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Abstract

Attributes are an intermediate representation, which en-
ables parameter sharing between classes, a must when
training data is scarce. We propose to view attribute-based
image classification as a label-embedding problem: each
class is embedded in the space of attribute vectors. We
introduce a function which measures the compatibility be-
tween an image and a label embedding. The parameters of
this function are learned on a training set of labeled sam-
ples to ensure that, given an image, the correct classes rank
higher than the incorrect ones. Results on the Animals With
Attributes and Caltech-UCSD-Birds datasets show that the
proposed framework outperforms the standard Direct At-
tribute Prediction baseline in a zero-shot learning scenario.
The label embedding framework offers other advantages
such as the ability to leverage alternative sources of infor-
mation in addition to attributes (e.g. class hierarchies) or
to transition smoothly from zero-shot learning to learning
with large quantities of data.

1. Introduction

We consider the image classification problem: given an
image, we wish to annotate it with one (or multiple) class
label(s) describing its visual content. Image classification
is a prediction task where the goal is to learn from labeled
data a function f : X → Y which maps an input x in the
space of images X to an output y in the space of class labels
Y . In this work, we are especially interested in the case
where we have no (positive) labeled samples for some of the
classes and still wish to make a prediction. This problem is
generally referred to as zero-shot learning [17, 25, 16, 8].

A solution to zero-shot learning which has recently
gained in popularity in the computer vision community con-
sists in introducing an intermediate space A referred to as
attribute layer [16, 8]. Attributes correspond to high-level
properties of the objects which are shared across multiple

∗The Computer Vision Group at XRCE is partially funded by the ANR
project FIRE-ID.
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grated project AXES.

Figure 1. Much work in computer vision has been devoted to im-
age embedding (left): how to extract suitable features from an im-
age? We focus on label embedding (right): how to embed class
labels in a Euclidean space? We use attributes as side information
for the label embedding and measure the “compatibility”’ between
the embedded inputs and outputs with a function F .

classes, which can be detected by machines and which can
be understood by humans. As an example, if the classes cor-
respond to animals, possible attributes include “has paws”,
“has stripes” or “is black”. The traditional attribute-based
prediction algorithm requires learning one classifier per at-
tribute. To classify a new image, its attributes are pre-
dicted using the learned classifiers and the attribute scores
are combined into class-level scores. This two-step strategy
is referred to as Direct Attribute Prediction (DAP) in [16].

We note that DAP suffers from several shortcomings.
First, a two-step prediction process goes against the philoso-
phy which advocates solving a problem directly rather than
indirectly through intermediate problems. In other words,
since attribute classifiers are learned independently of the
end-task they might be optimal at predicting attributes but
not necessarily at predicting classes. Second, we would
like an approach which can improve incrementally as new
training samples are provided, i.e. which can perform zero-
shot prediction if no labeled samples are available for some
classes, but which can also leverage new labeled samples
for these classes as they become available. While DAP
makes sense for zero-shot learning, it is not straightforward
to extend it to such an incremental learning scenario. Third,
while attributes can be a useful source of prior information,
other sources of information could be leveraged for zero-
shot learning. For instance, semantic hierarchies such as
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Wordnet1 can bring useful information. Indeed, images of
classes which are close in a semantic hierarchy are usually
more similar than images of classes which are far [6]. It is
not straightforward to design an efficient way to incorporate
these additional sources of information into DAP.

Various solutions have been proposed to address each of
these problems separately (see section 2). However, we do
not know of any existing solution which addresses all of
them in a principled manner. This paper proposes such a
solution by making use of the label embedding framework.
We underline that, while there is an abundant literature in
the computer vision community on image embedding (how
to describe an image?) much less work has been devoted in
comparison to label embedding in the Y space (how to de-
scribe a class?). We embed each class y ∈ Y in the space of
attribute vectors and thus refer to our approach as Attribute
Label Embedding (ALE). We introduce a function which
measures the “compatibility” between an image x and a la-
bel y (see Figure 1). The parameters of this function are
learned on a training set of labeled samples to ensure that,
given an image, the correct class(es) rank higher than the
incorrect ones. Given a test image, recognition consists in
searching for the class with the highest compatibility.

