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Abstract

This work analyses the use of parallel processing techniques in synthetic aperture ultrasonic

imaging applications. In particular, the Total Focussing Method, which is a O(N2 × P ) problem,

is studied. This work presents different parallelization strategies for multicore CPU and GPU

architectures. The parallelization processes on both platforms are discussed and optimized in order

to achieve real-time performance.
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1 INTRODUCTION

Ultrasonic imaging is currently one of the most popular visualization methods to examine

the interior of opaque objects[1]. It is mainly based on the pulse-echo response, where the

propagation of an induced mechanical acoustic disturbance inside an object is analysed through

the echoes caused by discontinuities in the material. Ultrasonic imaging is especially relevant

for medical diagnosis, as well as in non-destructive testing (NDT)[2], [3].

Most ultrasonic imaging systems are based on transducers arrays. They manage hundreds of

independent elements that yield multiple input data signals which are processed by different
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beamforming techniques [4]. This is in general a computationally demanding task, so nearly all

commercial systems have costly tailored hardware designs with parallel processing capabilities

which can attain a high enough frame rate. Nevertheless, systems are pushed to the limit by

real time applications of computationally intensive techniques such as the one under study:

Synthetic Aperture Focusing Techniques (SAFT) with the Total Focussing Method (TFM). As

multicore systems and General-Purpose Computing on Graphics Processing Units (GPGPU)

have become more popular, parallel signal processing can nowadays be developed on these

platforms at affordable prices. Several works on the use of conventional hardware for ultrasonic

beamforming, such as CPU cluster [5] or GPU [6], [7], [8] have been published.

In SAFT, beamformig uses signals independently acquired from pairs of emission-reception

array elements. For an array of N elements this set of signals can be composed by up to

N × N signals, which is referred to as the Full Matrix Capture (FMC). As for the TFM, it

performs beamforming at each image point with every signal in the FMC. This process produces

high quality images with all its points focused both in emission and reception [9], but the

computational cost is high. The TFM cost for P image points is O(N2 × P ) and this is why it

is mostly only used in laboratories.

In recent years, some research has addressed how to implement FMC + TFM using Field

Programmable Gate Arrays (FPGA)[10], [11], [12]. As a result, the company M2M has recently

launched a real-time TFM system with 64 sensors (4096 signals FMC) which is capable of

achieving up to 25 images per second for a 256× 256 image [10].

The concept of real-time is closely linked to the specific particularities of the field of applica-

tion. In NDT this is generally related to the response time since the transducer is placed until

an image is obtained and the synchronization time with the movements of the sensor on the

system under study. In this context, it is generally assumed that 25 img/sec is real-time (as in

classic imaging systems). In medicine or in any field of application where there are moving

elements, this time is determined by the speed of the changes occurring in the medium. The

required frame rates may be much higher than 25 img/sec, specially for cardiac applications

as Papadacci et. al. describe in [13]; ultrafast applications rendering up to 1000 img/sec [14].

Other studies have explored parallel computing strategies on CPUs and GPUs to address the

same problem. Thus, CPU beamforming parallelization became a research field in 2000 as cluster

computing turned widespread and gained importance [5] in improving 2D real-time, as well as

3D ultrasound imaging systems. Moreover, with the arrival of faster and more powerful PCs the

requirements in dedicated hardware were reduced and replaced by software processing. J. A.

Jensen et. al describe in [15] and [16] a Delay-and-Sum (DAS) library that implements specific

functions for the beamforming. All these previous works were implemented for a single core of
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CPU and thus they developed parallel versions of these libraries in order to exploit multicore

CPUs. Munk et al. show in [17] toolboxes for beamforming computation over multi-core CPUs,

where the time consumption is 142.3 seconds for a 300, 000 pixel TFM image from an array of

192 sensors (36, 864 signals) running in a 16-core high standard workstation.

Initial works on GPGPU based implementations of SAFT focused on the use of minimum

redundancy coarrays [18] for 128 array elements (255 signals) and 256 image points which

rendered a frame rate of 30 TFM images per second in real time [19]. In succeeding works,

the frame-rate increased to 150 images per second [20]. More recently some other research

has explored using the FMC in post-processing but without the TFM. In [21], the FMC (16

emission and 64 receptor elements) is considered at a fixed focus; a frame rate of 40 img/sec

for a 512 × 512 image (NVIDIA Fermi with 512 cores) is obtained. There are also some other

works on the use of GPGPU to implement more complex beamforming techniques, such as

Capon Beamforming [22].

