session keys
between the client and two servers, respectively. In case one
of the two servers shuts down due to the denial-of-service
attack, another server can continue to provide services to
authenticated clients. In terms of parallel computation and
reliable service, a symmetric protocol is superior to an
asymmetric protocol. So far, only Katz et al.’s two-server
PAKE protocol [20] has been symmetric. But their protocol
is not efficient for practical use. An asymmetric two-server
PAKE protocol runs in series and only the front-end server
and the client need to establish a secret session key. Current
asymmetric protocols, for example, Yang et al.’s protocol
[30], [31] and Jin et al.’s protocol [18], need two servers to
exchange messages for several times in series. These
asymmetric designs are less efficient than a symmetric
design which allows two servers to compute in parallel.

In this paper, we propose a new symmetric solution for
two-server PAKE. In all existing two-server PAKE proto-
cols, two servers are provided random password shares
pw1 and pw2 subject to pw1 þ pw2 ¼ pw. In our protocol,
we provide one server S1 with an encryption of the
password Eðgpw2 ; pk2Þ, and another server S2 with an
encryption of the password Eðgpw2 ; pk1Þ, where pk1 and
pk2 are the encryption keys of S1 and S2, respectively. In
addition, two servers are provided random password
shares b1 and b2 subject to b1 � b2 ¼ HðpwÞ, where H is a
hash function. Like [20], [31], [18], the password pw is
secret unless the two servers collude.

Although we use the concept of public key cryptosys-
tem, our protocol follows the password-only model. The
encryption and decryption key pairs for the two servers are
generated by the client and delivered to the servers
through different secure channels during the client regis-
tration, as the client in any two-server PAKE protocol
sends two halves of the password to the two servers in
secret, respectively. In fact, a server should not know the
encryption key of another server and is restricted to
operate on the encryption of the password on the basis of
the homomorphic properties of ElGamal encryption
scheme. For example, given Eðgpw2 ; pk2Þ; S1 can construct
EðAgpw2 ; pk2Þ and Eðga�pw2 ; pk2Þ for any group element A and
integer a without the knowledge of the encryption key pk2.

Security analysis has shown that our protocol is secure
against both passive and active attacks in case that one
server is compromised. Performance analysis has shown
that our protocol is more efficient than existing symmetric
and asymmetric two-server PAKE protocols in terms of
parallel computation.

Our protocol can be applied in distributed systems
where multiple servers exist. For example, microsoft active
directory domain service (AD DS) is the foundation for
distributed networks built on Windows server operating
systems that use domain controllers. AD DS provides
structured and hierarchical data storage for objects in a
network such as users, computers, printers, and services.
AD DS also provides support for locating and working with
these objects. For a large enterprise running its own
domain, there must be two AD DS domain controllers, for
fault-tolerance purpose. To authenticate a user on a net-
work, the user usually needs to provide his/her identifica-
tion and password to one AD DS domain controller. Based
on our two-server PAKE protocol, we can split the user’s
password into two parts and store them, respectively, on
the two AD DS domain controllers, which can then
cooperate to authenticate the user. Even if one domain
controller is compromised, the system can still work. In this
way, we can achieve more secure AD DS.

The remainder of this paper is organized as follows: We
introduce related works in Section 2, and two cryptographic
building blocks of our protocol, Diffie-Hellman key
exchange protocol and ElGamal encryption scheme, in
Section 3, and describe our two-server PAKE protocol in
Section 4. Security and performance analysis of our protocol
is done in Sections 5 and 6, respectively, and Conclusions
are drawn in the last section.

2 RELATED WORKS

In a single-server PAKE protocol, if the server is
compromised, user passwords stored in the server are all
disclosed. To address this issue, in 2000, Ford and Kaliski
[13] proposed the first threshold PAKE protocol in the PKI-
based model, in which n servers cooperate to authenticate a
client. Their protocol remains secure as long as n� 1 or few
servers are compromised. Subsequently, in 2001, Joblon
[17] removed the requirement for PKI and suggested a
protocol with the similar property in the password-only
model. Both the threshold PAKE protocols were not shown
to be secure formally. In 2002, MacKenzie et al. [24] gave a
protocol in the PKI-based setting, which requires only t out
of n servers to cooperate to authenticate a client and is
secure as long as t� 1 or fewer servers are compromised.
They were the first to provide a formal security proof for
their threshold PAKE protocol in the random oracle model.
In 2003, Di Raimondo and Gennaro [11] proposed a
protocol in the password-only setting, which requires less
than 1/3 of the servers to be compromised, with a formal
security proof in the standard model.

In 2003, Brainard et al. [9] developed the first two-server
protocol in the PKI-based setting. Their protocol and its
variant [27] assume a secure channel between the client and
the server(s), which would be in practice implemented
using public key techniques such as SSL. In 2005, Katz et al.
[20] proposed the first two-server password-only authenti-
cated key exchange protocol with a proof of security in the
standard model. Their protocol extended and built upon the
Katz-Ostrovsky-Yung PAKE protocol [19], called KOY
protocol for brevity. In their protocol, a client C randomly
chooses a password pw, and two servers A and B are

hp
Sticky Note

hp
Sticky Note

provided random password shares pw1 and pw2 subject to
pw1 þ pw2 ¼ pw. At high level, their protocol can be viewed
as two executions of the KOY protocol, one between the
client C and the server A, using the server B to assist with
the authentication, and one between the client C and the
server B, using the server A to assist with the authentica-
tion. The assistance of the other server is necessary since the
password is split between two servers. In the end of their
protocol, each server and the client agree on a secret session
key. Katz et al.’s protocol [20] is symmetric where two
servers equally contribute to the client authentication and
key exchange. For their basic protocol secure against a
passive adversary, each party performs roughly twice the
amount of works as the KOY protocol. For the protocol
secure against active adversaries, the work of the client
remains the same but the work of the servers increase by a
factor of roughly 2-4. The advantage of Katz et al.’s
protocols is the protocol structure which supports two
servers to compute in parallel, but its disadvantage is
inefficiency for practical use.

