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Abstract—Multi-tenancy is one of the key features of cloud computing, which provides scalability and economic benefits to the
end-users and service providers by sharing the same cloud platform and its underlying infrastructure with the isolation of shared
network and compute resources. However, resource management in the context of multi-tenant cloud computing is becoming one of
the most complex task due to the inherent heterogeneity and resource isolation. This paper proposes a novel cloud-based workflow
scheduling (CWSA) policy for compute-intensive workflow applications in multi-tenant cloud computing environments, which helps
minimize the overall workflow completion time, tardiness, cost of execution of the workflows, and utilize idle resources of cloud
effectively. The proposed algorithm is compared with the state-of-the-art algorithms, i.e., First Come First Served (FCFS), EASY
Backfilling, and Minimum Completion Time (MCT) scheduling policies to evaluate the performance. Further, a proof-of-concept
experiment of real-world scientific workflow applications is performed to demonstrate the scalability of the CWSA, which verifies the
effectiveness of the proposed solution. The simulation results show that the proposed scheduling policy improves the workflow
performance and outperforms the aforementioned alternative scheduling policies under typical deployment scenarios.

Index Terms—Cloud computing, direct acyclic graph, multi-tenancy, resource management, scientific workflow applications.

F

1 INTRODUCTION

C LOUD computing is one of the most promising contem-
porary technologies, on which the research community

has recently embarked [1], [2]. It has been emerging as a
powerful way to transform the IT and Telcos industries in
order to build and deploy custom services and applications,
e.g., healthcare, and scientific computations. “Cloud com-
puting is a large-scale distributed computing paradigm that
is driven by economies of scale, in which a pool of ab-
stracted, virtualized, dynamically-scalable, managed com-
puting power, storage, platforms, and services are delivered
on demand to external customers over the Internet [3].”

Multi-tenancy is one of the key features of cloud com-
puting. In a conventional single-tenant cloud architecture,
providers offer a dedicated cloud service (instance of ap-
plication and underlying infrastructure) to the tenants (cus-
tomers), where no data is intermingled with other tenants.
From the service provider’s point of view, this model does
not provide scalable cloud services and economics of scale.
On the other hand, in multi-tenant cloud computing, in-
frastructures, applications, and database are shared among
all tenants. At the downside, tenants may not be able to
customize their use of cloud services in order to fit their spe-
cific needs. Moreover, multi-tenancy may be seen differently
from a cloud service model perspective. For instance, as for
Infrastructure-as-a-Service (IaaS), tenants have the ability
to provision computing, storing, and networking resources.
Thus, an IaaS provider must allow tenants for virtualization
and resource sharing to achieve multi-tenancy. The virtual
machine (VM) level multi-tenancy provides the following
benefits: a) increased utilization of hardware resources and
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ease of maintenance (e.g., avoiding dedicated installation
per tenant); b) scalability/elasticity, i.e., dynamic workload
of large numbers of tenants is handled by scaling up/down
resources; c) economics of scale, e.g., reduced service deliv-
ery cost for end-users and service providers by sharing the
same instance of infrastructure based on an abstraction of
isolation between tenants’ data and VMs. In Software-as-
a-Service (SaaS), a single instance of hosted applications is
used by multiple tenants simultaneously, e.g., Force.com [4].

Even though multi-tenancy allows cloud service
providers to better utilize computing resources, supporting
the development of more flexible services based on economy
of scale, and reducing infrastructural costs, how to effec-
tively realize this is a fundamental question. For instance,
multi-tenant cloud computing poses unique challenges such
as scalability, resource provisioning (e.g., meeting the de-
mand of large volumes of tenants per resource) and cus-
tomization (per-tenant service customization) [5], [6]. In ad-
dition, multi-tenant applications need to be dynamic in na-
ture, or polymorphic, to fulfill the individual expectations of
various tenants and their users [4]. This paper investigates
a resource management framework that consists of both
architecture and scheduling policies with regards to multi-
tenancy issues, especially scalability and shared resources
for scheduling compute-intensive workflow applications.
Further, a resource management framework is developed
whose objective is to separate resource management policies
from the control mechanisms required to implement them.
Note that there are several detrimental consequences for
both service providers and tenants such as unpredictable
application performance, limited cloud applicability, and
inefficiencies in datacenters and revenue [7]. However, these
issues are beyond the scope of this paper.

Workflow scheduling is a process of mapping and man-
aging the execution of inter-dependent tasks on distributed
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resources. It allocates suitable resources to workflow tasks
such that the execution can be completed to satisfy objec-
tive functions imposed by users. The proper and efficient
scheduling can have significant impact on the performance
of the workflow system. In general, scheduling tasks for
distributed services was shown to be an NP-hard problem
[8]. Thus, there is no optimal solution within polynomial
time. Heuristic algorithms were widely developed in order
to achieve near optimal solutions. However, there is not any
particular resource management framework for scheduling
workflow in multi-tenant cloud computing environments.

This paper explores the idea of workflow scheduling
in the context of multi-tenant cloud computing environ-
ments. In a multi-tenant cloud computing environment,
designing a separate service layer for workflows on the
top of IaaS or SaaS, giving rise to Workflow-as-a-Service
(WaaS). That provides fast turn-around times of the sub-
mitted tasks by means of automaticity of the centralized
submission interface and scheduler. Given the vital impor-
tance of multi-tenancy (e.g., isolation and customization
aspects in shared infrastructures), this paper proposes a
resource management framework that consists of a novel
four-layered architecture of workflow scheduling system
and scheduling policy. The introduced architecture and
CWSA scheduling policy provide multi-tenancy by unifying
abstractions – workflows, resource, and control mechanism
(scheduling) – that enable logically centralized policies.
Further, the architecture enables a resource abstraction that
unifies arbitrary resources, such as storage, network, CPU,
and pools, enabling resource-agnostic policies. Moreover,
the envisioned architecture provides a service and manage-
ment environment to enable multiple tenants to run their
compute-intensive workflow applications on a shared cloud
infrastructure while taking advantage of the elasticity and
pay-as-you-go billing model of cloud computing.

To deal with the resource management in the envi-
sioned architecture, this paper proposes a novel cloud-based
workflow scheduling (CWSA) policy for compute-intensive
workflow applications. CWSA enforces the decisions of
resource scheduling policies centrally without requiring ex-
plicit coordination. Indeed, CWSA takes advantage of the
gaps between scheduled tasks. These idle periods can be
used to schedule other tasks, thereby reducing the over-
all makespan. Further, CWSA helps minimize the overall
workflow completion time, cost of execution of workflows,
tardiness, and utilize idle resources of cloud effectively. Im-
portantly, CWSA utilizes computational resources properly
by reducing idle time of cloud resource nodes. In addi-
tion, CWSA policy exhibits less context switching and thus
outperforms the state-of-the-art scheduling policies such as
First Come First Served (FCFS), EASY (Extensible Argonne
Scheduling system) Backfilling, and Minimum Completion
Time (MCT). Furthermore, to evaluate the scalability per-
formance of the proposed algorithm, a proof-of-concept
experiment with real-world scientific workflow applications
such as biology application (e.g., SIPHT) and earthquake
science application (e.g., CyberShake) is performed, which
verifies the effectiveness of the proposed solution.

