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Abstract—Online set intersection operations have been widely used in network processing tasks, such as Quality of Service
differentiation, firewall processing, and packet/traffic classification. The major challenge for online set intersection is to sustain
line-rate processing speed; accelerating set intersection using state-of-the-art hardware devices is of great interest to the
research community. In this paper, we present a novel high-performance set intersection approach on FPGA. In our approach,
each element in any set is represented by a combination of Group ID (GID) and Bit Stride (BS); all the sets are intersected
using linear merge techniques and bitwise AND operations. We map our online set intersection algorithm onto hardware; this is
done by constructing modular Processing Element (PE) and concatenating multiple PEs into a tree-based parallel architecture.
In order to improve the throughput on a state-of-the-art FPGA, we feed all the inputs to FPGA in a streaming fashion with the help
of the synchronization GIDs. Post place-and-route results show that, for a typical set intersection problem in network processing,
our design can intersect 8 sets, each of up to 32K elements, at a throughput of 47.4 Thousand Intersections Per Second (KIPS)
and a latency of 94.8µs per batch of inputs. Compared to the classic linear merge or bitwise AND techniques on state-of-the-art
multi-core processors, our designs on FPGA achieves up to 66× throughput improvement and 80× latency reduction.

Index Terms—Set intersection, Network Processing, Field-Programmable Gate Array (FPGA).
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1 INTRODUCTION

S Et intersection is a key operation in many query
processing tasks of databases. Meanwhile, due to

the rapid growth of Internet, set intersections are also
widely performed in a plethora of network process-
ing tasks, including network security, packet classi-
fication, and traffic clustering. For example, packet
classification [1]–[3] requires multiple fields of the
packet headers to be examined. After searching all
the fields of an incoming packet header, the candidate
rule ID sets have to be intersected to produce the final
classification result [1].

Performing set intersection in network processing
faces two major challenges: the increasing size of the
datasets, and the demand on line-rate processing. For
example, the OpenFlow table lookup [4] in Software
Defined Networking (SDN) may require up to 40 sets
to be intersected. At the same time, the increasing
bandwidth of the current Internet has evolved to
a rate of over hundreds of gigabits per second [5].
These two factors pose great challenges on intersect-
ing many sets during run-time.

State-of-the-art VLSI chips can be built with mas-
sive amount of on-chip computation and memory
resources, as well as large number of I/O pins for
off-chip memory accesses; Field Programmable Gate
Arrays (FPGAs) [6], with their flexibility and recon-
figurability, are especially suitable for accelerating
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network applications [7]. Efficient algorithms and par-
allel architectures are still to be explored on FPGA in
order to achieve extremely high performance.

In this paper, we present a novel approach based
on both Linear Merge (LM) and Bitwise AND (BA)
techniques. Compared to prior works where only the
LM technique or the BA technique is used, our hy-
brid approach is both memory-efficient and hardware-
friendly. Specifically, our contributions in this paper
include:

• We split all the elements in the same set into
multiple groups; each group is assigned a Group
ID (GID). We linearly merge all the GIDs from
different sets in multiple clock cycles.

• We construct a Bit Stride (BS) for each group
of elements. The BSs corresponding to the same
GID are bitwise ANDed in a pipelined fashion to
produce the final set intersection result.

• We prototype our design on a state-of-the-art
FPGA device. We present various tradeoffs on
design parameters; we compare the performance
of our designs in this paper with software-based
set intersection engines.

• We sustain 47.4 KIPS throughput when intersect-
ing 8 sets, each of up to 32 K elements. Compared
to the classic LM technique or BA technique
on state-of-the-art multi-core processors, our ap-
proach achieves up to 66× throughput improve-
ment and 80× latency reduction.

The rest of the paper is organized as follows: We intro-
duce the background and related works in Section 2.
We present our novel data structures and algorithms
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Fig. 1: An example of intersecting M = 3 sets, where
all the elements are represented by IDs.

in Section 3. We implement our set intersection engine
on FPGA in Section 4. We evaluate the performance in
Section 5 and conclude the paper in Section 6.

2 BACKGROUND

2.1 Notations
Set intersection is a well-known operation to select
common elements in all the given sets. In this paper,
we assume, without loss of generality, that the ele-
ments in each set are presorted in ascending order.
We denote the number of sets to be intersected as M .
We denote the number of elements in each set as Nm,
where m = 0, 1, . . . ,M − 1. We show an example of
M = 3 in Figure 1, where N0 = 5, N1 = 3, and N2 = 4.
We denote the final intersected set as I ; in the example
shown in Figure 1, I = {5, 103}.

We use argminmNm as the index of the smallest
set, where argminmNm ∈ {0, 1, . . . ,M − 1}. Similarly,
argmaxmNm can be defined. Assuming the element
IDs use natural numbers, we denote the largest ele-
ment in any set as (Ω− 1). In Figure 1, argminmNm =
1, argmaxmNm = 0, and Ω = 256.

2.2 Approaches
Set intersection has been widely studied in both
database systems [8], [9] and network processing [10]–
[12]. In general, there are two major categories for set
intersection approaches: (1) the LM techniques, and
(2) the BA techniques.

The classic LM technique requires the elements
in each set to be represented by IDs, each of log Ω
bits; the common elements appearing in all the sets
can be identified by iteratively checking the small-
est/largest elements in all the sets [12]. This technique
requires O (

∑
Nm log Ω) memory and O (

∑
Nm log Ω)

time complexity.
An enhanced version [9] of the LM technique can

be much more complex, where the elements in the
smallest set are used to eliminate the candidates in
all the other sets. The memory consumption for this
enhanced version is O (

∑
Nm log Ω), while the time

complexity for intersecting all the M sets is

O

 ∑
m6=argminm Nm

log (Nm log Ω)

 (1)
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Fig. 2: An example of intersecting M = 3 sets, where
all the sets are represented by BVs.