Built on Brainard et al.’s work [9], in 2005, Yang et al. [29]
suggested an asymmetric setting, where a front-end server,
called service server (SS), interacts with the client, while a
back-end server, called control server (CS), helps SS with
the authentication, and only SS and the client agree on a
secret session key in the end. They proposed a PKI-based
asymmetric two-server PAKE protocol in [29] in 2005 and
several asymmetric password-only two-server PAKE pro-
tocols in [30] and [31] in 2006. In their password-only
protocol [30], [31], the client initiates a request, and SS
responds with B ¼ B1B2, where B1 ¼ gb1

1 g
�1
2 and B2 ¼ gb2

1 g
�2
2

are generated by SS and CS on the basis of their random
password shares �1 and �2, respectively, and then the client
can obtain gb1þb2

1 by eliminating the password � (¼ �1 þ �2)
from B, i.e., computing B=g�2 . Next, SS and the client
authenticate each other by checking if they can agree on the
same secret session key, either g

aðb1þb2Þ
1 [30] or g

aa1ðb1þb2Þ
1 [31],

with the help of CS, where a, (a1; b1), and b2 are randomly
chosen by the client, SS and CS, respectively. The security
of Yang et al.’s protocol in [30] is based on an assumption
that the back-end server cannot be compromised by an
active adversary. This assumption was later removed in [31]
at the cost of more computation and communication
rounds. The advantage of Yang et al.’s protocols [30], [31]
is efficiency for practical use. Yang et al.’s protocols are
more efficient than Katz et al.’s protocols [20] in terms of
communication and computation complexities, but its
disadvantage is the protocol structure which requires two
servers to compute in series and needs more communica-
tion rounds.

In 2007, Jin et al. [18] further improved Yang et al.’s
protocol [31] and proposed a two-server PAKE protocol
with less communication rounds. In their protocol, the
client sends B ¼ ga1g�2 to SS; SS forwards B1 ¼ B=gb1

1 g
�1
2 to

CS; CS returns A1 ¼ gb2

1 ; B2 ¼ ðB1=g
�2

2 Þ
b2 ¼ gða�b1Þb2

1 to SS;
SS computes B3 ¼ ðB2A

b1
1 Þ

b3 ¼ gab2b3 and responds A2 ¼
Ab3

1 ; S1 ¼ HðB3Þ to the client, where H is a hash function.
Next, SS and the client authenticate each other by checking
if they can agree on the same secret session key gab2b3

1 , where
a; ðb1; b3Þ; b2 are randomly chosen by the client, SS and CS,

respectively. The advantage of Jin et al.’s protocol is that it
needs less communication rounds than Yang et al.’s
protocol in [31] without introducing additional computa-
tion complexity. Like Yang et al.’s protocols, the disadvan-
tage of Jin et al.’s protocol is the protocol structure which
requires two servers to compute in series.

In this paper, we propose a new symmetric two-server
PAKE protocol which supports two servers to compute in
parallel and meanwhile keeps efficiency for practical use.
Our protocol needs only four communication rounds for the
client and two servers mutually to authenticate and
simultaneously to establish secret session keys. Our proto-
col is more efficient than existing symmetric two-server
PAKE protocol, such as Katz et al.’s protocol [20]. In terms
of parallel computation, our protocol is even more efficient
than existing asymmetric two-server PAKE protocols, such
as Yang et al.’s protocol [30] and Jin et al.s protocol [18].

3 PRELIMINARIES

3.1 Diffie-Hellman Key Exchange Protocol

The Diffie-Hellman key exchange protocol [10] was invented
by Diffie and Hellman in 1976. It was the first practical
method for two users to establish a shared secret key over an
unprotected communications channel. Although it is a
nonauthenticated key exchange protocol, it provides the
basis for a variety of authenticated protocols. Diffie-Hellman
key exchange protocol was followed shortly afterward by
RSA [25], the first practical public key cryptosystem.

Consider two users Alice and Bob, who know nothing
about each other, but wish to establish secure communica-
tions between them, Diffie-Hellman key exchange protocol
can be used as follows:

1. Alice and Bob agree on a cyclic group GG of large
prime order q with a generator g.

2. Alice randomly chooses an integer a from ZZ�q and
computes X ¼ ga, while Bob randomly chooses an
integer b from ZZ�q and computes Y ¼ gb. Then Alice
and Bob exchange X and Y .

3. Alice computes the secret key k1 ¼ Y a ¼ gba, while
Bob computes the secret key k2 ¼ Xb ¼ gab.

It is obvious that k1 ¼ k2 and thus Alice and Bob have
agreed on the same secret key, by which the subsequent
communications between them can be protected.

Diffie-Hellman key exchange protocol is secure against
any passive adversary, who cannot interact with Alice and
Bob, attempting to determine the secret key solely based
upon observed data. The security is built on the well-known
computational Diffie-Hellman (CDH) and decisional Diffie-
Hellman (DDH) assumptions as follows:

CDH assumption. Consider a cyclic group GG of large
prime order q with a generator g. The CDH assumption
states that, given (GG; g; ga; gb) for randomly chosen a; b
from ZZ�q , it is computationally intractable to compute the
value gab.

DDH assumption. Consider a cyclic group GG of large
prime order q with a generator g. The DDH assumption
states that, given (GG; g; ga; gb) for randomly chosen a; b from
ZZ�q , the value gab looks like a random element in GG. This
intuitive notion is formally stated by saying that no

probabilistic polynomial time (PPT) algorithm can distin-

guish the following two probability distributions with a

probability more than 1/2 plus a nonnegligible value.

. (ga; gb; gab), where a and b are randomly and
independently chosen from ZZ�q .

. (ga; gb; gc), where a; b; c are randomly and indepen-
dently chosen from ZZ�q .