The main contributions of this paper are as follows.
First, from an architectural perspective, we propose a novel
four-layered architecture of workflow scheduling system

in a multi-tenant cloud computing environment, which
represents a cost-effective solution for executing compute-
intensive workflow applications. Second, from a resource
management perspective, we propose a novel cloud work-
flow scheduling algorithm (CWSA) to deal with both struc-
tured and unstructured workflow scheduling in multi-
tenant cloud computing environments, which maximizes
cloud resource usage, minimizes the expected makespan
(the overall completion time of the workflow), and also
minimizes the scheduling execution time, workflow exe-
cution costs, and total expected tardiness (delay penalty,
if a task in workflow is completed after its due-time).
Third, we perform comprehensive simulation-based studies
of the proposed scheduling policy and evaluate different
set of performance metrics, including statistical analysis,
to demonstrate the robustness of the proposed scheduling
policy. We then compare the performance of the CWSA pol-
icy with the FCFS, EASY Backfilling, and MCT scheduling
policies. Note that there is no consensus on widely accepted
metrics to measure robustness. Thus, in this work, we pro-
pose to use the makespan standard deviation, skewness of
the makespan, and the 99th percentile distribution of the
makespan to compare robustness metrics. Fourth, from a
proof-of-concept demonstration perspective, CWSA scheduling
policy is further implemented in real world scientific com-
plex workflow applications (e.g., SIPHT and CyberShake –
popular benchmark that have been widely used in workflow
studies) to demonstrate the scalability and effectiveness of
the proposed solution.

The remainder of the paper is structured as follows.
Section 2 describes cloud workflow in a nutshell. In Section
3, we briefly review related work. Section 4 presents the
proposed reference architecture of workflow scheduling and
describes the proposed algorithm in greater detail. Section 5
describes the salient features of our implementation, fol-
lowed by experimental results obtained by means of simu-
lations, and provides a comparison of its performance with
that of different alternative scheduling policies. Further, a
proof-of-concept demonstration is presented and finally, we
conclude and discuss future work in Section 6.

2 WORKFLOW

Cloud workflow applications (e.g., high-end scalable me-
dia processing, scientific workflow applications, data ana-
lytics) can be defined as collections of resource intensive
activities processed in a well defined order to achieve a
certain goal, which could be executed in geographically
distributed heterogeneous resources. Based on the structural
complexity, cloud workflow applications can be sub-divided
into two groups: balance structured, e.g., Electron Micro-
graph ANalysis (EMAN) – a Bio-imaging workflow and un-
balanced structured, e.g., SIPHT and Montage workflows.
The balanced structured workflow contains several parallel
pipelines that require the same types of service to process
different data sets. Conversely, unbalanced structured work-
flows are complex and require different services [9].

Scientific workflow applications (see Fig. 1) have a
complex structure and require heterogeneous services. The
execution of such workflow applications faces several chal-
lenges such as scalability, quality of service (QoS), en-
sured reproducibility, computing resources, data storage,
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Fig. 1: SIPHT [12] – an example of scientific workflow.

as well as heterogeneous and distributed data manage-
ment [10], [11]. Such workflow applications require a dis-
tributed high-end computing environment, leading to the
recently emerged cloud computing paradigm. Cloud com-
puting offers several distinct features for workflow appli-
cations compared to other computing environments such
as: a) dynamic resources allocated/de-allocated, which en-
ables the workflow to elastically scale up/down the cloud
resources; b) a large shared pool of resources with scalable
processing capability, storage, and network resources to
execute compute-intensive workflow applications; c) cloud
workflow applications can share application instances and
their underlying cloud resources between multiple tenants,
which allows a cloud service provider to maximize cloud
resource utilization and thereby reduce service costs per ten-
ant; d) manages secure isolation of such resources between
multiple tenants through its multi-tenancy feature.

3 RELATED WORK

The problem of scheduling tasks on multiple resources
has been extensively studied in parallel and distributed
systems, cluster and grid computing, and in recent years to a
lesser extent in cloud computing. The methodology adopted
varies according to the characteristics of the workload (e.g.,
batch workload or online workload, large/medium/small
size, and frequency), characteristics of resources (e.g., phys-
ical/virtual resources, number of nodes, and networks), per-
formance metrics of interest, and scheduling based on multi-
agent systems, e.g., [13]. Further, most of these algorithms
considered a stable infrastructure. We briefly review prior
work on various aspects in the following.

Heuristic Algorithm: Several studies considered heuris-
tics, e.g., list scheduling, clustering, and task duplication.
Examples of list scheduling include Heterogeneous Earliest-
Finish-Time (HEFT) [14] and Fast Critical Path (FCP) [15]
scheduling for a single workflow. A list scheduling heuristic
combined with multi-objective optimization was proposed
in [16] for scheduling workflow in grids and clouds. Well-
known examples of task duplication based algorithms in-
clude [17] and task duplication-based scheduling algorithm
for network of heterogeneous systems (TANH) [18]. Clus-
tering heuristics, e.g., [19] for task clustering and CASS-II
for task clustering with no duplication [20] were studied in
heterogeneous systems.

Cost- and time-based heuristic algorithm was proposed
in [21] to minimize the execution, communication costs,
and overall completion time for scheduling workflow tasks
in cloud environments. The Whittle’s index-based heuristic
scheduling was proposed in [22] for executing parallel tasks
on opportunistically available cloud resources. The oppor-
tunistic scheduling allocates low-priority tasks to intermit-
tently available servers to minimize the cost of waiting
and migration. A dynamic resource allocation heuristic was
proposed in [23] to minimize skewness and improve the
utilization of server resources. Notably, in [24], authors have
shown that widely-used Best-Fit scheduling algorithm is
not throughput-optimal. The work in [25] addressed the
static resource-constrained multi-project scheduling prob-
lem (RCMPSP) by considering project and portfolio lateness.
However, RCMPSP may not be suitable in the context of
multi-tenant cloud environments due to multi-tenant inter-
ference, unfairness, as well as variable and unpredictable
performance (e.g., throughput). Some tenants may pay for
performance isolation and predictability, while other tenants
may choose best-effort behavior [26].

Meta-Heuristic Algorithm: A particle swarm optimiza-
tion (PSO) based scheduling algorithm was proposed
in [27], [28] to minimize the execution cost of workflow
applications in cloud computing. The market-oriented cloud
workflow systems based on genetic algorithm, ant colony
optimization, and PSO has proposed in [29]. In [30], authors
proposed a pricing model and dynamic scheduling of single
tasks in commercial multi-cloud environments and com-
pared their approach with pareto-optimal solutions based
on two classical multi-objective evolutionary algorithms,
i.e., SPEA2 and NSGA-II.

Note that heuristic based scheduling algorithms fit only
a particular type of problem (e.g., a workflow with a simple
structure), while the meta-heuristic algorithm provides a
general solution method for developing a specific heuristic
to fit a particular kind of problem [9]. Most of the heuris-
tic and meta-heuristic based scheduling algorithms were
designed and optimized in the context of grid computing
environments. Further, meta-heuristic algorithms such as
PSO, SPEA2, and NSGA-II are very time consuming and
thus not very effective for large workflow applications.

Scientific Workflows Execution: The performance and
the cost of execution of scientific workflows in a cloud
environment was studied in [31]. This study has shown
that most of the resources provided by Amazon EC2 are
less powerful for I/O-intensive applications like Montage
than Abe (NASA HPC cluster) due to the lack of high-
performance parallel file systems. A data locality driven
task scheduling algorithm was proposed to improve the
system performance on cloud computing environments [32].
However, the algorithm did not implement real-world cloud
applications to verify its effectiveness (e.g., scalability, dy-
namic workload). Similarly, a matrix based k-means cluster-
ing strategy for data placement in scientific cloud workflows
was presented in [33].

