
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

1

Automated Synthesis of Distributed Network
Access Controls: A Formal Framework with

Refinement
Mohammad Ashiqur Rahman and Ehab Al-Shaer
Department of Software and Information Systems

University of North Carolina at Charlotte, United States
Email: {mrahman4, ealshaer}@uncc.edu

F

Abstract—Due to the extensive use of network services and emerging
security threats, enterprise networks deploy varieties of security de-
vices for controlling resource access based on organizational security
requirements. These requirements need fine-grained access control
rules based on heterogeneous isolation patterns like access denial,
trusted communication, and payload inspection. Organizations are also
seeking for usable and optimal security configurations that can harden
the network security within enterprise budget constraints. In order to
design a security architecture, i.e., the distribution of security devices
along with their security policies, that satisfies the organizational security
requirements as well as the business constraints, it is required to ana-
lyze various alternative security architectures considering placements of
network security devices in the network and the corresponding access
controls. In this paper, we present an automated formal framework for
synthesizing network security configurations. The main design alterna-
tives include different kinds of isolation patterns for network traffic flows.
The framework takes security requirements and business constraints
along with the network topology as inputs. Then, it synthesizes cost-
effective security configurations satisfying the constraints and provides
placements of different security devices, optimally distributed in the
network, according to the given network topology. In addition, we provide
a hypothesis testing-based security architecture refinement mechanism
that explores various security design alternatives using ConfigSynth
and improves the security architecture by systematically increasing the
security requirements. We demonstrate the execution of ConfigSynth
and the refinement mechanism using case studies. Finally, we evaluate
their scalability using simulated experiments.

Index Terms—Security configuration; automatic synthesis; formal mod-
eling; security metrics; isolation.

1 INTRODUCTION

Organizational security requirements are becoming very
complex due to extensive use of various network services
and emerging security threats. In addition, most organiza-
tions are not only emphasizing the enforcement of the secu-
rity requirements but also requiring satisfaction of different
business constraints on usability and security deployment
cost. Providing a strong security in a network by exploring
different security design alternatives while resolving the
contention between the security and business constraints is
important as well as challenging.

The organizational security requirements are usually en-
sured by establishing necessary isolation measures between
the hosts. There are different isolation patterns which are
defined based on different security devices and their capa-
bilities. An isolation pattern signifies the type of security
resistance, such as traffic filtering (firewall), trusted commu-
nication (IPSec), payload traffic inspection (IDS), and hiding
traffic source identity (NAT/Proxy).

Any security design has to satisfy the business con-
straints of the organization, which are represented mainly in
terms of usability and deployment cost. The implementation
of isolation measures affects these constraints. While differ-
ent security devices provide different levels of isolations,
their impacts on the usability also often differ. For example,
the use of firewall-based access denial gives no usability
and the use of IPSec-based isolation pattern often reduce
the usability by causing some applications to be inaccessible
to a host. Similarly, the placement of security devices in
the network according to the chosen isolation measures is
crucial for deployment cost. The deployment of a security
device incurs cost and each isolation pattern cannot thus
correspond to the deployment of one or more security
devices. The routing paths for multiple traffic often share
one or more links and this sharing makes it possible to de-
ploy necessary security devices such that they are optimally
distributed in the network satisfying (i.e., implementing) the
security measures. Therefore, it is required to find the best
security isolation design at an affordable cost that maintains
the security and usability within an expected level.

In this paper, we present an automated framework for
the security architecture synthesis using constraint satisfac-
tion checking. We name this framework ConfigSynth. The
framework takes the network’s topology, isolation require-
ments, and usability and business constraints as inputs,
and formulates a model for the security design synthesis.
The model is solved using Satisfiability Modulo Theories
(SMT) [1] and the solution provides security configurations
with various isolation patterns in different segments of
the network, as well as physical placements of security
devices. ConfigSynth is a novel framework that incorporates

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

2

Security

Usability

Cost Security-Device
Placements

Security Policy

Configuration
Synthesis

SMT
Solver

Isolation
Specifications

Usability
Specifications

Device Placement
Model

Isolation, Usability,
and Cost Model

Constraint
Model

Network Topology and
Placement Strategy

Connectivity
Requirements

User-defined
Constraints

ConfigSynth

Cost
Specifications

Fig. 1. The architecture of the ConfigSynth framework. The architecture
shows the inputs to ConfigSynth and the outputs generated by it.

the security device placements in the network topology
within the design in order to model the optimal distribution
of security devices within the deployment budget. In [2],
we presented ConfigSynth and the preliminary results. In
this version, we extend the framework by introducing a
refinement mechanism that adapts the idea of hypothesis
testing to find an improved security architecture in a scal-
able manner. The framework can be used as a decision
support system to create optimal security configurations
for a network by exploring different design alternatives.
Our evaluation results show that ConfigSynth can efficiently
synthesize necessary security configurations for a network
with hundreds of hosts.

The rest of this paper is organized as follows: The ar-
chitecture of ConfigSynth, the corresponding formal models
for the security design synthesis, and its implementation are
described in Section 2. The security architecture refinement
mechanism is presented in Section 3. The evaluation results
regarding ConfigSynth and the refinement mechanism are
presented in Section 4. The related works are discussed in
Section 6. Finally, conclusions are drawn in Section 7.

2 SECURITY DESIGN SYNTHESIS MODEL

We start this section by presenting the architecture of Con-
figSynth. Then we describe the formal modeling of the
security design synthesis.

2.1 ConfigSynth Architecture

ConfigSynth follows a top-down security design automa-
tion approach in which the high level requirements dis-
aggregated into fine-grained security configurations. The
architecture of ConfigSynth is shown in Fig. 1. The synthesis
framework follows three main steps: (i) taking necessary
inputs, (ii) formally modeling the security architecture syn-
thesis problem according to the inputs, and (iii) encoding
the model into SMT logics and solving it using an SMT
solver to determine the security architecture.

ConfigSynth takes the following as its main inputs:
(i) the network topology, (ii) security (isolation) require-
ments, and (iii) business (usability and deployment cost)
constraints. The tool provides its user with three sliders in
order to select the requirements/constraints on the isolation
measure taken in the network, the usability of the system,

TABLE 1
Various Notations used in Formal Modeling

Notation Type Definition
g(i, j) Boolean Traffic flow from the host i to the host j under

the service g.
yki,j(g) Boolean The kth isolation pattern to be implemented

for the flow g(i, j).
xd
i,j(g) Boolean The dth (type of) security device to be de-

ployed on the routing path of the flow g(i, j).
Lk
i,j(g) Number Isolation score of the kth isolation pattern

when it is implemented for the flow g(i, j).
ci,j(g) Boolean The flow g(i, j) must be allowed.
ai,j(g) Number Rank or demand of the flow g(i, j).
bki,j(g) Number Usability of the flow g(i, j) when the kth

isolation pattern is implemented.
ldi,j,z,t Boolean A security device of the type d to be deployed

on the link li,j,z,t, i.e., the tth link on the zth

routing path from the host i to the host j.

and the cost for deploying necessary security devices. The
sliders are scaled from 0 to some upper limit (e.g., 10).
The tool also takes partial or complete specifications about
the qualities of isolation patterns, the demands of differ-
ent flows, and the deployment costs of different security
devices. The isolation requirements are conditioned on the
specifications of different isolation patterns along with their
relative order based on their capabilities. ConfigSynth mod-
els the functional mapping from each flow to an isolation
decision variable. Then, it calculates the overall isolation of
the network by accumulating isolation measures between
different host pairs under various services.

The usability is modeled based on the connectivity re-
quirements and the ranks of the service flows as provided in
the specifications. The connectivity requirements are mod-
eled as a set of rules, where each rule functionally maps a
flow to a decision variable. We model impacts of different
isolation patterns on the usability. The implementation of
an isolation measure is associated with a cost. The cost
depends on the security devices (i.e., device types and their
numbers) that are required for implementing the isolation
patterns. The number of security devices depends on the
network topology. ConfigSynth also models different invari-
ant and user-defined constraints on selecting the security
configurations. ConfigSynth formalizes the security design
synthesis problem as the satisfactions of all the constraints
with regards to isolation requirements and business con-
straints. ConfigSynth solves this security design synthesis
problem using Z3, a powerful SMT solver [3]. The solution
determines the isolation pattern for each service flow in the
network, such that the overall isolation in the network and
the usability of the system satisfy the associated require-
ments/constraints, while the cost for security deployment
does not exceed the budget.

2.2 Modeling of Network Topology
ConfigSynth models the network topology as a graph. The
network topology is modeled as the tuple 〈N,L〉, where N
is a finite set of network nodes, including hosts (H) and
routers (R), and L is a finite set of links. Each link physically
connects two nodes and, thus, L ⊆ N×N. It is assumed that
there can be at most a single link between a specific node
pair. Each host is identified by an ID (e.g., IP address). A
host may execute one or more services, which are accessed
by different hosts. A service is denoted using g ∈ G, where

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

3

G is the set of all services. The term g(i, j) defines the
flow between a pair of hosts {i, j}, where i is the source
and j is the destination, under a service g. Two hosts can
communicate through multiple services.

Each host pertains a set of running network services.
The organizational connectivity requirement is defined on
these services. The network topology model will be used in
determining the optimal placement of the security devices
which has been presented in Section 2.5.2.