3.2 ElGamal Encryption Scheme

The ElGamal encryption scheme was invented by ElGamal

in 1985 [12] on the basis of Diffie-Hellman key exchange

protocol. It consists of key generation, encryption, and

decryption algorithms as follows:

1. Key generation. On input a security parameter k, it
publishes a cyclic group GG of large prime order q
with a generator g. Then it chooses a decryption key
x randomly from ZZ�q and computes an encryption
key y ¼ gx.

2. Encryption. On inputs a message m 2 GG and the
encryption key y, it chooses an integer r randomly
from ZZ�q and outputs a ciphertext C ¼ Eðm; yÞ ¼
ðA;BÞ ¼ ðgr;m � yrÞ.

3. Decryption. On inputs a ciphertext (A;B), and the
decryption key x, it outputs the plaintext m ¼ DðC;
xÞ ¼ B=Ax.

ElGamal encryption scheme is a probabilistic encryption

scheme. If encrypting the same message with ElGamal

encryption scheme several times, it will, in general, yield

different ciphertexts. Tsiounis and Yung [28] proved

ElGamal encryption scheme to be semantically secure

under the DDH assumption. ElGamal encryption scheme

has useful homomorphic properties as follows:

. Given an encryption of m, Eðm; yÞ ¼ ðA;BÞ, one can
compute ðA; �BÞ ¼ Eð�m; yÞ for any � in GG, an
encryption of �m, and one can also compute
ðA�;B�Þ ¼ Eðm�; yÞ for any � in ZZ�q , an encryption
of m�.

. Given encryptions of m1 and m2, Eðm1; yÞ ¼ ðA1; B1Þ
and Eðm2; yÞ ¼ ðA2; B2Þ, one can compute ðA1A2;
B1B2Þ ¼ Eðm1m2; yÞ, an encryption of m1m2.

4 TWO-SERVER PASSWORD-ONLY

AUTHENTICATION AND KEY EXCHANGE

4.1 Our Model

In our system, there exist two servers S1 and S2 and a group

of clients. The two servers cooperate to authenticate clients

and provide services to authenticated clients. Prior to

authentication, each client C chooses a password pwC and

generates the password authentication information Auth
ð1Þ
C

and Auth
ð2Þ
C for S1 and S2, respectively, such that nobody

can determine the password pwC from Auth
ð1Þ
C or Auth

ð2Þ
C

unless S1 and S2 collude. The client sends Auth
ð1Þ
C and

Auth
ð2Þ
C to S1 and S2, respective, through different secure

channels during the client registration. After that, the client

remembers the password only, and the two servers keep the

password authentication information. Like all existing

solutions for two-server PAKE, we assume the two servers

never collude to reveal the password of the client.
When the two servers cooperate to authenticate a client

C, we assume that the client C can broadcast a message to
both of S1 and S2 simultaneously, but stress that we do not
assume a broadcast channel and, in particular, an attacker
can deliver different messages to the two servers or refuse
to deliver a message to a server. In our protocol, the client
and the two servers communicate through a public channel
which may be eavesdropped, delayed, replayed, and even
tampered by an attacker.

Our protocol is symmetric if two peer servers equally
contribute to the authentication in terms of computation
and communication.

Definition 1. Our protocol is correct if each server establishes a
secret session key with the client in the end.

An adversary in our system is either passive or active.
We consider both online dictionary attack, where an
attacker attempts to login repeatedly, trying each possible
password, and offline dictionary attack, where an adversary
derives information about the password from observed
transcripts of log sessions. The online dictionary attack
cannot be prevented by cryptographic means but can be
easily detected and suspended once the authentication fails
several times.

We assume that an adversary can compromise one server
only and obtain all information stored in the server. A
passive adversary is able to monitor the communications
among the client and two servers. An active adversary is
able to pretend to be both one server and the client to
communicate with the honest server or pretend to be both
two servers to communicate with the legal client, deviate in
an arbitrary way from the actions prescribed by the protocol.

In our protocol, the adversary attempts to learn the secret
session key established between the client and the honest
server. In an active attack, an adversary can learn the secret
session key between the client and the honest server if the
adversary can determine the password of the client.

In general, we say that our protocol is secure if no
adversary can succeed in any passive and active attacks in
case that one server is compromised. We will define when
an adversary succeeds in a passive attack or an active attack
later in Section 5.

4.2 Our Protocol

Our protocol runs in three phases—initialization, registra-
tion, and authentication.

4.2.1 Initialization

The two peer servers S1 and S2 jointly choose a cyclic group
GG of large prime order q with a generator g1 and a secure
hash function H : f0; 1g� ! ZZq, which maps a message of
arbitrary length into an ‘-bit integer, where ‘ ¼ log2 q. Next,
S1 randomly chooses an integer s1 from ZZ�q and S2

randomly chooses an integer s2 from ZZ�q , and S1 and S2

exchange g1
s1 and g1

s2 . After that, S1 and S2 jointly publish
public system parameters GG; q; g1; g2; H where g2 ¼ gs1s2

1 .

Remark. In most of existing two-server PAKE protocols
such as [30], [31], [18], it is assumed or implied that the

discrete logarithm of g2 to the base g1 is unknown to

anyone. Otherwise, their protocols are insecure. Our

initialization can ensure that nobody is able to know the

discrete logarithm of g2 to the base g1 unless the two

servers collude. It is well known that the discrete

logarithm problem is hard, and our model assumes that

the two servers never collude.