Deadline-aware Scheduling: Dynamic resource provi-
sioning of adaptive applications in cloud environments was
studied in [34] based on Q-learning reinforcement guided
control theory to maximize the application-specific bene-
fit function within given time and budget constraints for



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2556668, IEEE
Transactions on Parallel and Distributed Systems

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS-2015-07-0541.R1) 4

Workflow 

Scheduler

Shared 

Resource Pool 

(CPU, RAM, 

Storage) 

Information

Workflow 

Dispatcher

Service Queue
Workflow Executing

QoS Monitor Executor

                    

Physical 

Infrastructure 

Layer (Cloud 

Resource 

Farm)

Virtual 

Infrastructure 

Layer

Middleware 

Layer

Tenant Layer

Tenant 

Information and 

Performance 

Repository

VM Node #1
VM Node #3 VM Node #5VM Node #2 VM Node #4

Tenants

TenantsTenants

Infrastructure

-as-a-Service 

(IaaS)

Workflow-as-

a-Service 

(WaaS)

Fig. 2: Proposed reference architecture of workflow scheduling in a multi-tenant cloud environment.

a particular task. VGrADs [35], a virtual grid execution
system– was studied for scheduling of a deadline sensi-
tive weather forecast workflow supports. A resubmission
heuristic based on the HEFT algorithm [14] was proposed
in [36] to meet soft deadlines of scientific workflows in
computational grids. A deadline constraint algorithm based
on the HEFT was proposed in [37] for scheduling a single
workflow instance on an IaaS cloud environment. However,
none of these algorithms were designed in the context of
multi-tenant cloud environments.

Multi-tenant SaaS Applications: There exist only few
studies on multi-tenant SaaS applications, e.g., a cluster-
based resource allocation algorithm [38], which includes
lazy and pro-active duplications to achieve an improved
system performance in a two-tier multi-tenant SaaS sched-
ule architecture. Further, the capacity planning of multi-
tenant applications using a method for determining the
optimal allocation of application threads to physical nodes
was studied in [39]. Recently, a resource allocation model
for SaaS applications was proposed in [40]. However, none
of these approaches dealt with the compute-intensive work-
flow scheduling in multi-tenant cloud computing.

Overall, most of the aforementioned studies focused on
the scheduling performance of a single workflow. Moreover,
these approaches did not consider compute-intensive work-
flow applications in a multi-tenant cloud computing envi-
ronment. In fact, there exist no particular scheduling poli-
cies to execute compute-intensive workflow applications in
multi-tenant cloud environments. Unlike those approaches,
in this paper we focus on the minimization of the makespan,
cost of execution of the workflows, and tardiness, while

maximizing the resource utilization within a given deadline
in multi-tenant cloud computing environments.

4 MULTI-TENANT CLOUD ENVIRONMENTS FOR
WORKFLOW SCHEDULING

This section presents the proposed reference architecture of
workflow scheduling in a multi-tenant cloud environments
and describes the proposed cloud workflow scheduling
algorithm in greater detail.

4.1 Architecture
There exists a plethora of workflow management systems,
e.g., Pegasus [41]. However, many of their features are
optimized for conventional grid and cluster computing to
execute single/multiple job(s) or workflow and thus may
not be able to obtain most of the key aspects of cloud
computing, while such systems suffer from limited resource
provisioning. Although there are few works addressing
workflow scheduling on clouds, e.g., [33], they were not
designed in the context of multi-tenancy. Given the emer-
gence of diverse sets of scientific workflow applications
each belonging to different domains, a multi-tenant aware
and flexible workflow platform is needed to cost-effectively
execute/deploy the workflow applications of multiple ten-
ants. The envisioned architecture enables such workflow
applications to share a single infrastructure while taking
advantage of the elasticity and pay-as-you-go billing model
of cloud computing.

Fig. 2 depicts a four-layered architecture of the proposed
workflow scheduling system. The first layer (tenant) con-
sists of workflow creator/composer. The second layer (mid-
dleware) consists of workflow dispatcher, service queue,
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workflow scheduler, shared pool resource information, ten-
ant information and performance repository, QoS monitor,
and executor. The third layer is the virtual infrastructure
layer, whereas the fourth layer consists of the physical
infrastructure layer. Each layer is briefly described in the
following.

Tenant Layer: Each tenant-specific cloud workflow is
configured by acquiring the tenant preferences and QoS.
Each tenant submits an individual workflow application
to the workflow scheduling system. The workflow tasks
are scheduled according to the available resources (virtual
machines, datacenter, etc.) at the given deadline. The tenants
submit the workflow applications according to a uniform or
random distribution. According to the users’ QoS require-
ments, the workflow scheduler checks the availability of ser-
vices and resources and then applies the given scheduling
policies to execute these workflow tasks.

Middleware Layer: In order to realize multi-tenancy, a
suitable middleware is required to minimize the underlying
complexity (e.g., configure, manage, and identify multiple
tenants as well as tenant-specific customization of workflow
applications). In fact, it decouples the tenant and infras-
tructure layers. Middleware layer comprises a number of
components such as workflow scheduler, QoS monitoring
component, and performance repository component. When
the tenant workload increases, a pool of identical applica-
tion instances is created in order to ensure scalability. These
components are briefly described in the following.

Workflow Dispatcher: The main functionality of the work-
flow dispatcher is to aggregate the workload (workflow
applications) and dispatch it to the service queue.

Service Queue: The service queue maintains a priority
queue for all incoming workflow tasks and distributes them
to the workflow scheduler.

Workflow Scheduler: The workflow scheduler is the core
component of the middleware layer, which provides sev-
eral features for storing task information, maintaining up-
to-date cloud resource information, resource selection in-
formation (matching task requirements to resource space
available on the cloud), QoS monitoring information, and
performance information. The major functions of this com-
ponent help select prioritized workflow tasks from the ser-
vice queue, execute scheduling policies, send provisioning
instructions to the virtual infrastructure layer for creating
virtual resources and subsequently mapping the workflow
tasks to virtual machines (VMs). Further, the workflow
scheduler communicates with the performance repository
and tenant information component in order to get infor-
mation about the current status of the cloud resources
and tenants, including which VMs are running on which
physical machines in the cloud resource farm.

Shared Resource Pool: A resource pool is a logical abstrac-
tion that is needed for the flexible management of resources.
It provides information about used, limit, available, and
shared resources (e.g., CPU, RAM, storage, network, and
software licenses).

Tenant Information and Performance Repository: This com-
ponent stores tenant configuration files. More specifically,
it saves configuration and customization metadata of all
tenants. It also accumulates all the data related to QoS, e.g.,
deadline, availability, scalability, etc. Therefore, any changes

of the configuration would affect the scope of a particular
tenant. Further, the services that are to be composed should
be selected based on such a configuration (i.e., tenant infor-
mation).

QoS Monitoring: This component monitors the QoS
data. Further, it oversees the performance of the ser-
vice/workflow application instance. It reports on whether
the service instance on its worker node is underloaded,
overloaded, or in normal conditions based on the threshold.
Such information is retrieved from the tenant information
and performance repository component.