More specific works on FMC + TFM can also be found. In [8], a GPGPU implementation

(NVIDIA Fermi, 384 cores) obtains, for a 60× 60 image, 188 img/sec (for a 16 element array),

117 img/sec (for a 32 element array) and 8 img/sec (for a 64 element array). Furthermore,

the computational power of the GPU has been exploited to find a solution to the focus law

correction when an irregular interface lies between the array and the region of interest. In this

sense, in [23] a solution to time-efficient auto-focusing of unknown geometry through dual-

layered media is presented. The procedure described in this paper it is able to obtain up to 30

frames per second (32 elements and with an image size of 240×80 pixels). Another solution to

this problem, based on iterative numerical methods to solve the Fermat’s principle, is presented

in [24]. In this work the pre-calculated compensation is applied to the beamforming process in

order to generate real-time images on a fixed position. In doing so, the computational cost is

very high but, once the compensation is computed, a 20 img/sec frame rate is obtained for an

array of 32 elements and a FMC + TFM image of 120× 80 pixels. Finally, some works compare

the capabilities of several technologies in terms of obtaining obtain real images. In [25] several

systems are compared (Xeon X5690 with 6 cores, GPU NVIDIA Fermi with 512 and 448 cores,

and GPU ATI 1536 cores) with a simulation application (CIVA) and different developing tools

(OpenCL, CUDA). In this work, GPGPUs obtained up to 5 images per second for a 200× 200

image with an array of 128 elements.

In line with these works, the present paper analyses real-time implementation of the TFM

on multi-core CPUs and many-thread GPUs. In both cases, we started implementing the same

basic algorithm which was then incrementally enhanced. This approach helped us identify

bottlenecks. In next section, we review the theory behind the Total Focusing Method algorithm
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and beamforming in SAFT systems. Next, a parallel beamformer design is carried out on both

architectures. Finally, experimental results are presented along with a performance evaluation

of both platforms and from which our conclusions are drawn.

2 TOTAL FOCUSSING METHOD

Figure 1 depicts the general procedure to compose an image with the FMC + TFM technique.

It shows the linear transducer array of N elements, the Region of Interest (ROI) discretized in

a grid of points x[k, l], the final image a[k, l], and an ideal reflector located at ~xp (x[kp, lp] in

the discretized space).

Thus, assuming that ei is the emitter transducer and ej and ej+1 are two of the receptors

transducers, the presence of a reflector at ~xp introduces an echo at time ti + tj for the signal

si,j(t) (echo-pulse response where i-index is the emitter element and the j-index is the receptor),

and at time ti + tj+1 for the signal si,j+1(t). Then, for any x[k, l] space point, we can obtain

from each signal si,j(t) the echo response originated at that given point, and sum it all together

to the image point a[k, l]. If this value becomes significant compared to other image points, we

can confirm the presence of a reflector on it.

2.1 The beamformer

Giving this description and assuming that the acquisition system has produced the FMC of

sampled signals, a generic signal can be described as:

si,j [n] = si,j(t) · δ(t− nτs) (1)

where si,j [n] is the signal which corresponds to the ei emitter and ej receptor and 1/τs is the

sampling rate.

To obtain the echo response of a virtual reflector at x[k, l] point, the flight time from ei to ej

is:

ti,j [k, l] = ti[k, l] + tj [k, l]− t0 =
|~xi − x[k, l]|+ |~xj − x[k, l]|

c
− t0 (2)

being c the medium velocity, ~xi and ~xj the locations of elements ei and ej , and t0 the initial

acquisition time. To fit this value in the sampled signal si,j [n] they are mapped to memory

factored as:
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Fig. 1. Schematic diagram illustrating the TFM with a FMC acquisition procedure. A linear array
of N elements, a reflector point ~xp and the travel time to several array elements ei, ej and ej+1

from the reflector point are shown. The echo signals received at both elements is also presented.
The FMC is composed through the acquisition process where a matrix of N received signal is
obtained for each emitter. In order to focus the data at x[kp, lp] a slice of data from the FMC can
be selected and summed to compose the a[k, l] value in the image.
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m[i, j, k, l] = floor

(
ti,j [k, l]

τs

)
(3)

∆m[i, j, k, l] =
ti,j [k, l]

τs
− floor

(
ti,j [k, l]

τs

)
(4)

where m[i, j, k, l] is an index value and ∆m[i, j, k, l] corresponds to an interpolation factor. So

the echo response for the x[k, l] point in the signal si,j can be obtained by linear interpolation

as:

S[i, j, k, l] = si,j [m[i, j, k, l]] + ∆m[i, j, k, l] (si,j [m[i, j, k, l] + 1]− si,j [m[i, j, k, l]]) (5)

If all si,j are considered the image value at the point of interest is obtained as:

a[k, l] =
N∑
i=1

N∑
j=1

bi,jS[i, j, k, l] (6)

where bi,j are the coefficients of the spatial filter that is implemented by the array.

The beamformed points a[k, l] are computed in radiofrequency. For this reason the image is

rectified by envelope filtering so that it can be smoothed. This process can be done by means

of the Hilbert Transform [26] which gives the analytic representation of a[k, l]:

a[k, l]→ aI [k, l] + jaQ[k, l] (7)

where aI [k, l] and aQ[k, l] are the phase and quadrature components. Then the envelope can

be computed as:

A[k, l] =
√
a2I [k, l] + a2Q[k, l] (8)

and this value is used to determine the colour of each pixel on the image.