ALE addresses in a principled fashion all three problems
mentioned previously. First, we do not solve any intermedi-
ate problem and learn the model parameters to optimize di-
rectly the class ranking. We show experimentally that ALE
outperforms DAP in the zero-shot setting. Second, if avail-
able, labeled samples can be added incrementally to update
the embedding. Third, the label embedding framework is
generic and not restricted to attributes. Other sources of
prior information can be combined with attributes.

The paper is organized as follows. In the next section,
we review related work. In section 3, we introduce ALE.
In section 4 we present experimental results on two public
datasets: Animals with Attributes (AWA) [16] and Caltech-
UCSD-Birds (CUB) [37]. Finally, we draw conclusions.

2. Related Work
We now review related work on attributes, zero-shot

learning and label embedding (three research areas which
strongly overlap) with an emphasis on the latter.

2.1. Attributes

Attributes have been used to describe images [9, 8], to
generate captions [14, 23], for retrieval [15, 33, 7] and clas-
sification [16, 8, 38, 39, 19, 31, 21]. It has been proposed
to improve the standard DAP model to take into account
the correlation between attributes or between attributes and
classes [38, 39, 43, 19]. However, these models have limi-
tations. Wang and Forsyth [38] assume that images are la-

1http://wordnet.princeton.edu/

beled with both classes and attributes. In our work we only
assume that classes are labeled with attributes, which re-
quires significantly less hand-labeling of the data. Mahajan
et al. [19] use transductive learning and, therefore, assume
that the test data is available as a batch, a strong assump-
tion we do not make. Yu and Aloimonos’s topic model [43]
is only applicable to bag-of-visual-word image representa-
tions and, therefore, cannot leverage recent state-of-the-art
image features such as the Fisher Vector [26, 4]. Finally
the latent SVM framework of Wang and Mori [39] is not
applicable to zero-shot learning.

2.2. Zero-shot learning

Zero-shot learning requires the ability to transfer knowl-
edge from classes for which we have training data to classes
for which we do not. Possible sources of prior information
include attributes [16, 8, 25, 28, 27], semantic class tax-
onomies [27, 22] or text features [25, 28, 27]. Other sources
of prior information can be used for special purpose prob-
lems. For instance, Larochelle et al. [17] encode characters
with 7 × 5 pixel representations. It is unclear, however,
how such an embedding could be extrapolated to the case
of generic visual categories. Finally, few works have con-
sidered the problem of transitioning from zero-shot to “few-
shots” learning [43, 31].

2.3. Label embedding

In computer vision, a vast amount of work has been de-
voted to input embedding, i.e. how to represent an image?
This includes works on patch encoding (see [4] for a recent
comparison), on kernel-based methods [32] with a recent
focus on explicit embeddings [20, 35], on dimensionality
reduction [32] and on compression [13, 30, 36]. Compara-
tively, much less work has been devoted to label embedding.

Provided that the embedding function ϕ is chosen cor-
rectly, label embedding can be an effective way to share pa-
rameters between classes. Consequently, the main applica-
tions have been multiclass classification with many classes
[1, 40, 41, 2] and zero-shot learning [17, 25]. We now pro-
vide a taxonomy of embeddings. While this taxonomy is
valid fot both input θ and output embeddings ϕ, we focus
here on output embeddings. They can be (i) fixed and data-
independent, (ii) learned from data, or (iii) computed from
side information.
Data-independent embeddings. Kernel dependency esti-
mation [42] is an example of a strategy where ϕ is data-
independent and defined implicitly through a kernel in the
Y space. Another example is the compressed sensing ap-
proach of Hsu et al. [12], where ϕ corresponds to random
projections.
Learned embeddings. A possible strategy consists in
learning directly an embedding from the input to the out-
put (or from the output to the input) as is the case of re-
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gression [25]. Another strategy consists in learning jointly
θ and ϕ to embed the inputs and outputs in a common in-
termediate space Z . The most popular example is Canoni-
cal Correlation Analysis (CCA) [11], which maximizes the
correlation between inputs and outputs. Other strategies
have been investigated which maximize directly classifica-
tion accuracy, including the nuclear norm regularized learn-
ing of Amit et al. [1] or the WSABIE algorithm of Weston
et al. [41].
Embeddings derived from side information. There are
situations where side information is available. This setting
is particularly relevant when little training data is available,
as side information and the derived embeddings can com-
pensate for the lack of data. Side information can be ob-
tained at an image level [8] or at a class level [16]. We fo-
cus on the latter setting which is more practical as collecting
side information at an image level is more costly. Side in-
formation may include “hand-drawn” descriptions [17], text
descriptions [8, 16, 25] or class taxonomies [40, 2].