Executor: The executor notifies a task’s completion status
after finishing it successfully. During the workflow execu-
tion, the scheduler is responsible for handling task depen-
dencies such as transferring dependent files. In addition,
the middleware layer coordinates the virtual infrastructure
layer by distributing workflow tasks to available resources.

Virtual Infrastructure Layer: This layer consists of a
number of VM instances running on top of the cloud server
farm. It allocates on-demand resources and maps the virtual
resources to the physical resources.

Physical Infrastructure Layer: It contains a number of
physical resources, i.e., cloud server farm that consists of
physical servers for computing, storage, and network. It also
provides provisioning and deprovisioning of resources to
the virtual infrastructure layer.

4.2 Problem Formulation

4.2.1 Application and Resource Models
A cloud workflow can be formally modeled as a directed
acyclic graph (DAG). It consists of computational tasks
and transmission tasks. A DAG is a tuple G = (V,E),
where V = {τi | i = 1, . . . , v} denotes the set of vertices
representing tasks with |V | = v and E = {eij | (i, j) ∈
{1, . . . , v} × {1, . . . , v}, |E| = e is the set of communication
edges representing precedence relation between two com-
putational tasks. The labels on nodes denote computation
costs and the labels on edges represent communication
costs. The communication time between tasks in the work-
flow is determined by various factors, including bandwidth,
number of tasks, and volume of data transferred. A critical
path (CP) is the longest path in the workflow.

For illustration, an example workflow is shown in Fig.
3, where edge e(i, j) from (τi − τj) means that τj needs an
intermediate result from τi such that τj ∈ succ(τi), where
succ(τi) is the set of all intermediate successor tasks of τi.
A task without immediate predecessors is known as an
entry-task and a task without immediate successors as an
exit-task. The average communication cost between two
tasks τi and τj is equal to C(i, j) = data(i,j)

B , where B
denotes the average bandwidth and data(i, j) represents the
amount of data required to be transmitted between the τi
and τj . If τi and τj are assigned to the same resource (i.e.,
VM), the communication cost is negligible and assumed
to be zero. The computation cost is the execution costs
of tasks on the resources. It is computed by dividing the
total number of instructions required to execute that tasks
by the processing capacity of resources (in instructions per
second). The service queue is considered large enough to
buffer all unprocessed tasks. The IaaS cloud may offer a
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Fig. 3: Representation of a cloud workflow by a direct acyclic
graph (DAG).

set of VM instance types with different processing power
(CPU, RAM, storage) and prices. When a VM is leased, it
needs a boot-up time to be properly initialized and be made
available to the tenant (s). Thus, this time is considered
in the scheduling and cost evaluation. Since we assume
a single cloud datacenter model to execute workflow ap-
plications, where physical machines are interconnected by
high-bandwidth links. Thus, we do not consider the cost
incurred by data transfer. Further, the so-called pay-per-use
billing model is considered, where partial utilization of the
leased VM instance-hour is counted as a full time period.

4.2.2 Problem Definition
In our model, a given set of cloud workflows {ωl | l =
1, . . . , n}, ωl ∈ W , consists of computing-intensive tasks
(τ1, τ2, . . . τv). The workflows need to be scheduled in the
cloud resource farm Rk (1 ≤ k ≤ m), provided that
resource Rk ∈ Rφ is available for processing at time P (t)
such that

∑
Rk∈Rφ QτiωjRk = 1, where QτiωlRk determines

to which resource a certain workflow is scheduled. Recall
from Fig. 2 that each tenant’s information is stored in the
tenant information and performance repository.

QτiωlRk =

 1 if task τi of workflow ωl is allocated
to resource Rk

0 otherwise.

During the scheduling process, each tenant submit a service
request, i.e., a workflow to the workflow scheduler with
the resource requirements given by (ID, tl, VMl, Dl), where
ID, tl, VMl represent the tenant ID, reservation time slot,
number of VMs required for ωl, and associated deadline
of each workflow, respectively. Note that tenant ID is very
important to create an isolation environment for tenants
that separates one tenant context (tenant’s information)
from another. The objective of the workflow scheduler is to
schedule a workflow ωl to a cloud resource Rk (1 ≤ k ≤ m)
for a given time constraint (task τi of the workflow ωl has
to complete its execution before the deadline). No task is
scheduled for any resources that are not available yet, i.e.,
tτiωl ≥ pkQτiωlRk , whereby tτiωl is the starting time of
task τi of workflow ωl and pk represents the time when
the resource becomes available, tτiωl ≥ 0.

We assume that a child task cannot be executed until
all of its parent tasks are completed. In a multi-tenant envi-
ronment, resources are virtualized and shared among many
tenants. Minimizing the completion time and tardiness of

the workflow application in such a shared environment
poses a challenging problem while taking the resource
utilization into account. The proposed Cloud Workflow
Scheduling Algorithm (CWSA) aims at improving the per-
formance of the metrics described below in Section 4.2 in
more detail.

4.3 Cloud Workflow Scheduling Algorithm (CWSA)

4.3.1 Performance Metrics
We define the following performance metrics that are used
to study the efficiency and robustness of our proposed
workflow scheduling policy.

Makespan: The makespan or completion time is a mea-
sure of the throughput of the system. Clearly, the main
design objective of an efficient scheduling policy is to min-
imize the makespan. The minimum makespan implies a
high utilization of computing machines, leading to a higher
throughput. The makespan is calculated for each scheduled
workflow as the time from submission to completion of
task, i.e., denoted by makespan = SCT . The workflow
makespan CW as the maximum completion time of all its
tasks, is expressed as follows:

CW = max
τi∈ωl

{SCT (τi)}. (1)

Further, the optimization rate of the makespan (OMS) is
given by:

OMS = (MMS −MSmin)/MMS, (2)

where MMS denotes the mean makespan and MSmin
denotes the minimum makespan.

Tardiness: A delay penalty with weight is charged, if the
task τi is completed after its due time. The delay penalty of
a given task is defined as its tardiness. The tardiness of a
workflow task indicates the time span of the completion
time exceeding the projected due time in a fine-grained
manner. The minimization of mean tardiness has been used
as the primary objective in scheduling tasks in order to meet
a given task’s due time, which can be computed as follows:

tdi =
N∑
i=1

[max(Ci − di, 0)]/v, (3)

where Ci − di ≥ 0 and the maximum tardiness is given by:

tdi
max = maxi=1...v[max(Ci − di, 0)], (4)

where Ci, di, and v denote the completion time of task τi,
due time (i.e., sum of arrival time and total processing time
of task), and number of tasks in a workflow, respectively.

Laxity: The laxity of a task is the measurement of its
urgency. At time t the laxity of task τi is (di − t− p), where
di is the task’s deadline and p is its remaining computing
time requirement. When the laxity of a task is negative, the
execution of the task can not meet its deadline. If the laxity
of a given task is zero then the execution of the task should
start immediately. In case of a positive laxity, the execution
of the task can be delayed and thus placed in the queue.

Mean scheduling execution time: This metric accounts
for the total time taken by the workflow scheduler to execute
workflow tasks using a particular scheduling policy.
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Resource utilization rate: It is defined as the percentage
of time that a resource is busy. Therefore, a better perfor-
mance can be achieved only through a higher utilization of
resources, while meeting given deadlines and QoS require-
ments of workflow applications. The average resource usage
is computed as follows:

RU =

n−1∑
i=0

(RUti ∗ (ti+1 − ti))

tn
(5)

where,

RUi =
Ract

min(Rava, Rreq)
, (6)

where n, Ract, Rava, and Rreq denote the simulation length,
number of active resources, number of available resources,
and required resources for the workflows, respectively.