2.2 Practical implementation

Before studying the implementation of Equation 8 two practical issues need to be addressed.

The first relates to reducing the size of the FMC. This is done by means of the half-matrix [27],

[28], [8] technique. Analysing flight times for two reciprocal signals, it is easy to observe that

both signals are beamformed by the same time, that is ti,j [k, l] = tj,i[k, l]. Then, since bi,j = bj,i

it is unneccessary to keep both signals as we can build a new one ŝi,j [n] as:

ŝi,j [n] = si,j [n] + sj,i[n] (9)
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obtaining a new data set formed by N(N + 1)/2 signals -almost a half of those in the FMC. If

Equation 9 is performed by the system front-end or by the CPU in the GPU beamformer case,

data movements are reduced and also beamforming operations which are halved.

The second relates to envelope computation. The Hilbert Transform may introduce artifacts

on the border of the image [26] because of the periodicity condition in the FFT. In order to

avoid those artifacts the analytic decomposition can be done in the acquired signals (now

ŝi,j [n]). Then, distortion is produced in the extreme edge of the signals, usually far away from

the ROI. If that was not the case the signals would be smoothed in the beamforming process.

Then, in terms of data size, a complex data matrix is created and si,j(t) can now be expressed

by its analytic form:

ŝi,j [n]→ ŝIi,j [n] + jŝQi,j [n] (10)

Then the echo values at x[k, l] point for each signal in the analytic decomposition is:

Ivi,j [k, l] = ŝIi,j [mi,j [k, l]] + ∆mi,j [k, l] (ŝIi,j [mi,j [k, l] + 1]− ŝIi,j [mi,j [k, l]]) (11)

Qvi,j [k, l] = ŝQi,j [mi,j [k, l]] + ∆mi,j [k, l] (ŝQi,j [mi,j [k, l] + 1]− ŝQi,j [mi,j [k, l]]) (12)

The ultrasonic image is now obtained as:

AI [k, l] =
N∑
i=1

N∑
j=i

bi,jIvi,j (13)

AQ[k, l] =
N∑
i=1

N∑
j=i

bi,jQvi,j (14)

A[k, l] =
√
AI [k, l]2 +AQ[k, l]2 (15)

2.3 The algorithm

The Algorithm 1 describes the process and presents the first implementation (CPU1). As we

can see, there are significant data-read operations, computational operations for the delays,

conversion to indexes, indexations into the FMC matrix to recover signal values, interpolations,

sum and write for pixel values and every combination of emitter and receptor, etc. Two

parts of this process can be parallelized: the analytic decomposition (pre-processing) and the

beamforming itself.
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Algorithm 1 CPU Beamforming. CPU1
1: Pre-processing
2: ŝi,j [n]← si,j [n] + sj,i[n] Data reduction
3: ŝIi,j [n] + jŝQi,j [n]← ŝi,j [n] Analytic signal
4: Beamforming
5: for k = 0 to RH do
6: for l = 0 to RV do
7: AI = 0, AQ = 0 Initialize pixel
8: for i = 1 to N do
9: for j = i to N do

10: m, ∆m Compute index
11: if 0 ≤ m ≤ L then
12: I ← (1−∆m)ŝIi,j [m] + ∆mŝIi,j [m+ 1] Interpolated sample
13: Q← (1−∆m)ŝQi,j [m] + ∆mŝQi,j [m+ 1] Interpolated sample
14: AI ← AI + bi,jI Multiply by bi,j and accumulate sum in AI pixel
15: AQ ← AQ + bi,jQ Multiply by bi,j and accumulate sum in AQ pixel
16: end if
17: end for
18: end for
19: A[k, l]←

√
A2

I +A2
Q Envelope calculation

20: end for
21: end for
22: return A Final image

3 EXPERIMENTAL SET-UP

To illustrate the process a medical phantom (physical model which simulates the scattering and

attenuation properties of biological tissue) is used. Specifically, 040GSE model by CIRS Inc.

company (Figure 2(a)). In the figure we also delimit an area to compose our reference image

(Figure 2(b)). The image is composed by three different image sizes: 256× 256, 512× 512 and

1024× 1024.

The array transducer used is a PA 2.75/64-1093 model from VERMON company [29]. It is

a linear array of 64 elements with an elementary pitch of d = 0.28mm. Each element emits

a Gaussian pulse with a center frequency of 2.6MHz and a relative bandwidth of 65%. The

acquisition equipment is a SITAU system [30] by DASEL S.L. company (www.daselsistemas.es).

The data sets of 64×64×4096 samples that form the FMC are acquired with a data resolution of

12 bits. The tables below show processing time but time for data transfer from the acquisition

system is not been included.

