
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

1

A Hybrid Static-Dynamic Classification for
Dual-Consistency Cache Coherence

Alberto Ros and Alexandra Jimborean

Abstract—Traditional cache coherence protocols manage all memory accesses equally and ensure the strongest memory model,
namely, sequential consistency. Recent cache coherence protocols based on self-invalidation advocate for the model sequential
consistency for data-race-free, which enables powerful optimizations for race-free code. However, for racy code these cache coherence
protocols provide sub-optimal performance compared to traditional protocols.
This paper proposes SPEL++, a dual-consistency cache coherence protocol that supports two execution modes: a traditional
sequential-consistent protocol and a protocol that provides weak consistency (or sequential consistency for data-race-free). SPEL++
exploits a static-dynamic hybrid classification of memory accesses based on (i) a compile-time identification of extended data-race-free
code regions for OpenMP applications and (ii) a runtime classification of accesses based on the operating system’s memory page
management. By executing racy code under the sequential-consistent protocol and race-free code under the cache coherence protocol
that provides sequential consistency for data-race-free, the end result is an efficient execution of the applications while still providing
sequential consistency. Compared to a traditional protocol, we show improvements in performance from 19% to 38% and reductions in
energy consumption from 47% to 53%, on average for different benchmark suites, on a 64-core chip multiprocessor.

Index Terms—Multiprocessors, cache coherence, classification of accesses, runtime, compiler, consistency model, data races.

F

1 INTRODUCTION

G IVEN the prevalence of multi-core processors and the trend
of continuously increasing the number of cores, scalabil-

ity and efficiency of coherence protocols becomes crucial for
performance. State-of-the-art coherence protocols seek to deliver
scalability, performance and energy efficiency [1] by detecting
and exploiting memory accessing characteristics of code with the
goal of simplifying the coherence protocol [2], [3]. Despite the
promising results, one of the main limitations of such protocols is
that they fail at providing support for legacy code, which may
prevent them from being integrated in commercial processors.
Under these circumstances, emerging architectures (e.g., Intel
Xeon Phi [4]) still implement traditional directory-based cache co-
herence protocols, despite they perform sub-optimally on modern
architectures. Furthermore, the inefficiency of traditional protocols
increases with the number of cores in the system.

One source of inefficiency is that traditional coherence proto-
cols provide the strongest consistency model (or memory model),
namely sequential consistency (SC) [5]. While this design decision
eases the development of the protocol by isolating the cache co-
herence protocol from the consistency model of the hardware [6],
it brings significant performance penalties. The shortcomings
become unjustified especially when the system provides a more
relaxed consistency model [7]. In answer, recently proposed cache
coherence protocols follow the sequential consistency for data-
race-free (SC-for-DRF) model [8], which allows a simpler and
more scalable design [2], [3] and improves performance [9]. How-
ever, despite the advantages of these cache coherence protocols,
based on self-invalidating the cache content on synchronization

• A. Ros is with the Computer Engineering Department, University of
Murcia, 30100 Murcia, Spain.
E-mail: aros@ditec.um.es

• A. Jimborean is with the Department of Information Technology, Uppsala
University, 751 05 Uppsala, Sweden.
E-mail: alexandra.jimborean@it.uu.se

points, they still have two main drawbacks: (i) they are not efficient
when executing racy code, e.g., when synchronizing threads, due
to intense self-invalidation and (ii) they do not provide backwards
compatibility with existing software that requires a consistency
model stronger than SC-for-DRF. Although recent efforts have
been done to optimize racy code in SC-for-DRF protocols [10],
[11], they rely on exposing synchronization to the hardware, thus
not providing backwards compatibility with existing software.

Another source of inefficiency of traditional protocols stems
from not taking advantage of applications’ behavior, thus missing
potential performance improvements. To exploit this opportunity,
numerous proposals revolve around identifying the nature of
memory accesses as private or shared [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21] for optimizing the coherence
protocol or, for example, enhancing data placement. While the
optimization is efficient and enables novel coherence protocols
to outperform traditional protocols, the underlying techniques
for classifying accesses still lack accuracy (Section 7), due to
the classification of memory accesses based on the private or
shared nature of the target data. Performed at runtime, such a
classification is either coarse-grained [12], [15], [16] or increases
hardware complexity [14], [17], [21]. Performed at compile-time,
it must conservatively handle memory accesses which cannot be
fully disambiguated statically [13], [18].

This work proposes SPEL++, which stands for Scalability,
Performance, Energy efficiency and support for Legacy code.
SPEL++ is a dual-consistency cache coherence protocol that
supports two execution modes: a traditional SC protocol and
a protocol that provides SC-for-DRF. SPEL++ actively selects
a more relaxed SC-for-DRF protocol during the execution of
data-race-free (DRF) code regions [22]. By relaxing the protocol
SPEL++ achieves high performance and scalability, by executing
racy code with an SC protocol SPEL++ achieves energy efficiency,
and by delivering SC —due to the guarantee that only DRF code is
executed with the SC-for-DRF protocol— it ensures compatibility

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

2

with legacy software.
Key to these properties is a hybrid static-dynamic classifi-

cation of memory accesses. First, we perform a compile-time
identification of extended data-race-free (xDRF) code regions (see
section 2.1), where each xDRF region consists of a set of DRF
regions. We complement the static classification per regions with
a dynamic private-shared classification of memory accesses, by
resorting to the operating system’s memory management (OS-
based). The hybrid classification entails three protocol modes that
are designed to efficiently handle each memory access: (i) OS-
private memory accesses require minimum coherence support and
are highly optimized, (ii) accesses performed within xDRF regions
can be executed under a high-performance and scalable SC-for-
DRF protocol, while providing SC, and finally (iii) for accesses
that are neither OS-private nor part of xDRF regions, coherence
is ensured by a standard directory protocol (SC protocol), which
is commonly optimized for executing racy code. The proposed
design smoothly blends the three protocol modes, which can be
simultaneously active: for instance, threads executing non-DRF
regions with OS-shared accesses follow the SC protocol, while
threads executing xDRF regions follow the SC-for-DRF protocol.
Cache blocks transition from one protocol mode to the other on
demand, thus maximizing performance (Section 3).

The compile-time classification differs from previous static
classification schemes, which focus on classifying memory ac-
cesses as private or shared based on the nature of the accessed
data. In this paper we target codes in which the compiler can
unequivocally identify xDRF regions. Classes of codes amenable
to compile-time identification of xDRF regions include both (1)
already parallel applications and (2) sequential codes automati-
cally parallelized at compile time. The first category refers to par-
allel codes with OpenMP annotations. We exemplify the second
category with sequential codes that are statically analyzable and
amenable to parallelization by applying polyhedral transforma-
tions [23], [24]. The compile-time classification is complemented
by a standard OS-based classification (see Section 7) to increase
the accuracy. The hybrid classification scheme represents a step
forward in solving legacy issues automatically. Legacy codes
which are not amenable to our compile-time classification do ex-
ecute correctly under the proposed protocol, either in the standard
directory protocol mode (SC protocol) or in the OS-private mode,
but do not benefit from the optimizations designed for xDRF code
regions. To enable xDRF-tailored optimizations, the role of the
compiler can be subsumed by an expert delineating xDRF regions1

and unleashing all the benefits of SPEL++.
We evaluate SPEL++ on a wide variety of applications from

different benchmark suites, simulating a 64-core chip multipro-
cessor architecture similar to the Intel Xeon Phi co-processor [4]
(Section 5). Experiments show an average performance improve-
ment of 38%, 19%, and 20% for the Polybench, Rodinia, and
SpecOMP benchmark suites, respectively, while reducing energy
consumption by 48%, 47%, and 53% (Section 6).

Contributions: The proposal consists in an optimized coher-
ence protocol that automatically “gels” to the code’s behavior,
namely to the type of each memory access. The type of accesses
is identified by a hybrid static-dynamic classification that involves
both the operating system and the compiler. The protocol auto-
matically selects the optimal mode to handle each memory access

1. Inserting directives provided for the programmer to enable the use of
the xDRF classification for irregular, generic parallel codes, such as Apache,
MySQL servers, etc.

efficiently, successfully addressing the three-fold goal: scalability,
performance and energy efficiency [1], and ensuring compatibility
with legacy code. This paper extends our previous proposal,
SPEL [25], with the following contributions:

• Proposes a hybrid static-dynamic classification of mem-
ory accesses that delivers more opportunities for further
optimizing the coherence protocol (Section 2);

• Thoroughly details the compile-time (Section 2.1) and the
runtime (Section 2.2) techniques for classifying memory
accesses and their interplay (Section 2.3);

• Extends the coherence protocol to optimally handle each
memory access with respect to its nature, as dictated by
the hybrid classification (Section 3);

• Proposes optimizations of the coherence protocol regard-
ing the fetching of data upon write accesses (on demand
vs. prefetching) (Section 3);

• Provides an extensive evaluation of the proposed optimiza-
tions, showing performance improvements and significant
energy savings over our previous work (Section 6).

2 CLASSIFICATION OF MEMORY ACCESSES

The proposed coherence protocol employs a hybrid classification
scheme with two complementary techniques: a static, compiler-
based classification of extended data-race-free (xDRF) regions and
a runtime, OS-based classification of memory accesses.

2.1 Static: compile-time delineation of xDRF regions
SPEL++ is readily applicable on applications for which a compiler
can precisely identify xDRF regions, either automatically or based
on user-provided annotations.