4.2.2 Registration

Prior to authentication, each client C is required to register

both S1 and S2 through different secure channels. First of

all, the client C generates decryption and encryption key

pairs (xi; yi) where yi ¼ gxi1 for the server Si (i ¼ 1; 2) using

the public parameters published by the two servers. Next,

the client C chooses a password pwC and encrypts the

password using the encryption key yi, i.e., EðgpwC2 ; yiÞ ¼
ðAi;BiÞ ¼ ðgai1 ; g

pwC
2 yaii Þ (i ¼ 1; 2) where ai is randomly

chosen from ZZ�q , according to ElGamal encryption. Then,

the client C randomly chooses b1 from ZZ�q and lets

b2 ¼ HðpwCÞ � b1, where � stands for exclusive OR of two

‘-bit blocks. At last, the client C delivers the password

authentication information Auth
ð1Þ
C ¼ fx1; a1; b1; EðgpwC2 ; y2Þg

to S1 through a secure channel, and the password

authentication information Auth
ð2Þ
C ¼ fx2; a2; b2; EðgpwC2 ; y1Þg

to S2 through another secure channel. After that, the client

C remembers the password pwC only. The detailed process

of registration is depicted in Fig. 1.

Remark. The two secure channels are necessary for all two-

server PAKE protocols, where a password is split into

two parts, which are securely distributed to the two

servers, respectively, during registration. Although we

refer to the concept of public key cryptosystem, the

encryption key of one server should be unknown to

another server and the client needs to remember a

password only after registration.

4.2.3 Authentication and Key Exchange

Assume that the two servers S1 and S2 have received the

password authentication information of a clientC during the

registration, there are five steps for the two servers S1 and S2

to authenticate the client C and establish secret session keys

with the client C in terms of parallel computation.

. Step 1. The client C randomly chooses an integer r
from ZZ�q , computes R ¼ gr1g

�pwC
2 and then broadcasts

a request message M1 ¼ fC;Req;Rg to the two
servers S1 and S2.

. Step 2. On receiving M1, the server S1 randomly
chooses an integer r1 from ZZ�q and computes

A02 ¼ A
r1
2 ;

B02 ¼ ðR �B2Þr1 :

The server S2 randomly chooses an integer r2 from
ZZ�q and computes

A01 ¼ A
r2
1 ;

B01 ¼ ðR �B1Þr2 :

Then, S1 and S2 exchange M2 ¼ ðA02; B02Þ and
M3 ¼ ðA01; B01Þ.

. Step 3. On receiving ðA01; B01Þ, the server S1 randomly
chooses an integer r01 from ZZ�q , computes

R1 ¼ A01
a�1

1 r01 ;

K1 ¼ ðB01=A01
x1Þr

0
1 ;

h1 ¼ HðK1; 0Þ � b1;

and replies M4 ¼ fS1; R1; h1g to the client C.
On receiving ðA02; B02Þ, the server S2 randomly

chooses an integer r02 from ZZ�q , computes

R2 ¼ A02
a�1

2 r02 ;

K2 ¼ ðB02=A02
x2Þr

0
2 ;

h2 ¼ HðK2; 0Þ � b2;

and replies M5 ¼ fS2; R2; h2g to the client C.
. Step 4. After receiving M4 and M5, the client C

computes

K01 ¼ R1
r;K02 ¼ R2

r;

and checks if

HðK01; 0Þ �HðK02; 0Þ � h1 � h2 ¼ HðpwCÞ:

If so, the two servers S1 and S2 are authentic. The
client C computes

h01 ¼ HðK01; 1Þ �HðK01; 0Þ � h1;

h02 ¼ HðK02; 1Þ �HðK02; 0Þ � h2;

and then broadcasts M6 ¼ fh01; h02g. At last, the client
C sets the secret session keys with S1 and S2 as
SK01 ¼ HðK01; 2Þ and SK02 ¼ HðK022Þ, respectively.

Fig. 1. Registration of our protocol.

. Step 5. On receiving M6, the server S1 checks if

HðK1; 1Þ � b1 ¼ h01:

If so, S1 concludes that the client C is authentic and
sets the secret session key with the client C as
SK1 ¼ HðK1; 2Þ.

The server S2 checks if

HðK2; 1Þ � b2 ¼ h02:

If so, S2 concludes that the client C is authentic and
sets the secret session key with the client C as
SK2 ¼ HðK2; 2Þ.

The detailed process of authentication and key exchange
is illustrated in Fig. 2.

4.2.4 Correctness

The detailed authentication and key exchange of our
protocol has been described as above. From Fig. 2, we can
see that the two peer servers S1 and S2 equally contribute to
the authentication and key exchange. Therefore, our
protocol is symmetric.

We need to show the client has established the secret
session keys with the two servers, respectively. If the two
servers and the client all follow our protocol, we have

Theorem 1. Our protocol is correct, i.e., with reference to Figs. 1
and 2, we have SK01 ¼ SK1 and SK02 ¼ SK2.

Proof. Since R ¼ gr1g
�pwc
2 ; A1 ¼ ga1

1 ; B1 ¼ gpwC1 ya1

1 ; A
0
1 ¼ A

r2

1 ;

B01 ¼ ðRB1Þr2 , we have

A01 ¼ ðg
a1
1 Þ

r2 ¼ gr2a1
1 ;

B01 ¼ ðgr1g
�pwC
2 gpwC2 ya1

1 Þ
r2 ¼ grr2

1 yr2a1

1 :

We can see (A01; B
0
1) is an ElGamal encryption of grr2

1 by
the encryption key y1 of the server S1.

Because y1 ¼ gx1

1 , we have

K1 ¼ ðB01=A01
x1Þr

0
1 ¼ ðgrr2

1 yr2a1
1 =ðgr2a1

1 Þx1Þr
0
1

¼ ðgrr2
1 yr2a1

1 =yr2a1
1 Þr

0
1 ¼ grr

0
1r2

1 :

In addition,

R1 ¼ A01
a�1

1 r01 ¼ ðgr2a1

1 Þa
�1
1 r01 ¼ gr

0
1r2

1 ;

K01 ¼ Rr
1 ¼ g

rr01r2

1 :

Therefore, K01 ¼ K1. By the symmetric property, we can
prove K02 ¼ K2 in the same way.