In our work, we focus on embeddings derived from side
information but we also consider the case where they are
learned from labeled data, using side information as a prior.

3. Learning with attributes as label embedding
Given a training set S = {(xn, yn), n = 1 . . . N} of

input/output pairs with xn ∈ X and yn ∈ Y the goal of
prediction is to learn a function f : X → Y by minimizing
an empirical risk of the form 1

N

∑N
n=1 ∆(yn, f(xn)) where

∆ : Y ×Y → R measures the loss incurred from predicting
f(x) when the true label is y. In what follows, we focus on
the 0/1 loss: ∆(y, z) = 0 if y = z, 1 otherwise. In machine
learning, a common strategy is to use embedding functions
θ : X → X̃ and ϕ : Y → Ỹ for the inputs and outputs and
then to learn on the transformed input/output pairs.

In this section, we first describe our model, i.e. our
choice of f . We then explain how to leverage attributes to
compute label embeddings. We also discuss how to learn
the model parameters. Finally, we show that the label em-
bedding framework is generic enough to accommodate for
other sources of side information.

3.1. Model

Figure 1 illustrates our model. As is common in struc-
tured prediction [34], we introduce a compatibility function
F : X × Y → R and define the prediction function f as
follows:

f(x;w) = arg max
y∈Y

F (x, y;w) (1)

where w denotes the model parameter vector of F and
F (x, y;w) measures how compatible is the pair (x, y) given
w. It is generally assumed thatF is linear in some combined
feature embedding of inputs/outputs ψ(x, y):

F (x, y;w) = w′ψ(x, y) (2)

and that the joint embedding ψ can be written as the tensor
product between the image embedding θ : X → X̃ = RD

and the label embedding ϕ : Y → Ỹ = RE :

ψ(x, y) = θ(x)⊗ ϕ(y) (3)

and ψ(x, y) : RD × RE → RDE . In this case w is a DE-
dimensional vector which can be reshaped into a D × E
matrix W . Consequently, we can rewrite F (x, y;w) as a
bilinear form:

F (x, y;W ) = θ(x)′Wϕ(y). (4)

Other compatibility functions could have been considered.
For example, the function:

F (x, y;W ) = −||θ(x)′W − ϕ(y)||2 (5)

is typically used in regression problems. If D and E are
large, it might be advantageous to consider a low-rank de-
composition W = U ′V to reduce the number of parame-
ters. In such a case, we have:

F (x, y;U, V ) = (Uθ(x))′ (V ϕ(y)) . (6)

CCA [11] or WSABIE [41] rely, for example, on such a
decomposition.

3.2. Attribute label embedding

We now consider the problem of computing label em-
beddings ϕA from attributes which we refer to as At-
tribute Label Embedding (ALE). We assume that we have
C classes, i.e. Y = {1, . . . , C} and that we have a set of
E attributes A = {ai, i = 1 . . . E} to describe the classes.
We also assume that we are provided with an association
measure ρy,i between each attribute ai and each class y.
These associations may be binary or real-valued if we have
information about the association strength. In this work,
we focus on binary relevance although one advantage of the
label embedding framework is that it can easily accommo-
date real-valued relevances. We embed class y in theE-dim
attribute space as follows:

ϕA(y) = [ρy,1, . . . , ρy,E ] (7)

and denote ΦA the E × C matrix of attribute embeddings
which stacks the individual ϕA(y)’s. We note that in equa-
tion (4) the image and label embeddings play symmetric
roles. It can make sense to normalize the output vectors
ϕA(y). In the experiments, we consider among others
mean-centering and `2-normalization.