2.3 Modeling of Isolation

We define isolation as the restriction on the connectivity, i.e.,
network communication. The communication between two
hosts can be restricted applying different security devices
or systems, such as firewall, IPSec, IDS, NAT, etc. For
example, a firewall can be placed to simply block some
traffic flows (i.e., complete isolation), while IPSec can be
placed to ensure authenticated transmission for the allowed
flows (i.e., restriction based on authorization). Both of these
devices are required to ensure authenticated and controlled
flow of different traffics. In order to formalize isolation, it
is required to define different isolation patterns, considering
different kinds of security devices, the levels of restrictions
they can enforce on the flows, and their impacts on the
usability. The objective of isolation requirement is to have
fine-grained security measures in the network. Therefore, it
is required to devise an appropriate combination of security
devices for providing fine-grained security controls.

2.3.1 Isolation Patterns

Isolation patterns can be network level, host level, or ap-
plication level. In this research, we consider the following
network level isolation patterns:

• Access denial. This is naturally enforced by a firewall.
• Trusted communication, i.e., authenticated and en-

crypted communication. IPSec devices are used to
build trusted path (a.k.a. tunnel).

• Payload inspection. This is done by an intrusion detec-
tion system (IDS).

ConfigSynth allows network administrators to define
isolation patterns considering different security devices
(primitive isolation) and their combinations (composite isola-
tion), along with their relative order based on the capabilities
and functionalities of the devices. A set of primitive isolation
patterns is shown in Table 2. Each pattern is represented
using an ID, k. As shown in the table, k = 1 denotes
’access denial’ and k = 2 for ’trusted communication’, and
so on. We formalize the isolation measures (i.e., the security
configurations) as a set of rules, where each isolation rule is
defined as follows:

yki,j(g),where, i, j ∈ H and g ∈ G

The term yki,j(g) indicates that corresponding kth isola-
tion pattern is required to be implemented between the host
pair {i, j} for service g. Notice that a host can represent a
group of hosts if they have the same properties with respect
to the operating system, running services, and users, and
they reside in the same subnet.

TABLE 2
Network Level Isolation Patterns

Isolation (k) Isolation Pattern Decision Score
1 Access Denial y1i,j(g) 4
2 Trusted Communication y2i,j(g) 2
3 Payload Inspection y3i,j(g) 1
4 Traffic Forwarding through Proxy y4i,j(g) 1
5 Traffic Forwarding through Proxy

with Trusted Communication
y5i,j(g) 3

TABLE 3
Security Devices

Id (d) Device Name Primitive Isolation Pattern
1 Firewall Access Denial
2 IPSec Trusted Communication
3 IDS Payload Inspection
4 Proxy Traffic Forwarding through Proxy

An application of an isolation pattern requires the de-
ployment of one or more security devices. Usually, an
isolation pattern is related to a particular type of security
device. This one-to-one matching is true for primitive iso-
lation patterns. In case of a composite isolation pattern,
it is required to deploy more than one security device.
The following equation models the relationship between an
isolation pattern and associated security device(s):

∀i,j,g, yki,j(g)⇒ xdi,j(g) (1)

Equation (1) specifies that if the kth isolation is selected
for the flow g(i, j), the dth (type of) security device is
required to be deployed between the host pair {i, j} (i.e.,
on the route of the flow). A particular value of d denotes
a particular type of security device. For example, as shown
in Table 3, d = 1 represents a firewall security device. If kth

pattern is a composite isolation pattern, multiple security
devices are required to implement the isolation pattern.
Hence, in this case, multiple xdi,j(g)s are true. Usually, a
security device deployment depends on the isolation pattern
only, not on the flows (i.e., i, j, or g). Equation (1) considers
this. Table 3 shows a list of network security devices and the
associated primitive isolation patterns.

2.3.2 Isolation Calculation
We define the isolation score (also named as rank) of the kth

isolation pattern between a pair of hosts {i, j} under the
network service g by the parameter Lk

i,j(g). The score of an
isolation pattern denotes its isolation capability compared
to others. The scores are computed based on the relative
order of the isolation patterns according to their isolation
capabilities. An administrator can provide the relative order
explicitly or partial information about the order. A simple
formal model is developed based on the given partial order
between different isolation patterns. The model generates
a complete relative order by assigning a value to each
isolation pattern. The value assigned to a pattern denotes
its (relative) isolation score. The highest value specifies the
maximum isolation score. It is plausible to assume the same
score (Lk) for a particular isolation pattern irrespective of
hosts and services. Table 2 shows an example of relative
isolation scores from the following partial information:

∀k 6=1, L
k < L1

(L2 > L3) ∧ (L2 > L4) ∧ (L5 > L2)

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

4

It is worth mentioning that this scoring of isolation
patterns is relative, and security requirements based on this
scoring system reflect the same relative meaning.

The decision variables yki,j(g), for all k, represent iso-
lation patterns between a pair of hosts {i, j} for the flow
g(i, j). These decision variables and associated isolation
weightsLk

i,j(g) are used to formally define the total isolation
(Īi,j) of j with respect to the incoming traffic from i. Īi,j is
formalized as follows:

Īi,j =
∑
g

∑
k

yki,j(g)× Lk
i,j(g)

The equation indicates that the isolation between a pair
of hosts {i, j} is the sum of the isolation measures taken for
different services between these hosts.

The isolation of a host depends not only on the hosts
that can connect to it, it also depends on the hosts that it can
connect to. For example, if a host can connect to the Internet,
the host can download malicious content from the Internet
and can get infected. However, the impact of such communi-
cation is less compared to the communication coming from
the other direction. Since the outgoing traffic from j to i
is the incoming traffic for i from j, the total isolation Ii,j
considering both the incoming and the outgoing traffic with
respect to j for the pair of hosts {i, j} is defined as follows:

Ii,j = αĪi,j + (1− α)Īj,i (2)

Here, α (0 ≤ α ≤ 1) is the weight for the isolation due
to the incoming traffic, while 1 − α is the weight for the
isolation due to the outgoing traffic. The total isolation score
of a host j is defined in (3).

Ij =
∑
i6=j

Ii,j (3)

Equation (4) represents the overall isolation in the net-
work (i.e., the network isolation) considering all of the hosts.

I =
∑
i

Ii (4)

2.4 Modeling of Usability
Business constraints like usability play a significant role in
synthesizing usable security configurations in a network.
For example, a higher network isolation can provide strong
defense, but the network usability might reduce to a level
which is unacceptable to the organization. In this subsection,
we discuss the formalization of the usability.

2.4.1 Connectivity Requirements
Every organization usually has a number of service flows,
which are essential for its successful operation. Each of these
connectivity requirements represents a flow that must be able
to communicate. Connectivity requirements are formalized
as a set of rules, where each connectivity rule defines the
mapping from a flow (i.e., a tuple of source, destination,
and service) to a decision variable c that represents whether
the flow is required to be allowed. Each rule is denoted as
ci,j(g), where i, j ∈ H and g ∈ G. Here, ci,j(g) is a binary
variable. When it is true, it represents that the service flow
g must be allowed from i to j. If it is false, then nothing
has been specified for this flow, i.e., the flow can either

be allowed or denied. CR represents the conjunction of all
connectivity requirements.

CR⇒
∧
i,j,g

ci,j(g) (5)

2.4.2 Usability Calculation
The usability of the network depends on the ranks of the
service flows between the hosts in the network. The rank of
a service flow denotes the demand of the flow. Each service
flow g(i, j) is associated with a rank, ai,j(g). These ranks
are expected to be given in the form of a relative order
by the administrator based on the organizational demand.
Partial information can be given, from which a complete
relative order can be derived, as it has been shown in the
case of the isolation patterns. If no specification is given
about the demand of a flow, it receives the default (i.e., the
minimum) rank. The usability of a service g running on a
host j is formalized by aggregating the usability scores of
all the flows corresponding to this service:

Sj(g) =
∑
i

∑
k

yki,j(g)× bki,j(g)× ai,j(g)

The application of an isolation pattern to a flow can affect
the usability of the flow. The parameter bki,j(g) represents the
usability of the flow g(i, j) when the kth isolation pattern is
implemented. We assume that the usability depends on the
isolation pattern, not on the host-pair (i.e., bki,j(g) = bk(g)).
The value of bk(g) can be determined based on the prior
knowledge of network security by considering the time or
effort required to get a service access under an isolation
measure. The valuation of the parameter bk(g), in the sim-
plest form, can be as follows: the ’access denial’ isolation
pattern reduces the usability to zero, i.e., ∀g, b1(g) = 0;
while other isolation patterns maintain the same usability,
i.e., ∀g,k 6=1, b

k(g) = 1. The usability Sj represents the accu-
mulated usability considering all of the services running on
a host j, as follows:

Sj =
∑
g

Sj(g)

Equation 6 adds up the usability scores corresponding to
all the hosts, which is ultimately the aggregation of the
usability scores for all the service flows in the network
This aggregated value represents the overall usability of the
network (i.e., the network usability).

U =
∑
j

Sj (6)

2.5 Modeling of Deployment Cost
The deployment of a security device incurs costs and an or-
ganization often has a budget limit for implementing secu-
rity measures. The deployment cost is the sum of the prices
of the security devices that are required to be deployed in
different segments of the network in order to implement
necessary isolation patterns between different host-pairs.
The number of security devices depends not only on the
isolation measures but also on how they are distributed
in the topology. The cost cannot be calculated from the
isolation measures alone. This is because of the fact that
there are usually similar types of isolation between multiple

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

5

host-pairs, and these host-pairs can share one or more links
for communication. In this case, placing a single security
device at one of the shared links may ensure the desired
isolation. Moreover, if there are more than one routing path
between a host-pair, we have to secure all of the alternative
paths. Therefore, modeling correct and optimal placements
of the security devices is very challenging, considering the
network topology, the isolation patterns, and the budget.