We chose a variety of computing platforms as imaging systems (Table 1). Platform #1 is a

laptop, platform #3 and #4 are low-level workstations and platform #2 and #5 are medium-level

workstations. The GPUs of platforms #1, #2 and #3 are based on Fermi architecture [31] (GeForce

540M, Quadro 2000 and Quadro 4000 with 96, 192 and 256 cores respectively). Platforms #4
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(a)

(b)

Fig. 2. 2(a) Multi-Tissue ultrasound phantom scenario 2(b) TFM image from Multi-Tissue
ultrasound phantom.

and #5 are based on latest Nvidia’s architecture, Kepler [31] (Quadro K2000 and Quadro K5000

equipped with 384 and 1536 cores each). In this work, we do not attempt to draw a comparison

between the architectures. Rather we try to expand our experience base and give the reader a

better evaluation of the results.

All platforms run Microsoft R© Operating System Windows R© 7. In all cases the FMC data and

the output ultrasonic image are stored as single-precision floating-point numbers (4 bytes). We

could have chosen more general tools, such as OpenCL, for our GPU development but used

CUDA instead as it allows better adaptation to the specificities of the different platforms (which

are all NVIDIA). Furthermore, CUDA provides libraries with highly optimized implementa-

tions, particularly faster speed of execution for FFT and provides tools that allow a more refined

analysis and debug information on the occupancy of multi-processors and registers used by

the algorithms.
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TABLE 1
Imaging computing platforms. *DDR: Double Data Rate; GDDR: Graphics Double Data Rate.

Computing Platform CPU & GPU Memory* # Cores

1
Intel Core i7 3632QM DDR3, 6 Gbytes 8

GeForce 540M (Fermi optimus) GDDR3, 1 Gbytes 96

2
Intel Xeon E51650v2 DDR3, 32 Gbytes 12

Quadro 2000 (Fermi) GDDR5, 1 Gbytes 192

3
Intel Core 2 Quad Q9450 DDR3, 4 Gbytes 4

Quadro 4000 (Fermi) GDDR5, 2 Gbytes 256

4
Intel Core 2 Quad Q9450 DDR3, 4 Gbytes 4

Quadro K2000 (Kepler) GDDR5, 2 Gbytes 384

5
Intel Xeon E51650 DDR3, 8 Gbytes 12

Quadro K5000 (Kepler) GDDR5, 6 Gbytes 1536

We do include several platforms in our final analysis but for reasons of readability this section

focuses on computing platform #3. This is a low-level workstation (Intel Core 2 Quad Q9450

with 4 cores) with a professional NVIDIA GPU (Quadro 4000 graphics card with 256 cores, the

best of our Fermi boards).

4 ANALYTIC DECOMPOSITION

The parallelization of the analytic decomposition and that of the FFT through the Hilbert

transformation are closely linked. This is a very well studied process whose implementation

has been optimized in several libraries. In this work, we implement it on the CPU and for that

purpose we chose the FFTW3 [32] in float variabletype. In this case the parallelization is done

creating as many threads as available cores, signals are then distributed across them. Single

core implementation is computed as a reference.

In the GPU case, the Hilbert Transform uses the fastest FFT algorithm provided by CUFFT

libraries [31]. Furthermore, CUDA provides fast intrinsic maths routines which provide better

performance at the price of IEEE compliance. In our case, since our data is 12 bit integer type

and current converters handle up to 16 bits, the use of these routines makes no significant

numerical difference that might have an impact on the quality of the final output ultrasound

image. On the other hand, performance is increased by 150% and for that reason we decided

to use them throughout all the algorithms implemented for the GPU.

Table 2 shows the computing time of these analytic decomposition based on the three FFT im-

plementation in all platforms. Although these times are not indicative of the final performance,
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TABLE 2
Computing times in x64 OS measured in seconds for the FFT in CPU and GPU over the all

platforms.

Computing Platform FFT Single CPU FFT Multi CPU FFT GPU

# 1 0.234 0.056 0.016

# 2 0.185 0.025 0.011

# 3 0.312 0.081 0.006

# 4 0.324 0.095 0.009

# 5 0.187 0.026 0.003

they show the upper limits that each platform can achieve.

The improvement in the CPUs due to the parallelization is clearly shown; the maximum

frame rate increases from 5 to 40 images per second. For those platforms that have four cores

(#3 and #4) the speed-up due to parallelization is almost 4 times, close to the number of cores.

However, platform #1 (increasing from 1 to 8 cores) shows a similar speed-up than that obtained

for platforms #3 and #4 (4 cores); and for 12 cores (platforms #2, #5) the improvement achieved

is only 7.4 times faster.

In the case of GPU, analytic decomposition limits the frame rate to 333 in the best platform

(#5, Kepler ) and to 65 in the worst case (#1, Fermi Optimus). As it was expected, better results

are obtained by GPU platforms, that are at least 8 times faster than the CPUs. In the tables

below we include the cost of this FFT calculation.