An xDRF region consists of a set of DRF regions, which all
together act as one unique DRF region. The DRF regions may be
interleaved with non-DRF (nDRF) regions, but the nDRF regions
do not belong to the xDRF region and do not break its data-
race-free semantics. We denote such nDRF regions as enclave.
An xDRF region must satisfy the following properties: (1) no
memory access performed in an enclave nDRF region may alter
data accessed in the xDRF region. As an exception, a thread is
allowed to modify its thread local data, even during the execution
of an nDRF region, since no other thread can access it; (2) all
properties that hold in a standard DRF region [22], hold across the
entire xDRF region. In short, it is guaranteed that parallel threads
executing the same xDRF region do not access the same data (at
least one access being a write), even if accesses are performed
from within different DRF regions part of the same enclosing
xDRF region.

The OpenMP programming model [26] is particularly well-
suited for such a classification, as data sharing is entirely con-
trolled by dedicated synchronization constructs (e.g., atomic,
critical), which are easily identified statically. Similarly, in au-
tomatically generated data parallel applications, the compiler has
complete knowledge of the xDRF and nDRF code regions.

Once the parallelizing code transformations have been applied,
the compiler delineates parallel from sequential regions. Sequen-
tial regions are considered xDRF, while parallel regions may
contain a mixture of interleaved xDRF and nDRF regions. Barriers
mark the beginning and end of an xDRF region, nevertheless,
there may be several enclave nDRF regions (i.e., synchronization
points that protect shared data such as locks or critical sections).

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

3

Should synchronization mechanisms be used with moderation in
scalable parallel programs, most of the parallel code represents
xDRF regions.

2.1.1 Handling OMP directives and worksharing constructs
Identification of xDRF regions is based on the semantics of each
OpenMP construct.

1 #pragma omp parallel for(sharedA)
for(int i=0; i<N; ++i)

3 A[i] = i;

5 //Is internally transformed to:
Start_parallel_region();

7 Thread_func(...);
End_parallel_region();

9

Thread_func(...){
11 int this_th = omp_get_thread_num();

int num_th = omp_get_num_threads();
13 int my_start = (this_th) * N / num_th;

int my_end = (this_th+1) * N / num_th;
15 for(int i=my_start; i<my_end; ++i)

A[i] = i; }

Listing 1. OpenMP for directive and the simplified transformed code

PARALLEL FOR: For example, the directive
#pragma omp parallel for splits the for-loop such
that each thread in the current team executes different loop
iterations, as displayed in Listing 1. Such code transformations
are performed blindly by the compiler, nevertheless, the
programmer is responsible for avoiding data races, by ensuring
that the loop iterations can run in any order (i.e., there are no
loop carried data dependencies and no parallel updates of shared
variables).

In this simple example, since no synchronization is
required, the whole parallel region is an xDRF re-
gion, thus the boundaries of the xDRF region coincide
with the functions calls Start_parallel_region(),
End_parallel_region().

Consider now the example illustrated in Listing 2, which
shows the pseudo-code generated by the compiler when
#pragma omp parallel for schedule(runtime) is
encountered. The OpenMP clause schedule(runtime) in-
structs the compiler to split the iteration domain of the parallel
loop in slices. Thus, each thread is allocated a subset of iterations
(slice), and as soon as it finishes its slice, the thread asks for
more work, by calling GOMP_next_slice(). This distribu-
tion of work allows for better load balancing, but incurs more
synchronization, since each request for a new slice requires a
lock to update the number of not-yet-executed iterations (com-
pared to the example in Listing 1). Each slice, excluding the
call GOMP_next_slice() represents a DRF region, since the
OpenMP paradigm guarantees that the loop iterations may be run
in parallel, without incurring data races. The set of all slices, i.e.,
the set of all DRF regions, builds up the xDRF region whose
boundaries correspond in this example to the ones of the OpenMP
parallel region. Hence, the xDRF region is non-contiguous since
it is interrupted by calls to GOMP_next_slice(), which repre-
sent nDRF regions. Similarly, any call to an external library (here
illustrated with libgomp [27]) that requires a lock is handled as an
nDRF region enclave in the xDRF region.

SECTIONS: The Sections directive specifies that the en-
closed section(s) of code are to be distributed among the threads
in the team and each nested Section is executed once by

one thread. Different sections may be executed by different
threads. Hence, a section has the same semantics as the slice
within a parallel for loop. As soon as the thread completes
its section, it asks for another section to execute by calling
GOMP_sections_next(). Thus, a section itself is DRF and
the entire region of sections is xDRF, since the sections can
be executed independently by different threads. The call to
GOMP_sections_next() is nDRF.

TASK: Sections and tasks (their successor in OpenMP
3.0 and later) share many similarities, as well as differences.
Similarly, the assumption is that all tasks can be executed inde-
pendently, but the execution may be either immediate or delayed.
To force threads to start executing tasks from the workshar-
ing construct (i.e. task queue), synchronization points, such as
taskwait or barrier, discussed later, must be used. From
SPEL++s perspective, the parallel construct acts as a parallel
region and it is by default considered an xDRF region. The
creation of tasks with GOMP_task is an nDRF region, as it
locks and updates the shared task queue, but the code of each
task represents a DRF region within the xDRF region.

SINGLE: The Single block is executed only by one thread,
while the rest of the threads in the team wait at the implicit barrier
at the end of the Single block (unless nowait is specified).
SPEL++ handles the parallel region until the Single block as
xDRF, ended by the presence of the implicit barrier.

sdrf 0
2 drf.flush
Start_parallel_region();

4 Thread_func(...);
sdrf 0

6 drf.flush
End_parallel_region();

8 sdrf 1

10 Thread_func(...){
sdrf 1

12 int my_start, my_end;
bool thread_has_work =

14 sdrf 0
/* Takes a lock and updates the

16 number of remaining iterations */
GOMP_next_slice(my_start, my_end, N);

18 sdrf 1
while (thread_has_work){

20 for(int i=my_start; i<my_end; ++i)
printf(" %d", i);

22 thread_has_work =
sdrf 0

24 GOMP_next_slice(my_start, my_end, N);
sdrf 1

26 }
}

Listing 2. Transformed code of a loop with OMP directive
#pragma omp parallel for schedule(runtime)

2.1.2 Handling OMP synchronization constructs
CRITICAL, ATOMIC: Synchronization mechanisms that ensure
atomicity (e.g., critical, atomic) are identified and the
corresponding code regions are marked as nDRF at compile-
time. For example, the entire code section protected by a
#pragma omp critical directive is nDRF, since threads
manipulate data that must be visible to other threads at the end
of the critical section. Although a critical section is, by definition,
DRF, we opt for considering them nDRF. Our motivation is that
coherence is required between threads when exiting and entering
the same critical section. By considering critical sections as nDRF

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

4

regions, we avoid splitting an xDRF region into smaller xDRF
regions, which, as we will see in Section 3, will introduce extra
self-invalidation, and therefore, may increase execution time.

BARRIER, TASKWAIT: On the other hand, synchroniza-
tion mechanisms that impose an order between threads (e.g.,
#pragma omp barrier, #pragma omp taskwait) mark
the end of the xDRF region, as threads executing code following
the barrier are expected to access data updated before the barrier
(possibly by other threads during the xDRF region), thus violating
the xDRF properties.

ORDERED: In contrast, #pragma omp ordered speci-
fies that iterations of the enclosed loop will be executed in
the same order as if they were executed on a serial processor.
Threads are ordered using the internals of the libgomp library
(gomp_ordered_sync), waiting before executing their chunk
of iterations if previous iterations have not completed yet. Since
data is not expected to be made visible among the threads before
the completion of the loop, the loop iterations build the xDRF
region, while the synchronization dictating the order between the
threads is nDRF.

MASTER: Constructs which indicate that a code region is ex-
ecuted only once by one thread (e.g., #pragma omp master)
are marked as DRF, part of the enclosing xDRF region. Since
there is no implied barrier with this construct, while the master
thread executes the block, the other threads continue doing other
work. All updated data is communicated among the threads upon
a (#pragma omp barrier), at the end of the xDRF region.

FLUSH: The #pragma omp flush directive identifies a
synchronization point at which the implementation must provide
a consistent view of memory, i.e. when thread-visible variables
are written back to memory. This directive is translated by the
compiler as a fence seq cst 2, which is semantically equivalent
to the end of the xDRF region.

2.1.3 Handling OMP data scope attribute clauses
In addition to synchronization mechanisms, the OpenMP frame-
work provides several solutions to avoid data races, via
clauses which explicitly define how variables should be scoped.
The privatization approach (e.g., private, firstprivate,
lastprivate clauses) creates thread-local duplicates of shared
variables, such that each thread can safely update its private copy.
The private copies are initialized or may be copied back into the
shared variables at the end of the parallel region, according to
the semantics of the privatization clause. Internally, these thread-
private variables are declared in the code section executed by each
thread and initialized with values transmitted as parameters to
each thread. Hence the copy-in is transparent to our classification
strategy, while the copy-out takes place outside of the xDRF
region, i.e., after a barrier.

A special case is the #pragma omp threadprivate
directive, which indicates that values are privatized and main-
tained persistent between different parallel sections of code, i.e. a
threadprivate variable will have the same value if accessed
in a subsequent parallel region by the same thread, given that the
number of threads is constant. Threadprivate variables are
transformed at compile-time into thread_local variables [28],
thus they will not be shared by threads (each thread will have

2. Fence seq cst is a fence to ensure sequential consistency, providing
Acquire semantics for loads and Release semantics for stores. Additionally,
it guarantees that a total ordering exists between all sequentially consistent
operations [28].

a separated copy of the variable). The copyin clause provides
a means for assigning the same value to threadprivate
variables for all threads in the team. Since SPEL++ propa-
gates all writes on a transition between adjacent xDRF re-
gions (e.g. between a sequential and a parallel xDRF region),
threadprivate variables are maintained persistent naturally
by our protocol.

Note that accesses to data annotated as shared may belong to
an xDRF region, if the OpenMP directive semantics indicates such
accesses are safe, e.g. array A in Listing 1. In contrast, accesses to
scalars declared as shared require synchronization, e.g., critical
sections, and are therefore handled as nDRF3.