The major drawback of the LM techniques is that it is
not easy to implement such algorithms in a streaming
fashion on hardware. A single intersection on M sets
introduces processing latency of multiple clock cycles.

The classic BA technique requires all the elements
in the same set to be represented by a Bit Vector
(BV); for a particular set, a bit is set to “1” only if
the element appears at the corresponding position.
For example, in Figure 2, S1 = {0, 2, 6}; so starting
from LSB, the 0th, 2nd, and 6th bits are all set to “1”.
The common elements in all the sets can be reported
by ANDing the BVs of all the sets [10]. The memory
consumption and the time complexity of this classic
BA technique are both O (M · Ω). This is much more
expensive1 compared to the classic LM technique,
especially when the elements are “sparse” [11]. For
example, the BV for any set in Figure 1 needs to be at
least 256 bits.

To enhance the classic BA technique, several opti-
mization techniques are proposed in [8], [11]. For ex-
ample, multiple BVs can be folded by OR operations,
where only the positions corresponding to non-zero
bits are examined in the folded BV. However, neither
the memory consumption nor the time complexity
is reduced in the worst case. In general, the BA
techniques are easy to implement on hardware, but
they also consume a huge amount of memory.

2.3 Network Applications
Set intersection has a variety of applications in net-
work processing. For example, in packet classification
[1]–[3], a packet header may match different sets of
rules in various fields, but only the rules, whose IDs
appear in all the fields, are considered as matching
the packet header. This is equivalent to intersecting
all the matching rule IDs from all the fields.

Another application is the defense against Denial
of Service (DoS) attacks [13] for network security.
A router may see a lot of sources sending similar

1. Exponential with respect to the number of bits of each element.
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Fig. 3: Two types of set intersection operations: (Left side) The presorted sets are stored in memory; during
run-time, only the indexes to the sets are provided to the hardware. (Right side) The elements of the sorted
sets are fed from either external devices or other kernels on the same hardware, in a streaming fashion.

packets; each ingress port of the router may need
to forward a set of packets to the same destination.
In this case, performing set intersections on all the
destinations from all the ingress ports is beneficial; it
can report what destinations are under attack.

2.4 Our Focus
For real-time network processing, the major challenge
of set intersection is the strict performance require-
ment. Sets have to be intersected at very high through-
put to sustain line-rate processing. Design of high-
performance online set intersection engine is the focus
of this paper.

We assume the elements in each given set are pre-
sorted in ascending order2. Depending on the network
application type, the sorted sets can be prepared dur-
ing design-time [1], or provided as inputs during run-
time [13]. This leads to two slightly different hardware
implementations, as shown on the left side and right
side of Figure 3, respectively. In this paper, since our
focus is the high-performance set intersection engine,
we assume all the elements of the sets are only known
during run-time; hence we choose the implementation
type as shown on the right hand side of Figure 3.

3 DATA STRUCTURES AND ALGORITHMS

3.1 Motivations
As can be seen, the LM techniques are memory-
efficient for sparse sets, while the BA techniques are
easy for hardware implementation. This observation
inspires us to exploit a hybrid data structure. The
basic ideas are:

1) We split all the elements into multiple groups;
each group in a set is assigned a unique Group
ID (GID). All the sets are intersected on GIDs
first, using the LM techniques.

2. This assumption is very common in many applications [9],
[11]. Hence, the discussion of sorting all the elements in each set is
beyond the scope of this paper.

2) We associate each GID with a shorter Bit Stride
(BS); each bit in the BS corresponds to an ele-
ment in a set. For different sets, only the BSs
corresponding to the same GIDs are ANDed.

Since all the sets are represented in GIDs and BSs, we
define this representation of data structures as GID/BS
representation.

3.2 GID/BS representation

We denote the number of bits for a GID as g. We
denote the number of bits in a BS as s. Based on
the notations introduced in Section 2.1, each long BV
in the classic BA technique can use up to Ω bits. To
reduce the memory consumption, we split each BV
into a total number of Ω

s groups, each of s bits. Hence
each group corresponds to an s-bit BS. We assign a
GID to a group. The GIDs are unique in each set, but
the GIDs in different sets can be identical.

For instance, suppose there are three sets S0 =
{0, 2, 3, 5, 6, 7, 64, 65, 66}, S1 = {4, 5, 7, 18, 124}, and
S2 = {7, 18}. Further suppose we have Ω = 128, and
we choose s = 4. The classic BA technique generates
one 128-bit BV for each set, where most of the bits are
zero. However, in our technique, we split them into
groups of 4 bits each; this leads to 32 groups per set.
Thus, the GID requires 5 bits each. We show the GIDs
and BSs constructed for this example in Figure 4. As
can be seen:

• We only keep the groups where the correspond-
ing BSs are non-zero (at least one bit out of s
bits is “1”). This leads to a significant amount
of memory reduction on BVs, especially for very
sparse sets.

• We use the same GIDs for different sets. For
different sets, only the BSs corresponding to the
same GID have to be ANDed.