Because h1 ¼ HðK1; 0Þ � b1, h2 ¼ HðK2; 0Þ � b2, we
have

HðK01; 0Þ �HðK02; 0Þ � h1 � h2

¼ HðK01; 0Þ �HðK02; 0Þ �HðK1; 0Þ � b1 �HðK2; 0Þ � b2

¼ b1 � b2 ¼ HðpwCÞ;

In view of this, the client C accepts the messages M4 and
M5, broadcasts h01 ¼ HðK01; 1Þ �HðK01; 0Þ � h1, h02 ¼
HðK02; 1Þ �HðK02; 0Þ � h2 to two servers S1 and S2, and
computes two secret session keys SK01 ¼ HðK01; 2Þ and
SK02 ¼ HðK02; 2Þ.

Fig. 2. Authentication and key exchange of our symmetric protocol.

At last, because HðK1; 1Þ � b1 ¼ HðK1; 1Þ � ðHðK1;
0Þ � h1Þ ¼ h01, the server S1 accepts the message M6 and
computes the secret session key SK1 ¼ HðK1; 2Þ. It is
obvious that SK1 ¼ SK01 because K1 ¼ K01. In the same
way, we can prove that SK2 ¼ SK02. tu

5 SECURITY OF OUR PROTOCOL

In this section, we will provide security proof of our
protocol against the passive attack and the active attack,
respectively.

5.1 Security against Passive Attack

Since our protocol is symmetric, we only consider the
passive attack, where the passive adversary A, who has
compromised the server S2 and is able to play the role of S2

and monitor all communications between S1 and C,
attempts to learn the secret session key established between
the server S1 and the client C.

The hash function is for authentication purpose instead
of key exchange purpose. To simplify the security analysis,
we treat K1 instead of SK1 ¼ HðK1; 2Þ as the secret session
key derived by the server S1 for the client C, and treat K01
instead of SK01 ¼ HðK01; 2Þ as the secret session key derived
by the client C for the server S1, and ignore the
communication of hash values in our protocol. Like [3],
[19], [20], [21], we define the security of our protocol with a
game, where after establishing a secret session key K1ðK01Þ,
the adversary A is provided with either K1ðK01Þ or an
random element in GG with equally probability to guess. A
wins the game if A can guess correctly.

Definition 2. Our protocol (without communication of hash

values) is secure against the passive attack if no PPT adversary

can win the above game with a probability more than 1/2 plus

a nonnegligible value.

Theorem 2. Under the DDH assumption, our protocol

(without communication of hash values) is secure against

the passive attack.

Proof. If our protocol is insecure against the passive attack,
i.e., the passive adversary A can win the above game
with a probability more than 1/2 plus a nonnegligible
value, we can use A as a subroutine to solve the DDH
problem as follows:

Suppose that we challenge a DDH problem (ga1; g
b
1; Z)

where Z is either gab1 or a random element in GG with

equal probability. First of all, we run the initialization
and the registration for the client C and forward

fx2; a2; b2; A1; B1g ¼ fx2; a2; b2; ðgb1Þ
a1 ; g�a1 gpwC2 Zðgb1Þ

x1a1g to

the adversary A. Under the DDH assumption, the

ElGamal encryption scheme is semantically secure [12]

and thus A is unable to distinguish an encryption of gpwC2

from the encryption of g�a1 gpwC2 Z under the encryption

key ðgb1Þ
x1 without knowledge of the decryption key x1.

With reference to Fig. 2, we let the client C broadcast
R ¼ ga1g

�pwC
2 to S1 and S2 (played by the passive

adversary A), which follow the protocol and exchange

fA01; B01g and fA02; B02g. In S1, we let R1 ¼ ðA01Þ
a�1

1 ¼ ðgb1Þ
r2 ,

K1 ¼ B01=A01
x1 ¼ Zr2 , where r2 is randomly chosen by A,

and then S1 replies C with fR1g. In S2, the passive

adversary A computes R2 ¼ ðA02Þ
a�1

2 r02 ¼ gr1r
0
2

1 , K2 ¼
ðB02=A02

x2Þr
0
2 ¼ ðgaÞr1r

0
2 with knowledge of (x2; a2), where

r1; r
0
2 are randomly chosen by S1 and A, respectively, and

then A replies C with fR2g. After the client C receives R1

and R2, we let K01 ¼ Zr2 .
In this experiment, the exchanged messages are

available to A. When Z ¼ gab1 , this experiment is exactly
the same as our protocol in the view of A.

Next, A is provided K1ðK01Þ or a random element in GG
with equal probability. If A guesses correctly, we
conclude Z ¼ gab. Otherwise, we conclude Z is a random
element in GG. Since A can win the game with a
probability more than 1/2 plus a nonnegligible value,
we can distinguish gab from a random element in GG in
the DDH problem with a probability more than 1/2 plus
a nonnegligible value. This contradicts with the DDH
assumption. Therefore, our protocol is secure against the
passive attack and the theorem is proved. tu

5.2 Security against Active Attack

We first consider the active attack to the honest server,

where an active adversary A, who has compromised S2

and pretend to be the server S2 and the client C to

communicate with the server S1, attempts to learn the

secret session key K1 derived by S1 for C. Like our security

analysis on the passive attack, we ignore the communica-

tion of hash values. We define the security of our protocol

with a game, where after the server S1 computes K1, the

adversary A is provided with either K1 or an random

element in GG with equally probability to guess. A wins the

game if A can guess correctly.

Definition 3. Our protocol is secure against the active attack to

the honest server if no PPT adversary can win the above game

with a probability more than Q=N þ 1=2 plus a nonnegligible

value, where N is the size of the dictionary D from which the

password is randomly chosen and Q is the number of queries

that the adversary can try.