Reductions create a private copy per thread for each
variable. At the end of the reduction, the values of the thread-
private variables are accumulated in the global shared variable,
which is translated in the intermediate code to a write protected
by a lock or an atomic operation. Private copies are written in
parallel in the xDRF region, while the final update of the shared
variable (via the reduction operation) is classified as nDRF.

2.1.4 Instructions delimiting regions of code
In order to delimit xDRF and nDRF regions, the code is compiled
in two steps using LLVM [29]. First, the parallel code is generated
in the LLVM intermediate representation. Next, a dedicated com-
piler pass inserts instructions delimiting the xDRF and nDRF code
regions. There are two types of instructions inserted statically:
sdrf and drf.flush.

The sdrf instruction (set SC-for-DRF coherence) delimits
DRF regions which are part of the same xDRF region. The role of
the sdrf instruction is to inform the processor whether it has to
handle the subsequent memory accesses under SC-for-DRF or SC
mode. For this purpose, it enables or disables a processor flag DRF
(SC-for-DRF coherence), accordingly. Hence, sdrf 1 sets the
flag, indicating that coherence can be guaranteed by the SC-for-
DRF protocol, while sdrf 0 enforces the use of the SC protocol.
Essentially, the implementation of the sdrf instruction is similar
to a memory fence, which prevents reordering accesses across it
and in addition updates the DRF flag.

The drf.flush marks the end of xDRF regions, where data
modified in the SC-for-DRF protocol mode must be propagated.
Since drf.flush instructions mark the boundaries of each
xDRF region (and not of each DRF region), the number of
flushes is considerably reduced, leading to better performance
than previous SC-for-DRF protocols. The placement of these
instructions is shown in Listing 2.

2.2 Dynamic: OS-based classification
We employ a standard operating system (i.e. OS-based clas-
sification) [12], [16], which is highly conservative in labeling
memory accesses as private, but provides strong guarantees, thus
enabling powerful optimizations of the coherence protocol. The
OS-based classification labels a memory access as private if the
entire memory page where the accessed data resides has been
referenced by only one thread since the beginning of execution,
up till the access is performed. More precisely, upon a first TLB
miss for a certain page, the OS stores information about the
page’s owner along with the page’s entry in the page table. The
required information consists in an owner field, a cached bit and

3. It is the programmer’s responsibility to ensure that multiple threads
properly access shared variables

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

5

a private/shared (PS) bit [16]. The OS is aware of which cores
access each page, as the OS is responsible for resolving TLB
misses. If the page is only accessed by its owner core, the page
is labeled as private. As soon as another core incurs a TLB miss
for that particular page, the page becomes shared. In other words,
once a memory page is accessed by a second thread, the page
becomes shared and any access targeting this page will be labeled
as shared until the execution completes or until the page is evicted
from main memory.

2.3 Hybrid static-dynamic classification
To increase the accuracy of our classification, we exploit the
advantages of each method (static vs. dynamic) applied in isolation
and show how the two techniques become complementary when
applied in conjunction.

On one hand, the OS-based classification operates at memory
page granularity, leading to a high degree of false sharing reports.
Moreover, once the memory page is labeled as shared, it remains
shared until it is evicted from the main memory. In contrast, the
xDRF-classification operates on a finer granularity – of accessed
data – ensuring that throughout the execution of an xDRF region
multiple threads cannot access the same byte. Furthermore, it
resets the classifications at the boundaries of xDRF regions,
providing temporality. This approach splits the set of OS-shared
memory accesses into xDRF and nDRF accesses (corresponding
to xDRF and nDRF regions, respectively).

On the other hand, the compile-time approach performs a bulk
classification of the memory accesses residing in the same region
(either xDRF or nDRF). In particular, an nDRF region may contain
interleaved OS-private and OS-shared memory accesses. Given
that the OS-based classification operates on accesses, rather than
regions, such private accesses within nDRF regions are correctly
identified. In addition, a compiler does not have access to dynamic
information (e.g. thread affinity) and must conservatively delineate
each barrier as bounding an xDRF region. Conversely, the OS-
based classification is guided by dynamic sharing of data between
threads and can therefore identify whether different threads access
the same data (memory page) across a barrier. This information
is useful in alleviating conservative actions that prove to be
unnecessary for maintaining coherence (Section 3).

This hybrid classification scheme identifies three types of
memory accesses, each type requiring a different coherence pro-
tocol, as explained in the following section:

• OS-private: accesses that find the PS bit set to private (0).
• xDRF: accesses that find the PS bit set to shared (1) and

the xDRF flag set to 1.
• Shared: accesses that find the PS bit set to shared (1) and

the xDRF flag set to 0 (nDRF).

3 DUAL-CONSISTENCY CACHE COHERENCE

Relying on the presented hybrid static-dynamic classification of
OS-private accesses and xDRF regions, we propose SPEL++, a
dual-consistency cache coherence protocol, where shared memory
accesses are kept coherent by a standard directory protocol that
ensures SC by propagating writes immediately (Section 3.1),
xDRF accesses follow an SC-for-DRF protocol that guarantees
the visibility of the writes no later than the end of their xDRF
region (Section 3.2), and memory accesses classified as private
by the OS delay the propagation of writes until the page becomes
shared (Section 3.3).

3.1 SC coherence protocol
Memory accesses considered shared are made coherent in
SPEL++ with a traditional SC coherence protocol, which is an
invalidation-based MOESI directory protocol [30] with a directory
cache to track the memory blocks stored in the private caches.

Read misses are sent to the directory controller, where the
directory cache keeps the information about the owner and about
the sharers of the cached blocks. The directory controller forwards
the requests to the cache owning the block, in case the owner is not
the shared cache (co-located with the directory). Then, the owner
sends a copy of the data block to the requester, which stores the
block in its local cache and completes the read operation.

Write misses generate invalidation messages to all caches
holding copies of the requested block. Each cache replies to the
invalidation with a message of acknowledgment or with the data
block in case of the block’s owner. These messages are sent to the
requester. Once the requester receives all messages, it can perform
the write operation.

All transactions finish with an unblock message from the
requester to the directory controller. The directory controller
remains blocked from the point in time it processes the request
until it receives the unblock message. Directory blocking avoids
complex protocol races.

3.2 SC-for-DRF coherence protocol
Memory requests that are classified as xDRF do not modify the
coherence status (e.g., cache MOESI states, directory information,
etc). Hence, blocks cached due to an xDRF access are not tracked
by the directory and remain invisible to the coherence protocol.
Instead, every memory block sets a toFlush (F) bit, that is kept
along with every block in a private cache. For example, if a block
is not present in the cache (I state) and is brought by an xDRF
load, the state remains I and the presence bit is not added to the
directory. Consequently, the coherence protocol cannot “see” the
block and cannot invalidate it. However, the block resides in cache
with the F bit set, such that the local processor can access it.

In contrast, the coherence status of a block (according to
the coherence protocol) must be visible for xDRF accesses. For
example, an xDRF read miss has to access the directory in order
to locate the coherent copy of the block. Once the copy of the
block is found, either in a shared cache or in a private cache, it is
sent to the requester.

The key performance benefits for xDRF accesses, that are kept
coherent through an SC-for-DRF protocol, over shared accesses
are the following:

• Since the blocks marked as F are “invisible” to the coher-
ence protocol, they do not require an entry in the directory
cache, thus increasing the efficiency of the directory.

• As a consequence, invalidation requests performed by
the coherence protocol do not affect the F blocks, thus
reducing the cache miss rate (particularly, misses due to
false sharing) and, as a consequence, reducing traffic.

• Thanks to the DRF properties, writes can proceed without
waiting for write permission and do not perform invali-
dation of other copies, thus reducing the latency of write
misses.

• Directory blocking is considerably reduced for xDRF
misses since it is only required when the up-to-date copy
of the block is in a private cache (owner state). Thus both
(i) network traffic is reduced as less unblock messages will

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

6

be generated, and (ii) the waiting time of the subsequent
requests is diminished.

3.2.1 Hardware support for handling false sharing

As opposed to real sharing where multiple threads update the same
data, false sharing occurs when multiple threads modify different
data residing in the same memory block. Traditional coherence
protocols invalidate all remote copies of a written block, even
in case of false sharing. This may cause important performance
degradation due to frequent invalidations, increased traffic, etc.
On the other hand, the management of false sharing in SC-for-
DRF protocols requires extra information in order to maintain
correctness.

Our compile time classification provides data-race free guar-
antees with a granularity finer than the cache block. Hence,
during SC-for-DRF coherence mode several cores can write the
same block (but access different bytes). The protocol ensures
correctness by sending through the network “diffs” with only the
written bytes and by “merging” them at the shared cache level.
For this purpose, we add extra bits to mark the bytes written in
SC-for-DRF mode (xDRF writes).

Ideally, in order to mark the written bytes of every cached
block, the system would require one bit per cache byte. This
represents a memory overhead of 12.5% of the effective L1 cache
(in general, of the effective size of the private caches). However,
this overhead can be reduced by storing information regarding the
written bytes only for a subset of the cached blocks, namely, for
the ones that are actually written during SC-for-DRF mode. In
practice, most accesses are actually read operations. Therefore,
we propose the use of a new cache-like structure for keeping
track of the written bytes: the written-bits cache. This cache can
considerably reduce the number of entries required to store the
written bytes with respect to the number of entries in the cache.

Effectively, as we show in Section 6.3, a written-bits cache
with only 32 or 16 entries is sufficient for obtaining similar
performance to having as many entries as cache entries (512 in our
case). In this implementation, when there are no available entries
in the written-bits cache, some written-bits information has to be
evicted. Since this information is lost, SPEL++ forces a write-back
of the dirty bytes in the corresponding cache blocks, thus making
them visible to the coherence protocol, as explained below.