Also, in the case where attributes are redundant, it might
be advantageous to decorrelate them. In such a case, we
make use of the compatibility function (6). The matrix V
may be learned from labeled data jointly with U. As a sim-
pler alternative, it is possible to first learn the decorrelation,
e.g. by performing a Singular Value Decomposition (SVD)
on the ΦA matrix, and then to learn U . We will study the
effect of attribute decorrelation in our experiments.

ha
l-0

08
15

74
7,

 v
er

si
on

 1
 - 

19
 A

pr
 2

01
3



3.3. Parameter learning

We now turn to the estimation of the model parameters
w from a labeled training set S. The simplest learning strat-
egy is to maximize directly the compatibility between the
input and output embeddings 1

N

∑N
n=1 F (xn, yn;W ), with

potentially some constraints and regularizations onW . This
is exactly the strategy adopted in regression or CCA. How-
ever, such an objective function does not optimize directly
our end-goal which is image classification. Therefore, we
draw inspiration from the WSABIE algorithm [41] which
learns jointly image and label embeddings from data to op-
timize classification accuracy. The crucial difference be-
tween WSABIE and ALE is the fact that the latter uses at-
tributes as side information.

We first review briefly the WSABIE objective func-
tion [41] and then explain how we adapt it to (i) zero-shot
learning with side information and (ii) learning with few (or
more) examples with side information. We then mention the
optimization of our objective functions. In what follows, Φ
is the matrix which stacks the embeddings ϕ(y).
WSABIE [41]. Let 1(u) = 1 if u is true and 0 otherwise.
Let `(xn, yn, y) = ∆(yn, y)+F (xn, y;W )−F (xn, yn;W )
and let r∆(xn, yn) =

∑
y∈Y 1(`(xn, yn, y) > 0) be an

upper-bound on the rank of label yn for image xn. WSABIE
considers the following ranking objective:

R(S;W,Φ) =
1
N

N∑
n=1

γr∆(xn,yn)

∑
y∈Y

max{0, `(xn, yn, y)}

(8)
where γk is a decreasing function of k. Maximizing (8)
enforces correct labels to rank higher than incorrect ones.
A decreasing γk ensures that more importance is given to
the top of the ranking list, a desirable property. Weston et
al. optimize objective (8) with respect to W and Φ with
constraints on the norms ofW and Φ. In WSABIE, the label
embedding space dimensionality is a parameter to tune.
Zero-shot learning. We adapt the WSABIE objective to
zero-shot learning. In such a case, we cannot learn Φ from
labeled data (contrary to WSABIE) but rely on side infor-
mation. Therefore, the matrix Φ is fixed and set to ΦA. We
only optimize the objective (8) with respect to W . We note
that, when Φ is fixed and only W is learned, the objective
(8) is closely related to the (unregularized) structured SVM
(SSVM) objective [34]:

1
N

N∑
n=1

max
y∈Y

`(xn, yn, y) (9)

The main difference is the loss function. SSVM uses a mul-
ticlass objective function, and it only considers rank 1 while
WSABIE considers all ranks in a weighted fashion.
Few-shots learning. We now adapt the WSABIE objective
to the case where we have labeled data and side information.

In such a case, we want to learn the class embeddings using
as prior information ΦA. We therefore add to the objective
(8) a regularizer:

R(S;W,Φ) +
µ

2
||Φ− ΦA||2 (10)

and optimize jointly with respect to W and Φ. Note that the
previous equation is somewhat reminiscent of the ranking
model adaptation of [10].
Optimization. As for the optimization, both in the zero-
shot and few-shots learning, we follow [41] and use
Stochastic Gradient Descent (SGD). This is a fast procedure
which samples both training samples and classes.