To prove the security of our protocol against the active

attack, we need two variants of the DDH assumption as

follows:
vDDH1 assumption. Consider a cyclic group GG of large

prime order q with a generator g. The vDDH1 assumption

states that, given (GG; g; ga; gab) for randomly chosen a; b from

ZZ�q , no PPT algorithm can distinguish gb from a random

element in GG with a probability more than 1/2 plus a non-

negligible value.
vDDH2 assumption: [7]: Consider a cyclic group GG of

large prime order q with a generator g. The vDDH2

assumption states that, given (GG; g; h; ga) for randomly

chosen a from ZZ�q and h from GG, no PPT algorithm can

distinguish ha from a random element in GG with a

probability more than 1/2 plus a nonnegligible value.

Remark. The vDDH2 assumption has been used in [30] and

[18] to prove the security of their protocols.

Theorem 3. Under the DDH, vDDH1, and vDDH2 assump-

tions, our protocol (without communication of hash values) is

secure against the active attack to the honest server.

Proof. We provide a sketch of security proof in Section 1

of our supplementary material, which can be found on

the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPDS.2012.282.
Next, we consider the active attack to the client C,

where an active adversary A, who has compromised the
server S2 and pretends to be the servers S1 and S2 to
communicate with the client C, attempts to learn the
secret session key K01 derived by C for S1 after C accepts
the messages M4 and M5. Because the client authenti-
cates the messages M4 and M5 by hash function H, we
will take in account the communication of hash values
in this security analysis. We define the security of our
protocol with a game, where after accepting the
messages M4 and M5, the client C computes K01, and
the adversary A is provided with either the secret
session key SK01 ¼ HðK01; 2Þ or an random element with
equally probability to guess. A wins the game if A can
guess correctly. tu

Definition 4. Our protocol is secure against the active attack to

the client C if no PPT adversary can win the above game with

a probability more than Q=N plus a nonnegligible value,

where N is the size of the dictionary D from which the

password is randomly chosen and Q is the number of queries

that the adversary can try.

Theorem 4. Under the DDH, vDDH1, and vDDH2 assump-

tions, our protocol (with communications of hash values) is

secure against the active attack to the client if the hash function

H is one-way and collision-free.

Remark. A hash function H is said to be one-way if given a

hash value h, it is computationally infeasible to find

some input x such that HðxÞ ¼ h. If, given a message x, it

is computationally infeasible to find a message y not

equal to x such that HðxÞ ¼ HðyÞ then H is said to be a

weakly collision-free hash function. A strongly collision-

free hash function H is one for which it is computation-

ally infeasible to find any two messages x and y such that

HðxÞ ¼ HðyÞ.
Proof. We provide a sketch of security proof in Section 2 of

our online supplementary material. tu

Our protocol provides explicit authentication in the

sense that each party know that other parties have

established their secret session keys correctly if the message

authentication by the party succeeds. If the client C accepts

the messages M4 and M5, the client C is confirmed that the

servers S1 and S2 will compute their secret session keys

with the client C correctly. If the server S1 accepts the

message M6, the server S1 is confirmed that the client C

has computed the same secret session key SK1, and the

client C and the server S2 have established their secret

session key correctly.

6 PERFORMANCE ANALYSIS

In this section, we analyze the performance of our protocol

and compare our protocol with existing protocols for two-

server password-only authentication and key exchange.

With reference to Fig. 2, we can see that both servers in
our protocol equally contribute to authentication and key
exchange and have the same communication and computa-
tion complexity. We only need to analyze the performance
of one server.

As far as the server S1 is concerned, it receives M1 from
the client C, exchanges M2;M3 with the server S2, replies
M4 to C, and receives M6 from C. The total communication
complexity for S1 is 6Lþ 3‘, where L is the size of a group
element in GG and ‘ is the size of the hash value, i.e., log2 q.
The total computation complexity for S1 is five exponentia-
tions in GG.

The client C broadcasts M1 to S1 and S2, receives M4 and
M5 from S1 and S2, respectively, and broadcasts M6 to S1

and S2. The total communication complexity for C is
3Lþ 4‘, almost half of the communication complexity for
S1. The total computation complexity is four exponentiation.

In terms of parallel computation, our protocol has four
communication rounds only. The client C broadcasts M1 to
the two servers S1 and S2 in the first round; S1 and S2

exchange M2 and M3 in the second round; S1 and S2 both
reply C with M4 and M5 in the third round; C broadcasts
M6 in the last round. The client C is involved in three
communication rounds.

A naive solution for two-server password-only authenti-
cation and key exchange can be implemented by running
two parallel password-authenticated key exchange (PAKE)
sessions between the client and two servers, respectively. At
the end, both servers confirm to each other the outcome of
the authentication process. This solution can be constructed
with any existing efficient two-party PAKE protocol, like
[1], [2], but is impractical because the client is required to
remember two passwords, a different one for each sever.

To the best of our knowledge, Katz et al.’s protocol [20],
called the KMTG protocol for brevity, is the only existing
symmetric protocol for two-server password-only authenti-
cation and key exchange. The performance comparison of
our protocol with the KMTG protocol is shown in Table 1.
From Table 1, we can see that our protocol is much more
efficient than the KMTG protocol in both the client and the
server sides.

The performance comparison of our protocol with Jin et
al.’s protocol [18], called the JWX protocol for brevity, and
Yang et al.’s protocol [30], called the YDB protocol for
brevity, is shown in Table 2.

From Table 2, we can see that 1) our protocol in the client
side is more efficient than both the YDB protocol and the
JWX protocol; 2) our protocol in one of two servers is more
efficient than both the YDB protocol and the JWX protocol
in the SS; but 3) our protocol in another server is slightly

TABLE 1
Performance Comparison of Our Protocol with KMTG Protocol

less efficient than the YDB protocol and the JWX protocol in
the CS.

Note that the YDB protocol and the JWX protocol are
asymmetric, where only the front-end server and the client
agree on a secret session key in the end. Our protocol is
symmetric, where the client agrees on two different secret
keys with the two servers in the end, respectively. In
addition, the YDB protocol and the JWX protocol run in
series, while our protocol runs in parallel.