2.5.1 Flow Routes
ConfigSynth requires the flow routes between the hosts for
the purpose of determining the placements of the security
devices satisfying the isolation measures. A flow route, F z

i,j

is defined as a set of links {li,j,z,1, li,j,z,2, ...} ⊆ L, that form
a path from a source i to a destination j. As multiple routes
are possible between a pair of hosts, z indicates the index of
a flow route (i.e., the zth route), between the host-pair {i, j}.
The term |F z

i,j | denotes the path length, i.e., the number of
hops or links in the path. Fi,j denotes all of the flow routes
from i to j:

Fi,j ⇒
∧
z

F z
i,j

ConfigSynth finds the flow routes for a host pair by ap-
plying a path searching algorithm on the network topology.

2.5.2 Device Placements and Cost Calculation
Equation (1) specifies the security devices which are re-
quired to employ an isolation pattern. The placements of the
security devices on the flow routes are modeled from these
specifications. If an isolation pattern, e.g., ’access denial’,
is selected for the traffic from a host i to a host j, then
it is required to block the traffic through all possible flow
routes between {i, j}. Equation (1) specifies a firewall to
be deployed for implementing an ’access denial’ isolation
pattern. Hence, there should be a firewall deployed at least
on a link of each flow route. We formalize the placement of
a security device d for a particular pair of hosts as follows:

∀g xdi,j(g)⇒ ∀z∃tldi,j,z,t (7)

In the equation, ldi,j,z,t represents that a security device of
type d is deployed on the link li,j,z,t. It can be noted that if
there is a security device, e.g., firewall, on the flow route for
a host pair, this does not imply that the flow access between
the pair is denied. It is denied only if the ’access denial’
isolation pattern is specified for the host pair.

The placement of an IPSec device requires special mod-
eling which is different from that of the security devices
like firewall and IDS. The ’trusted communication’ isolation
pattern usually requires encrypted communication (i.e., tun-
nel) to take place throughout the unsecured or untrusted
part of the routing path. Moreover, to ensure an encrypted
tunnel between a host pair, it is required to deploy two
IPSec devices, one at the source side (start of the tunnel)
and another at the destination side (end of the tunnel). A
network administrator needs to specify the guidelines for
placing the IPSec gateways. The administrator can specify
the maximum number of hops (i.e., the number of links)
from the end-hosts that can be outside of the tunnel. For
example, it can be specified that the source-gateway and the
destination-gateway should be deployed within two hops

from the source and the destination, respectively. We model
this as a conjunction of three clauses:

∀g x2
i,j(g)⇒∀z(|F z

i,j | > (2× T)) ∧
(∃t(l2i,j,z,t ∧ (t ≤ T)) ∧
∃t′(l2i,j,z,t′ ∧ ((|F z

i,j | − t′) ≤ T)))

Here, T denotes the maximum number of hops that can be
outside of the tunnel. Hence, the second clause of the equa-
tion limits the number of hops between the source and the
source-gateway within T . The third clause ensures the same
between the destination and the destination-gateway. Now,
if the flow route between the source and the destination does
not have a hop length larger than 2T , it is not possible to
deploy ’trusted communication’ between this pair of hosts.
The first clause establishes this constraint.

For the deployment of the security devices, the deploy-
ment cost is computed as the summation of the costs of all of
the devices deployed in different links. We define Cd as the
average deployment cost of the security device d. Now, if ld

denotes whether a security device d is deployed on the link
l ∈ L, the total deployment cost C is computed as follows:

C =
∑
l∈L

∑
d

ld × Cd,where ld ⇒ ∃i,j,z,t, ldi,j,z,t (8)

2.6 Modeling Constraints
ConfigSynth synthesizes security configurations by solving
a number of constraints. In the following, we discuss these
constraints in different categories.

2.6.1 Threshold Constraints
In ConfigSynth, we have three generic threshold-based con-
straints in selecting the security measures (i.e., isolation
patterns) on the network flows.

TC : (I ≥ ThI) ∧ (U ≥ ThU) ∧ (C ≤ ThC) (9)

In the equation, ThI , ThU and ThC represent the slider val-
ues, i.e., the constraints on the network isolation, usability,
and deployment cost, respectively. The network isolation
and the network usability must be greater than or equal
to their respective threshold values, ThI and ThU . The
deployment cost must also be within the budget, ThC . Since
each slider value is selected from a scale of 0 to some upper
limit (e.g., 10), the slide values are adjusted with respect
to the maximum possible values of corresponding metrics.
For example, if Imax is the maximum possible network
isolation, V is the corresponding slider value, and V max

is the slider’s upper limit, then ThI is ImaxV/V max .

2.6.2 Invariant Constraints on Isolation Selections
There are different invariant constraints in ConfigSynth
which ensure the consistency between functional behaviors
of the isolation patterns and the business requirements.

IIC1 : yki,j(g)⇒ ∀ k̄ 6=k¬yk̄i,j(g)

IIC2 : ci,j(g)⇒ ¬y1
i,j(g)

The constraint IIC1 states that only one isolation pattern
can be selected for a flow. The constraint IIC2 ensures that
if ’access denial’ is chosen as the isolation pattern for a flow
from i to j, there cannot be any connectivity requirement for
that flow. IIC is the conjunction of all these constraints.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

6

TABLE 4
Assistance on Choosing Sliders’ Values by ConfigSynth

Isolation score = 10 : Usability score = 0
No flow is allowed to communicate. Each host is isolated from other hosts.
Isolation score = 0 : Usability score = 10
No isolation measure is taken on any flow.
Isolation score = 8.2 : Usability score = 1.8
Each flow is protected by ’access denial’ except connectivity requirements.
· · · · · · · · ·
Isolation score = 5 : Usability score ≤ 5
1/2 of the flows (50%) are protected by ’access denial’.
Isolation score 5 : Usability score ≤ 7.5
1/4 of the flows (25%) are protected by ’access denial’,
1/4 of the flows (25%) are protected by ’trusted communication’.
· · · · · · · · ·

2.6.3 User-defined Isolation Policy Constraints
User-defined constraints represent organizational require-
ments. Some examples are as follows:

UIC1 : g(i, j) ∧ (g = SSH)⇒ ¬y2
i,j(g)

UIC2 : ¬y1
i,ĵ

(g)⇒ (̄i = Internet) ∧ y1
ī,i(g)

UIC3 : ci,j(g) ∧ (g = WEB)⇒ ¬y2
i,j(g)

An organizational policy (UIC1) may state that IPSec
should not be deployed for a pair of hosts in the case
of SSH (Secure Shell)-based communication. The isolation
requirement for a particular type of flow can be defined
by stating that access will be allowed from a source i to
a specific destination ĵ under the service g, if the Internet
is not allowed to connect to i. This is modeled in UIC2.
The organizational policy may require that no web service
should be protected by the ’trusted communication’ isola-
tion pattern (UIC3), while the flow is already specified to
be allowed as a connectivity requirement. We use UIC to
denote all such user-defined constraints.

2.7 Implementation of ConfigSynth
The main objective of our configuration synthesis problem
is to maximize the security in the network by satisfying
various security requirements as well as the organization’s
business constraints. Thus, the synthesis problem is formal-
ized as the satisfaction of the constraint, (Constr), which is
the conjunction of all of the constraints as follows:

Constr ⇒ CR ∧ TC ∧ IIC ∧ UIC (10)

The satisfaction to this constraint provides necessary secu-
rity configurations, i.e., isolation patterns between different
host pairs (yki,j(g)s), along with the placements of necessary
security devices (lds).

2.7.1 SMT Encoding and Query Formulation
We implement our model by encoding the system configu-
ration and the constraints into SMT logics [1]. For encoding
the formalizations of the network topology, device config-
urations, traffic modeling, and the security and business
properties, we use mainly two types of terms: boolean and
integer. Boolean terms are used for encoding the boolean
configuration parameters and decision variables, such as
isolation patterns and device placements. The remaining pa-
rameters are modeled as integer terms. In our modeling, we
represent a host using an integer ID, which is not necessarily
in IP address format, since no IP address-based computation

Algorithm 1 Systematic Analysis of UNSAT Result
if Solver returns UNSAT then

Get the UNSAT-CORE U .
A is the set of all combinations of assumptions in U .
for Each combination of assumptions, A ∈ A do

Remove the assumptions in A from the query Constr.
if Solver returns SAT then

Get the Model,M.
Print each ThAi associated to the value of Ai ∈ A, as
found inM.

end if
end for

end if

is required in this model. Each service is also encoded as
an integer value (as an ID specifying a protocol-port pair).
ConfigSynth takes the system configurations, requirements
and constraints from a text file (input file).