3.4. Beyond attributes

While attributes make sense in the label embedding
framework, we note that label embedding is more general
and can accommodate for other sources of side information.
The canonical example is that of structured learning with a
taxonomy of classes [34]. Assuming that classes are orga-
nized in a tree structure, meaning that we have an ordering
operation≺ in Y , we can define ξy,z = 1 if z ≺ y or z = y.
The hierarchy embedding ϕH(y) can be defined as the C
dimensional vector:

ϕH(y) = [ξy,1, . . . , ξy,C ]. (11)

We later refer to this embedding as Hierarchy Label Embed-
ding (HLE) and we compare ϕA and ϕH as sources of prior
information in our experiments. In the case where classes
are not organized in a tree structure but form a graph, then
other types of embeddings could be used, for instance by
performing a kernel PCA on the commute time kernel [29].

Different embeddings can be easily combined in the la-
bel embedding framework, e.g. through simple concatena-
tion of the different embeddings or through more complex
operations such as a CCA of the embeddings. This is to be
contrasted with DAP which cannot accommodate so easily
other sources of prior information.

4. Experiments
The experimental setup is described in section 4.1. In

section 4.2, we present zero-shot learning experiments. In
section 4.3, we go beyond zero-shot learning and consider
the case where we have labeled training data for all classes.

4.1. Experimental setup

Datasets. We report results on two public datasets. An-
imal With Attributes (AWA) [16] contains roughly 30,000
images of 50 animal classes. Each class was annotated with
85 attributes by 10 students [24] and the result was bina-
rized. CUB-200-2011 [37] contains roughly 11,800 images
of 200 bird classes. Each class is annotated with 312 binary
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RR Multi Rank
AWA 30.7 37.7 37.4
CUB 13.3 16.4 18.0

Table 1. Comparison of different objective functions: ridge regres-
sion (RR), the standard SSVM based on multi-class classification
(Multi) and the ranking objective of section 3.3 (Rank).

attributes derived from a bird field guide website. Hence,
there is a significant difference in the number and quality of
attributes between the two datasets. On both datasets, to be
consistent throughout our zero-shot and few-shots experi-
ments, we use for each class half of the data for training
and the other half for testing. We report results in terms of
top-1 accuracy (in %) averaged over the classes.
Features. We extract 128-dim SIFT descriptors [18] and
96-dim color descriptors [5] from regular grids at multiple
scales. Both of them are reduced to 64-dim using PCA.
These descriptors are then aggregated into an image-level
representation using the Fisher Vector (FV) [26] which was
shown to be a state-of-the-art patch encoding technique
in [4]. Using Gaussian Mixture Models with 256 Gaussians,
we compute one SIFT FV and one color FV per image and
concatenate them into a 65,536-dim FV which we compress
with PQ [13]. These FVs are our image embeddings θ(x)2.

4.2. Zero-shot learning

We now evaluate the proposed ALE in the zero-shot set-
ting. For AWA, we use the standard zero-shot setup which
consists in learning parameters on 40 classes and evaluat-
ing accuracy on 10 classes. In these experiments, we use
the “train” part of the 40 learning classes to learn and cross-
validate the model parameters. We use the “test” part of the
10 evaluation classes to measure accuracy. For CUB, we
use 150 classes for learning (using again the “train” part for
training and cross-validation) and 50 for evaluation (using
only their “test” part).

We answer the following questions. What is the best
way to learn the parameters of our model? What is the
best way to encode/normalize the attribute embeddings?
How does ALE compare to DAP? Do we still learn human-
interpretable attribute classifiers? How do attributes com-
pare to a class hierarchy as prior information?
Comparison of learning frameworks. We first compare
the learning framework introduced in section 3.3 with two
baselines. The first baseline is Ridge Regression (RR)
which was used in [25] to map input features to output at-
tribute labels. In a nutshell, RR consists in optimizing a
regularized quadratic loss for which there exists a closed
form formula. The second baseline is the standard SSVM

2 On AWA we also ran experiments with the features provided with the
dataset. We obtained similar results to those of FVs. The advantages of the
FVs are two-fold: they are lower dimensional and work well with linear
classifiers. Therefore, we only report results with FVs.