5 CPU BEAMFORMING

The implementation of the beamforming algorithm on a multicore CPU is based on a common

multi-threading scheme as described in Figure 3. This is a pixel-oriented parallelization where

each CPU thread is responsible for calculating the value of a set of pixels. Thus, image pixels

are divided by the number of CPU cores NCPU giving a total of NSP pixels per CPU thread,

where:

NSP =
NH ×NV

NCPU
(16)

NH and NV are the number of pixels in both dimensions of the image (NI = NH ×NV ).
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Fig. 3. CPU multi-threading implementation scheme.

5.1 First implementation

The first implementation follows Algorithm 1. That means that each pixel [k, l] of the image

can be solved by one isolated thread that iterates over all the array elements, jumping from

signal to signal over the FMC structure following the sample index provided by m[i, j, k, l].

Two separate variables are maintained to beamform in phase and in quadrature values that are

finally used to obtain A[k, l].

Time consumption (Table 3) for different images sizes, 256× 256, 512× 512 and 1024× 1024

pixels, is 3.638, 8.68 and 23.262 seconds respectively; which is far from real time requirements.

The main advantage of this process is that each pixel is solved using a register-oriented

implementation. In this way we can avoid writing temporary results to memory. Its main

drawback is that read memory accesses to data are not coalesced because sample values are

retrieved from non-contiguous memory spaces. This fact is considered to be the main reason

for this poor performance.

5.2 Second implementation

The solution to this problem is to change the direction of the DAS beamformation process.

Thus, the second implementation first iterates over the array elements and then over every

image pixel as shown in Implementation 2. Each core solves different sets of NSP points of

the image.

Computational costs in the different implementations are compared in Table 3. In CPU2

the computing time is reduced by half when compared to CPU1. CPU2 times for the different

image sizes are 0.869, 4.576 and 12.062 seconds respectively. Nevertheles they stand in the same

relation to the number of image points as in CPU1. Now each AI [k, l] and each AQ[k, l] needs
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Implementation 2 CPU Beamforming. CPU2/CPU2SSE Notes
1: AI [k, l] = 0, AQ[k, l] = 0 Initialize subimage region
2: for i = 1 to N do
3: for j = i to N do
4: for [k, l] = 0 to NSP do
5: m, ∆m mm loadu ps, mm sqrt ps, mm mul ps, mm add ps
6: if 0 ≤ m ≤ L then
7: I ← (1−∆m)ŝIi,j [m] + ∆mŝIi,j [m+ 1] mm loadu ps, mm mul ps, mm add ps
8: Q← (1−∆m)ŝQi,j [m]+∆mŝQi,j [m+1] mm loadu ps, mm mul ps, mm add ps
9: AI [k, l]← AI [k, l] + bi,jI mm loadu ps, mm mul ps, mm add ps

10: AQ[k, l]← AQ[k, l] + bi,jQ mm loadu ps, mm mul ps, mm add ps
11: end if
12: end for
13: end for
14: end for
15: A[k, l] =

√
AI [k, l]2 +AQ[k, l]2 mm loadu ps, mm sqrt ps, mm mul ps, mm add ps

16: return A[k, l] Final subimage region

to be written and read several times but the cost is less than in the direct implementation

of Algorithm 1. This is because we can benefit now from cache memory and the spatial

arrangement which substantially improve computational time.

In order to make a faster implementation, we considered using Streaming SIMD Extensions 2

(SSE2) [33]. Thus an optimized version of CPU2, was designed integrating SSE2 instructions.

In CPU2SSE, on every cycle the operation register works with the in phase and in quadrature

components of two pixels at the same time. The instructions for this version can be found on

the right side of Implementation 2.

TABLE 3
Parallelization of TFM algorithm running on Platform #3. CPU strategies comparison for different

image sizes.

#3 256 × 256 512 × 512 1024 × 1024

CPU1 3.63 8.68 23.26

CPU2 0.86 4.57 12.06

CPU2SSE 0.46 2.245 5.95

With SSE instructions results are drastically improved. CPU2SSE attains 0.469, 2.245 and 5.95

seconds respectively - that is ≈ 5 times faster than implementation CPU1.
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5.3 Third implementation

Another consideration can be made to improve performance. If our platform has enough

memory resources and the region of interest is well defined, time-delay computation and index

transformation can be done previously and stored as a table rather than computed on-the-

fly. The total space needed is NV × NH × N2. In the case of large images this might exceed

memory capacity. That is the reason why it has only been tested on platform #2 (equipped

with 32GB memory). This new implementation is referenced as CPU3SSE and it is equivalent

to Implementation 2. The only difference with CPU2SSE is that m and ∆m are now read from

a table using mm loadu ps instruction. CPU1, CPU2 and CPU2SSE have also been computed

so as to obtain a measurement of performance.

Results are presented in Table 4. The most significant result is that CPU3SSE is able to produce

more than 13 images per second in the 256 case - a 168% increase in performance compared

to CPU2SSE. In the 512 case, there is a 140% increase. However in the 1024 case there is only

about an 8% improvement. This decline is due to the increase in the number of transactions

with the memory that use a maximum of 4 access channels to serve the 12 threads.