Choices for Sliders’ Values: An administrator applies con-
straints on the network isolation, usability, and deployment
cost by selecting the associated sliders. Each slider has a
scale, e.g., from 0 to 10. A particular choice for a slider,
especially in the cases of isolation and usability, may not
give an exact understanding of the expected behavior. For
example, in the case of the isolation slider, the maximum
slider value(i.e., 10) represents that each host is isolated from
the rest (i.e., the ’access denial’ isolation pattern is applied
on each flow). On the other hand, the slider value of zero
represents that no isolation measure is taken in the network.
However, the level of security meant by a particular selec-
tion of the slider other than the maximum and minimum is
hard to envisage. Since a particular network isolation can be
achieved using different security configurations, depending
on the selection of the usability requirement, ConfigSynth
assists its users by providing some simple but useful exam-
ple scenarios, so that they can have an understanding of the
slider values with respect to the security configurations.

According to the given network topology, security re-
quirements, and business constraints, ConfigSynth presents
a number of security plans and the corresponding isolation
and usability scores. Table 4 shows an example of such an
assistance, considering the example referred to Section 2.8.
An isolation score of 8.2 and a usability score of 1.8 can
be achieved when each flow is protected by ‘access denial’,
except connectivity requirements. An isolation score of 5
and a usability score no more than 7.5 can be achieved when
a quarter of the flows are protected using ‘access denial’
and another quarter of flows are protected using ‘trusted
communication’. Therefore, when the isolation and usability
requirements are 7.5 and 2.5, respectively, it is evident that
the isolation measures cannot be all access denial, while a
larger number a flows than a half need to be protected by
‘access denial and ‘trusted communication’.

2.7.2 Synthesis Result Analysis
ConfigSynth uses Z3 SMT solver to check the verification
constraint (Constr), which provides a satisfiable (SAT) result
if all constraints are satisfied. The SAT result provides a
SAT instance, which represents the value assignments to the
parameters of the model. According to our objective, we
require the assignments of the following variables: (i) the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

7

(a)

(b)

Fig. 2. (a) An example network for synthesizing security configurations
and corresponding security device placements. An ID is assigned to
each of the hosts, routers, and links. (b) The solution to the example
problem, i.e., the placements of necessary security devices.

security configurations, i.e., the isolation variable (yki,j(g)),
between each pair of hosts in the network, and (ii) the
security device placements in the topology, i.e., the device
placement variable (ld) for each link. The security config-
urations and the device placements are printed in a text
file (output file) for the user. ConfigSynth also provides a
graphical representation of the output (i.e., the network
with the placements of the security devices) to its user.
Fig. 2 shows snapshots of such graphical representations
(the network before and after the synthesis).

UNSAT result and its analysis: If there is any disagree-
ment or inconsistency between the constraints, the SMT
solver gives an unsatisfiable (UNSAT) result. In order to
find the constraints that lead to the unsatisfied result, it
is required to get the UNSAT-CORE. The UNSAT-CORE
can be achieved through the use of hard and soft clauses
or constraints [3], [4]. In an SMT formula, a clause is
hard when it is must be satisfied, while a clause is soft
when it may be satisfied. Soft clauses are often specified
as assumptions in Z3. The SMT formula can be verified for
all or some assumptions. If the result is UNSAT, then the
list of assumptions that are unsatisfied are returned in the
UNSAT-CORE. The constraints that we take as hard clauses
are connectivity requirements (CR), invariant constraints
(IIC), and user-defined constraints (UIC). In contrast, we
consider threshold constraints (Equation 9) as assumptions.

By performing a systematic analysis of the UNSAT-
CORE, ConfigSynth shows the constraints that are required
to be tuned or modified in order to satisfy the model. We
follow Algorithm 1 to show all possible closed solutions. In
this way, ConfigSynth helps in identifying inconsistencies
in the constraints and provides satisfiable choices for the
constraints, which is an added support to network adminis-

TABLE 5
Input (Partial) to the Example

Number of Security Devices
3 # 1 for Firewall, 2 for IPSec, and 3 for IDS, while 0 for None
Isolation Specifications (partial orders)
2 # Device, Device, Comparison (1 for =, 2 for >, and 3 for >=)
1 2 2
2 3 2
Usability if an isolation pattern is applied
0 2 3
Cost of each isolation device (in thousand dollars)
20 18 15
Number of Hosts and Routers
10 8
Links
18
1 11
2 11
· · · · · · · · ·
Connectivity Requirements (each row for a host, which ends with 0)
3 0 # The flow from Host 1 to Host 3 must be allowed
4 0
1 2 0
2 0
3 4 0
3 4 0
1 2 0
1 0
0
1 0
Sliders’ Values (Isolation 0-10, Usability 0-10, Cost in thousand dollars)
6 5 90

TABLE 6
Selected Isolation Patterns for the flows in the Example

Destination Sources Classified according to Selected Isolation Patterns
Host Access Denial Trusted Com-

munication
Payload
Inspection

No Iso-
lation

1 5, 6 3, 4, 7, 8 9, 10 2
2 5, 6 3, 4, 7, 8 9, 10 1
3 − 1, 2, 7, 8 6, 9, 10 4, 5
4 − 1, 2, 7, 8 9, 10 3, 5, 6
5 1, 2, 3, 4, 7, 8, 9, 10 − − 6
6 1, 2, 3, 4, 7, 8, 9, 10 − − 5
7 5, 6 1, 2, 3, 4, 9, 10 − 8
8 5, 6 1, 2, 4, 9, 10 3 7
9 5, 6 7, 8 1, 2, 3, 4 10
10 5, 6 7, 8 1, 2, 3, 4 9

trators for synthesizing the best security specifications.

2.8 A Case Study
Fig. 2(a) shows a small network for which an optimal
security design will be synthesized based on the given input
file as shown in Table 5. In this example, the connectivity
requirements are considered as a list of allowed services
between different hosts. In order to keep the example
simple, we consider only three primitive isolation patterns
(i.e., ’access denial’, ’trusted communication’, and ’payload
inspection’). We also assume a single flow type (i.e., a single
service) between each pair of hosts. ConfigSynth gives a SAT
result for this example. From the resultant SAT instance,
we find the necessary isolation patterns along with the
necessary device placements. Fig. 2(b) shows the placements
of the security devices. Table 6 shows the isolation patterns.
For an instance, the first row of the table specifies the
isolation patterns that are selected on the incoming traffics
toward the host 1.

3 SECURITY ARCHITECTURE REFINEMENT

ConfigSynth provides a security architecture satisfying the
security requirements and business constraints, as we have
seen in the last section. We can compute the optimal so-
lution by running the ConfigSynth framework many times

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

8

ConfigSynth

Security

Usability

Cost Security-Device
Placements

Security Policy

Security
Architecture

Hypothesis
Testing

Security
Requirement

Tuning

Alternative Security Architectures

Fig. 3. The security architecture refinement framework.

by changing the isolation requirement, e.g., by running a
binary search algorithm within a range of maximum and
minimum isolation requirements. Unfortunately, from eval-
uation results (refer to Section 4), we have found that if the
isolation requirement is very close to the optimal value that
can be achieved for the given business constraints, the time
for executing the ConfigSynth framework turns out to be
significantly high, compared to the rest of the cases. In such
a case, the time to conclude whether there is a solution or
not is found to be notably high even when the number of
hosts is as small as 30 hosts. Moreover, if the network is
in a clean state, i.e., there is no given isolation measure as
well as security device placement, synthesizing a satisfiable
security architecture needs a long time as the search space
is large. On the other side, if there is already a partial
security architecture, the time to improve the architecture
by adding further security measures is significantly short.
Therefore, we adopt the concept of statistical hypothesis
testing for tuning or improving the security architecture
toward finding a security architecture closer to the optimal
one. Fig. 3 shows the corresponding extended architecture
of ConfigSynth.

In this section, we develop a mechanism for the security
architecture refinement based on the hypothesis testing-
based analysis. We also present a case study demonstrating
the security architecture refinement.

3.1 Hypothesis Testing-Based Refinement

In this refinement process, our objective is to disprove
the null hypothesis, which we take as “there is no better
security architecture within the given business constraints
other than the known best security architecture.” Thus, in
order to reject this null hypothesis, we need to prove the
alternative hypothesis, i.e., there are security architectures
significantly better than the known best security architec-
ture, which satisfy the given business constraints as well.
In this hypothesis testing, the standard error is considered
as 5% of the isolation provided by the known best security
architecture. Let us define N as the number of alternative
security architectures that will be used to verify our null
hypothesis. We would like to reject the null hypothesis if
we find just one better security architecture from the N
number of architectures. The reason of this idea is to increase
the refinement efficiency with respect to time, because each
search/synthesis for a security architecture consumes a sub-
stantial time.

ConfigSynth Resiliency
Constraints

Security Architecture, Ƶi

Look for the i (=1)th
Resiliency Architecture

Yes

Tune Ƶi using
ConfigSynth No

i < N Can reject the null
hypothesis?

Optimized Security
Configurations

Yes

No

Look for the i (=i+1)th Security Architecture

Sat?
No

Update the hypothesis
based on Ƶi

Start (i=1)

Fig. 4. The process flow diagram for the security architecture refinement.

We find that if we consider the significant level as 5%
and the standard deviation as 5% of the maximum isolation,
then if N is taken as 25, the null hypothesis can be rejected if
and only if one security architecture is found that offers an
isolation significantly better than the known best isolation.
If the known best isolation is 5, then the increase in isolation
needs to be around 10% of the known best isolation. It is
worth mentioning that, for a larger known best isolation
value, the increase requirement can be smaller in order to
reject the null hypothesis if there is a single security archi-
tecture that provides the increased isolation irrespective of
the others in the sample set. In the case of a smaller known
best isolation, a larger increase requirement is needed to
reject the null hypothesis. In Section 3.1.1, we present the
calculation process with regards to the hypothesis testing
considering the above mentioned parameters, showing the
basis of this refinement mechanism. In this mechanism,
the potential of Type II error is unknown when we have
N number of alternative security architectures, as we do
not know the maximum number of alternative security
architectures. However, if the number of architectures is less
than N , there is no Type II error.