{0, 1} {−1, +1} mean-centered
AWA

no `2-norm 37.3 37.3 36.9
with `2-norm 37.4 37.3 36.6

CUB
no `2-norm 16.3 17.9 16.5

with `2-norm 18.0 17.9 17.2

Table 2. Comparison of different attribute embeddings: {0, 1}
embedding, {−1, +1} embedding and mean-centered embedding,
with and without `2-norm.

multiclass objective function (see section 3.3). For these
experiments, the attribute vectors are encoded in a binary
fashion (using {0, 1}) and `2-normalized.

Table 1 shows that the multiclass and ranking objectives
perform on par. They outperform significantly ridge regres-
sion. This is not surprising, since the two former objective
functions are more closely related to our end goal which is
classification. In what follows, we always use the ranking
framework to learn the parameters of our model.

Comparison of attribute embeddings. We compare dif-
ferent approaches to embed attributes. We experiment with
a {0, 1} embedding, a {−1,+1} embedding and a mean-
centered embedding (i.e. starting from the {0, 1} embed-
ding, we compute the mean over all learning classes and
subtract it). Underlying the {0, 1} embedding is the as-
sumption that the presence of the same attribute in two
classes should contribute to their similarity, but not its ab-
sence3. Underlying the {−1, 1} embedding is the assump-
tion that the presence or the absence of the same attribute
in two classes should contribute equally to their similar-
ity. As for mean-centered attributes, they take into account
the fact that some attributes are more frequent than others.
For instance, if an attribute appears in almost all classes,
then in the mean-centered embedding, its absence will con-
tribute more to the similarity than its presence4. We also
experimented with `2-normalization of the embedded at-
tribute vectors. The `2-normalization enforces that each
class is closest to itself according to the dot-product sim-
ilarity. From the results in Table 2, we conclude that all
embeddings perform similarly, especially after `2-norm. In
what follows, we make use of the simple {0, 1} embedding
with `2-norm.

Comparison of ALE and DAP. We now compare the pro-
posed framework to the DAP baseline of Lampert et al. [16].
In DAP, given a new image x, we assign it to the class y with

3Here we assume a dot-product similarity between attribute embed-
dings which is consistent with our linear compatibility function (4).

4 This is similar to an IDF effect in TF-IDF encoding.
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Obj. pred. Att. pred.
DAP ALE DAP ALE

AWA 36.1 37.4 71.9 65.7
CUB 10.5 18.0 61.8 60.3

Table 3. Comparison of the DAP baseline [16] with the proposed
Attribute Label Embedding (ALE) approach. Left 2 columns: ob-
ject classification accuracy (top-1 in %) on the 10 AWA and 50
CUB evaluation classes. Our DAP results on AWA are lower than
those reported in [16] because we use only half of the data to train
the attribute classifiers. Right 2 columns: attribute prediction ac-
curacy (AUC in %) on the 85 AWA and 312 CUB attributes.

the highest posterior probability:

p(y|x) ∝
E∏

e=1

p(ae = ρy,e|x) (12)

where ρy,e is the association measure between attribute ae

and class y, and p(ae = 1|x) is the probability that image
x contains attribute e. We train for each attribute one linear
classifier on the FVs. We use a (regularized) logistic loss
which provides an attribute classification accuracy similar
to the SVM but with the added benefit that its output is al-
ready a probability.

From the results in Table 3 (left columns), we can see
that the proposed framework performs slightly better than
DAP on AWA and significantly better on CUB. Hence, our
approach seems to be more beneficial when the attribute
quality is higher. The benefits of our approach with respect
to DAP are the fact that our objective function optimizes a
ranking objective which is closely related to the classifica-
tion end-goal and the fact that we take into account implic-
itly the correlation between classes.
Attribute interpretability. In ALE, each column ofW can
be interpreted as an attribute classifier and θ(x)′W as a vec-
tor of attribute scores of x. However, one major difference
with DAP is that we do not optimize for attribute classifi-
cation accuracy. This might be viewed as a disadvantage of
our approach as we might loose interpretability, an impor-
tant property of attribute-based systems when, for instance,
one wants to include a human in the loop [3, 37]. We there-
fore measured the attribute prediction accuracy of DAP and
ALE. For each attribute, following [16], we measure the
AUC on the “test” set of the evaluation classes and report
the mean.