Note g = logdΩ
s e. Denoting the number of GID/BS

pairs stored for set m as Gm (0 < Gm ≤ Nm), we have
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Fig. 4: Using GID and BS for set intersection. In this example, there are M = 3 sets, g = 5 bits per GID, and
s = 4 bits per BS. After groups are intersected, an enable signal EN is generated to control the bitwise AND
operations for the corresponding BSs.

the memory consumption for all the GIDs and BSs as

O

(
M−1∑
m=0

Gm

(
log
⌈Ω

s

⌉
+ s

))
(2)

For s = 1, this memory requirement is the same
as the classic LM technique. For s = Ω, this memory
requirement is the same as the classic BA technique.
We will discuss the time complexity of our set inter-
section algorithm in Section 4. We will also determine
the value of s later in Section 5.

3.3 Online Set Intersection
Our set intersection approach consists of two phases

as follows:
1) Preprocessing: all the sets are preprocessed using

the GID/BS representation. This phase can be
done offline.

2) Online Set Intersection: all the GIDs are inter-
sected for different sets; their corresponding BVs
are bitwise ANDed.

As discussed in Section 2.4, we assume the elements
in each given set are already sorted in ascending
order, thus, we ignore the discussion of the prepro-
cessing phase in this paper. We focus on the online
set intersection phase in this section.

For set m, since there are Gm GID/BS pairs stored,
we index them by im = 0, 1, . . . , Gm − 1; the GID
and BS corresponding to index im are denoted as
GID[m, im] and BS[m, im], respectively. For example,
in Figure 4, for set S2, G2 = 2, and i2 = 0, 1.
GID[2, 0] = 00100, BS[2, 0] = 0100, GID[2, 1] = 00001,

and BS[2, 1] = 1000. Similarly, we assume the final
intersected set I has P GID/BS pairs, indexed by
i = 0, 1, . . . , P−1; the GID and BS in set I are denoted
as GID[i] and BS[i].

We show our online set intersection algorithm in
Algorithm 1. Figure 4 shows an example of the corre-
sponding architecture. The smallest GIDs in all the
M sets are compared against each other, and the
GIDs smaller than the maximum value (X , as denoted
in Algorithm 1) are excluded from I . Only if all the
smallest GIDs in all the sets are equal, have we
identified a common GID in all the M sets; in this case,
the corresponding BSs are ANDed. In other words,
the GIDs are intersected using an LM-like technique,
while the BSs corresponding to the same GIDs are
intersected using bitwise AND operations.

4 HARDWARE ARCHITECTURE
The architecture shown in Figure 4 is naive, because
there are several drawbacks to be noticed:

1) The performance of comparing GIDs and bitwise
ANDing BSs deteriorates as M increases; inter-
secting a large number of sets can lead to very
slow clock rate.

2) Intersecting GIDs may require multiple clock
cycles to complete; this degrades the overall
throughput performance of the architecture.

In this section, we will improve the performance of
our hardware architecture on FPGA using (1) modular
Processing Element (PE) (Section 4.1), and (2) tree-based
parallel architecture (Section 4.2). We present a stream-
ing technique to feed different batches (see Section 4.3)
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Algorithm 1 Online Set Intersection

Input A total number of M sets Sm, m = 0, 1, . . . ,M−
1, represented using the GID/BS representation.

Output An intersected set I , whose entries are in-
dexed by i. ∀i, ∀m, GID[i] = GID[m, im] for some
im; BS[i] = BS[0, i0] & BS[1, i1] & . . . & BS[M −
1, iM−1] where GID[i] = GID[0, i0] = GID[1, i1] =
· · · = GID[M − 1, iM−1].

1: for m = 0 to M − 1 do
2: im ← 0 {pointers initialization}
3: end for
4: i← 0 {pointer for I}
5: while (i0 < G0) || (i1 < G1) ||

. . . || (iM−1 < GM−1) do
6: X ← GID[0, i0] {set current maximum}
7: for m = 0 to M − 1 do
8: if GID[m, im] > X then
9: flag ← false {reset flag}

10: X ← GID[m, im] {elements not equal}
11: else if GID[m, im] < X then
12: flag ← false {reset flag}
13: if im < Gm then
14: im ← im + 1 {advance index}
15: else
16: go to Step 37
17: end if
18: else
19: if m = 0 then
20: flag ← true {set flag for S0}
21: else if m = M − 1 then
22: if flag = true then
23: flag ← false {elements equal}
24: GID[i]← GID[0, i0]
25: BS[i]← BS[0, i0]
26: i0 ← i0 + 1 {advance index}
27: for m′ = 1 to M − 1 do
28: BS[i]← BS[i] & BS[m′, im′ ]
29: im′ ← im′ + 1 {advance index}
30: end for
31: i← i+ 1
32: end if
33: end if
34: end if
35: end for
36: end while
37: report I consisting of GID[i], BS[i], where i =

0, 1, . . . , P − 1

of data back-to-back; our intention is to achieve very
high throughput by minimizing the communication
overheads between different batches of data.

4.1 Modular PE
We show the internal organization of a modular PE in
Figure 5. A modular PE takes GIDs and BSs from two
ordered sets; the GIDs and BSs are fed in ascending
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Fig. 5: Internal organization of a modular PE. The data
width of any GID is g bits. The data width of any BS
is s bits. The data width of any control signal (e.g.,
EN W0, etc.) is 1 bit. Other FIFO control signals are
omitted for simplicity, e.g., not full, not empty, etc.