#2 256 × 256 512 × 512 1024 × 1024

CPU1 0.42 1.27 4.75

CPU2 0.26 0.95 3.64

CPU2SSE 0.12 0.36 1.35

CPU3SSE 0.07 0.26 1.24

TABLE 4
Parallelization of TFM algorithm running on Platform #2. CPU strategies comparison for different

image sizes.

6 GPU BEAMFORMING

The GPGPU development involves a paradigm shift caused by the many-thread SIMD model

of GPUs. Furthermore, the integration of different memory accesses allows alternative imple-

mentations for Algorithm 1 which are not feasible with the CPU. Additionally, GPUs memory

capacity is more limited than that of CPUs and delay precomputation would only be possible

for small images and for that reason it is not considered for this platform.

6.1 First implementation

The starting point to improve the beamforming process performance is Algorithm 1. The

Implementation 3 shows how it can be adapted to the GPU architecture. GPU1 is carried
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out by launching a thread per image pixel. To this end, a computational grid with BX = d NH

TBX
e

and BY = NV blocks of TBX
threads is defined to launch the kernel. This implementation

keeps all intermediate results in registers of the scalar processors and thus write to memory

operations are avoided.

Implementation 3 GPU1 kernel GPU optimization resources and notes. GPU1op
sIi,j [n], sQi,j [n] Signal stored in textures memory
x[k, l] Space coordinates stored in textures memory
bi,j Spatial filter stored in constant memory
xi Sensor coordinates stored in shared memory
k ← threadIdx.x+ blockIdx.x ∗ blockDim.x Calculate k coordinate by thread index
l← blockIdx.y Calculate l coordinate by block index

1: for i = 1 to N do
2: for j = i to N do
3: m̂ = (tj [k, l] + ti[k, l]− t0)/τs Compute interpolation factor
4: if 0 ≤ m(x, z) ≤ L then
5: Iv ← texture{ŝIi,j , m̂} Interpolation by GPU texture hardware
6: Qv ← texture{ŝQi,j , m̂} Interpolation by GPU texture hardware
7: AI ← AI + bi,jIv
8: AQ ← AQ + bi,jQv

9: end if
10: end for
11: end for
12: A[k, l]←

√
A2

I +A2
Q

13: return A[k, l]

Computing times for GPU1 implementation, where there is no resource optimization, are

0.325, 0.68 and 1.95 seconds for 256 × 256, 512 × 512 and 1024 × 1024 pixels images respec-

tively. It shows non-coalescing data reads and it does not maximize multiprocessors occupancy,

nevertheless performance is better than in the CPU implementation.

Performance can be improved by optimizing the resources in the GPU. Once identified, the

data elements of the process can be arranged across the different memory resources according

to their use. Generally, this task can be approached with different mechanisms: shared memory

which is small in size but has fast access speed as it is on-chip; texture memory which is

cached and can be used for write and read operations ensuring all data reads are coalesced

when it is defined as surface memory; and constant memory which is fast when all threads

use it (broadcast) but can only be used for data read operations [31].

Bearing in mind these considerations, the first implementation can be optimized in GPU1op.

In GPU1op the data matrix and space coordinates are stored in texture memory which is used

as surface memory, whereas apodization values are stored in constant memory. Additionally,
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the interpolation operation is no longer explicitly needed as texture mechanisms provide linear

interpolations, at no cost, directly by hardware when the sample value is retrieved. All changes

are shown in GPU1op (see Implementation 3). This data organization improves processing

times, running times being 0.18, 0.36 and 1.10 seconds respectively for each image size.

6.2 Second implementation

The previous implementation gives good results. There is, however, a more suitable approach

for the GPU model. This approach is based on the Nikolov SAFT implementation recommended

for multiple FPGAs [11]. This implementation can be easily parallelized and optimized for a

GPU.

The basic principle is simple. The data retrieved from all receptors corresponding to a single

emitter can be used for making a low resolution image (LRI). Then a high resolution image

(the final image) with full dynamic focusing at all points is obtained by combining (adding

together) the N low resolution images. More memory is needed to store the partial results but

the coalescence problem identified in the previous implementation is solved. The process is

illustrated in Figure 4.

Therefore, GPU2 parallelization strategy is composed by two different kernels (see Imple-

mentation 4). The Implementation 4 kernel one is responsible for creating the low resolution

image for each element. To this purpose, a thread per image pixel and array element is launched,

and a three-dimensional computational grid is defined in the kernel, with BX = d NH

TBX
e,

BY = d NV

TBY
e and BZ = N blocks of TBX

× TBY
threads in each dimension. It is important

to remark that we are now creating 3D blocks. The block size must be equal to the number of

elements in the array so as to cover each element on emission. Each thread within a block is

in charge of calculating the partial sum of each emission-reception combination.