Results are shown in Table 3 (right columns). As ex-
pected, the attribute prediction accuracy of DAP is higher
than that of our approach. Indeed, DAP optimizes directly
attribute-classification accuracy. However, the AUC for the
proposed approach is still reasonable, especially on CUB
(only 1.5% drop). Thus, our learned attribute classifiers
should still be interpretable. We show qualitative results
on AWA in Figure 2.
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Figure 3. Classification accuracy on AWA (left) and CUB (right)
as a function of the label embedding dimensionality. We compare
the baseline which uses all attributes, with an SVD dimensionality
reduction and a sampling of attributes (we report the mean and
standard deviation over 10 samplings). For the SVD CUB results,
note the drop at 50 dimensions. We believe this is because the
SVD is not guaranteed to choose the most discriminative output
dimensions.

ALE HLE AHLE
AWA 37.4 39.0 43.5
CUB 18.0 12.1 17.0

Table 4. Comparison of attributes (ALE) and hierarchies (HLE) for
label embedding. We also consider their combination by simple
concatenation (AHLE).

Attribute correlation. While correlation in the input space
is a well-studied topic, comparatively little work has been
done to measure the correlation in the output space. Here,
we reduce the output space dimensionality and study the im-
pact on the classification accuracy. We explore two different
techniques: Singular Value Decomposition (SVD) and at-
tribute sampling. For SVD, we learn on AWA (resp. CUB)
the SVD on the 40×85 (resp. 150×312) ΦA matrix and
then project the remaining 10 (resp. 50) evaluation classes
in this space. For the sampling, we sub-sample a fixed num-
ber of attributes and repeat the experiments 10 times with
different sub-samplings. We show results in Figure 3.

From these experiments, we can conclude that there is
a significant amount of correlation between attributes and
that the output space dimensionality can be significantly re-
duced with little accuracy loss. For instance, on AWA the
accuracy drops from 37.4 to 35.7 when reducing from an
85-dim space to a 10-dim space. On CUB the accuracy
drops from 18.0 to 17.2 when reducing from a 312-dim
space to a 20-dim space. As expected, SVD outperforms
a random sampling of the attribute dimensions.
Comparison of ALE and HLE. As mentioned earlier,
while attributes can be a useful source of prior information
to embed classes, other sources exist. We consider as an al-
ternative the Wordnet hierarchy. We collect from Wordnet
the set of ancestors of the 50 AWA (resp. 200 CUB) classes
and build a hierarchy with 150 (resp. 299) nodes5. We used
the {0, 1} embedding with `2-norm.

5In some cases, some of the nodes have a single child. We did not clean
the automatically obtained hierarchy.
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(a) eats planktons (b) is yellow (c) lives in the ocean

(d) is stalker (e) is hunter (f) is smart
Figure 2. Sample attributes recognized with high (i.e. >90%) accuracy (top) and low (i.e. <50%) accuracy (bottom) by ALE on AWA. For
each attribute we show the images ranked highest. Note that a AUC < 50% means that the prediction is worse than random on average.
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Figure 4. Classification accuracy on AWA (left) and CUB (right)
as a function of the number of training samples per class.

We also consider the combination of attributes and hi-
erarchies. We explore different alternatives such as the
concatenation of the embeddings or performing CCA on
the embeddings. The simpler concatenation alternative al-
ways outperformed the more complex CCA and therefore
we only report results with the former approach.