TABLE 1: Truth table for the control signals (assuming
neither of the FIFO is empty)

Case Equal GIDs
GID in FIFO 0 GID in FIFO 1

is smaller is smaller

EN R0 1 1 0
EN R1 1 0 1
EN W2 1 0 0

order into the PE. The basic operations of a modular
PE consist of reporting common GIDs, and perform-
ing bitwise AND operations on the corresponding
BSs. Specifically, a modular PE contains the following
components: 2 FIFOs, one g-bit comparator, and one
s-bit bitwise AND gate.

4.1.1 2 FIFOs

The FIFOs are used to buffer the GID/BS pairs. The
write enable signals EN W0 and EN W1 are fed from
the inputs. The read enable signals EN R0 and EN R1
are generated internally by the comparator.

4.1.2 g-bit Comparator

The comparator compares two GIDs, each of g bits.
Based on the comparison result, the comparator gen-
erates 3 control signals:

1) On the one hand, if two GIDs are identical, the
comparator sets EN W2 = 1 for the next PE to
accept this GID and the corresponding ANDed
BS. To compare the next two GIDs, both EN R0
and EN R1 are set to 1 for the two FIFOs.

2) On the other hand, if two GIDs are not equal,
the comparator sets EN W2 = 0. Since we only
keep track of the maximum value of the smallest
elements in two sets, out of the two GIDs, the
smaller one is discarded; hence, only one of
EN R0 and EN R1 is set to 1 for the correspond-
ing FIFO to provide the next GID.

We summarize the values of the control signals gen-
erated by the g-bit comparator in Table 1.
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4.1.3 s-bit Bitwise AND Gate
The bitwise AND gate perform bitwise AND oper-
ations on two BSs, each of s bits. The result is an
ANDed BS, consisting of s bits. Although the bitwise
AND gate produces results for any two compared
GIDs, the control signal EN W2 decides whether the
result produced by this gate should be accepted by
the next PE. The ANDed BS is only accepted when
the two GIDs compared are identical, as shown in
Table 1.

4.2 Tree-based Parallel Architecture
The modular PE discussed in Section 4.1 only inter-
sects 2 sets. To intersect a large number of sets, multi-
ple modular PEs have to be used. Also, to reduce the
processing latency, parallel architectures have to be
exploited. Our intuition in this paper is to intersect M
sets iteratively, two sets at a time using the modular
PE in Section 4.1.

For M sets, we choose to deploy logM levels of
PEs; for instance, M = 4 in Figure 6, so 2 levels of PEs
are deployed. In our notations, level 0 always consists
of all the leaves of the tree, where level (logM − 1)
consists of only the root of the tree. We denote this
architecture as tree-based parallel architecture, because
(1) all the PEs are connected in a tree-like fashion,
and (2) all the PEs at the same level perform set
intersections in parallel.

In our architecture, we notice that the size of the
intersection of any two sets is no greater than the
size of the smaller set; as we go towards the root,
smaller and smaller FIFOs can be used. The clock rate
supported by the PE at the root is no slower than the
clock rates supported by the PEs at the leaves.

The naive architecture shown in Figure 4 leads to a
time complexity (or processing latency) of

O

(
M−1∑
m=0

Gm

(
log
⌈Ω

s

⌉
+ s
))

∼ O
(
M ·max

m
[Gm]

(
log
⌈Ω

s

⌉
+ s
))

(3)

where Gm (0 < Gm ≤ Nm) denotes the number of
GID/BS pairs stored for set m.
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Fig. 7: Adding synchronization GIDs, where g = 8 and
M = 2. Red numbers denote synchronization GIDs,
while black numbers denote regular GIDs.

However, using our tree-based parallel architecture
introduced in this section, we can intersect M sets
with a (parallel) time complexity of

O

((
logM

)
·max

m
[Gm] ·

(
log
⌈Ω

s

⌉
+ s
))

(4)

Note that this upperbound is quite a loose upper-
bound. As discussed, this is because the number of
common elements in two sets is no more than the
number of elements in the smaller set; we have (pos-
sibly) smaller and smaller sets to be merged linearly
as we go down towards the tree root.

4.3 Streaming Inputs
Our architecture can intersect M sets at a time. We
denote such M sets to be intersected as a batch. For
example, in Figure 7, suppose a batch of two sets,
consisting of GIDs {2, 5} and GIDs {2, 3, 7}, are to be
intersected; another batch of two sets, consisting of
GIDs {7, 9, 10} and GID {10}, are to be intersected.
Using a single modular PE, we need to generate the
correct results consisting of GID {2} and GID {10}
sequentially.

In our architecture, all the GID/BS pairs can be
streamed in; this means the time for getting GIDs from
different batches can be overlapped. This benefits the
throughput performance. However, the inputs from
different batches need to be distinguished to avoid
any confusion; otherwise the intersected result can be
wrong. Continuing the example discussed above, we
show the wrong results generated from two batches
of inputs on the left side of Figure 7.

We employ synchronization GID to separate GIDs
from different batches. As opposed to regular GIDs,
a synchronization GID is a GID with all of its g



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2537818, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016 7

bits set to 1. A synchronization GID is forbidden
in the input; meanwhile, all of the synchronization
GIDs in the final output3 are discarded. Continuing
the example discussed in this subsection, we show
how we generate the correct intersected sets using
synchronization GIDs in Figure 7. As can be seen in
this figure, since g = 8, we add the synchronization
GID 255 immediately after the end of the first batch;
note that the same synchronization GID must be
added to all the M sets (in this example, M = 2).
The synchronization GID is an overhead for streaming
inputs:
• Time overhead: it takes 1 extra clock cycle to syn-

chronize all the sets of the same batch.
• Resource overhead: the synchronization GID uses g

bits itself; also, the corresponding s-bit BS cannot
be utilized for this GID.