Once all low resolution images have been computed, the second kernel is in charge of

combining all LRI images together (Implementation 4 Kernel two). To achieve this, a second

grid with BX = d NH

TBX
e and BY = d NV

TBY
e blocks of TBX

× TBY
is defined where each thread is

responsible for calculating the sum for a given pixel across the multiple LRI images.
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Fig. 4. Each combination of emitter and all receptors is used to create N LRI images which are
combined to compose the final high resolution image. One thread is responsible for a pixel and
an element of the array producing a set of low resolution images which belongs to each array
element.
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Implementation 4 GPU2 Kernel one
sIi,j [t], sQi,j [t], x[k, l] Store in textures memory
bi,j Store in constant memory
k ← threadIdx.x+ blockIdx.x ∗ blockDim.x Calculate k coordinate by thread/block index
l← threadIdx.y + blockIdx.y ∗ blockDim.y Calculate l coordinate by thread/block index
i← threadIdx.z + blockIdx.z ∗ blockDim.z Calculate i coordinate by thread/block index

1: LRII [i, k, l] = 0, LRIQ[i, k, l] = 0 Initialization
2: for j = 1 to N do
3: m̂ = (tj [k, l] + ti[k, l]− t0)/τs Compute interpolation factor
4: if 0 ≤ m(x, z) ≤ L then
5: Iv ← texture{ŝIi,j , m̂} Interpolation by GPU texture hardware
6: Qv ← texture{ŝQi,j , m̂} Interpolation by GPU texture hardware
7: LRII [i, k, l]← LRII [i, k, l] + bi,jIv Store as GPU texture
8: LRIQ[i, k, l]← LRIQ[i, k, l] + bi,jQv Store as GPU texture
9: end if

10: end for
11: return LRII , LRIQ Low resolution images

Implementation 4 GPU2 Kernel two
k ← threadIdx.x+ blockIdx.x ∗ blockDim.x Calculate k coordinate by thread/block index
l← threadIdx.y + blockIdx.y ∗ blockDim.y Calculate l coordinate by thread/block index

1: AI [k, l] = 0, AQ[k, l] = 0 Initialization
2: for i = 1 to N do
3: AI [k, l]← AI [k, l] + texture{LRI [i, k, l]} Read from texture memory
4: AQ[k, l]← AQ[k, l] + texture{LRQ[i, k, l]} Read from texture memory
5: end for
6: A[k, l]←

√
AI [k, l]2 +AQ[k, l]2

7: return A Final image

Figure 5 shows the evolution in performance for platform #3 in all implementations. Resource

optimization can double performance but the most significant increase however is obtained

when the coalescence problem is solved. In fact, for the last implementation computing times

are 0.028, 0.09 and 0.355 seconds for each image size. These results, depending on the image

size, are between 6 and 3 times better than the ones previously obtained.

6.3 Analysis on the GPU

Our approach for the development of GPU implementations allows us to assess both strategies.

The main grid and block dimensions were chosen by means of Nvidia Occupancy Calculator tool

[34], [31], so as to attain the best performance. Thus, in the GPU1op case, the block-size was set

to 256 threads (16× 16 threads per block) which gives a grid of 32× 32 blocks for an image of
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Fig. 5. Parallelization of TFM algorithm running on Platform #3. GPU strategies comparison for
different image sizes.

256× 256 pixels. For the GPU2 strategy optimum block-size was 512 threads (8× 8× 8 threads

per block), grid dimensions being 32× 32×N . Table 5 shows these configuration parameters.

The assessment enables us to see that both optimizations give a higher level of occupancy

(over 90%) but also that the better use of memory resources and optimization in GPU2 give

a better performance (close to 100%). Additionally in this implementation, the distribution in

3D blocks gets more benefit from spatial data locality in each multiprocessor and reduces the

number of registers used by each thread. All these factors allow GPU2 to be twice as fast as

GPU1op.

TABLE 5
Configuration parameters on GPU for the two strategies analysed. Image case of 256× 256

pixels.

GPU1op GPU2
Kernel grid BX = BY = 32, BZ = 1 BX = BY = 32, BZ = N

Kernel blocksize TBX = TBY = 16 TBX = TBY = TBZ = 8
Threads per block 256 threads 512 threads
Registers/Thread 18 12

Occupancy per SM 93.99% 99.24%

7 PERFORMANCE EVALUATION

In order to keep our comparative view on the platforms, we also consider implementations

CPU2SSE and GPU2. The time needed for generating each image in each platform is shown in
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Table 6. They were computed using an average of 16 measurements. It should be mentioned that

GPU times also include copy time from CPU RAM to GPU RAM. The analysis of performance

in the GPGPU algorithm with NVIDIA profiler showed that almost 40% of the computational

cost is due to data transfer from the acquisition system to the GPU, via the CPU.

As it can be observed, in all cases the time consumed by the GPU is shorter than that required

by the CPU. In terms of performance, the best CPU (platform #2) outperforms 9 times the best

GPU (platform #5), and this is so for all image sizes. If different combinations between GPU

and CPU platforms are considered, we see that moving the beamforming process from the CPU

into the GPU can improve performance between 1.6 to 60 times, depending on the platform.