In terms of parallel computation, our symmetric protocol
has a feature that the total running time in the two-server
side is equal to the total running time of one server, i.e.,
transmitting 6Lþ 3‘ bits and computing five modular
exponentiations in four rounds. However, in the asym-
metric YDB protocol and the asymmetric JWX protocol, the
total running time in the two-server side is equal to the sum
of two servers’ running time, i.e., transmitting 8Lþ 3‘ bits
and computing nine modular exponentiations in 10 rounds
in the YDB protocol, and transmitting 11Lþ 3‘ bits and
computing 12 modular exponentiations in six rounds in the
JWX protocol. Even if the precomputation is allowed, the
two servers in the YDB protocol or the JWX protocol still
need to compute seven modular exponentiations in series.
Therefore, our protocol is even more efficient than the
asymmetric YDB protocol and the asymmetric JWX protocol
in terms of the total running time.

Our protocol need more storage to keep the password
authentication information in the two servers than the YDB
protocol and the JWX protocol. Because of rapidly declining
data storage costs, the difference in storage costs between our
protocol and the YDB and JWX protocols is not significant.

7 CONCLUSION

In this paper, we have presented a symmetric protocol for
two-server password-only authentication and key ex-
change. Security analysis has shown that our protocol is
secure against passive and active attacks in case that one of
the two servers is compromised. Performance analysis has
shown that our protocol is more efficient than existing
symmetric and asymmetric two-server PAKE protocols.

ACKNOWLEDGMENTS

The authors would like to appreciate valuable comments
from blind reviewers. These comments are really helpful for

us to improve this paper. This work was done during his

visit to Division of Mathematical Sciences, the School of

Physical and Mathematical Sciences, Nanyang Technologi-

cal University, Singapore, and partially supported by

the Singapore National Research Foundation Competitive

Research Program grant NRF-CRP2-2007-03. This work was

partially supported by the Singapore National Research

Foundation Competitive Research Program grant NRF-

CRP2-2007-03.

REFERENCES

[1] M. Abdalla and D. Pointcheval, “Simple Password-Based En-
crypted Key Exchange Protocols,” Proc. Int’l Conf. Topics in
Cryptology (CT-RSA), pp. 191-208, 2005.

[2] M. Abdalla, O. Chevassut, and D. Pointcheval, “One-Time
Verifier-Based Encrypted Key Exchange,” Proc. Eighth Int’l Conf.
Theory and Practice in Public Key Cryptography (PKC ’05), pp. 47-64,
2005.

[3] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated Key
Exchange Secure against Dictionary Attacks,” Proc. 19th Int’l Conf.
Theory and Application of Cryptographic Techniques (Eurocrypt ’00),
pp. 139-155, 2000.

[4] S. Bellovin and M. Merritt, “Encrypted Key Exchange: Password-
Based Protocol Secure against Dictionary Attack,” Proc. IEEE
Symp. Research in Security and Privacy, pp. 72-84, 1992.

[5] D. Boneh and M. Franklin, “Identity Based Encryption from the
Weil Pairing,” Proc. 21st Ann. Int’l Cryptology Conf. (Crypto ’01),
pp. 213-229, 2001.

[6] D. Boneh and M. Franklin, “Identity Based Encryption from the
Weil Pairing,” SIAM J. Computing, vol. 32, no. 3, pp. 586-615, 2003.

[7] D. Boneh, “The Decisional Diffie-Hellman Problem,” Proc. Third
Int’l Algorithmic Number Theory Symp., pp. 241-250, 1998.

[8] V. Boyko, P. Mackenzie, and S. Patel, “Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman,” Proc. 19th
Int’l Conf. Theory and Application of Cryptographic Techniques
(Eurocrypt ’00), pp. 156-171, 2000.

[9] J. Brainard, A. Jueles, B.S. Kaliski, and M. Szydlo, “A New Two-
Server Approach for Authentication with Short Secret,” Proc. 12th
Conf. USENIX Security Symp., pp. 201-214, 2003.

[10] W. Diffie and M.E. Hellman, “New Directions in Cryptogra-
phy,” IEEE Trans. Information Theory, IT-22, no. 6, pp. 644-654,
Nov. 1976.

[11] M. Di Raimondo and R. Gennaro, “Provably Secure Threshold
Password Authenticated Key Exchange,” Proc. 22nd Int’l Conf.
Theory and Applications of Cryptographic Techniques (Eurocrypt ’03),
pp. 507-523, 2003.

[12] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Trans. Information Theory,
vol. IT-31, no. 4, pp. 469-472, July 1985.

[13] W. Ford and B.S. Kaliski Jr., “Server-Assisted Generation of a
Strong Secret from a Password,” Proc. IEEE Ninth Int’l Workshop
Enabling Technologies: Infrastructure for Collaborative Enterprises,
pp. 176-180, 2000.

[14] O. Goldreich and Y. Lindell, “Session-Key Generation using
Human Passwords Only,” Proc. 21st Ann. Int’l Cryptology Conf.
Advances in Cryptology (Crypto ’01), pp. 408-432, 2001.

[15] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer,
“Protecting Poorly-Chosen Secret from Guessing Attacks,” IEEE
J. Selected Areas in Comm., vol. 11, no. 5, pp. 648-656, June 1993.

[16] S. Halevi and H. Krawczyk, “Public-Key Cryptography and
Password Protocols,” ACM Trans. Information and System Security,
vol. 2, no. 3, pp. 230-268, 1999.

[17] D. Jablon, “Password Authentication Using Multiple Servers,”
Proc. Conf. Topics in Cryptology: The Cryptographer’s Track at RSA
(RSA-CT ’01), pp. 344-360, 2001.

[18] H. Jin, D.S. Wong, and Y. Xu, “An Efficient Password-Only Two-
Server Authenticated Key Exchange System,” Proc. Ninth Int’l
Conf. Information and Comm. Security (ICICS ’07), pp. 44-56, 2007.