3.2.2 Write propagation: From SC-for-DRF to SC

Writes performed under an SC-for-DRF protocol become visible
to other threads either on demand or forced by the drf.flush
instruction. The first scenario occurs when (i) dirty F blocks are
evicted from cache, (ii) the corresponding entries in the written-
bits cache are evicted, or (iii) upon shared write accesses by the
local core. The second scenario occurs at the end of xDRF regions.

Upon the eviction of a dirty F block (or its written-bits entry),
the modified data are written back to the shared cache. Previously
all coherent copies of the same block, which are tracked by the
directory, must be invalidated from the private caches and written-
back to the shared cache, if dirty. The evicted F block is then
merged with the current copy, and from this point on, it will be
visible to the other threads, i.e., it will be coherent. Fig. 1 details
this process.

Upon a shared write access, remote copies are invalidated and
the data block is sent to the requester. If there is already an F
block residing in the cache of the requester, it is “merged” with

local cache

Core 1 &

local cache

Core 0 & Directory &

shared cache

I p0

F St Data

I

I p1

I p1

I

I

p0 p1 s

p1 s

1

1

M p1 s

(Merge)

Dir

wbits

DRF=1 DRF=1

Write p0

(Merge) Write p1

Data

Data

(Merge)

sdrf 0 DRF=0

Write s

Data

Evict B

GetX_DRF

GetX_DRF

Put_DRF

Inv

Data

GetX

I p0

(Merge)

Unblock

Ack

Data
I

DataF St

wbits

Fig. 1. Merging private data on evictions. Gray boxes indicate when
the processor write is effective. Block B is initially stored in the shared
cache, containing three data locations: p0 will only be accessed by core
0, p1 only by core 1, and s will be accessed by both cores. At the
beginning, the DRF flag is set in both threads and we assume that
the page is considered as shared by the OS. First, Core 0 writes p0.
The SC-for-DRF write is performed without waiting for permissions, and
both the F bit for block B and the written-bit (wbits) corresponding to p0
are set. The remaining data of the block is prefetched from the shared
cache and merged appropriately with the write. Similarly, Core 1 writes
p1. Next, Core 1 sets the DRF flag to 0, so future requests from Core 1
will be kept coherent by the SC protocol. Then, Core 1 attempts to write
s. Since the block has been accessed previously in SC-for-DRF mode,
the directory does not track it and the copy in Core 0 is not visible to
Core 1. Hence, Core 1 gets the block from the shared cache, merges it
with its dirty data, clears both F and wbits, and writes s. Now, p1’s value
is visible to any thread, because it is tracked by the directory (illustrated
as 1 in the Dir field). When B is evicted from Core 0, the directory asks
for a write-back of the copy in Core 1 (in case of more sharers, all of them
should be invalidated). Once Core 1’s copy arrives to the shared cache,
it is merged with the dirty data from Core 0, and an acknowledgment is
sent to Core 0. The evicted data is now also visible to other threads.

the current copy, resetting F and the written bits. This way, the
block is made coherent. Fig. 2 details this scenario.

When the processor executes a drf.flush instruction, every
dirty F block in its local cache is evicted. The drf.flush
instruction does not commit until every eviction has been ac-
knowledged (see Fig. 1). The overall performance penalty of
the drf.flush instructions is negligible since they occur in-
frequently and they only evict F blocks.

3.2.3 Non-prefetching on xDRF write misses

As depicted in Fig. 1, xDRF write accesses that miss in the
local cache request the data block from the shared cache. This is
performed in SPEL [25] mainly as a prefetch for data co-residing
in the same block. Since there is already a cache entry that stores
the value written by the xDRF access, the remaining data can
also be stored in the cache without requiring extra resources. A
subsequent read to that block will be a cache hit, thus improving
performance.

However, this prefetching transaction turns out to be unneces-
sary most of the times, because, in practice, there are seldom read
accesses to the same block before the block is evicted. Hence, the
prefetching introduces an additional energy expenditure, without
performance improvements.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

7

Directory &

shared cache

Dir DataF St Data

I

M s

I p1

DRF=1sdrf 1

Write p0

M sp0

1(Merge)

M s’p1p0

I

0

0

0

F St Data DRF=0 DRF=1

Data

Write s
GetX

Write p1

Data

(Merge)

GetX_DRF
I p1

sdrf 0 DRF=0

Unblock

Write s
GetX

Inv_Fwd

Data

Unblock

local cache

Core 0 &

I

local cache

Core 1 &

wbits

Fig. 2. Merging private blocks on writes to shared data. Core 0 starts
with the DRF flag unset and Core 1 with the flag set. First, Core 0 writes
s. Next, DRF flag is set in Core 0, and it writes p0. Since the state of the
block is M (modified), the SC-for-DRF write will be visible, and F and
wbits are not set. Then, Core 1 writes p1. As execution continues, the
DRF flag is cleared in Core 1, and it attempts to write s. However, the
directory tracks B in Core 0, so it asks Core 0 to invalidate B and send
it to Core 1, where both blocks are merged and F and wbits reset. Then,
s can be written (s′).

Therefore, we implement in this work a non-prefetching ver-
sion of the SC-for-DRF protocol. In this version a dirty F block
can reside in the cache having the non-dirty bytes invalid. A read
access to a non-dirty byte in this block will consequently cause a
cache miss, and the remaining data of the block are fetched and
stored in cache.

3.3 OS-based coherence protocol

OS-private accesses do not require coherence maintenance (as
long as they preserve their private nature) [16] and follow what
we call an OS-based coherence protocol. Under this protocol, OS-
private accesses are not tracked by the directory and no extra cache
information is stored, for example, in the written-bits cache. OS-
private accesses simply perform a request-response transaction
that does not block the directory.

Since an OS-private page is only accessed by one core while
it is private, blocks stored in cache due to OS-private accesses
do not set the F bit, and consequently, they are not flushed upon
drf.flush instructions, thus reducing the cache miss ratio. This
is the main advantage of OS-private accesses with respect to xDRF
accesses.

3.3.1 Write propagation: From OS-private to SC

The only coherence action under the OS-private protocol is taken
when a page transitions from private to shared. In this case, all
blocks belonging to the page and stored in the local cache of the
core holding the page as private must be flushed. Dirty blocks are
written-back to the shared cache and clean blocks are invalidated,
thus making visible the written values to the other cores. Flushed
blocks transition to a non-cached state, and subsequent accesses,
either xDRF or shared, will bring back the block to cache in a
status according to their corresponding protocols.

TABLE 1
Characteristics of coherence protocol modes w.r.t. access type

Protocol Type
of access

Coherence
information

Invalidation

SC Shared Directory cache
and cache states

Write miss

SC-for-DRF xDRF Written-bits cache
and F bit in cache

drf.flush instr.

OS-based OS-private Page table and PS
bit in TLB

Page becomes shared

3.3.2 Non-prefetching on OS-private write misses
As for xDRF accesses, OS-private accesses may implement the
non-prefetching optimization described in Section 3.2.3. However,
when this optimization is implemented for OS-private accesses, all
accessed bytes are marked in the written-bits cache, i.e. both writ-
ten and valid blocks. This optimization reduces the interconnection
traffic, at the small cost of using extra entries in the written-bits
cache. Note that when an entry is evicted from this cache, only a
“diff” with the written bytes of the corresponding block is sent to
the shared cache.

3.4 Summary

Table 1 summarizes the three protocol modes described in this
section: (1) the sharing information for shared accesses is stored
at the directory cache and cached copies are invalidated upon
write misses as in a traditional protocol; (2) bytes of blocks
modified by xDRF writes are marked as dirty in the written-bits
cache and F blocks are invalidated on drf.flush instructions;
(3) finally, information about private pages, whose accesses are
considered OS-private, is stored in the page table and invalidations
are triggered when the page becomes shared.

4 DISCUSSION

4.1 Thread migration

The operating system can decide at runtime to execute a thread on
a different core, in which case, cache coherence is guaranteed in
SPEL++ in the following way.

OS-private pages become shared, as they are accessed by a
new core. When the page becomes shared, the corresponding
blocks within the page are flushed from the private cache of the
core that was previously executing the thread.

Cache coherence of blocks marked with the F bit, i.e., due to
xDRF accesses, is guaranteed by an drf.flush instruction executed
by each thread before being de-scheduled. This instruction makes
the xDRF writes “visible” to the coherence protocol, and the latest
value is thus accessible from the new core.

4.2 Multitasking, simultaneous multi-threading, and
syscalls

Applications compiled to expose xDRF regions may co-execute
on the same core with other applications (either exposing xDRF
regions or not). When two applications performing xDRF accesses
coexist on the same core, an drf.flush instruction will write-
back all F blocks from the cache and not only the ones of the
requesting application. However, in practice, most write-backs
correspond to blocks accessed by the current application, as other
blocks have already been evicted.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

8

Since the DRF flag is set per thread, when a thread is de-
scheduled, the value of the DRF flag is recorded by the OS along
with the process context and the newly scheduled thread resumes
with the value of the flag corresponding to its own context.
Systems supporting multiple hardware threads (SMT) require one
DRF flag per thread. Upon scheduling an application thread to a
hardware thread, the OS sets the corresponding DRF flag, similar
to a multitask environment.

System calls can share data, and therefore, are always executed
under SC coherence. When an OS exception is triggered, the DRF
flag is cleared. Once the system call completes, the thread resumes
with its corresponding flag.