3.1.1 Selection of Parameter Values in Algorithm 2
We adopt the one-sided test in our hypothesis testing mech-
anism. As we look for better security architecture in the
refinement process, we consider right-sided test. That is,
alternative hypothesis specifies the set of values strictly
greater than the critical value. Here, we briefly present the
process of hypothesis testing for a particular scenario with
regards to the chosen parameters above. This illustration
will prove the correctness of this particular selection of
values for those parameters.

The Hypothesis Testing Process:

• According to the isolation scale of 0 to 10, known
best isolation, I = 5

• Sample size, i.e., the number of alternative security
architectures, N = 25

• Standard deviation, D = 0.05
• Standard Error, E = D/

√
(N) = 0.05 / 5 = 0.01

• Assume, each of N− 1 security architectures pro-
vides isolation I in average, while the rest one pro-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

9

Algorithm 2 Systematic Refinement of Security Architecture
Require: Synth is the synthesis model (i.e., the ConfigSynth

framework) as of Equation 10.
Require: Imean is the mean isolation.
Require: Null Hypothesis (H0): There is no security architec-

ture possible providing higher isolation score than Imean.
Require: N is the number of alternative security architectures,

i.e., the sample size.
Require: Imin is the minimum isolation requirement for a

security architecture to be a member of the sample set.
Imin ≤ Imean.

Require: ThI is initialized with Imin.
Require: X (e.g., 10% of Imean) is the minimum increase in the

isolation score provided by a security architecture in order
to reject the null hypothesis.

Require: Imax is the maximum isolation provided by a security
architecture after improvement.

Require: ZBest is the known best security architecture.
1: for i = 1 to N do
2: if Solver returns SAT then
3: Get the model,M.
4: FromM fetch the complete security architecture, Z (it

includes the isolation measures for all the flows and
security device placements for all the links).

5: From M fetch the applied security, Z̄ (it specifies the
flows with positive isolation measures and the links
with one or more device placements).

6: Update Synth by adding ¬Z .
7: Push or save Synth in the memory.
8: Set Imax to I as it is obtained fromM.
9: Update Synth by adding Z̄ .

10: Increase ThI with a small value Y , such that Y ≤ X ,
11: while Solver returns SAT do
12: Get the model,M′.
13: From M′ fetch the complete security architecture,

Z ′.
14: FromM′ fetch the security security, Z̄ ′.
15: Pop or retrieve Synth from the memory, that we

saved in Steps 7 or 17.
16: Update Synth by adding ¬Z .
17: Push Synth in the memory.
18: Update Synth by adding Z̄ .
19: Set Imax to I as it is obtained fromM.
20: Update Synth by adding Z .
21: ThI = ThI + Y .
22: end while
23: if Imax ≥ Imean + X then
24: Reject H0.
25: Update Imean with Imax.
26: Update ZBest with Z ′.
27: Reinitialize i with 1.
28: end if
29: Pop Synth from the memory, that we saved in Steps 7

or 17.
30: end if
31: Return ZBest.
32: end for

vides I’ isolation significantly greater than I . Let I ′ =
I + 10% of I . Then, I ′ = (5 + 0.5) = 5.5

• Thus, the average isolation provided by the security
architectures, Ī = (5 × 24 + 5.5) / 25 = 5.02

• Test Statistic, z = (1.004I - I) / E = 0.4I
• Significance Level, α = 5%
• At this significance level, from the table of z-scores,

Critical Value (CV) = 1.645
• Since z > CV, the null hypothesis is rejected.

Fig. 5. The placements of security devices after the refinement.

TABLE 7
Selected Isolation Patterns for the flows in the Example

Destination Sources Classified according to Selected Isolation Patterns
Host Access De-

nial
Trusted
Communication

Payload In-
spection

No Isola-
tion

1 5, 6, 9 − 3, 4, 7, 8, 10 2
2 5, 6, 8, 9 − 3, 4, 7, 9, 10 1
3 7, 8, 9, 10 5, 6 1, 2 4
4 7, 8, 9, 10 5, 6 1, 2 3
5 1, 2, 3, 4 7, 8, 9, 10 − 6
6 1, 2, 4 3, 7, 8, 9, 10 − 5
7 1, 3, 4 5, 6, 9, 10 2 8
8 1, 2, 3, 4 5, 6, 9, 10 − 7
9 1, 2, 3, 4 5, 6, 7, 8 − 10
10 1, 3, 4 5, 6, 7, 8 2 9

As we stated before, for a larger I , I ′ can be smaller,
while for a smaller I , a larger I ′ is required, to find a secu-
rity architecture providing an increased isolation greater or
equal to I ′ and so to reject the null hypothesis.

3.2 Refinement Mechanism

According to the hypothesis testing-based refinement idea
discussed in the previous subsection, we devise a mech-
anism as presented in Algorithm 2. The corresponding
process flow diagram is shown in Fig. 4. The mechanism
starts with a null hypothesis specifying an isolation value
(Imean) which is the isolation provided by the known best
security architecture. If the null hypothesis is rejected, then
we update the null hypothesis with the isolation of the
security architecture that beats the null hypothesis and start
the hypothesis testing from the beginning according to the
updated hypothesis. The refinement process continues until
we fail to reject the null hypothesis.

3.3 A Case Study

In this case study, we use the same network that we have
used in Section 2.8. The corresponding inputs are similar to
Table 5. Therefore, the objective of the refinement process
is to find the optimal security architecture that provides
the best isolation considering isolation 6 as the minimum
security requirement and satisfying the business constraints.
After the execution of Algorithm 2, we receive the best
security architecture, which provides isolation 6.63. The
placement of security devices is shown in Fig. 5 and the
security policy (i.e., the isolation measures) is presented in
Table 7. If we compare Table 7 with Table 6, we see that a
greater number of traffics are denied access, while trusted
communication is selected for most of the allowed traffic
flows. This selection of isolation patterns requires better
placements of security devices, which is reflected in Fig. 5.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

10

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Is
ol

at
io

n

Usability

The relation between Isolation and Usability
Cost = $100K
Cost = $200K

(a)

 0

 2

 4

 6

 8

 10

 20 40 60 80 100 120 140 160

Is
ol

at
io

n

Deployment Cost

The relation between Isolation and Deployment Cost
Usability = 5
Usability = 7

(b)

Fig. 6. (a) The maximum possible isolation with respect to the usability
constraint considering a fixed cost constraint (i.e., $200K) and (b) the
maximum possible isolation with respect to the deployment cost con-
straint considering a fixed usability constraint (i.e., 5).

As the algorithm executes, we observe 4 updates of the
null hypothesis. The null hypothesis starts with the known
best isolation 6. That is, the hypothesis specifies that there
is no security architecture that provides isolation greater
than 6 as well as satisfies the business constraints. This
null hypothesis is rejected by the first alternative security
architecture as we find a security architecture with isolation
6.07. Thus, the null hypothesis is updated with this isolation
6.07, i.e., there is no security architecture which provides
isolation greater than 6.07 as well as satisfies the business
constraints. Based on this updated null hypothesis, the
algorithm starts from the beginning with the empty set of
security alternatives. This null hypothesis is rejected by the
2nd alternative security architecture. We receive isolation
around 6.40 according to this architecture. Therefore, the
current null hypothesis is rejected, while the null hypothesis
is renewed with isolation 6.40. This null hypothesis is re-
jected, as we find that the 16th security architecture provides
isolation 6.44. The null hypothesis is updated according to
this new isolation. This null hypothesis is rejected again. It
is rejected by the 12th alternative security architecture as it
provides isolation 6.63. Thus, the null hypothesis is updated
again with isolation 6.63. This time, we cannot reject this up-
dated null hypothesis, as none of the 25 alternative security
architectures can provide isolation greater than 6.63.

4 EVALUATION

Here, we first present the analysis on the relationships
between the isolation, usability, and deployment cost. Then,
we present the performance (i.e., scalability) analysis of the
tool. We ran our experiments on different test networks.

 5

 5.5

 6

 6.5

 7

 7.5

80 90 100 110 120

Is
ol

at
io

n

Deployment Cost

Comparison Between Refined and Optimal Isolation
Optimal Isolation

Refined Isolation (Base Isolation 5)
Refined Isolation (Base Isolation 6)

(a)

 5

 5.5

 6

 6.5

 7

 7.5

 8

3 4 5 6 7

Is
ol

at
io

n

Usability

Comparison Between Refined and Optimal Isolation (2)
Optimal Isolation

Refined Isolation (Base Isolation 5)
Refined Isolation (Base Isolation 6)

(b)

Fig. 7. A comparison between the optimized isolation provided by the
refinement mechanism and the optimum isolation with respect to (a)
various deployment cost and (b) various usability constraints.