Makespan standard deviation (MSD): It is used to
measure the robustness of scheduling policies. The MSD is
calculated as follows:

σm =

√√√√ 1

N − 1

N∑
a=1

(
Xa −X

)2
, (7)

where σm, Xa, N , and X denote the sample standard devi-
ation of the makespan, data set of the makespan, size of the
sample, and average value of the makespan, respectively.
Note that smaller values of MSD are more likely to result in
a stable system performance.

Skewness of makespan: It measures the symmetry of
the makespan distribution and can be calculated by using
the adjusted Fisher-Pearson standardized moment coeffi-
cient, as follows:

γ(X) =
N

(N − 1)(N − 2)

N∑
a=1

(
Xa − X̄
σm

)3

. (8)

A negative value of skewness indicates that a tail can be
found on the left-hand side of the makespan distribution,
whereas a positive value of skewness means the opposite.

4.3.2 Proposed Algorithm
The pseudocode of our proposed CWSA algorithm is shown
in Fig. 4. The algorithm works as follows. Initially, the
resource nodes are sorted in descending order based on their
computational speeds. The objective to do so is to select the
lowest execution cost for ready workflow tasks (lines 3-6).
The scheduler checks the task dependency at scheduling
time to verify which tasks can be scheduled one after
another. This is done through a depth-first search. When the
workflow is submitted to the scheduler, the workflow tasks
will be inserted into a service queue (lines 6-7). The ready
workflow tasks are sorted according to a deadline priority.
Next, an appropriate schedulegap is calculated (see also Eq.
9), i.e., a suitable time-slot of resource nodes for every ready
workflow task (lines 8-11).

The schedulegap is the time period of an idle CPU. It
occurs when the number of currently available CPUs is
more powerful with respect to the existing schedule than
the number of CPUs requested by the given workflow
applications in the given time period. When a new task

arrives, a better schedule position is selected according to
the current schedule position. For the set of workflows
ωl ∈ W with deadlines Dl, l = 1, 2, . . . , n, the necessary
and sufficient condition for the feasibility of a workflow
schedule with schedule utilization SU(t) is defined as the
utilization by the current task invocations at time t, which
can be expressed as follows:

SU(t) =
∑

TIi∈CI(t)

(Ci/Ti) ≤ 1, (9)

where TIi is the task invocation, CI(t) denotes the set
of current invocations, and Ci represents the worst-case
computing time (i.e., largest time between release and ter-
mination). Further, Ti denotes the period of workflow task
and (Ci/Ti) denotes the fraction of processor time spent on
the execution of the workflow tasks. The counter keeps track
of the schedulable utilization at run-time. The counter is set
to zero (SU = 0) at the initial stage of each schedule gap.
When a new workflow task is invoked, it is incremented
by (Ci/Ti), i.e., if SU + Ci/Ti ≤ 1 then the request for
schedule is admitted at current time plus its deadline and is
decremented by (Ci/Ti), if the deadline of the current work-
flow task’s invocation is reached. The algorithm searches for
schedulegaps on every resource.

The workflow scheduler is able to execute different
scheduling policies. If the schedulegap is not found, then
the scheduler can schedule the workflows using other poli-
cies like FIFO, EASY Backfilling, and MCT (lines 12-20).
For Instance, if SchedulingPolicy == 1 then schedule of
the workflow is determined by using the FCFS scheduling
policy. With FCFS, incoming workflows are sorted in the
scheduler queue in their arriving order. Based on this order,
if the required resources are available to execute the first
workflow it is immediately scheduled. Otherwise, the work-
flows wait until the resources become available for them.

If SchedulingPolicy == 2 the workflow is scheduled
by using the EASY Backfilling scheduling policy. In the
EASY Backfilling policy workflows are sorted based on their
deadline and are placed in the queue accordingly. The EASY
Backfilling policy works similarly to FCFS. However, if the
first workflow can not be scheduled due to the lack of
required resources, the scheduler calculates the earliest start
time based on the running workflow. Subsequently, it makes
a reservation for the first workflow. Once the resources
become available the workflow is scheduled. If a workflow
in the backlog can be executed on time without delaying
others, it can be moved forward in the queue and be
executed earlier. Thus, ideally resources are backfilled with
suitable workflows in order to achieve a higher resource
utilization.

In the case of SchedulingPolicy == 3, the workflow
is scheduled by using the MCT scheduling policy. With
MCT, the workflow scheduler assigns the workflows in an
arbitrary order to the available cloud resources such that
the workflow will have the minimum completion time.
Toward this end, the scheduler firstly chooses a workflow
arbitrarily from the service queue. Secondly, it finds the
cloud resource that gives the minimum completion time
for the chosen workflow. Thirdly, the schedule maps the
workflow to the chosen cloud resource and removes the
workflow from the service queue. Then, the available time of



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2556668, IEEE
Transactions on Parallel and Distributed Systems

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS-2015-07-0541.R1) 8

Algorithm 1 Cloud Workflow Scheduling Algorithm
(CWSA).
Require: A Workflow W is defined in a workflow reposi-

tory. NewSchedule = 0.
Ensure: Workflow schedule within the deadline, if the

deadline exists.
1: repeat
2: W ← unscheduled workflow in the list
3: for all rk ∈ R do
4: insert rk into InitialSchedule(IS)[] in descending

order based on their computational speed.
5: end for
6: for all ωl ∈W, rk ∈ R do
7: Insert ∀ ready workflow ωl ∈W into service queue

then traverse the workflow by using a depth-first
search.

8: for all rk ∈ R do
9: schedulegap← find schedulegap(IS)

10: Calculate a schedulegap as described in Eq.(9).
11: end for
12: if There does not exist a schedulegap on the

resource nodes rk ∈ R and ∃ SchedulingPolicy,
∀ available scheduling policies, Select
SchedulingPolicy then

13: switch (SchedulingPolicy)
14: case 1:
15: NewSchedule← Schedule workflow task τi ∈

T on the resource node rk ∈ R using the FCFS
scheduling policy.

16: case 2:
17: NewSchedule ← Schedule workflow task τi ∈

T on the resource node rk ∈ R using the EASY
Backfilling scheduling policy.

18: case 3:
19: NewSchedule ← Schedule workflow task τi ∈

T on the resource node rk ∈ R using the MCT
scheduling policy.

20: end switch
21: else if (∃schedulegap on the resource nodes rk ∈ R

& & case = = 4) then
22: Call function CWSA()
23: end if
24: end for
25: until all the workflows have been scheduled.

Function 1 Function CWSA ()
1: function CWSA ()
2: NewSchedule← InitialSchedule
3: if totalweight > 0 (as described in Eq.(10)) then
4: for all ωl ∈W, rk ∈ R do
5: NewSchedule ← Move workflow tasks into

found schedulegap. That means in the appropriate
scheduling position, i.e., a virtual machine already
started.

6: end for
7: else
8: remove the workflow from schedule
9: end if

10: end function

the resource is updated. The scheduler repeats this process
until all workflows have been scheduled and assigned to the
resources.