We add synchronization GIDs during the prepro-
cessing phase; thus, the synchronization GIDs are
streamed in just like all the other regular GIDs.

5 EVALUATION

We organized this section as follows:
• In Section 5.1, we introduce the setups of our

experiments.
• In Section 5.2, we determine the values of g and
b by investigating their effect on the hardware
performance.

• In Section 5.3, we examine the impact of various
values of Ω on the performance with respect
to throughput, latency, resource utilization, and
power.

• In Section 5.4, we examine the impact of various
values of M on the performance with respect
to throughput, latency, resource utilization, and
power.

• In Section 5.5, we evaluate the performance of our
set intersection engine using real-life datasets.

• In Section 5.6, we compare our work with prior
works on various platforms.

5.1 Experimental Setup
5.1.1 Hardware and Software
We conducted experiments on the state-of-the-art Xil-
inx Virtex 7 FPGA (XC7VX1140T-FLG1930 -2L) [6].
This FPGA has 218800 logic slices, 1100 I/O pins, and
68 Mb (1880 blocks) BRAM; it can be configured to
realize a large amount of distributed RAM (distRAM,
up to 18 Mb). Our design does not depend on the type
of the FPGA, as long as there are enough hardware
resources available.

To simplify our designs, we instantiated all the
memory modules (e.g., FIFO) using single-port dis-
tRAM or BRAM. We evaluated the performance using

3. Only at the root level of the tree-based architecture.

Xilinx Vivado 2014.2 design tool [14]. A conservative
clock constraint of 250 MHz was used for all of our
designs; Vivado TCL scripts were used to automate
the design space exploration.

5.1.2 Performance Metrics
The following performance metrics were considered
in our experiments:

– Throughput: the number of intersected sets (I)
produced per unit time (in KIPS). We recorded
the throughput values based on the clock rates
from the post-place-and-route timing reports.

– Latency: the processing time required for inter-
secting M sets of the same batch. We reported
the latency values based on simulation results.

– Resource Utilization: the percentages of basic
FPGA resources utilized. We investigated (1) logic
slice utilization, (2) BRAM utilization, and (3) I/O
pin utilization, based on the post-place-and-route
resource utilization reports.

– Power: the power consumption of an entire de-
sign on FPGA, including both static power and
dynamic power. We fixed the temperature at
25 ◦C. We used Switching Activity Interchange
Format (SAIF) files as inputs to Vivado power
analysis tool.

Throughput and resource utilization are very com-
monly used for most FPGA-based implementations
[7], [15]. Latency has regained much attention recently
in SDN [4]. Power is a very important metric, espe-
cially for large data centers and wireless networks
[16], [17].

In addition, for throughput, we further defined:
– Peak throughput (Tpeak): the throughput deter-

mined by the hardware architecture for a given
set of design parameters (e.g., M , g, etc.). When
calculating the peak throughput, we assume the
FIFOs in the PEs are full for worst-case analysis.

– Sustained throughput (Tsustained): the through-
put measured for a specific data trace. The sus-
tained throughput varies during run-time, be-
cause the number of GID/BS pairs buffered in
the FIFOs depends on the data trace.

The sustained throughput is hard to measure; we
defer the discussion of the sustained throughput until
later sections. For a given design, the peak throughput
mainly depends on (1) the clock rate achievable on
FPGA and (2) the size of the largest set to be inter-
sected. Let f denote the maximum frequency achiev-
able for a design. Considering the time overhead on
synchronization GIDs, we have:

Tpeak =
f

maxm[Gm] + 1
(5)

5.1.3 Datasets
We conducted extensive experiments on the real
datasets from the classic 5-field packet classification
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TABLE 2: Performance with respect to g and b (M = 4)

g
b 2 4 8 16 32 64

2

Clock rate (MHz) 486.85 441.31 375.66 379.51 383.58 312.50
Logic slices (%) 0.01 0.01 0.02 0.02 0.04 0.07

BRAM (%) 0.00 0.00 0.00 0.00 0.00 0.00
I/O pins (%) 2.90 3.81 5.63 9.27 16.54 31.09

4

Clock rate (MHz) 321.13 330.58 311.72 306.00 328.19 269.47
Logic slices (%) 0.02 0.03 0.03 0.04 0.05 0.07

BRAM (%) 0.00 0.00 0.00 0.00 0.00 0.31
I/O pins (%) 3.81 4.72 6.54 10.18 17.45 32.00

6

Clock rate (MHz) 305.53 304.51 329.60 299.04 290.87 255.43
Logic slices (%) 0.04 0.05 0.05 0.05 0.06 0.08

BRAM (%) 0.00 0.00 0.00 0.15 0.15 0.31
I/O pins (%) 4.72 5.63 7.45 11.09 18.36 32.90

8

Clock rate (MHz) 299.31 297.53 299.31 292.57 286.20 306.37
Logic slices (%) 0.11 0.09 0.09 0.10 0.10 0.12

BRAM (%) 0.00 0.15 0.15 0.15 0.15 0.31
I/O pins (%) 5.63 6.54 8.36 12.00 19.27 33.81

10

Clock rate (MHz) 265.96 287.27 282.17 276.24 264.55 268.89
Logic slices (%) 0.27 0.28 0.28 0.28 0.29 0.30

BRAM (%) 0.15 0.15 0.15 0.15 0.31 0.63
I/O pins (%) 6.54 7.45 9.27 12.90 20.18 34.72

12

Clock rate (MHz) 257.86 259.13 259.07 258.13 258.26 257.27
Logic slices (%) 1.04 1.05 1.05 1.06 1.08 1.10

BRAM (%) 0.15 0.15 0.31 0.63 1.27 2.39
I/O pins (%) 7.45 8.36 10.18 13.81 21.09 35.63

problem [1], due to the availability of the rule sets and
the packet traces [18]. Assuming all the 5 sets from the
same packet header had already been obtained, we
only focused on intersecting M = 5 sets in this paper4.
In order to make all the implementations “modular”,
for M = 5, we designed our intersection engines to
take input data from at most 8 sets concurrently; i.e.,
all the values of M were rounded up to the nearest
power of 2.