4.1 Analysis of the Relationships between Isolation,
Usability, and Deployment Cost Constraints

In this analysis, we ran a number of experiments consider-
ing the same network topology as shown in Fig. 2(a). The
impact of the network usability constraint on the network
isolation is shown in Fig. 6(a) under two deployment cost
constraints. We found that with the increase of the usability
constraint, the maximum possible isolation reduces. How-
ever, due to the connectivity requirements, the isolation
cannot be more than a particular point, although the us-
ability constraint is very low. At the lower values of the
usability constraint, the rate of the isolation decrease is less
in comparison to that at the higher values of the constraint.

The deployment cost constraint has an impact on the
isolation. Fig. 6(a) shows that in the case of the higher cost
constraint (i.e., $200K), a higher isolation is achieved com-
pared to the case of the lower cost constraint (i.e., $100K). A
higher cost allows ConfigSynth to deploy more security de-
vices, particularly IPSec devices in these experiments, which
helps in increasing the isolation. We also found that with
the increase of the usability constraint (i.e., from 0 to 7), the
difference between the maximum possible isolation values
in both of the cases reduces. At the usability value 7, we
found that the isolation difference sharply increases, then
slowly reduces. The reasons behind this behavior are that
different security devices have different prices and different
impacts on the usability (refer to Section 2). Even different
deployment aspects influence the deployment cost. For ex-
ample, IPSec-based security usually requires deployment of
two IPSec gateways close to the end hosts, which are at the
boundary of the core network. This does not allow many
hosts to share these gateways for implementing the ’trusted
communication’ isolation pattern. As a result, IPSec-based

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

11

security incurs a higher deployment cost compared to that
of the firewall- or IDS-based security.

Fig. 6(b) shows the relationship between the isolation
and the deployment cost more adequately, considering
two different usability constraints. We changed the cost
constraint and observed the maximum possible isolation.
Obviously, in the case of the lower usability constraint
(i.e., 5), the isolation is higher compared to the case of the
higher usability constraint (i.e., 7). We also found that after
a certain level, it is not possible to increase the isolation,
despite increasing the deployment budget. This is due to
the usability constraint. To increase the isolation after a
certain point, it is required to use the highly scored isolation
patterns (e.g., ’access denial’), which at the same time reduce
the usability.

4.2 Analysis of the Isolation Optimization Capability of
Refinement Mechanism

We compared the optimized isolation provided by the re-
finement mechanism with the optimum isolation found by
applying the brute-force method. We considered a random
network of 50 hosts and 10 routers, to execute the refinement
process (Algorithm 2) for receiving the optimized isolation
and compare this value with the optimum one. The results
are shown in Fig. 7(a) and Fig. 7(b), where we varied the
deployment cost and usability, respectively for two different
values of the base isolation requirement, 5 and 6. In the
first case, the usability constraint was kept at 5, while in
the second case the cost constraint was fixed at $100. As
shown in Fig. 7(a), we observed that the improved isola-
tion received after the refinement process is very close (<
10%) to the optimum value, and when the base isolation
requirement is high, the refined isolation becomes closer. We
observed similar characteristics in Fig. 7(b). However, with
the increase in the base isolation requirement, the execution
time of ConfigSynth also increases rapidly, which ultimately
increases the running time of the refinement process.

4.3 Scalability Analysis

Here we present the evaluation results demonstrating the
scalability of ConfigSynth and the refinement mechanism.

4.3.1 Methodology
We evaluated the scalability of ConfigSynth by analyzing
the time and memory required for synthesizing the config-
urations by varying the problem size and the constraints.
The problem size depends mainly on the number of flows,
since the synthesis problem considers the isolation pattern
for each flow. The number of flows mostly depends on
the number of hosts. We ran ConfigSynth in a machine
running Windows 7 OS. The machine was equipped with
an Intel Core i3 Processor and a 4 GB memory. The test
networks were randomly generated where the number of
hosts ranged from 50 to 1000 and that of routers from 8 to
20. The number of services between a pair of hosts ranged
from 1 to 3 (i.e., maximally 3 flows). Each of the isolation
and usability constraints was a value between 0 and 10, rep-
resenting a normalized score as 0 for no isolation/usability
while 10 for complete isolation/usability.

4.3.2 Performance of ConfigSynth

Impact of the Problem Size: Fig. 8(a) and Fig. 8(b) show the
model synthesis time with respect to the problem size. In
the first analysis, we considered two different scenarios. In
one scenario, the volume of the connectivity requirements
is 10% of all the flows possible between the hosts. In the
other scenario, the percentage is 20%. In this analysis, we
varied the problem size with respect to the number of hosts
and the corresponding results are shown in Fig. 8(a). We
observed a quadratic increase in the analysis time with
respect to the number of hosts. This is due to the fact that
the problem size depends on the number of possible flows
in the network. The number of flows is O(N2), where N is
the number of hosts and the number of services is constant.
The volume of the connectivity requirements also increases
with the increase in the number of flows. This increase in the
problem size requires a verification of more constraints. As
a result, the running time is increased to over O(N2). In the
second analysis, we varied the core network by changing
the number of routers in two different connectivity require-
ments. The results are presented in Fig. 8(b). In this case,
since the number of hosts in the network remains the same,
there is no increase in the number of flows. However, due
to the increase in the number of routers, the core network
becomes larger, where the hosts are more distributed and
more links turn out as the candidates for security device
placements. As a result, an increased search is required to
find a satisfiable model, which increases the synthesis time.

We analyzed the impact of the volume of the connec-
tivity requirements (i.e., the percentage of all flows that are
in the connectivity requirements) on the synthesis time. The
results are presented in Fig. 8(c). Though the number of total
flows in the network remains unchanged in this case, the
increase in the number of connectivity requirements adds
more constraints which decreases the possible options for a
satisfiable model. Hence, the synthesis time increases.

Impact of the Tight and Relaxed Constraints: We ana-
lyzed the impact of the tight or relaxed constraints on the
model synthesis time. Tightening (relaxing) the network
isolation or usability constraint means to increase (decrease)
the associated constraint value. On the other hand, tight-
ening (relaxing) the deployment cost constraint means to
decrease (increase) the constraint value. The analysis results
are shown in Fig. 9(a) and Fig. 9(b) varying the isolation
constraint and the deployment cost constraint, respectively.
In these analyses, we considered a fixed number of hosts
(300) and a fixed volume of connectivity requirements (10%
of all flows) in two different network usability constraints
(3 and 5 in a scale of 10). We observed that the execution
time increases significantly with the increase of the network
isolation constraint (see Fig. 9(a)). This is due to the reason
that increasing the isolation constraint reduces the number
of possible solutions to the model with respect to a partic-
ular usability constraint and a specific deployment budget.
As a result, usually an increased search (i.e., a longer time)
is required to find a solution. After a certain value of the
isolation constraint (i.e., 3 in Fig. 9(a)), when the requirement
is already tight, a small increase in the constraint increases
the synthesis time sharply.

We also observed almost similar behavior in the case

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

T
im

e
(S

ec
on

d)

Number of Hosts

Analysis Time w.r.t. Number of Hosts
Maximum 10% Connectivity Requirement
Maximum 20% Connectivity Requirement

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 8 10 12 14 16 18 20

T
im

e
(S

ec
on

d)

Number of Routers

Analysis Time w.r.t. Number of Routers
Maximum 10% Connectivity Requirement
Maximum 20% Connectivity Requirement

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5 10 15 20 25 30 35 40 45 50

T
im

e
(S

ec
on

d)

Percentage of Flows in Connection Requirement

Analysis Time w.r.t. Volume of Connection Requirement
Network with 200 Hosts
Network with 300 Hosts

(c)

Fig. 8. The security architecture synthesis time with respect to: (a) the number of hosts, (b) the number of routers, and (c) the volume (in percentage)
of the connectivity requirements.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(S

ec
on

d)

Isolation Constraint

Analysis Time w.r.t. Isolation Constraint

Usability Constraint = 3
Usability Constraint = 5

(a)

 100

 200

 300

 400

 500

 600

 700

 800

 1000 1200 1400 1600 1800 2000

T
im

e
(S

ec
on

d)

Deployment Cost Constraint

Analysis Time w.r.t. Deployment Cost Constraint
Usability Constraint = 3
Usability Constraint = 5

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 150 200 250 300 350 400

T
im

e
(S

ec
on

d)

Number of Hosts

Analysis Time in Unsat Cases
Unsatisfiable Case

Satisfiable Case

(c)

Fig. 9. (a) The impact of the isolation constraint on the model synthesis time, (b) the impact of the deployment cost constraint on the model synthesis
time and (c) the comparison between the satisfiable and unsatisfiable cases with respect to the model synthesis time.

of the deployment cost constraint (see Fig. 9(b)). In this
case, the higher the budget is, the more satisfiable options
are available. Hence, the synthesis time decreases with the
increase of the budget. We observed that after a certain
increase in the budget ($1500K), the synthesis time does not
decrease further. The number of potential satisfiable models
does not increase any more despite increasing the budget.

Performance in the Unsatisfied Cases: In the cases of very
tight constraints (e.g., very high values for isolation and
usability constraint or low values for the cost constraint),
there may not be any satisfiable model. In these cases, the
SMT solver takes slightly longer time to give the unsatisfi-
able (UNSAT) results compared to the time required in the
satisfiable cases. Because, in an unsatisfiable case, the SMT
solver requires verifying all possible ways to conclude that
there is no solution satisfying all of the given constraints.
Fig. 9(c) shows the comparison between the satisfiable and
unsatisfiable cases with respect to the synthesis time.