Afterwards, in the case that a schedulegap is found, the
workflow scheduler executes the CWSA scheduling policy
(see lines 21-22 and Function 1). All suitable resource nodes
are tested whether a suitable schedulegap for new workflow
tasks exists in their schedules. At regular intervals, if the
task queue is not empty and idle resource(s) exist(s) in the
cloud resource pool, the workflow scheduler tries to find a
suitable resource for the workflow tasks in the resource pool.
In Function 1, line 4, the value of the total weight is checked.
Note that the totalweight denotes the highest value of the
weight for each assignment of a new workflow task, which
is set to the ideal CPU gap according to Eqs. (10-12). Thus,
the totalweight can be defined as follows [42]:

totalweight = weightmakespan + weightdeadline, (10)

where,

weightmakespan =
(makespanold −makespannew)

makespanold
, (11)

weightdeadline =
(nondelayednew − nondelayedold)

nondelayedold
, (12)

whereby makespanold and makespannew represent the ex-
pected makespan of the current schedule of workflow tasks
and the makespan of the new schedule of workflow tasks,
respectively. Further, nondelayedold and nondelayednew de-
note the number of workflow tasks executed within the
deadline before and after the workflow task assignment,
respectively. The proposed algorithm searches for all gaps
on every available resource and selects the best gap. If
totalweight > 0 (see Function 1, line 3), the current map-
ping is taken as the best schedule. If there is no proper
schedule in the beginning of the schedule, the algorithm
searches for the gap between the task on the current po-
sition, τi, and the next task τi+1. If all the schedule posi-
tions are tested and there no better performance has been
found, the workflow returns to the initial position. Note
that NewSchedule has a lower number of tardy tasks, if
the value of weightdeadline is positive.

Fig. 4 depicts an illustrative example of scheduling
multiple workflows. Two workflows, WA and WB , are to
be scheduled on two resources, R1 and R2. For work-
flow WA, the scheduler first assigns {τA1, τA2, τA3, τA6},
{τA5, τA7}, and {τA4, τA8}, respectively. The scheduler
schedules {τB1, τB2, τB4} on the gap found before τA5.
Similarly, tasks {τB3, τB5, τB6} are scheduled on the gap
between τA4 and τA8. Task τA5 starts at time 50, when its
predecessor has already finished its execution. The time
complexity to find the resource, which has minimum execu-
tion time, is O(mW ), where W is the number of workflows
and m denotes the number of allocated resources.

4.3.3 Advantages of CWSA Scheduling Policy
In the following, we discuss the superiority of CWSA policy
over the alternative scheduling schemes under considera-
tion. FCFS uses the time instance when a workflow arrives
at the cloud scheduler to define the priority for all requests
associated with the workflow. This policy is inefficient as for
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Fig. 4: Strategies for scheduling multiple workflows.

increasing workload many workflows waiting for execution
may experience unnecessary idle time of some resources.
The EASY Backfilling policy is an example of production
batch schedulers, which is similar to FCFS but enables
backfilling in order to reduce resource fragmentation. It
processes the first task in the queue and reserves the earliest
possible time slot. In principle, it is able to run under the
FCFS policy, but other tasks in the queue are scheduled op-
portunistically as nodes become available as long as they do
not interfere with the reservation of the first task. However,
re-computing the tasks’ priorities and sorting them at each
scheduling event may cause tasks to be delayed. On the
other hand, MCT assigns tasks in an arbitrary order to the
worker node based on their minimum completion time. This
may cause some tasks to be assigned to resources that do not
provide the minimum execution time.

In contrast to these policies, our proposed CWSA policy
exhibits less context switching and thus outperforms the
former ones. Context switching corresponds to the time
period needed for switching between two tasks, i.e., bring-
ing a waiting task into execution and sending an execution
task into terminate/waiting state. If the total time of exe-
cution of all tasks is assumed to be M , then the context
switching time equals M−[sum of all tasks (waiting time +
execution time)]. We executed each scheduling policy and
recorded the context switching information with our script
using Linux system call schedule(); schedule() calls context-
switch, which is responsible for switching from one task
to another one when the new task has been selected by
schedule().context-switch(). Alternatively, lmbench and Perf
could be used to trace context switching information.

The main advantage of the CWSA scheduling policy
is its ability to allocate resources at a higher speed for
increased schedule lengths of workflows. If shorter sched-
ule lengths are required, it assigns the workflows to the
resources at lower speed. CWSA takes advantage of the
gaps between scheduled tasks. These idle periods can be
used to schedule other tasks, thereby reducing the overall
makespan. Further, the execution time of CWSA is shorter
than that of the other considered policies, as discussed next.

TABLE 1
Resource types and prices used (based on on-demand

instances offered by Amazon EC2, US East (N. Virginia)).

Type Core ECU1 RAM(GB) Storage(GB) Price($/hr)
m1.small 1 1 1.7 1×160 0.044
m1.medium 1 2 3.75 1×410 0.087
m1.large 2 4 7.5 2×420 0.175
m1.xlarge 4 8 15 2×840 0.35

TABLE 2
Workflow parameters and default values.

Parameters Value
Total number of workflow 1-20
Number of node per workflow 3,000
Bandwidth 100-1000 Mbit/s
Baud rate 10,000 Kbit/s

5 IMPLEMENTATION AND PERFORMANCE EVALUA-
TION

This section describes the experimental setup and simula-
tion results. Further, a proof-of-concept experiment is pre-
sented to validate our solution using real-world scientific
workflow applications, e.g., SIPHT and CyberShake.

5.1 Experimental Setup
The performance of the proposed scheduling policy is thor-
oughly evaluated using a discrete event cloud simulator
based on CloudSim framework [43]. CloudSim supports the
modeling and simulations of large scale cloud computing
environments on a single computing node, including service
brokers, resource provisioning, datacenters, and allocation
policies. Interested readers may refer to [43] for further
information about CloudSim. We extended CloudSim to
support the components shown in the proposed architecture
in Fig. 2 and scheduling algorithms. Since workloads have
different characteristics, no single elasticity (auto-scaling,
i.e., resource over-provisioning and under-provisioning) al-
gorithm is suitable for all workloads. There are mainly
reactive (rule-based) and predictive (proactive) auto-scaling
techniques classified in the literature. In this work, we
implemented rule-based auto-scaling in the QoS monitor
component of Fig. 2. Note that most of the cloud service
providers (e.g., Amazon EC2 and Rightscale) also apply
rule-based mechanisms to scale up/down VMs. For in-
stance, rules like: monitor CPU utilization (U) every 2 min,
[scale-up] If U ≥ 70% for 10 min, then add 1 VM of small
size, wait 4 consecutive 1 min intervals; [scale-down] If
U ≤ 30% for 12 min, remove 1 VM of small size, wait 5
min consecutive 1 min intervals. For VM reconfiguration,
we used an approach similar to the rule-based approach
described in [44], we designed rules for auto-scaling VMs.
The behavior of auto-scaling can be controlled by changing
the configuration file, where rules are defined. The rules
specify the upper and lower bounds of the number of VMs

1. One EC2 Compute Unit (ECU) is defined as the CPU power of
a 1.0-1.2 GHz of a 2007 Opteron or 2007 Xeon processor, as specified
in Amazon EC2 documentation. At the peak performance, one ECU
equals 4.4 gigaflops per second (GFLOPS) (see [28] and references
herein).
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Fig. 5: Mean makespan vs. total number of workflow.

and the conditions to triggers scaling. The infrastructure
level (physical and virtual) of Fig. 2 is modeled by the core
layer representing the original CloudSim datacenter, which
encapsulates sets of computing hosts that can be homoge-
neous/heterogeneous with respect to the configuration of
their hardware, i.e., CPU cores, storage, memory, and band-
width. A single datacenter is considered in our cloud model
and the datacenter is assumed to have sufficient resources.
The VMs/cloud resources are modeled Amazon AWS EC22

standard instance types and the parameters relevant for the
experiment are shown in Table 1. Each newly provisioned
VM needs several minutes to be booted-up. Therefore, a
boot-up time of 97 seconds is considered for each instance
as in [45].