For real-life datasets in the 5-field packet classi-
fication, the largest real-life rule set, to the best of
our knowledge, had 32 K rules [18]; i.e., Ω = 32 K
in this case. To measure the sustained throughput,
we categorized different packet traces [18] based on
the values of maxm

[
Gm

]
. We conduct 10 runs (as

examples) for each category; each run performs 10 K
set intersections.

To investigate the sustained throughput, we defined
selectivity (denoted as η) to be the ratio of the size
of the intersection to the size of the largest set to be
intersected:

η =
|I|

maxm[Gm]
(6)

As can be seen later, η has significant impact on the
throughput and latency performance5.

4. The packet classification problem also involves searching all
the fields to get all the sets before intersecting all the sets.

5. In [9], selectivity was defined to be the ratio of the size of the
intersection to the size of the smallest set. However, they are very
similar definitions and have similar impact on the performance.

5.2 Determining Parameters

There are many ways to determine the values of g
and b. For instance, our approach exploits the LM
techniques, which is a data-dependent algorithm. For
a specific data trace, there may exist an “optimal”
combination of g and b, which gives the highest
throughput or lowest processing latency. However, at
the design time, we usually don’t know the statistics
of the input data; the input data can also be purely
random. In such cases, it is impossible to always use
the “optimal” values of g and b. In this paper, we
assume very little information on the input data is
known at the design time; thus, we determine the
values of g and b based on the hardware performance.

5.2.1 FIFO depth

The maximum value of Gm is no greater than (2g − 1),
because for any set m, the maximum number of
possible g-bit GIDs is (2g − 1), excluding the synchro-
nization GID as discussed in Section 4.3.

There is no direct relation between the FIFO depth
and the values of Gm. For simplicity, we use a FIFO
depth greater than (2g − 1); this ensures that there is
no data drop for the same batch of streaming inputs.
In the tree-based parallel architecture as introduced in
Section 4.2, the FIFOs in the PEs at various levels may
require different FIFO depths; however, in this paper,
we simply use the same FIFO depth for all the levels.
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To summarize, the relationship between the FIFO
depth, the value of g, and the value of Gm, m =
0, 1, . . . ,M − 1 in this paper can be described as:

FIFO depth > 2g − 1 ≥ max
m

[
Gm

]
(7)

When conducting experiments, we always follow the
relation indicated in Equation 7 in this paper.

5.2.2 g and b
To determine the values of g and b, we first fix M = 4
as an example; similar trends can be seen for other
values of M . We fix the depth of all the FIFOs in the
modular PEs to be 2g ; thus, large values of g result in
deep FIFOs. We show the clock rate achieved by our
design and the corresponding resource consumption
in Table 2. As can be seen:
• Since both M and the FIFO depth are small, our

designs utilize very small amounts of logic and
memory resources.

• As the values of g increases, the clock rate usually
degrades. Since the memory resources (distRAM
and BRAM) on FPGA are organized in modules,
deep FIFOs require a large number of modules
to be connected by long wires.

• As the values of b increases, the clock rate also
degrades. Since each PE in our designs performs
AND operations in every clock cycle, it requires
longer clock period to AND wide BSs.

• As the values of g or b increases, there are very
few cases where the clock rate varies. The small
variations are caused by the design suite.

As can be seen in Table 2, the best clock rate is
achieved at b = 4 or b = 8 in most cases; this is
because for b = 4 or b = 8, very short BSs are ANDed
in each PE, resulting in compact circuits and short
wire lengths. Hence we tend to use small values of
b in all of our experiments. Recalling Section 3.2, we
have g = logdΩ

s e; therefore we choose the values of g
based on both values of b and Ω.

5.2.3 Case Study
Let us study the case where Ω = 32 K and M = 8 as
an example; we follow the same design methodology
for other values of g, b, Ω, and M in this paper. Since
we tend to use small values of b, we restrict b to be 2,
4, 8, and 16. The corresponding values of g are 11, 12,
13, and 14, respectively. Under these configurations,
we show the performance with respect to the clock
rate and the resource utilization in Table 3. As can be
seen, the best clock rate is achieved when g = 12 and
b = 8; this matches our conclusion in Section 5.2.2 that
the best clock rate is achieved when b = 4 or b = 8.

Note in Table 3, as the value of g increases, there
are variations with respect to the utilization of logic
slices and BRAM. This is because we do not put any
restrictions on the memory type (distRAM or BRAM)

TABLE 3: Performance for various combinations of g
and b, where Ω = 32 K, M = 8

g 11 12 13 14
b 16 8 4 2

Clock (MHz) 222.52 261.23 196.19 180.54
slices (%) 0.80 2.50 5.72 0.25

BRAM (%) 1.06 0.74 0.74 5.95
I/O (%) 23.90 18.18 15.72 14.90
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Fig. 8: Peak throughput for b = 8, and M = 8

of the FIFOs; instead, we relay on the Vivado design
suite to choose the memory type for best performance.
A simple calculation reveals that as g increases, the
total memory consumption still increases.