Memory Requirement: We evaluated the memory require-
ment for executing ConfigSynth with respect to the SMT
solver [3]. We varied the number of hosts to understand
the impact of the problem size on the memory requirement.
The memory requirement actually specifies the memory
required for modeling the synthesis problem, which is the
sum of the memory for modeling the system parameters and
that for modeling the constraints. The analysis results are
shown in Table 8 in two different scenarios of the network
isolation constraint. In the first scenario, the isolation con-
straint is 3 (in a scale of 10), while in the second scenario, this
is 5. We observed that the memory requirement increases
quadratically (O(N2)) with the increase in the number of
hosts. The table shows that the memory requirement in the

TABLE 8
The memory requirement (MB) w.r.t. problem size

Hosts Scenario 1 Scenario 2
100 1.93 2.39
200 6.71 6.59
400 30.48 41.72
600 113.99 160.70
800 376.21 532.89

second scenario is larger than the memory requirement in
the first scenario. If the isolation constraint is high, the solver
requires searching more options for a satisfiable solution,
which incurs more memory.

4.3.3 Performance of ConfigSynth Refinement Framework
Fig. 10(a) and Fig. 10(c) show the execution time of the Con-
figSynth refinement mechanism with respect to the number
of hosts and the number of routers, respectively. In the first
case, where we varied the problem size with respect to
the number of hosts, we considered two different sizes of
connectivity requirements. In one scenario, the volume of
the connectivity requirements is 10% of all possible flows,
while in the second scenario, the percentage is 20%. The
execution times are shown in Fig. 10(a). We observed that
the refinement time increases rapidly with the number of
hosts. This is because the time for executing the ConfigSynth
framework, as we have already seen in Fig. 8(a), follows a
quadratic order. Moreover, the refinement process needs to
execute ConfigSynth for many times. However, the overall
time of executing the refinement mechanism is not simply
the multiplication of the number of times the ConfigSynth
framework is executed. This is because the security architec-
ture is often improved based on an initial security architec-
ture with a relaxed isolation requirement, and the execution

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

13

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 50 100 150 200 250 300 350 400 450 500

T
im

e
(S

ec
on

d)

Number of Hosts

Refinement Time w.r.t. Number of Hosts
10% Connectivity Requirement
20% Connectivity Requirement

(a)

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90

T
im

e
(S

ec
on

d)

Existing Security Measures (%)

Synthesis Time w.r.t. Existing Security Policy
Number of Hosts: 100
Number of Hosts: 200

(b)

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 6 8 10 12 14 16 18

T
im

e
(S

ec
on

d)

Number of Routers

Refinement Time w.r.t. Number of Routers
10% Connectivity Requirement
20% Connectivity Requirement

(c)

Fig. 10. The security architecture refinement mechanism execution time with respect to: (a) the number of hosts, (b) the existing security, and (c)
the number of routers.

time of ConfigSynth in such a case is significantly smaller
compared to that of ConfigSynth in a clean state. Fig. 10(b)
justifies this argument, which represents the execution time
of ConfigSynth with respect to the size of security config-
urations that are already existing. We observed significant
decrease in the synthesis time even when only 10% of the
security configurations preexist. It is also worth mentioning
that the isolation, attained through the refinement process,
most often cannot be achieved within the execution time of
the refinement process, if the same isolation is given as the
initial isolation requirement.

In the second case, the core network is varied by chang-
ing the number of routers. We again considered the same
two different connectivity requirements. The results are pre-
sented in Fig. 10(c). As we have explained in Section 4.3.2,
due to the increase in the number of routers, the core
network becomes larger and more links turn out as the
candidates for security device placements. Therefore, the
synthesis time increases, so does the execution time of the
refinement mechanism increases.

5 DISCUSSION

This section briefly discusses the limitations of this work
with respect to the utility and the scalability of ConfigSynth.

5.1 Utility
The synthesis of the security architecture depends on three
metrics: isolation, usability, and deployment cost. These
metrics are formally defined, which include the relation
between one another and the calculation of each metric’s
score. Each score is compared with an associated constraint,
which is a quantitative value and set using a slider (e.g., a
value between 0 to 10). A security administrator requires to
set the isolation, usability, and deployment cost constraints
by selecting the corresponding sliders. As we discussed in
Section 2.7.1, these slider values, especially that correspond
to isolation and usability constraints, cannot provide a clear
understanding of the security or usability status. Moreover,
as there is no exact comparison of the security measures,
a precise scoring of these measures is quite impossible. Al-
though it is possible to order them according to the pairwise
relative performance comparisons, this can only provide an
abstract understanding of the security. Therefore, an exact
assessment of the security measures with regards to the
isolation capability will increase the efficacy of ConfigSynth.
A similar argument is true for the usability scores.

5.2 Scalability
Our evaluation results show that the time and memory
requirements of ConfigSynth increase quadratically with the
increase in the problem size. However, a synthesis problem
with 500 hosts (i.e., several thousands of flows) needs 800
seconds and 100 MB memory to find a satisfiable solution
when the given network is in a clean state. Apparently, it
may seem that this number of hosts is small compared to
a large enterprise network. However, in most of the large
networks, usually many of the hosts exhibit similar prop-
erties. They are running the same OS, services, and even
operated by the same level of users (e.g., a student lab in a
university or a customer service center in an organization).
They usually reside under the same subnet. The security
configuration for such a group is expected to be the same.
Therefore, this group can easily be assumed as a single host.
Moreover, in an enterprise network the overall number of
services running on the hosts are also limited. Thus, our
model is adequately efficient for an enterprise network.

If there are some security measures including security
devices already deployed, the execution time is found to be
significantly smaller (refer to Section 4.3.3). Therefore, the
rectification of the security design of a large enterprise net-
work, which is mostly the case for an existing network, can
readily be done with the help of ConfigSynth. The proposed
security architecture refinement mechanism is developed
leveraging this incremental design concept and it can find
the near-optimal security architecture in a plausible time (re-
fer to Section 4.3.3). A parallel execution of the iterative steps
of the refinement mechanism would significantly increase
the scalability of the security architecture design process.
This idea remains as a future extension to this work.

6 RELATED WORK

Throughout the last decade, security policy misconfigura-
tions have been studied extensively in literature [5], [6], [7],
[8], [9], [10], [11]. In these works, the formal definition of
security configuration anomalies with respect to the deploy-
ment of network security devices, mainly firewalls, have
been presented. Different algorithms were also proposed
to discover configuration inconsistencies. Unlike this static
and offline analysis of network security, Khurshid et al.
recently proposed VeriFlow, a runtime and fast security
verification framework [12]. This framework leverages Soft-
ware Defined Networking (SDN) layers and verifies the new
forwarding entries with the security constraints by placing

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

14

itself between the controller and the forwarding devices.
FlowGuard is another security analysis framework pro-
posed for SDN-based dynamic networks [13]. This frame-
work is capable of verifying the accuracy of the firewall
policy while the networking states are frequently changing.
It can also perform resolution of firewall policy violations.
These works follow the traditional bottom-up approach of
analyzing existing security policies, which can only help in
trial and error-based design of security architectures, but
cannot be used to automatically synthesize policies based
on security and business requirements.

Several researches have been done on attack graph-based
security configuration analysis. Sheyner et al. proposed a
symbolic model checking-based mechanism for automated
generation and analysis of attack graphs [14]. A similar re-
search was performed in [15], [16] where a declarative logic-
based approach was used to develop an efficient attack-
graph generation tool, named MulVAL. Few works have
been proposed to find security hardening measures using
attack graphs by limiting potential attack propagations [17],
[18]. In [19], the authors model the selection of security
hardening measures to minimize the residual damages in a
predefined attack graph within a certain budget. In another
work, a technique was proposed to place IDS sensors and
prioritize IDS alarms using attack graph analysis such that
the IDS sensors are placed to cover all these paths [20].
Lippman et al. proposed a tool named NetSPA in [21]
for ensuring defense in depth in a network. NetSPA uses
attack graphs to measure the network security by drawing
predictive graphs and provides an ordered or prioritized
list of defense recommendations based on the effects of
different vulnerability patches on mitigating the identified
attack graphs. Homer and Ou proposed a network security
management framework in [22] by analyzing attack graphs.
This framework first uses MulVAL to generate all possible
attack paths, creates SAT-based Boolean logics relating con-
figurations with the attacker’s actions, usability constraints,
and finally solves the model to find the network reconfig-
uration plan (e.g., vulnerability patching, access blocking,
etc.). Each security measure is associated with a cost, which
is minimized using MinCostSAT. However, these works do
not consider the placement of network security devices
(e.g., firewall, IPSec, IDS, etc., altogether) which is crucial
for implementing security measures within the deployment
budget. Moreover, these works need to generate all attack
graphs to find necessary security configurations.

Risk analysis and security hardening have also received
a lot of attention from the researchers. In [23], the authors
present a methodology to model the composition of vul-
nerabilities as attack graphs obtainable from topological
vulnerability analysis (TVA) system. By analyzing attack
graph, they explore different concepts and issues on a metric
to quantify potential attacks. Singhal and Xou describe the
security metrics to compute the overall risk in an enterprise
system in [24]. They present an attack graph-based system
architecture and security metrics for an enterprise network
in order to quantify the overall risk, which are essential for
the decision makers in taking sensible security management.
In [25], Ahmed et al. presented a framework of security
metrics that objectively quantifies security risk factors con-
sidering both the network security policy and the services

running on hosts. In [26], we presented a generic formal
model that can assess the network risk by considering tran-
sitive reachability for understanding potential attack paths.
We also presented an automated firewall policy generation
mechanism by modeling the problem as a constraint satis-
faction framework. However, none of these works address
the problem of automatic security architecture design con-
sidering security and business constraints.