4.3 Protocol scalability
Traditional protocols employ a sharing code (either as a n-bit
vector, where n represents the number of cores, or compressed)
to eliminate the need of broadcast requests or broadcast support.
While this sharing code is still required in our SC protocol, our
two specialized modes of SPEL++ do require specific information
for each mode, as summarized in Table 1. For instance, the SC-
for-DRF protocol requires a small number of written-bits entries
for each private cache. Since the area overhead entailed by this
structure does not depend on the number of cores, it is a scalable
structure. Similarly, the OS-based protocol stores information
about the owner of a block (plus two extra bits) along with the
page table entry. The requirements therefore are 2 + log2n bits
per page table entry, which implies high scalability.

Additionally, for xDRF accesses, SPEL++ eliminates most
directory invalidations, forwarding requests, cache-to-cache trans-
fers and unblock messages. The task of keeping coherence in SC-
for-DRF mode is distributed among the cores in the system. This
leads to less traffic and less communication between threads, thus
improving both performance and scalability. Moreover, SPEL++
does not have any overhead with respect to a standard directory
protocol when keeping coherence for xDRF accesses.

In traditional protocols, directories may become a bottleneck
for large-scale systems, since they impose serialization of requests.
The directory controller is blocked while processing a request,
hence, as cores submit multiple simultaneous requests, they must
wait for the controller to be unblocked. As the number of cores
in the system increases, the waiting time can incur important
performance degradation [31]. Both for xDRF and OS-private
accesses, SPEL++ considerably reduces directory blocking during
the resolution of cache misses and it does not track sharers. In
consequence, directory availability and productivity are highly
increased, preventing it from becoming a bottleneck.

5 SIMULATION ENVIRONMENT

We evaluate SPEL++ using the GEMS simulator [32], a cycle-
accurate simulator for multiprocessor systems. The interconnec-
tion network has been modeled with GARNET [33], included in
the GEMS toolset. We have modified GEMS in order to model
both the classification and the protocols in detail, accounting for
the cost of the instructions inserted by the compiler. We report
energy consumption using the McPAT tool [34], assuming a 32nm
process technology.

The baseline system used for the evaluation is a 64-tile chip
multiprocessor that shares many similarities with the recently
launched Intel’s Xeon Phi co-processor [4]. For example, it imple-
ments a directory-based cache coherence protocol and it connects

TABLE 2
System parameters

Parameter Value
Cache hierarchy Non-inclusive
Cache states MOESI
Block / Page size 64 bytes / 4 KB
Split instr & data L1 caches 32 KB, 8-way (128 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 512 KB / tile, 16-way (512 sets)
L2 cache hit time 6 (tag) and 12 (tag+data) cycles
Directory cache 64 sets, 8 ways (×1 L1)
Directory cache hit time 2 cycle
Memory access time 160 cycles
Topology Bidirectional ring
Flit size, link time 72 bytes, 1 cycle

all cores through a high bandwidth bidirectional ring interconnect.
We model in-order cores and provide sequential consistency.
Processor techniques to improve performance based on relaxing
the consistency model have been previously analyzed [19] and
are complementary to this work. The focus of this work is the
cache coherence protocol. The set of parameters employed in our
simulations are shown in Table 2.

We compare three variants of our dual-consistency protocol
(SPEL, SPEL+, and SPEL++) to a traditional SC protocol (Direc-
tory) and a state-of-the-art SC-for-DRF protocol (VIPS) [3]. SPEL
represents our previously published proposal [25]. SPEL+ extends
SPEL with the hybrid static-dynamic classification described in
Section 2.3. Finally, SPEL++ adds on top of SPEL+ the non-
prefetching technique for both xDRF and OS-private accesses
described in Sections 3.2.3 and 3.3.2, respectively. All SPEL
versions evaluated employ a 32-entry written-bits cache, except
when performing the written-bits cache sensitivity analysis.

Our evaluation is carried out with a wide variety of applica-
tions from codes parallelized with OpenMP, SpecOMP 2012 [35]
(352.nab, 359.botsspar, and 367.imagick – test input) and Ro-
dinia [36] (backprop – 131072 elements; bfs – graph1MW 6.txt;
btree – mil.txt, command.txt; hotspot – 1024 × 1024; particlefilter
– 128 × 128 × 10, 10000 particles; and pathfinder – width
50000), to automatically parallelized applications from the Poly-
bench benchmark suite [37] (adi, covariance, fdtd-2d, seidel, and
trmm – small size; and mvt, bicg, and dynprog – medium size).
The evaluated applications exhibit various data access patterns
and cover a large number of OpenMP constructs and thread
synchronization methods. Input sizes have been chosen in order
to provide a representative behavior of the applications while
keeping simulation time within a week. Statistics are collected
from the beginning of the first parallel region until the end of the
last parallel region.

6 RESULTS

6.1 Effectiveness of hybrid classification
This section compares the xDRF compile-time classification
of code regions employed in SPEL [25] to the hybrid run-
time/compile-time classification proposed in this work (SPEL+).
In particular, we focus on the amount of L1 cache misses for
each type of access, since they are resolved involving different
coherence mechanisms.

Results are plotted in Fig. 3 and represent the amount of L1
misses normalized with respect to the misses incurred when using
an xDRF-only classification. The bars are split in different portions

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

9

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

 A
vg

. P
o

ly
b

en
ch

 b
ac

kp
ro

p

 b
fs

 b
tr

ee

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

 A
vg

. R
o

d
in

ia
O

M
P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

 A
vg

. S
p

ec
O

M
P

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 L
1

ca
ch

e
m

is
se

s
Shared xDRF OS-private

Polybench RodiniaOMP SpecOMP

1. xDRF 2. xDRF+OS

Fig. 3. Cache misses incurred per access type, classified with the xDRF
and with the hybrid classification

depending on the type of access and are labeled according to
the nomenclature followed in the paper: Shared, xDRF, and OS-
private.

The reader can observe that when using the hybrid (xDRF-OS)
classification, not only that the overall number of L1 misses is
reduced, but also a significant fraction of misses are identified
as stemming from OS-private accesses: 22%, 23%, and 11%,
on average, for Polybench, Rodinia, and SpecOMP, respectively
(Fig. 3, second bar). A high number of OS-private accesses entails
significant improvements in performance, as blocks cached by OS-
private accesses are not flushed upon drf.flush instructions.
We recall that OS-private accesses immune to any coherence
action, except a page transition from private to shared.

Note however that using an OS-based classification without
any compiler support would accelerate only 22%, 23% and 11% of
cache misses (on average, for each benchmark suit respectively),
while our hybrid classification accelerates between 61% (average
for Polybench) to 99% (average for Rodinia) of cache misses.
We conclude that the OS-based classification by itself is not
sufficient, but the static and runtime classifications combined
provide outstanding benefits.

6.2 Performance of SPEL, SPEL+, and SPEL++

SPEL++ is designed to “gel” to the code’s behavior and handle
each memory access in the most efficient manner, with respect to
its type. Hence, SPEL++ optimizes race-free accesses as an SC-
for-DRF protocol and racy access as a traditional SC protocol,
always providing SC and support for legacy code. This section
compares the three flavors of SPEL, namely SPEL, SPEL+ and
SPEL++, to both a traditional SC protocol (Directory) and a state-
of-the-art SC-for-DRF protocol (VIPS [3]).

Given that state-of-the-art SC-for-DRF protocols require that
racy accesses are exposed, for comparison purposes, we rely on the
proposed xDRF classification to delimit the racy code. Thus, non-
DRF regions are guarded with memory fences for VIPS, which
impose self-invalidation and self-downgrade (i.e., a flush) of the
cached shared blocks. This enables VIPS to execute codes which
would otherwise not be accessible, as races are not exposed by
default.

6.2.1 Cache miss rate
The cache miss rate varies in the evaluated protocols due to
different techniques of performing invalidations and downgrades.

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

 A
vg

. P
o

ly
b

en
ch

 b
ac

kp
ro

p

 b
fs

 b
tr

ee

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

 A
vg

. R
o

d
in

ia
O

M
P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

 A
vg

. S
p

ec
O

M
P

0.0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

L1
 c

ac
he

 m
is

s
ra

te

Cold-cap-conf
Coherence

Coverage
Self-inv

Polybench RodiniaOMP SpecOMP

1. Directory
2. VIPS

3. SPEL
4. SPEL+

5. SPEL++

Fig. 4. Cache miss rates incurred in a directory, in a state-of-the-art and
in the SPEL-family protocols

For example, in SC-for-DRF mode, VIPS and SPEL (all three ver-
sions) do not require invalidations due to writes nor downgrades
due to reads, but self-invalidations and self-downgrades triggered
by fence instructions and drf.flush, respectively.

The L1 cache miss rate of the evaluated protocols is shown
in Fig. 4. The first bar illustrates the miss rate of the L1 cache
in a directory protocol, which is split into the 5C classification of
misses [38]: (i) cold or compulsory, capacity, and conflict misses
(Cold-cap-conf, or 3C); (ii) coherence misses (Coherence), as a
consequence of invalidations and downgrades generated by remote
writes and reads, respectively; and (iii) misses that stem from
invalidations generated by directory evictions (Coverage). The
second bar shows VIPS, which incurs no coherence or coverage
misses, but a fourth category of misses due to self-invalidation.
The third, fourth, and fifth bars show the three different optimiza-
tion of SPEL, thus all type of misses can be encountered. When
employing the hybrid classification, misses due to flushes in the
transition of pages from private to shared are included in the self-
invalidation category.

With respect to a Directory protocol, SPEL reduces the total
number of misses, despite the additional misses incurred by self-
invalidation. This is mainly a consequence of avoiding coherence
misses due to false-sharing. Cache miss rate is reduced on average
by 0.78% for Polybench and 1.10% for Rodinia. The cache miss
rate for SpecOMP is very low and the variations obtained with
SPEL are not significant. In some applications of the Polybench
suite, such as bicg, mvt, and trmm, a noticeable fraction of the
misses encountered in SPEL represent self-invalidation misses,
which are converted into hits in SPEL+ and SPEL++, thanks to
the hybrid classification. The L1 cache miss rate for backprop is
very high compared to the rest of the applications and is therefore
incompletely shown in the graph (the bars have not been scaled
down in order to better emphasize the differences in the other
applications). Backprop shows a ≈0.22 miss ratio for Directory
and a ≈0.20 miss ratio for the other protocols, with a difference
of ≈0.02 due to coherence misses.