5.3 Varying Ω

5.3.1 Throughput and Latency
Using b = 8 and M = 8 as our configuration, we show
the peak throughput and the corresponding latency
with respect to various values of g in Figure 8. For
b = 8 and g = 11, 12, 13, 14, the corresponding values
of Ω are 16 K, 32 K, 64 K, and 128 K, respectively; these
values are sufficiently large for network applications
[12]. As the value of g increases, the FIFO depth
increases exponentially; the peak throughput tapers
while the latency increases dramatically. The reason
is that our set intersection approach still employs the
LM techniques, whose time complexity is linear with
respect to maxm

[
Gm

]
(or 2g in this paper, because of

Equation 7).

5.3.2 Resource Utilization
In Figure 9, we show the corresponding resource uti-
lization with respect to (1) the logic slices, (2) BRAM,
and (3) I/O pins on FPGA. As can be seen, the I/O
pin utilization increases slightly as g increases; this
matches our intuition because each input GID/BS pair
requires (g + b) input pins. There are variations with
respect to the logic slice utilization and BRAM uti-
lization; this also matches our observation discussed
in Section 5.2.3.
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5.3.3 Power Consumption
In Figure 10, we show the corresponding power con-
sumption. As can be seen, the static power consump-
tion varies little while the dynamic power consump-
tion increases as g increases.

The trends shown in Figure 8, Figure 9, and Fig-
ure 10 can be observed for other combinations of
b and M as well. Again, most of our designs on
FPGA only consume very few logic slices, which is
consistent with the results shown in Table 2. This is
an advantage because the remaining logic slices can
be used to implement other database kernels besides
set intersection.

5.4 Varying M

5.4.1 Throughput and Latency
To examine the effect of M on the performance, we
still use Ω = 32 K as an example, although similar
trends can be seen for other values of Ω as well. Vary-
ing M , we show the peak throughput and the “worst-
case” latency in Figure 11, and Figure 12, respectively.

As can be seen in Figure 11 and Figure 12, as M
increases, the peak throughput and the worst-case
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Fig. 11: Peak throughput for Ω = 32 K
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Fig. 12: Worst-case latency for Ω = 32 K

latency deteriorate; this is because the clock rate
degrades as M increases. For larger values of M ,
more resources are utilized, leading to less routing
choices, longer wire lengths, and slower clock rates
(see Section 5.4.2).

We have two important observations in Figure 11
and Figure 12:

• The peak throughput and the worst-case latency
are dominated by the largest size of the sets to
be intersected (2g).

• M only has limited impact on the performance,
especially when 2g is large.

As can be seen in Equation 4, in each FIFO, all the
2g GID/BS pairs buffered have to be checked in the
worst case, leading to a time complexity of O (2g).
This explains why the peak throughput is halved
and the worst-case latency is doubled each time as
g increases. This matches our intuition in Equation 4:
our tree-based parallel architecture is in favor of in-
tersecting a large number of small sets rather than
intersecting very few large sets.
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5.4.2 Resource Utilization
In Figure 13 and Figure 14, we can see that the total
memory utilization increases with respect to M , in
spite of the variations with respect to the logic slice
utilization or the BRAM utilization only. The reasons
are the same as discussed in Section 5.2.3.

Figure 15 show that, the total number of I/O pins
available on FPGA bottlenecks the scalability of our
design, since intersecting a large number of M sets
requires a large number of O(M) parallel input pins
to be used.

5.4.3 Power Consumption
We show the static power and dynamic power for Ω =
32 K in Figure 16, with respect to various combinations
of g and b. As can be seen:
• As g increases, the dynamic power consumed by

our designs increases linearly with respect to the
total memory consumption.

• As M increases, the dynamic power consumed by
our designs also increases linearly with respect to
the total memory consumption.

• As g or M increases, the static power consump-
tion only increases slightly.
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Hence we observe that the total power consumption
is almost linear with respect to the total memory
utilized. This observation matches our intuition that
the memory power dominates the total power con-
sumption.

5.5 Real Datasets

In this subsection, we use the real-life datasets in
the 5-field packet classification to test our online set
intersection engines, as introduced in Section 5.1.3.

5.5.1 Throughput and Latency

For a batch of M sets, the set intersection is not
considered as complete unless all the GIDs have
been examined (Gm GIDs for set m). In our tree-
based parallel architecture, the sustained throughput
is lowerbounded by the throughput achieved at level
0 of the tree. We have

Tsustained ≥
f

2 ·maxm[Gm]
(8)
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the classic 5-field packet classification (b = 8, M = 5)

Besides, the sustained throughput is upperbounded
by the peak throughput. Hence:

f

2 ·maxm[Gm]
≤ Tsustained ≤

f

maxm[Gm] + 1
(9)

We show the sustained throughput with respect
to various FIFO depths (from 2 K to 16 K) in Fig-
ure 17. We indicate in this figure both the lowerbound
and upperbound of the sustained throughput based
on Equation 9. For each FIFO depth, we show the
sustained throughput for 10 runs, each run corre-
sponding to 10 K set intersections, as introduced in
Section 5.1.3.

For each FIFO depth (10 runs), we show the average
sustained throughput and the corresponding average
latency in Figure 18. As maxm

[
Gm

]
increases, both the

throughput and the latency deteriorate. Since it takes
linear time to merge all the GIDs in our approach, the
performance with respect to throughput and latency
is adversely affected by maxm

[
Gm

]
.