The research on the security design synthesis is in a
premature stage. ConfigAssure is a requirement solver pre-
sented in [27]. The tool takes security requirements and
configuration variables as inputs and produces the values
of the configuration variables as outputs that make the
requirements true. ConfigAssure requires complete and well
defined properties and it can not reason about the optimal
configuration based on isolation, usability and deployment
cost. In [28], FADES (Formal Analysis and Design approach
for Engineering Security) is proposed with the objective of
bridging the gap between formal requirements and design
for security requirements. In the works [29], [30], Zhang
and Al-Shaer presented procedural approaches of gener-
ating firewall configurations. In [30] they also considered
the device deployment cost. However, these works only
describe generation of firewall policy configurations and
do not consider different isolation measures (i.e., firewalls,
IPSec, IDS, etc.) in the context of security requirements,
usability satisfaction, and deployment cost constraints. In
addition, these works cannot do the optimal placements of
security devices in the network. Hence, none of the above
works generates a security design architecture considering
the security requirements and business constraints explor-
ing various security design alternatives in determining sat-
isfiable security configurations, which is the major thrust of
this research work.

7 CONCLUSION

In this paper, we have presented an automated framework,
ConfigSynth, for synthesizing correct and cost-effective net-
work security configurations. It formally models the net-
work topology, hosts and possible traffic flows, security
requirements in terms of isolation, placements of necessary
security devices distributed in the network, and the orga-
nizational business constraints in terms of usability and
deployment cost, along with different invariant and user-
defined constraints. Then, the framework formalizes the
security design synthesis problem as the conjunction of
all the requirements and constraints. It solves the problem
using an efficient SMT solver that results in an optimal
network security design along with optimal placements
of security devices. We have also developed a refinement
mechanism utilizing ConfigSynth that adapts the idea of
hypothesis testing to find an improved security architecture
in a scalable manner. We evaluated ConfigSynth as well as
the refinement mechanism in different synthetic networks
and found that the proposed solutions scale reasonably
well with respect to the problem size. In future, we would
like to extend our model in order to incorporate host and
application level isolation patterns. We would also like to
address especial cases like the security against denial of
service attacks, which needs a mixed use of security devices.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2585108, IEEE
Transactions on Parallel and Distributed Systems

15

In our future work, we would like to develop a formal
framework for the automated design of resilient networks
considering diversity, redundancy, and recoverability.

REFERENCES

[1] L. de Moura and N. Bjørner, “Satisfiability modulo theories: An
appetizer,” in Brazilian Symposium on Formal Methods, 2009, pp.
23–36.

[2] M. Rahman and E. Al-Shaer, “A formal approach for network
security management based on qualitative risk analysis,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), May 2013, pp. 244–251.

[3] L. de Moura and N. Bjrner, “Z3: An efficient smt solver,” in
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, 2008, pp. 337–340.

[4] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-
Silva, “Iterative and core-guided maxsat solving: A survey and
assessment,” Constraints, vol. 18, no. 4, pp. 478–534, Oct. 2013.

[5] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), March
2004, pp. 2605–2616.

[6] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verifica-
tion of ipsec and vpn security policies,” in Network Protocols, 2005
13th IEEE International Conference on, Nov 2005, pp. 259–278.

[7] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: a toolkit for firewall modeling and analysis,” in IEEE
Symposium on Security and Privacy, May 2006, pp. 199–213.

[8] C. C. Zhang, M. Winslett, and C. A. Gunter, “On the safety and
efficiency of firewall policy deployment,” in IEEE Symposium on
Security and Privacy, 2007.

[9] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security,” in IEEE International Conference on Net-
work Protocols, Oct 2009, pp. 123–132.

[10] P. Bera, S. Ghosh, and P. Dasgupta, “Policy based security analysis
in enterprise networks: A formal approach,” IEEE Transactions
on Network and Service Management, vol. 7, no. 4, pp. 231–243,
December 2010.

[11] M. Rahman and E. Al-Shaer, “A declarative approach for global
network security configuration verification and evaluation,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), May 2011, pp. 531–538.

[12] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time,” in
the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013, pp. 15–27.

[13] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: Building ro-
bust firewalls for software-defined networks,” in the 3rd Workshop
on Hot Topics in Software Defined Networking, 2014, pp. 97–102.

[14] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” in IEEE
Symposium on Security and Privacy, 2002, pp. 273–.

[15] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A logic-
based network security analyzer,” in Proceedings of the 14th Confer-
ence on USENIX Security Symposium, 2005.

[16] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, 2006, pp. 336–345.

[17] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs, “Efficient minimum-
cost network hardening via exploit dependency graphs,” in Com-
puter Security Applications Conference, 2003. Proceedings. 19th An-
nual, Dec 2003, pp. 86–95.

[18] I. Kotenko and M. Stepashkin, “Attack graph based evaluation of
network security,” in 10th IFIP International Conference on Commu-
nications and Multimedia Security, 2006, pp. 216–227.

[19] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal
security hardening using multi-objective optimization on attack
tree models of networks,” in 14th ACM Conference on Computer and
Communications Security (CCS), 2007, pp. 204–213.

[20] S. Noel and S. Jajodia, “Attack graphs for sensor placement,
alert prioritization, and attack response,” in Cyberspace Research
Workshop of Air Force Cyberspace Symposium, 2007.

[21] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz,
M. Artz, and R. Cunningham, “Validating and restoring defense
in depth using attack graphs,” in IEEE Military Communications
Conference (MILCOM), Oct 2006, pp. 1–10.

[22] J. Homer and X. Ou, “Sat-solving approaches to context-aware
enterprise network security management,” IEEE JSAC Special Issue
on Network Infrastructure Configuration, vol. 27, no. 3, pp. 315–322,
Apr. 2009.

[23] L. Wang, A. Singhal, and S. Jajodia, “Measuring the overall secu-
rity of network configurations using attack graphs,” in 21st Annual
IFIP WG 11.3 Working Conference on Data and Applications Security,
2007, pp. 98–112.

[24] A. Singhal and X. Ou, “Techniques for enterprise network security
metrics,” in 5th Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information Intelligence Chal-
lenges and Strategies, 2009, pp. 25:1–25:4.

[25] M. S. Ahmed, E. Al-Shaer, M. Taibah, and L. Khan, “Objective
risk evaluation for automated security management,” Journal of
Network and Systems Management, vol. 19, no. 3, pp. 343–366, Sep.
2011.

[26] M. A. Rahman and E. Al-Shaer, “A formal approach for net-
work security management based on qualitative risk analysis,”
in IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM), May 2013, pp. 244–251.

[27] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastruc-
ture configuration synthesis and debugging,” Journal of Network
and Systems Management, vol. 16, no. 3, pp. 235–258, Sep. 2008.

[28] R. Hassan, S. Bohner, S. El-Kassas, and M. Hinchey, “Integrating
formal analysis and design to preserve security properties,” in
42nd Hawaii International Conference on System Sciences, Jan 2009,
pp. 1–10.

[29] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher,
“Specifications of a high-level conflict-free firewall policy lan-
guage for multi-domain networks,” in Proceedings of the 12th ACM
Symposium on Access Control Models and Technologies, 2007, pp. 185–
194.

[30] B. Zhang and E. Al-Shaer, “On synthesizing distributed firewall
configurations considering risk, usability and cost constraints,”
in Network and Service Management (CNSM), 2011 7th International
Conference on, Oct 2011, pp. 1–8.

Mohammad Ashiqur Rahman received his
PhD in Computing and Information Systems
from the University of North Carolina at Char-
lotte (UNC Charlotte), USA, in 2015. Earlier, he
received his BSc and MSc degrees in Computer
Science and Engineering from Bangladesh Uni-
versity of Engineering and Technology (BUET),
Dhaka, in 2004 and 2007, respectively. He joined
the Department of Computer Science at Ten-
nessee Tech University as an Assistant Profes-
sor in August 2015. His primary research inter-

ests include security analysis and automation, risk analysis and security
hardening, and security policy verification and optimal management. His
research area covers cyber security and management for both general
networks as well as cyber physical systems. He has already published
over 30 peer-reviewed journals and conference papers.

Ehab Al-Shaer is a Professor and the Director
of the Cyber Defense and Network Assurability
(CyberDNA) Center in the College of Computing
and Informatics at University of North Carolina
Charlotte. He received his MSc and Ph.D. in
Computer Science from the Northeastern Uni-
versity (Boston, MA) and Old Dominion Univer-
sity (Norfolk, VA) in 1998 and 1994, respectively.
His primary research areas are network secu-
rity, security management, fault diagnosis, and
network assurability. Prof. Al-Shaer edited/co-

edited more than 10 books and book chapters, and published about 200
refereed journal and conferences papers in his area. Prof. Al-Shaer also
served as a Conference/Workshop Chair and Program Co-chair for a
number of well-established conferences/workshops in his area including
IM 2007, POLICY 2008, ANM-INFOCOM 2008, ACM CCS 2009-2010.
He served as a member in the technical programs and organization
committees for many IEEE and ACM conferences.