With respect to VIPS, SPEL requires self-invalidation only
in the boundaries of xDRF regions, while for nDRF regions it
employs directory invalidations. Overall, SPEL reduces the cache
miss rate with respect to both Directory and VIPS, emphasizing
the advantages of a dual-consistency protocol.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

10

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

 G
eo

. P
o

ly
b

en
ch

 b
ac

kp
ro

p

 b
fs

 b
tr

ee

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

 G
eo

. R
o

d
in

ia
O

M
P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

 G
eo

. S
p

ec
O

M
P

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Directory VIPS SPEL SPEL+ SPEL++

Polybench RodiniaOMP SpecOMP

Fig. 5. Execution time improvements with respect to a directory protocol

6.2.2 Execution time
By reducing the cache miss rate, SPEL++ achieves considerable
improvements in execution time compared with both a pure SC
protocol and a pure SC-for-DRF protocol. Fig. 5 shows the execu-
tion time normalized with respect to Directory and the geometric
mean per benchmark suite.

The extra self-invalidation in the SC-for-DRF protocol in-
creases execution time for some applications, as bicg, mvt, and
trmm. For the Rodinia benchmarks, SC-for-DRF protocols work
efficiently since the 3C misses clearly dominate the ones caused by
self-invalidation. Hence, VIPS and all SPEL versions yield similar
performance. However, for Polybench and SpecOMP, massive
self-invalidation in VIPS impacts performance negatively, thus
SPEL reduces the average execution time by 22% and 26%,
respectively, compared to VIPS.

SPEL++ optimizes further the coherence protocol and obtains
improvements with respect to the original SPEL protocol of 5%,
on average, for Polybench and 2%, on average, for SpecOMP.

Finally, compared with the SC protocol, SPEL++ consistently
improves performance for each application. On average, SPEL++
boosts performance by 38% for Polybench applications, 19% for
Rodinia, and 20% for SpecOMP.

6.2.3 Energy consumption
Fig. 6 illustrates the energy consumption of VIPS, SPEL, SPEL+
and SPEL++ normalized with respect to Directory. Results show
the energy consumption of the network, the shared last-level cache
(LLC), and the written-bits cache. We account for the impact of
self-invalidations of dirty blocks on the access to the written-
bits cache, the extra traffic injected in the interconnect, and the
extra writes in the LLC. Since VIPS maintains the information
about the written bytes in the Miss Status Holding Register
(MSHR) structure, we assume that its extra energy consumption
is negligible. We also assume that the impact of resetting the valid
bits for self-invalidating clean blocks is negligible.

Recall that SPEL reduces the number of L1 cache misses: (i)
with respect to an SC protocol, by not invalidating private blocks
upon writes, and (ii) with respect to an SC-for-DRF protocol,
by reducing self-invalidation. Additionally, SPEL+ reduces the
number of self-invalidations with respect to SPEL, and SPEL++
reduces the traffic with respect to SPEL+, by fetching data on
demand only (non-prefetching write accesses).

Generally, with regard to the shared cache L2, the number of
accesses increases in SC-for-DRF protocols due to extra fetches

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

 A
vg

. P
o

ly
b

en
ch

 b
ac

kp
ro

p

 b
fs

 b
tr

ee

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

 A
vg

. R
o

d
in

ia
O

M
P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

 A
vg

. S
p

ec
O

M
P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

LLC
Network

Written-Bits

Polybench RodiniaOMP SpecOMP

1. Directory
2. VIPS

3. SPEL
4. SPEL+

5. SPEL++

Fig. 6. Energy improvements with respect to a directory protocol

or write-backs. At the same time, SC-for-DRF protocols benefit
from the merging of cache blocks containing SC-for-DRF data on
a write-back, thus reducing the network traffic.

Therefore, SPEL++ consumes less energy than a directory
protocol since it removes most of the coherence misses, and
less energy than VIPS thanks to fewer self-invalidation and self-
downgrade events. On average, SPEL++ exhibits a reduction in the
energy consumption of 48% for Polybench, 47% for Rodinia and
53% for SpecOMP, compared to a directory protocol. Compared
to VIPS, average reductions of 35%, 22%, and 47%, respectively,
are achieved.

Most importantly, SPEL++ is consistently more energy effi-
cient than the original proposal, SPEL. First, SPEL+ reduces the
number of write-backs by lowering the pressure on the written-
bits cache and reduces the number of flushes due to drf.flush
instructions. SPEL++ further saves energy by not fetching non-
requested data on writes. These two optimizations lead to energy
savings of 20% for Polybench, 21% for Rodinia and 37% for
SpecOMP, compared to the original proposal, SPEL.

All in all, SPEL++ exhibits considerable energy savings not
only with respect to traditional and state-of-the-art protocols, but
also significantly improves the energy expenditure of its predeces-
sor, SPEL. Furthermore, outstanding energy savings are achieved
without compromising performance.

6.3 Area requirements of the written-bits cache

This section analyzes the area requirements of our proposal with
respect to the written-bits cache employed in all SPEL protocols to
track dirty data for xDRF blocks. We provide a sensitivity analysis
of the number of entries required by this structure for each SPEL
protocol.

Fig. 7 shows the consequences of reducing the number of
entries (averages over each of the three evaluated benchmark
suites and the three evaluated versions of SPEL). Values from
512 entries (corresponding to the number of entries in the L1
cache) to a single entry were evaluated. Results are normalized
with respect to a directory-based protocol, which does not require
a written-bits cache. Best results from performance and energy
consumption viewpoints are obtained using 512 entries, since there
are no penalties due to evictions in the written-bits cache.

As the number of entries is reduced from 512, performance
of the SPEL protocols (graphs on the left in Fig. 7) is unaffected
up to only 16 entries for Rodinia and 4 entries for Polybench

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

11

512

256

128

64 32 16 8 4 2 1

Written-bit entries

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e Directory
SPEL
SPEL+
SPEL++

512

256

128

64 32 16 8 4 2 1

Written-bit entries

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Directory
SPEL
SPEL+
SPEL++

(a) Polybench

512

256

128

64 32 16 8 4 2 1

Written-bit entries

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e Directory
SPEL
SPEL+
SPEL++

512

256

128

64 32 16 8 4 2 1

Written-bit entries

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Directory
SPEL
SPEL+
SPEL++

(b) RodiniaOMP

512

256

128

64 32 16 8 4 2 1

Written-bit entries

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e Directory
SPEL
SPEL+
SPEL++

512

256

128

64 32 16 8 4 2 1

Written-bit entries

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Directory
SPEL
SPEL+
SPEL++

(c) SpecOMP

Fig. 7. Performance variations due to written-bits cache size

and SpecOMP. This is because there are not many blocks written
during SC-for-DRF mode or they are already evicted due to
cache capacity. The improvements of the two SPEL optimizations
proposed in this work are more effective for SpecOMP, in which
case, reducing the number of entries in the written-bits case to
less than 4 does not cause a dramatic performance degradation, as
happened in the original SPEL.

The energy consumption of the SPEL-family of protocols also
increases as the number of written-bits entries is gradually reduced
(graphs on the right in Fig. 7), but the difference is insignificant
as the number of entries is reduced up to 32 for SpecOMP, 16 for
Rodinia, and 4 for Polybench. While the energy expenditure of
the three protocols SPEL, SPEL+ and SPEL++ follow the same
trend with respect to the number of written-bits cache, SPEL++ is
significantly more energy efficient on SpecOMP, even with very
small written-bits cache structures.

The impact of reducing the size of the written-bits cache
is visible on the applications’ energy consumption earlier than
on execution time. Execution time is less affected because the
operations (evictions and allocations) in the written-bits cache are
performed out of the critical path of the access, whereas energy is
directly affected as the extra write-backs caused by the eviction
of written-bits increase both network traffic and L2 accesses.
Execution time increases when the limited capacity of the written-
bits cache generates a bottleneck in the network, cache controller,
and MSHR.

Polybench applications are optimized for data locality, there-
fore a small structure of 4 entries suffices, whereas for more
complex applications such as Rodinia or SpecOMP, a larger
structure is required.

512

256

128

64 32 16

Directory entries

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Directory Polybench
Directory Rodinia
Directory SpecOMP

SPEL++ Polybench
SPEL++ Rodinia
SPEL++ SpecOMP

(a) Execution time
512

256

128

64 32 16

Directory entries

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Directory Polybench
Directory Rodinia
Directory SpecOMP

SPEL++ Polybench
SPEL++ Rodinia
SPEL++ SpecOMP

(b) Energy consumption

Fig. 8. Performance variations due to directory cache size

We conclude that, in general, a structure containing 32 entries
yields results competitive to the ones obtained using 512 entries.
Therefore, assuming per-byte information, the extra area require-
ments of the written-bits cache with respect to the L1 cache size
is only 0.96% (0.37KB).

6.4 Directory cache effectiveness

One of the advantages of SPEL++ is that it reduces the number
of entries required by the directory cache, since OS-private and
xDRF cached blocks are not tracked by the SC coherence protocol.
This section analyzes the impact of reducing the directory size on
execution time and on energy consumption. We show that SPEL++
preserves performance, even with considerably reduced directory
sizes.