5.5.2 Resource Utilization and Power
For real datasets, the performance with respect to
resource utilization and power consumption are con-
sistent with Figure 9 and Figure 10:
• The logic slice utilization increases linearly as the

FIFO depth increases; the total resource utiliza-
tion is always kept under 25%.

• Our designs only consume a small amount of
power, due to the low resource utilization.

In spite of the same power performance as Figure 10,
the energy performance on real datasets may vary;
this is because different datasets can introduce various
values of processing latency.

5.6 Comparison with Prior Works
5.6.1 Baseline
To the best of our knowledge, we are not aware of
online set intersection engines on FPGA. Hence, to
compare this paper with prior works, we deployed
software-based set intersection engines on state-of-
the-art multi-core General-Purpose Processors (GPPs)
as the baseline implementations. We conducted exper-
iments on a 2× AMD Opteron 6278 processor [19]
and a 2× Intel Xeon E5-2470 processor [20]. The
AMD processor has 16 physical cores, each running
at 2.4 GHz. Each core is integrated with a 16 KB L1
data cache, 16 KB L1 instruction cache, and a 2 MB
L2 cache. A 6 MB L3 cache (Last-Level Cache, LLC)
is shared among all the 16 cores; all the cores have
access to 64 GB DDR3-1600 main memory. The AMD
processor runs openSUSE 12.2 OS (64-bit 2.6.35 Linux
Kernel, gcc version 4.7.1). The Intel processor also
has 16 physical cores, each running at 2.3 GHz. Each
core has a 32 KB L1 data cache, 32 KB L1 instruction
cache, and a 256 KB L2 cache. All the 16 cores share
a 20 MB L3 cache (Last-Level Cache, LLC), and they
have access to 48 GB DDR3-1600 main memory. This
processor runs openSUSE 12.3 OS (64-bit 3.7.10 Linux
Kernel, gcc version 4.7.2). Both of the AMD and the
Intel processors have 32 logical cores.

On each GPP platform, we implemented the classic
LM technique [9], [12] and the classic BA technique
[8], [10], [11] using OpenMP [21]. We assumed our
hybrid approach (using the GID/BS representation)
could perform at least as good as the better of the
two techniques; hence we ignored the implementa-
tion of our hybrid approach on the GPP platforms.
Our implementations relied on the OS to allocate the
hardware resources to each thread dynamically. The
thread synchronization and IO overhead were also
considered in the performance measurement.

5.6.2 Throughput and Latency
Setting M = 8 and Ω = 32 K as an example, we
compare the throughput and latency performance of
this work with the baseline implementations in Fig-
ure 19 and Figure 20, respectively. Our GID/BS-based
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Fig. 19: Comparing sustained throughput
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Fig. 20: Comparing latency

implementations have b = 8 in this example. Similar
trends can be seen for other combinations of these
parameters.

In these figures, each data label indicates the plat-
form used, the approach exploited, and maxm

[
Nm

]
tested (the maximum size of all the M sets). For
instance, “AMD LM 64” denotes the implementation
using the LM technique on the AMD platform, with
maxm

[
Nm

]
= 64. There are two exceptions:

1) The performance of the BA technique does not
depend maxm

[
Nm

]
, so we ignore maxm

[
Nm

]
in

the corresponding implementations.
2) For our GID/BS-based designs on FPGA, the

data labels indicate maxm

[
Gm

]
. Note that:

max
m

[
Gm

]
≤ max

m

[
Nm

]
≤ b ·max

m

[
Gm

]
(10)

With b = 8 and maxm

[
Gm

]
= 4096, our GID/BS-

based design can intersect 8 sets with 32 K ele-
ments per set.

For each of our baseline implementations, we measure
the performance with respect to various numbers of
batches processed concurrently (1, 2, 4, or 8 concurrent
batches). Increasing the number of concurrent batches
improves the throughput but degrades the latency.
For each of our GID/BS-based designs, we show the

lowerbound and the upperbound of the throughput
indicated by Equation 9 in Figure 19; we show their
corresponding latency values in Figure 20.

We have the following observations:
• The BA technique performs better than the LM

technique when the sets are relatively large, but
worse when the sets are sparse (maxm

[
Nm

]
�

Ω).
• For the same configuration, our AMD platform

outperforms our Intel platform, due to its larger
L2 (on-chip) cache size and higher clock rate.

• Compared to the baseline implementations, our
GID/BS-based designs on FPGA sustain higher
throughput (up to 66× improvement) at lower
processing latency (up to 80× reduction).

As can be seen, our GID/BS-based designs presented
in this paper demonstrate superior performance for
online set intersection. The reasons are: (1) Our ap-
proach in this work exploits a hybrid data structure
that performs at least as good as the better of the
LM and BA techniques. (2) Our implementations are
deployed on FPGA for better streaming performance
compared with the GPP platforms.

6 CONCLUSION

In this paper, we presented a high-performance on-
line set intersection engines on FPGA. The designs
were based on a hybrid data structure combining the
advantages of the LM and BA techniques. Compared
to the classic LM and BA techniques on multi-core
platforms, our prototypes on a stand-alone FPGA
demonstrated superior performance with respect to
throughput and latency.

A future direction towards online set intersection
is to explore even more hybrid data structures (e.g.,
hashing) for fast streaming applications. We also plan
to target this problem using heterogeneous systems
in the future; for example, it is also interesting to
investigate the performance tradeoffs between the
Processing System (PS) and the Programmable Logic
(PL), when a Zynq-based system is deployed [22].
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