This is also to show the diversity of platforms and the need for a previous analysis of the

hardware capabilities before going into any optimization process.

TABLE 6
Computing times in x64 OS measured in seconds.

Platform 256 × 256 512 × 512 1024 × 1024

#1
CPU 0.29 1.02 3.94

GPU 0.072 0.23 0.851

#2
CPU 0,13 0,37 1,35

GPU 0.046 0.133 0.479

#3
CPU 0.45 2.25 5.95

GPU 0.028 0.09 0.355

#4
CPU 0.49 2.35 5.99

GPU 0.042 0.103 0.420

#5
CPU 0.15 0.51 1.72

GPU 0.015 0.038 0.14

As for frame rates (Figure 6), CPU frame rates are up to 8 img/s (notice a 13 frame rate is

attained with CPU3opt in #3), whereas all GPU-based systems rates are above 12 frames per

second.

Platforms #3 GPU and #5 GPU need to be highlighted as they both generate 35 and 65 frames

per second for 256×256 images in real time. As for CPUs, it is interesting to remark, that when

platforms with the same number of cores are used (#2 CPU and #5 CPU) changes in the SSE

instructions provide a more efficient improvement (Ivy vs Sandy Intel architectures). This fact

is more noticeable as the size of the images increases.
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Fig. 6. Frame-rate in GPU an CPU.

8 CONCLUSIONS AND FUTURE WORK

This work has focused on evaluating whether parallel computing techniques are mature for

the implementation of a real time software beamforming system. We have studied CPU and

GPU architectures, with the latter giving good performance more than 25 img/sec. We have

developed in two stages the TFM algorithm and its execution has been parallelized.

The first stage has focused on obtaining the analytic signal. This operation is based on Fourier

transform, which has a very well known parallelization and an optimized model with low

computational costs on both architectures. The GPU case is especially significant, as the cost is

two orders of magnitude below the one in the multicore implementation. The analytical signal

procedure leads to an increment in the computational cost of the TFM imaging algorithm as

two process flows need to be maintained. However this increase in computational cost is not

excessive as both flows can share focal laws calculation. The main drawback is the decrease in

multicore systems performance due to the fact that SSE instructions capacity to parallelize pixels

is halved. Still we have maintained this approach because of the benefits from the quadrature

and in-phase signals and their positive impact on image quality. Additionally artifacts caused

by envelope’s conversion are avoided and it is possible to perform more sophisticated beam-

forming processes, such as phase coherence imaging, that complement conventional DAS. In

this sense, this is a line for future research.

The second stage has dealt with the beamforming process, which comprises two steps: focal

law calculation and extracting and summing samples. In order to calculate focal laws on multi-

core systems two options have been considered. On the one hand, dynamic delays calculation,
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which minimizes memory requirements of the algorithm. It has been implemented on all

platforms considered. On the other hand, pre-calculation, which offers a significant increment

in speed for small images. By contrast, its computational cost for large images becomes too

high and performance is diminished. In the GPU case we have focused on dynamic calculation

of focal laws whose cost is negligible compared to the cost of data memory transactions when

these are precomputed. The analytical signal together with the non-use of filters and dynamic

calculation of the focal law allows the algorithm to zoom the image in/out without affecting

performance. This fact offers advantages in terms of algorithm usability.

In multicore systems, the extraction of samples and summation has been achieved by al-

lowing each process to work on a subimage and resolving each signal sequentially. In GPUs

this is done with a kernel, which for each emitter works over a single pixel, and creates

separate images which are finally combined to form the final image. This system gives a good

encapsulation of the memory space in each block. Thus, interference at the accesses is limited

and the number of registers in the kernel is reduced in comparison with other optimization

strategies.

Beyond the absolute values obtained in the different platforms, it is possible to conclude that

GPU systems performance is in general an order of magnitude above that of multicore systems.

In our view, this is not only because of the high number of computing cores as it is also mainly

determined by memory accesses. The GPU provides more tools to optimize algorithms than the

multicore model. However, we believe that the multicore model can also offer viable solutions

if the requirements needed in the potential field of application are not very demanding.

Notwithstanding the above, we can also state that the main difficulty in the GPU is data

transfer from the acquisition system into the GPU (via the CPU) which accounts for around

40% of the computational cost. In the NVIDIA case this obstacle can now be overcome by

Kepler GPUDirect RDMA technology that connects to another device on a GPU placed on the

same PCI bus. Our current instrumentation does not support that feature.

The expected technological progress for both CPU and GPU systems and the emergence

of new technology integrating both platforms, lead us to believe that the development of

beamformers on software is a very promising future line of research as it will provide new

and increasingly sophisticated beamforming and, in turn, better quality of ultrasound imaging.

Definitely, that will be key to new fields of application such as ultrafast imaging.
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