Effectively, Fig. 8 shows the impact on execution time and
energy consumption when reducing the number of directory
entries from as many entries as the L1 cache (512 entries per
bank, coverage ratio 1:1) to 16 entries per bank (coverage ratio
1:32). Regarding execution time (Fig. 8(a)), we can observe that
directory protocols already lose performance when the number
of entries is half the entries in the L1 cache. The degradation
becomes more dramatic as the directory is reduced to less than
64 entries. This is due to an increase in the number of coverage
misses. However, under our protocol, execution time is unaffected
as the directory size is reduced to only 64 entries for the Polybench
suite applications, and even when reduced to 16 entries for Rodinia
and SpecOMP. In essence, the directory is employed in SPEL++
only for the data blocks holding synchronization variables or data
accessed within critical sections, which represent a very small
fraction of the blocks accessed by the applications.

Regarding energy consumption (Fig. 8(b)) we can observe
a similar pattern. As expected, the extra invalidations due to
directory evictions lead to extra network traffic and more cache
misses, which finally impact energy consumption.

Based on these results we draw two conclusions. First, if
the xDRF classification could be applied on all applications, the
directory size could be reduced up to 8 times without harming
performance, a property which would make SPEL++ scale even
better. However, since the xDRF classification is so far limited to
OpenMP codes, one cannot reduce the directory size without a
negative impact on the performance of applications which cannot
benefit from such a classification. The second conclusion is that
even with a standard 512 entries/bank directory, the efficiency of
the directory is increased when co-running applications compiled
for SPEL++ and other applications. Since SPEL++ reduces the
directory usage to a minimum, the co-running applications benefit
from higher directory capacity.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

12

7 RELATED WORK

7.1 Classification of memory accesses

While previous proposals classified memory accesses for guiding
data placement [12], [18] or optimizing coherence protocols (e.g.,
reducing self-invalidation [3], reducing directory pressure [16],
[39]), SPEL++ relies on the hybrid classification to implement a
dual-consistency protocol that minimizes coherence maintenance
while providing SC guarantees for legacy code.

State-of-the-art proposals classify memory accesses as private
or shared, either at runtime or at compile-time, based on the
nature of accessed data. Examples of run-time classifications are
OS-based [12], [15], [16], TLB-based [20], [40], or hardware-
based [14], [17], [21], [41], [42], [43], [44] methods. TLB-based
methods are able to capture more private pages, but at the cost
of extra traffic and complexity. Hardware-based classification
requires extra hardware support and increases storage costs, which
become prohibitive if a large history of accessed blocks have to be
tracked, but can be decreased by tracking only currently cached
blocks. Had SPEL++ employed a hardware-based classification,
numerous extra self-invalidations would have been caused by
frequent shared-to-private and private-to-shared re-classifications.

Compile-time classifications [13], [18], [45] rely on standard
static analysis, which is hindered by dynamic memory allocation
and pointer aliasing, thus classification is either conservative or
speculative. Both solutions lead to performance losses, either
due to missed optimization opportunities or due to additional
support required to recover from mis-speculations. A compile-
time classification is presented by Li et al. [18] where, in addition
to private and shared data, they propose a third category, “prac-
tically private”, which embeds data that cannot be disambiguated
statically, but is expected to be proven private at runtime or to incur
minimal sharing. The classification is employed for designing
efficient data placement optimizations, which affect performance,
but not correctness. On the contrary, the design of a coherence
protocol requires strict classification of accesses.

The private-shared nature of memory accesses is strongly
connected in semantics with data-race-free properties of code.
Classification of code regions has been addressed by Effinger-
Dean et al. [46], reasoning about interference free regions (IFR) in
DRF codes. IFRs are associated to variables (data) and guarantee
that while a thread executes the IFR, no other thread can write
to the shared variable accessed by the IFR, but there are no
guarantees concerning the other variables, as in the xDRF clas-
sification. Moreover, xDRF expands as much as possible across
synchronization points (locks) and includes non-overlapping and
non-adjacent DRF regions, to maximize the granularity of safe
xDRF regions.

Singh et al. [19] advocate hybrid classification and combine
static and over-conservative, fine-grain classification with dynamic
coarse-grain classification of memory accesses. Thus, a memory
access is considered safe (private or read-only) if it is classified as
such by at least one of the analyses (static or dynamic). The static
analysis identifies as safe only data that is guaranteed to be thread-
local or read-only. Hence, dynamically allocated variables, global
or static variables are marked as unsafe. Moreover, if an instruction
may access both safe and unsafe data (e.g., a pointer dereference
which can access both safe and unsafe data), would demote all safe
data it may touch to unsafe. In consequence, safe data is restricted
only to locations that are thread-local and can only be accessed
by safe instructions. Vice-versa, memory accesses are safe if

they access only safe data. This conservative static analysis is
complemented by a dynamic classification of memory pages. The
proposal extends the OS memory page protection mechanism with
one byte per memory page per thread (instead of per processor),
thus being able to keep track of the private, shared read-only and
shared read-write memory pages. On one hand, compile-time clas-
sification is fine grained (with the granularity of the data accessed
by each memory instruction), but it must be over-conservative due
to pointer aliasing and dynamic memory allocation; on the other
hand, dynamic classification can alleviate the limits of the static
analysis using runtime information and can identify more accesses
as safe, but has the drawback of a coarse granularity of a memory
page. Such a classification is useful for enhancing commodity
hardware with additional hardware resources to provide SC both
for data race free and for racy programs.

To alleviate the problem of dynamic memory allocation or
pointer aliasing, notoriously difficult for static analysis, we took
a different approach. Rather than classifying memory accesses
based on the nature of accessed data, we designed a compile-
time classification per code regions in a class of applications
obeying the paradigm that all memory accesses are private or
read-only within the boundaries of a certain region: OpenMP and
automatically parallelized applications. The compile-time classifi-
cation is enhanced with runtime support provided by an OS-based
classification.

7.2 Cache coherence techniques

Traditional coherence protocols are oblivious to the code’s charac-
teristics and enforce the Single-Writer-Multiple-Readers (SWMR)
invariant for every memory block in the system, by invalidating
all copies of a block upon write misses. Copies are detected by a
directory that tracks every memory block stored in a private cache.

Cuesta et al. [16], [39] proposed to classify memory accesses
and deactivate coherence for private data. The observation is that
most of the accessed data is thread local, in consequence it does
not require invalidation nor to be kept track of in the directory.
Thus, the effectiveness of the directory is increased.

Recent proposals exploit DRF codes and propose relaxed
consistency protocols in the shape of SC-for-DRF [8]. SC-for-
DRF protocols rely on the guarantee that, within DRF regions,
threads perform either private or read-only memory accesses [2],
[3], [9], [10], [11], [47], [48], [49], [50]. Cache coherence is
thus immune to the order of memory operations (within DRF
regions), which enables more flexibility in the coherence pro-
tocol and leads to higher scalability, performance and energy
efficiency. SC-for-DRF protocols exhibit significant advantages
such as reducing access latency and directory pressure, alleviating
blocking and diminishing protocol traffic. They perform self-
invalidation at synchronization points: Lebeck and Wood use self-
invalidation to limit the number of cache blocks registered in the
directory [9], SARC coherence [47] employs self-invalidation and
implements a writer prediction to avoid the directory indirection
upon downgrades. In DeNovo [2], [10], [48] a compiler inserts
self-invalidating instructions based on source code annotations.
DeNovo implements a directory that tracks the writers, but not the
readers, so it relies on downgrading registered copies upon read
misses. VIPS [3], [11], [49], [50] employs a write-back policy
for private blocks, which provides efficiency, and a write-through-
policy for shared blocks, providing simplicity. It employs both
self-invalidation and self-downgrade, thus removing the need of a

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

13

directory structure. To reduce self-invalidation, SPEL++ relies on
the OS-based classification to identify the nature of the memory
access (private/shared) and on the compiler to indicate the points
of synchronization that indeed require self-invalidating cached
data (e.g. barriers), which considerably improves the cache hit
rate, performance and energy consumption.

More importantly, SC-for-DRF protocols cannot guarantee
SC for non-DRF codes, leading to undefined behavior. This
breaks compatibility with legacy non-DRF software, yielding such
protocols impractical. As a dual-consistency protocol, SPEL++
provides a natural solution to this shortcoming, by relying on the
compiler to identify regions that can be safely executed under an
SC-for-DRF protocol, and ensuring support for non-DRF regions
with a traditional SC protocol. Hence, compile-time delineation of
xDRF regions plays a crucial role. Note that if the delineation of
xDRF regions is not performed, e.g., for legacy applications, the
code is still executed correctly, although without optimizing it.

Previous attempts to reduce self-invalidation require hardware
support. Ashby et al. [51] perform selective self-invalidation of
data that might have been updated by other cores using hardware
Bloom filters. The bloom filters are reset only on barriers, which
decreases their efficiency. DeNovoND [48] performs selective
self-invalidation upon lock synchronization, using a hardware
queue lock. However, both proposals have the drawback of (i) trad-
ing information accuracy for reducing hardware support and (ii)
incurring very expensive self-invalidation since all cache tags must
be matched against the filter. VIPS-M [3] and DeNovoSync [10]
reduce self-invalidation in synchronization by using exponential
back-off mechanisms for spin-waiting loops. Callbacks [11] re-
duce self-invalidation by employing specific loads that block at
the LLC waiting for a new write to be performed. Although
these techniques reduce the number of self-invalidations, they
still require marking synchronization, thus not supporting legacy
codes. In contrast, SPEL++ minimizes self-invalidation by using
a precise classification, while still supporting legacy codes.

Finally, given the wide adoption of the Total Store Order
(TSO) consistency model in commodity processors (e.g., x86 or
SPARC), TSO-CC [7] presents a scalable protocol that guarantees
TSO. Although TSO-CC yields similar performance to a directory
protocol, its advantage lies in the reduction of the area required
by the directory structure, namely, a single pointer to the last
writer. RC3 [52] improves TSO-CC by getting advantage of the
information about synchronization in DRF applications, if exposed
to the hardware. Both TSO-CC and RC3 can also benefit and from
SPEL++ by relaxing the consistency model for private or xDRF
accesses.