[19] J. Katz, R. Ostrovsky, and M. Yung, “Efficient Password-
Authenticated Key Exchange Using Human-Memorable Pass-
words,” Proc. Int’l Conf. Theory and Application of Cryptographic
Techniques: Advances in Cryptology (Eurocrypt ’01), pp. 457-494,
2001.

TABLE 2
Performance Comparison of Our Protocol with YDB

and JWX Protocols

[20] J. Katz, P. MacKenzie, G. Taban, and V. Gligor, “Two-Server
Password-Only Authenticated Key Exchange,” Proc. Applied
Cryptography and Network Security (ACNS ’05), pp. 1-16, 2005.

[21] J. Katz and M. Yung, “Scalable Protocols for Authenticated Group
Key Exchange,” Proc. Advances in Cryptology Conf. (Crypto ’03),
pp. 110-125, 2003.

[22] T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham,
“Reducing Risks from Poorly-Chosen Keys,” ACM Operating
Systems Rev., vol. 23, no. 5, pp. 14-18, 1989.

[23] P. MacKenzie, S. Patel, and R. Swaminathan, “Password-Authen-
ticated Key Exchange Based on RSA,” Proc. Sixth Int’l Conf. Theory
and Application of Cryptology and Information Security: Advances in
Cryptology (Asiacrypt ’00), pp. 599-613, 2000.

[24] P. Mackenize, T. Shrimpton, and M. Jakobsson, “Threshold
Password-Authenticated key Exchange,” Proc. 22nd Ann. Int’l
Cryptology Conf. (Crypto ’02), pp. 385-400, 2002.

[25] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Comm. ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[26] http://www.schneier.com/blog/archives/2006/12/realworld_
passw.html, 2013.

[27] M. Szydlo and B. Kaliski, “Proofs for Two-Server Password
Authentication,” Proc. Int’l Conf. Topics in Cryptology (RSA-CT ’05),
pp. 227-244, 2005.

[28] Y. Tsiounis and M. Yung, “On the Security of ElGamal based
Encryption,” Proc. First Int’l Workshop Practice and Theory in Public
Key Cryptography: Public Key Cryptography (PKC ’98), pp. 117-134,
1998.

[29] Y. Yang, F. Bao, and R.H. Deng, “A New Architecture for
Authentication and Key Exchange Using Password for Federated
Enterprise,” Proc. 20th IFIP Int’l Information Security Conf. (SEC
’05), pp. 95-111, 2005.

[30] Y. Yang, R.H. Deng, and F. Bao, “A Practical Password-Based
Two-Server Authentication and key Exchange System,” IEEE
Trans. Dependable and Secure Computing, vol. 3, no. 2, pp. 105-114,
Apr.-June 2006.

[31] Y. Yang, R.H. Deng, and F. Bao, “Fortifying Password Authentica-
tion in Integrated Healthcare Delivery Systems,” Proc. ACM Symp.
Information, Computer and Comm. Security (ASIACCS ’06), pp. 255-
265, 2006.

[32] X. Yi, R. Tso, and E. Okamoto, “ID-Based Group Password-
Authenticated Key Exchange,” Proc. Fourth Int’l Workshop Security:
Advances in Information and Computer Security (IWSEC ’09), pp. 192-
211, 2009.

[33] X. Yi, R. Tso, and E. Okamoto, “Three-Party Password-Authenti-
cated Key Exchange without Random Oracles,” Proc. Int’l Conf.
Security and Cryptography (SECRYPT ’11), pp. 15-24, 2011.

[34] X. Yi, R. Tso, and E. Okamoto, “Identity-Based Password-
Authenticated Key Exchange for Client/Server Model,” Proc. Int’l
Conf. Security and Cryptography (SECRYPT ’12), pp. 45-54, 2012.

Xun Yi is an associate professor with the School
of Engineering and Science, Victoria University,
Australia. His research interests include applied
cryptography, computer and network security,
mobile and wireless communication security,
and privacy-preserving data mining. He has
published more than 100 research papers in
international journals, such as IEEE Transac-
tions Knowledge and Data Engineering, IEEE
Transactions Wireless Communication, IEEE

Transactions Dependable and Secure Computing, IEEE Transactions
Circuit and Systems, and conference proceedings. He has ever
undertaken program committee members for more than 20 international
conferences. He is leading a few of Australia Research Council
Discovery Projects.

San Ling received the BA degree in mathe-
matics from the University of Cambridge and the
PhD degree in mathematics from the University
of California, Berkeley. Since April 2005, he has
been a professor with the Division of Mathema-
tical Sciences, School of Physical and Mathe-
matical Sciences, in the Nanyang Technological
University, Singapore. Prior to that, he was with
the Department of Mathematics, National Uni-
versity of Singapore. His research fields include:

arithmetic of modular curves and application of number theory to
combinatorial designs, coding theory, cryptography and sequences.

Huaxiong Wang received the PhD degree in
mathematics from the University of Haifa, Israel,
in 1996 and the PhD degree in computer science
from the University of Wollongong, Australia, in
2001. He joined Nanyang Technological Uni-
versity in 2006 and is currently an associate
professor in the Division of Mathematical
Sciences. He is also an honorary fellow at
Macquarie University, Australia. His research
interests include cryptography, information se-

curity, coding theory, combinatorics, and theoretical computer science.
He has been on the editorial board of three international journals:
Designs, Codes and Cryptography (2006-2011), the Journal of Com-
munications (JCM), and Journal of Communications and Networks. He
was the program cochair of Ninth Australasian Conference on
Information Security and Privacy (ACISP ’04) in 2004 and Fourth
International Conference on Cryptology and Network Security (CANS
’05) in 2005, and has served in the program committee for more than
70 international conferences. He received the inaugural Award of Best
Research Contribution from the Computer Science Association of
Australasia in 2004.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