Similar to the deadline assignment in [46], the deadlines
are calculated by identifying the smallest amount of time re-
quired to execute a single workflow [Dmin = minCP (ωi)],
which is the length of the critical path for the workflow
with the shortest critical path and the time required to
execute all the workflows equals [Dmax =

∑
CP (ωi)]. The

range [Dmin, Dmax] is then divided into equal intervals. We
assume that each workflow has a Dmax, in 2CP , 3CP and
4CP , where CP is the execution time of tasks in the critical
path of the DAG at the best available resource.

We used a VM billing interval of 1 hour (i.e., cost per
instance per hour). Thus, the usage is rounded up to the
nearest hour and any partial hours are counted as full hours
(e.g., 1.1 hours is rounded up to 2 hours). For illustration, the
pricing is designed based on Amazon’s m1.small instance
type of EC2 US East region (i.e, 1.7 GB of memory, 1 virtual
core, 160 Gb of instance storage, and instance price of $0.044
per hour). Other simulation parameters and their default
values are listed in Table 2.

5.2 Simulation Results

This section presents the simulation results and discusses
the obtained findings. We focus on finding the effective
makespan, execution time, resource utilization, and total
tardiness.

5.2.1 Makespan
This experiment compares the makespan of different
scheduling policies. The mean makespan is depicted in Fig.

2. Amazon Elastic Compute Cloud (Amazon EC2),
https://aws.amazon.com/ec2.

5. They are admitted to the workflow scheduler, which
utilizes the CPU gap to minimize idle time and thus im-
prove throughput. The highest makespan improvement was
obtained for CWSA. On average, CWSA policy is 57% better
than FCFS, 30% better than EASY Backfilling, and 16%
better than MCT. Our proposed CWSA policy is able to
efficiently utilize the resources, thereby enabling that more
tasks are completed in a shorter time. The trend of the
figure indicates that the makespan is slightly increasing
for a growing number of workflows. In fact, with FCFS
the makespan increases significantly, while with CWSA the
increase is less pronounced compared with the FCFS, EASY
Backfilling, and MCT policies.

5.2.2 Skewness of makespan
The skewness of makespan measures the degree of asym-
metry in the makespan data set. We calculated the skewness
of makespan and list the obtained results in Table 3. We
observe that the makespan has an asymmetric distribution.
The workloads are skewed, i.e., they experience abnormally
high and abnormally low values as they always change,
which in turn may degrade the performance.

TABLE 3
Average makespan, skewness of the makespan

and standard deviation of the makespan
for different scheduling policies.

Scheduling policies Average
makespan
(s)

Skewness
of the
makespan

Makespan
standard
deviation

FCFS 24422.62 -0.1297 819.50
CWSA 23294.57 0.4475 686.67
EASY Backfilling 23634.90 0.3884 724.20
MCT 23421.51 0.4509 714.68

5.2.3 Network Impact
Next, let us evaluate the network impact of the scheduling
policies. To do so, we calculate the average makespan,
skewness of the makespan, and standard deviation of the
makespan for different scheduling policies. These values are
listed in Table 3. We observe that the average makespan
time is shorter with CWSA and longer with FCFS. The
higher value of the standard deviation stipulates that the
communication costs vary significantly among the tasks of
the workflow.

5.2.4 Performance distribution using cumulative distribu-
tion function (CDF)
Next, we study the distribution of the performance variation
for different scheduling policies using the CDF of makespan.
The CDF captures the entire performance distribution vari-
ation. Fig. 6 depicts the CDF of the makespan for the FCFS,
CWSA, EASY Backfilling, and MCT policies. As we can see,
CWSA outperforms the other policies in terms of makespan
and it represents the most reliable scheduling policy, i.e., the
distribution of makespan time of the CWSA policy tends
to have a shorter makespan than the others, as shown in
Fig. 6. The FCFS and EASY Backfilling policies, however,
have a steep tail. Conversely, the FCFS policy has 25% of all
makespans being over 24900 seconds.
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5.2.5 Execution Time
This experiment evaluates the scalability of scheduling poli-
cies. The average execution time to execute the scheduling
policies averaged over 100 runs with number of workflows.
The performance result of each scheduling policy with 20
workflows is depicted in Fig. 7. The execution time of the
CWSA policy is smaller than that of the FCFS, EASY Back-
filling, and MCT policies. On average, the CWSA scheduling
policy is 91% faster than FCFS, 82% faster than EASY
Backfilling, and 70% faster than MCT. The execution time
appears to grow linearly with the number of workflows.
We observe that in the case of CWSA policy, the execution
time is lesser and the scalability is better with the increasing
number of workflows among others as it efficiently sched-
ules the workflow. Note that the time complexity measures
the amount of time required to execute an algorithm, which
is given by the upper bound of the amount of workflow
tasks performed.

5.2.6 Resource Usage
In this experiment, we evaluate the resource usage. Fig.
8 depicts the percentage of resource utilization of each
scheduling policy. A resource node can be idle when it
does not support all the hardware/software requirements
required by a queued task. The CWSA policy exhibits a
better resource utilization. On average, in the case of the
CWSA scheduling policy, the resource utilization is 19%
better than that of FCFS, 9% better than that of EASY
Backfilling, and 7% better than that of MCT. This is due
to the fact that the CWSA policy is able to schedule the task
in such a way that it keeps the system resources always
busy and efficiently utilizes the system’s computational
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resources. Further, the CWSA policy utilizes free resources
by executing unscheduled tasks in advance in order to
minimize costs. This indicates that maximizing the resource
utilization is an effective solution to minimize computing
units via an imposed deadline.

5.2.7 Tardiness
This experiment evaluates the tardiness of the workflows.
Fig. 9 shows the average tardiness for different scheduling
policies. In comparison with FCFS, EASY Backfilling, and
MCT scheduling policies, the average tardiness values are
smaller in the case of CWSA policy. On average, the CWSA
policy improves the tardiness by 48% compared to FCFS,
37% compared to EASY Backfilling, and 10% compared to
MCT policies. The average tardiness depends on the number
of workflows to be executed on the available machines. The
trend of the graph shows that tardiness slightly increases for
an increasing number of workloads. This clearly indicates
that the total tardiness strongly depends on the number of
available instances of virtual machines and workload. Intu-
itively, as the load increases, more workflows are subjected
to become tardy and may also experience a longer period of
tardiness. Such a situation may cause a time-critical work-
flow application to have an inopportune behavior. However,
notice that since the CWSA scheduling policy has a better
resource utilization (see Fig. 8), more tasks are able to be
completed in a shorter time (as execution time is faster than
that of others, see Fig. 7). Moreover, CWSA policy is able
to utilize the schedule gap more effectively and therefore
exhibits the smallest tardiness.