Results are shown in Table 4. While on AWA the HLE
performs slightly better than ALE, on CUB ALE perform
significantly better. Such a behaviour could be expected
since the CUB attributes were obtained in a much more
controlled and exhaustive way than on AWA. Also, since
CUB is a finer-grained dataset than AWA, the CUB hierar-
chy is much “flatter” than the AWA hierarchy and, there-
fore, certainly not as informative. On AWA, the combina-
tion performs better than attributes or the hierarchy alone
while on CUB, there is no improvement through the combi-
nation, certainly because the hierarchy adds little additional
information. Hence, a class hierarchy can be used as a com-
plementary source of information for “poor-man” attributes.

4.3. Beyond zero-shot learning

We now report results when learning with few examples
(shots) and when learning with the full datasets. The goal is
to show that, with label embedding, we can combine prior
information and labeled data.

Few-shots learning. In these experiments, we assume
that we have few (e.g. 2, 5, 10, etc.) training samples for
each of the 10 AWA (resp. 50 CUB) evaluation classes plus
all training samples from the remaining 40 AWA (resp. 150
CUB) classes to learn and cross-validate classifiers. Evalua-
tion is done on the “test” set of the 10 AWA (resp. 50 CUB)

OVR WSABIE ALE HLE AHLE
AWA 52.3 49.6 49.7 52.6 52.9
CUB 23.4 20.1 20.5 20.1 23.5

Table 5. Comparison of different learning algorithms on the full
datasets (50 resp. 200 classes). OVR and WSABIE do not use
any prior information while ALE, HLE and AHLE do.

classes. We compare ALE with WSABIE [41] which per-
forms label embedding and therefore “shares” samples be-
tween classes but does not use prior information. For ALE
and WSABIE, W is initialized to the matrix learned in the
zero-shot experiments. We show results in Figure 4. On
AWA, ALE outperforms WSABIE significantly for a small
amount of training data but is outperformed by WSABIE
for 25 training samples per class or more. One advantage of
WSABIE with respect to ALE is that the embedding space
dimensionality can be tuned, thus giving more flexibility
when larger amounts of training data become available. On
the other hand, on CUB ALE always outperforms WSA-
BIE. Note that the maximum number of training samples
per class we used for CUB is 20 because the least populated
class has only 42 samples (21 training). As an example,
ALE with 2 training samples performs on par with WSA-
BIE with 20 training samples, showing that attributes can
compensate for limited training data.
Learning and testing on the full datasets. In these ex-
periments, we learn and test the classifiers on the 50 AWA
(resp. 200 CUB) classes. We use the “train” set for training
and cross-validation and the “test” set to measure accuracy.
We compare three embedding techniques: ALE (attributes
only), HLE (hierarchy only), AHLE (attributes and hierar-
chy). We also provide two baselines: a One-Vs-Rest (OVR)
binary SVM (which does not consider parameter sharing)
and WSABIE (which performs parameter sharing without
side information). As can be seen in Table 5, the OVR base-
line performs on par with AHLE. We hypothesize that this
is because a priori information plays a limited role when
training data is plentiful. To test this hypothesis, we experi-
mented with only half of the training data on CUB. In such a
case AHLE outperforms OVR (17.6% accuracy vs. 16.4%)
which seems to validate our hypothesis.
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Finally, training the proposed approach is efficient. Us-
ing a single processor of a Linux server with 2.4GHz Intel
Xeon processors and 32GBs of RAM, it takes approx. 3hrs
on CUB to learn the AHLE parameters with the 65,536-dim
FVs.

5. Conclusion
We proposed to cast the problem of attribute-based clas-

sification as one of label-embedding. This formulation ad-
dresses in a principled fashion the limitations of the orig-
inal DAP model. First, we solve directly the problem at
hand (image classification) without introducing an interme-
diate problem (attribute classification). Second, our model
can leverage labeled training data (if available) to update the
label embedding, using the attribute embedding as a prior.
Third, the label embedding famework is not restricted to at-
tributes and can accommodate other sources of prior infor-
mation such as class taxonomies. In the zero-shot setting,
we demonstrated improved results with respect to DAP. In
the few-shots setting, we showed improvements with re-
spect to WSABIE, which learns the label embedding from
labeled data but does not leverage prior information.
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