8 CONCLUSIONS

The dual consistency cache coherence protocol SPEL++ presented
in this paper adapts dynamically to the code’s behavior, switching
between highly optimized and restrictive modes to guarantee the
strongest consistency model while improving scalability, perfor-
mance, and energy consumption.

SPEL++ optimizations rely on a static-dynamic hybrid classi-
fication. Memory accesses classified as private by the OS require
minimum coherence support, compiler delineated xDRF parallel
regions of code execute safely under an optimized SC-for-DRF
protocol, while coherence for the remaining memory accesses
is maintained with a standard directory protocol that manages
efficiently data races and provides support for legacy code.

SPEL++ outperforms a traditional directory protocol from
19% to 38% and achieves savings in energy consumption from
47% to 53% (average for different benchmarks suites). All in all,
SPEL++ achieves scalability, performance and energy efficiency
and ensures compatibility with legacy software.

ACKNOWLEDGMENTS

This work was supported in part by the ”Fundación Seneca-
Agencia de Ciencia y Tecnologı́a de la Región de Murcia” under
grant ”Jóvenes Lı́deres en Investigación” 18956/JLI/13, as well as
by the Swedish Research Council UPMARC Linnaeus Centre, the
VR frame project ”Efficient Modeling of Heterogeneity in the Era
of Dark Silicon”: 106201305/C0533201 and by the European 7th
Framework Programme (EU ICT-287759) through a collaboration
grant from HiPEAC.

REFERENCES

[1] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp. 78–89, Jul. 2012.

[2] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011,
pp. 155–166.

[3] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241–252.

[4] “Intel Xeon Phi Coprocessor,” http://software.intel.com/en-us/
mic-developer, Apr. 2013. [Online]. Available: http://software.intel.
com/en-us/mic-developer

[5] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Transactions on Computers (TC),
vol. 28, no. 9, pp. 690–691, Sep. 1979.

[6] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on Computer
Architecture, M. D. Hill, Ed. Morgan & Claypool Publishers, 2011.

[7] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for tso,” in 20th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2014, pp. 165–176.

[8] S. V. Adve and M. D. Hill, “Weak ordering – a new definition,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2–14.

[9] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” in 22nd Int’l
Symp. on Computer Architecture (ISCA), Jun. 1995, pp. 48–59.

[10] H. Sung and S. V. Adve, “DeNovoSync: Efficient support for arbitrary
synchronization without writer-initiated invalidations,” in 15th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2015, pp. 545–559.

[11] A. Ros and S. Kaxiras, “Callback: Efficient synchronization without
invalidation with a directory just for spin-waiting,” in 42nd Int’l Symp.
on Computer Architecture (ISCA), Jun. 2015, pp. 427–438.

[12] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun. 2009,
pp. 184–195.

[13] J. Meng and K. Skadron, “Avoiding cache thrashing due to private data
placement in last-level cache for manycore scaling,” in Int’l Conf. on
Computer Design (ICCD), Oct. 2009, pp. 282–288.

[14] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“SWEL: Hardware cache coherence protocols to map shared data onto
shared caches,” in 19th Int’l Conf. on Parallel Architectures and Compi-
lation Techniques (PACT), Sep. 2010, pp. 465–476.

[15] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 111–
122.

[16] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for private
memory blocks,” in 38th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2011, pp. 93–103.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528241, IEEE
Transactions on Parallel and Distributed Systems

14

[17] H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coherence protocol
optimization for both private and shared data,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011,
pp. 45–55.

[18] Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classification,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 231–240.

[19] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[20] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato, “Temporal-
aware mechanism to detect private data in chip multiprocessors,” in 42nd
Int’l Conf. on Parallel Processing (ICPP), Oct. 2013, pp. 562–571.

[21] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coherence direc-
tories,” in 46th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
Dec. 2013, pp. 359–370.

[22] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[23] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons, Inc., 1986.

[24] P. Feautrier, “Dataflow analysis of scalar and array references,” Int’l
Journal of Parallel Programming (IJPP), vol. 20, no. 1, pp. 23–53, Feb.
1991.

[25] A. Ros and A. Jimborean, “A dual-consistency cache coherence proto-
col,” in 29th Int’l Parallel and Distributed Processing Symp. (IPDPS),
May 2015, pp. 1119–1128.

[26] “OpenMP tutorial,” website, 2015. [Online]. Available: https:
//computing.llnl.gov/tutorials/openMP/

[27] “GOMP library,” website, Oct. 2005. [Online]. Available: http:
//gcc.gnu.org/projects/gomp/

[28] “LLVM Intermediate Representation,” website, 2015. [Online].
Available: http://llvm.org/docs/LangRef.html

[29] C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in 2nd IEEE / ACM Int’l Symp. on
Code Generation and Optimization (CGO), Mar. 2004, pp. 75–88.

[30] P. Sweazey and A. J. Smith, “A class of compatible cache consistency
protocols and their support by the IEEE futurebus,” in 13th Int’l Symp.
on Computer Architecture (ISCA), Jun. 1986, pp. 414–423.

[31] R. Fernández-Pascual, A. Ros, and M. E. Acacio, “Are distributed sharing
codes a solution to the scalability problem of coherence directories in
manycores? An evaluation study,” Journal of Supercomputing (SUPE),
pp. 1–27, Dec. 2015.

[32] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[33] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in IEEE Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33–42.

[34] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in 42nd IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO), Dec. 2009, pp. 469–480.

[35] Standard Performance Evaluation Corporation, “SPEC OMP2012,”
http://www.spec.org/omp2012. [Online]. Available: http://www.spec.org/
omp2012

[36] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Int’l Symp. on Workload Characterization (IISWC), Oct. 2009, pp. 44–
54.

[37] “Polybench,” http://www.cse.ohio-state.edu/∼pouchet/software/
polybench/, Nov. 2011. [Online]. Available:
http://www.cse.ohio-state.edu/∼pouchet/software/polybench/

[38] A. Ros, B. Cuesta, R. Fernández-Pascual, M. E. Gómez, M. E. Acacio,
A. Robles, J. M. Garcı́a, and J. Duato, “EMC2: Extending magny-
cours coherence for large-scale servers,” in 17th Int’l Conf. on High
Performance Computing (HiPC), Dec. 2010, pp. 1–10.

[39] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing the
effectiveness of directory caches by avoiding the tracking of non-coherent
memory blocks,” IEEE Transactions on Computers (TC), vol. 62, no. 3,
pp. 482–495, Mar. 2013.

[40] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Efficient
tlb-based detection of private pages in chip multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), Mar. 2015.

[41] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec. 2012, pp. 341–350.

[42] J. J. Valls, A. Ros, J. Sahuquillo, M. E. Gómez, and J. Duato, “PS-Dir:
A scalable two-level directory cache,” in 21st Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2012, pp. 451–
452.

[43] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras, “The effects of
granularity and adaptivity on private/shared classification for coherence,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 12, no. 3, pp. 26:1–26:21, Aug. 2015.

[44] ——, “An efficient, self-contained, on-chip, directory: DIR1-SISD,” in
24th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2015, pp. 317–330.

[45] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-assisted
data distribution for chip multiprocessors,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 501–
512.

[46] L. Effinger-Dean, H.-J. Boehm, D. Chakrabarti, and P. Joisha, “Ex-
tended sequential reasoning for data-race-free programs,” in 2011 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness
(MSPC), Jun. 2011, pp. 22–29.

[47] S. Kaxiras and G. Keramidas, “SARC coherence: Scaling directory cache
coherence in performance and power,” IEEE Micro, vol. 30, no. 5, pp.
54–65, Sep. 2011.

[48] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
hardware support for disciplined non-determinism,” in 18th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2013, pp. 13–26.

[49] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache
coherence,” in 40th Int’l Symp. on Computer Architecture (ISCA), Jun.
2013, pp. 535–547.

[50] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared classi-
fication: the key to simple and efficient coherence for clustered cache
hierarchies,” in 21th Int’l Symp. on High-Performance Computer Archi-
tecture (HPCA), Feb. 2015, pp. 186–197.

[51] T. J. Ashby, P. Dı́az, and M. Cintra, “Software-based cache coherence
with hardware-assisted selective self-invalidations using bloom filters,”
IEEE Transactions on Computers (TC), vol. 60, no. 4, pp. 472–483, Apr.
2011.

[52] M. Elver and V. Nagarajan, “RC3: Consistency directed cache coherence
for x86-64 with RC extensions,” in 24th Int’l Conf. on Parallel Architec-
tures and Compilation Techniques (PACT), Oct. 2015, pp. 292–304.

Alberto Ros received the MS and PhD de-
gree in computer science from the University of
Murcia, Spain, in 2004 and 2009, respectively.
In 2005, he joined the Computer Engineering
Department at the same university as a PhD
student with a fellowship from the Spanish gov-
ernment. He has been working as a postdoc-
toral researcher at the Universitat Politècnica de
València and at Uppsala University. Currently,
he is Associate Professor at the University of
Murcia. His research interests include cache co-

herence protocols memory hierarchy designs, and memory consistency
for manycore architectures.

Alexandra Jimborean received her PhD from
the University of Strasbourg, France, research-
ing on compile-time analysis and optimization
of loops using the polyhedral model to enable
automatic, dynamic and speculative paralleliza-
tion. During the PhD studies (2009-2012), she
held an academic grant from the French Ministry
of High Education and Research and received
a Google Anita Borg Memorial scholarship in
recognition of her research. She continued as a
post-doctoral fellow in Uppsala University, Swe-

den (2012-2014), held a researcher position within the same department
(2014-2015) and became Associate Senior Lecturer (equiv. Assistant
Professor) in May, 2015.