In overall, the proposed scheduling policy has shown its
effectiveness to improve the makespan and tardiness. On
the other hand, the execution time of CWSA scheduling
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policy is notably smaller than that of other scheduling
policies. The overall cloud resource utilization is important
from a resource owner’s point of view to optimize his or her
profit. As illustrated in Fig. 8, a better resource utilization is
achieved with the proposed CWSA policy.

5.3 Proof-of-Concept Experiment
This section presents the proof-of-concept experiment. We
evaluate the performance of the proposed CWSA schedul-
ing policy with real-world scientific workflow applications,
such as SIPHT (a typical structure of SIPHT workflow is
illustrated in Fig. 1) and CyberShake workflows. Note that
these workflows are widely considered as a benchmark in
the literature. Importantly, they represent a wide range of
application domains and have a diverse resource require-
ments. For instance, SIPHT workflow, from the bioinfor-
matics project at Harvard, is used to automate the pro-
cess of searching for sRNA encoding-genes for all bacterial
replicons in the National Center for Biotechnology Infor-
mation (NCBI) database [12]. CyberShake workflow is used
the Southern California Earthquake Center to characterize
earthquake hazards by generating synthetic seismograms.
CyberShake can be also classified as a data-intensive work-
flow with large memory and CPU requirements (see Ta-
ble 4). Interested readers may refer to [47] for further details
on these workflows.

5.3.1 Experimental Setup
In this experiment, we used the experimental setup, as
described in Section 5.1. The additional parameters used
in the experiment such as the characteristics and cate-
gorization of the considered scientific workflow applica-
tions are shown in Table 4. The medium and large size
of workflow applications are more compute-intensive. The
structure of these workflows comprise several components
such as pipeline, data distribution, data aggregation, and
data redistribution. The analysis and resource management
for such applications are complex due to the nature of the
unstructured (asymmetric) workflow hierarchy and the fact
that they cover a wide range of application domains and
have intensive resource requirements. We have generated
these workflows with the Pegaus workflow system [47]. It
generates the DAX (Directed Acyclic Graph in XML format)
of these workflow applications for a given number of tasks.
The DAX file for workflow contains a list of tasks and the
dependencies between them as well as the computation
time, and input/output data size of each task.

5.3.2 Results
We have run each scheduling policy 100 times for each
workflow application. We evaluated the performance using
the 99th percentile distribution of the makespan to represent
statistical measures of the scheduling policies for the SIPHT
and CyberShake workflow applications. The 99th percentile
distribution better characterizes the makespan distribution.
Figs. 10 and 11 compare the 99th percentile makespan of the
different scheduling policies for the SIPHT and CyberShake
workflow across a range of application sizes, respectively.
Both figures show that at small workloads, i.e., the size
of tasks is small, there exists no significant difference of

TABLE 4
Characteristics and categorization of

scientific workflow applications.
Tenant
Workload
Type

Workflow
Name

Number
of
Tasks

Type (I/O
Read/Write (GB),
Peak Memory
(MB), CPU (hours))

Small CyberShake 30, 50 High, High, High
SIPHT 30, 60 Low, Medium, Low

Medium CyberShake 100 High, High, High
SIPHT 100 Low, Medium, Low

Large CyberShake 1000 High, High, High
SIPHT 1000 Low, Medium, Low
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Fig. 10: 99th percentile makespan of different scheduling
policies for the SIPHT workflow application.
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Fig. 11: 99th percentile makespan of different scheduling
policies for the CyberShake workflow application.

the makespan between the scheduling policies. This is
because when the number of small tasks of CyberShake
and SIPHT decreases, the number of allocated computation
instances also decreases. As the size of workflow applica-
tion increases, the makespan quickly approaches the 99th

percentile value. In both cases, CWSA performs much better
than the other policies for large sizes of workflow. Overall,
the CWSA scheduling policy outperforms the other policies
for both workflow applications.

5.3.3 Cost Evaluation
The total cost of the execuction of a workflow is defined as
the product of the total execution time (also includes VM
overhead/boot-up time) of a workflow and per hour cost
of an instance type. The fractional consumption hours are
rounded up. Note that the cost of the execution of work-
flows not only depends on the scheduling policy but also on
the choice of VM instance types (see also Table 1) and the
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TABLE 5
Average cost ($) of scientific workflow execution.

Workflow Scheduling policies
FCFS EASY MTC CWSA

CyberShake
small 22.73 22.74 11.37 11.36
medium 45.46 45.46 22.73 22.73
large 136.36 113.64 91.94 90.91

SIPHT
small 159.09 113.64 91.91 90.90
medium 181.82 159.09 136.40 136.36
large 1136.36 886.36 772.73 636.36

financial budge of a tenant. That means cheaper resources
may be attractive, even though they might degrade the
performance. As a result, the overall costs may be higher.
Note also that the charge of instances is not necessarily
proportional to its computing power3.

The average execution cost obtained for each scientific
workflow is shown in Table 5. From the results, we observe
that the proposed CWSA scheduling performs better than
others in terms of cost by generating much cheaper sched-
ules. The CWSA algorithm shows a considerably lower cost
for CyberShake application while having a lower makespan.
On the other hand, as expected, SIPHT is a little costly
than CyberShake in every workload type. However, SIPHT
large workflow experienced significant performance gains
compared to other scheduling policies. This shows that the
cost of the execution of workflow varies depending on
the application and on the size of the workflow as well
as the structure of the workflow. Overall, we noticed that
the proposed solution is not only a cost-effective but also
a faster solution for the considered configurations. It is
worthwhile noting that even though we considered an on-
demand billing model, for the long-term usage, reserved
VM instances are much cheaper than on-demand model (see
also Amazon EC2 pricing).

6 CONCLUSION AND OUTLOOK

Cloud computing has been widely recognized as an essen-
tial computing paradigm to execute compute- and data-
intensive business process workflow (e.g., media process-
ing, analytics pipelines, orchestration of services, coordinat-
ing resources, people, information, and systems) and scien-
tific workflow applications for processing of large sets of
scientific data, as witnessed by the recent work on Amazon
SWF (Simple Workflow Service).

In this paper, we introduced a four-layered workflow
scheduling system. A novel CWSA scheduling policy was
proposed for scheduling workflow applications in a multi-
tenant cloud computing environment. An analysis of dif-
ferent performance metrics was carried out. An extensive
simulations was performed to evaluate the performance
of the proposed scheduling policy. The performance of
the CWSA was then compared with different scheduling
policies to highlight the performance and robustness of
the proposed solution. The obtained results show that our
CWSA outperforms other scheduling policies. Importantly,
CWSA was shown to utilize computational resources prop-
erly by reducing idle time of cloud resource nodes. Further,

3. Amazon EC2 Pricing: https://aws.amazon.com/ec2/pricing/

we conducted proof-of-concept experiments by employing
real-world scientific workflow applications. The proof-of-
concept experiment indicates that the proposed CWSA
scheduling policy offers significant improvements for larger
workflow applications. Importantly, a key lesson learned
from this study is that multi-tenancy helps improve the
utilization of resources.

Although we have demonstrated the advantages of
multi-tenant cloud environments for scheduling workflow
applications, there are several potential directions for future
work, including the development of a complex model of
scheduling policies by considering resource failures and
complex reservation scenarios for multi-tier application scal-
ing, where scaling may affect different applications. For the
future, we intend to further investigate the optimization of
the CWSA scheduling and apply it in the context of mobile
cloud computing.
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Québec Merit Scholarship Program for foreign
students of Fonds de Recherche du Québec-
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