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Abstract—Prosumers or proactive consumers are steadily on the rise in emerging Smart Grid systems. These consumers, apart from
their traditonal role of using energy from the grid, also are actively involved in individually transferring stored energy from renewable
sources such as wind and solar, to the grid. The large-scale integration of renewable generation in the emerging grid will re-define
ways of meeting consumer energy demands, and more importantly drive greener and cost-effective utility operations. In this paper,
we investigate the problem of matching consumer demand with the grid supply in real-time, and in the presence of renewables. We
formulate this problem as a stochastic optimization problem and propose MATCH, a fast distributed real-time algorithm that accounts
for the uncertainties in (i) renewable generation, (ii) the latter’s transmission through the grid network, (iii) loads, and (iv) energy prices,
and balances power in the Smart Grid at all times. MATCH is based on the Lyapunov stochastic optimization framework and scales
to localities with a large number of networked renewable generation sources. We validate the efficacy of MATCH through experiments
conducted using data modelled on proprietary data obtained from two public utilities. As part of the main results of this work, we show
that (a) MATCH outputs unique approximate-optimal grid parameter configuration vectors in real-time that ensure perennial supply-
demand balance in the grid at a minimum cost, and (b) mesh transmission network topologies lead to better MATCH outputs when
compared to other existing transmission network topologies.
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1 INTRODUCTION

A paradigm shift in the Smart Grid is the evolution of
electricity customers from being passive consumers to elec-
tricity producer-consumers, i.e., Prosumers [1, 2, 3]. These
consumers, apart from their traditional role of using energy
from the grid, also are actively involved in individually
transferring stored energy from renewable sources such as
wind and solar, to the grid. The inclusion of Distributed
Energy Resources (DER), including renewables and Energy
Storage Systems (ESS) (such as the 10 kWh Powerwall
Lithium Ion cell-based battery for residences recently intro-
duced by Tesla Motors [4]) in the Smart Grid increases the
complexity and variability in the grid and may significantly
impact its reliability [5, 6, 7, 8, 9]. Out of the many con-
notations of reliability in the power grid, an important one
is the ability of the grid to maintain supply-demand balance
at all times. The importance of this reliability measure lies
in an utility’s ability to make grid operations more cost
effective and environment friendly, i.e., failure to ensure
supply-demand balance might result in the utility starting
a new generation unit or buying expensive energy from
external non-renewable and combustible generation sources
that promote environmental pollution. Prosumers storing
energy from renewable energy sources have the ability
to ensure grid reliability by supplying demand deficits to
the Smart Grid when a utility exhausts its conventional
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resources (e.g., coal), thereby alleviating the cost and pollu-
tions issues that accompany buying non-renewable energy
from external sources or starting a new generation unit, at
times of demand deficit.

1.1 Research Motivation
A major challenge to ensure reliability in the Smart Grid,
i.e., maintaining power balance at all times, is the often
intermittent, stochastic, and limited dispatchability nature
of renewable generation in a dynamic prosumer energy
network. Energy storage devices accompanying renewable
generation sources is an environment friendly and cost ef-
fective way to tackle this challenge. In particular, the charg-
ing and discharging capability of storage can be exploited to
shift energy across time, and the co-location of storage with
renewable generators is often suggested [10]. Furthermore,
many loads such as thermostatically controlled loads, elec-
tric vehicles (EVs), and other smart appliances, are time elas-
tic and can be controlled via either curtailment or time shift.
Thus, stored energy and elastic loads can jointly counter the
fluctuations in renewable generation, and lead to a power
balanced state in the Smart Grid at all times. However,
their lies a final hurdle to effective power balance in the
stochastic physical transmission network that transports
the stored renewable energy to the grid. This network is
prone to link losses and capacity variations. From a design
perspective, power balancing between supply and demand
in a power grid could be performed either separately or
jointly on (i) the supply side, (ii) the demand side, and
(iii) the storage side. In this paper, we investigate the general
problem of power balancing in a renewable-integrated dynamic
power grid network with storage and elastic loads, considering the
joint coordination of the supply side, demand side, and storage.
Given the potential need to perform energy management
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at a fine-grained time scale (potentially in seconds) in the
emerging Smart Grid of the future, combined with its po-
tentially large scale of prosumers, the need of the hour is
to design efficient distributed and real-time algorithms for
power balance for the dynamically networked Smart Grid.
The need for a real-time algorithm is mainly motivated
by the intermittence in renewable energy sources, which
make accurate energy forecasts difficult to obtain, thereby
rendering offline algorithms incapable of effective supply-
demand balance. A distributed algorithm on the other hand
eases the computational burden of a large Smart Grid sytem
operator by offloading certain computational tasks to indi-
vidual grid elements, thereby saving overall running time,
when compared to a centralized algorithm.

1.2 Related Work
There are many recent works explicitly incorporating the
grid system uncertainty into the energy management of the
power grids. The authors of [11] and [12] consider power
balance only via supply side management by assuming that
all loads are uncontrollable, the authors of [13] study power
balance only via demand side management by optimally
scheduling non-interruptible and deferrable loads of indi-
vidual users, and the authors of [14], [15], and [16] propose
to employ energy storage to clear power imbalance. Some
other works combine either supply side and demand side
managements [17], or supply side and storage managements
[18], or demand side and storage managements [19, 20, 21],
in order to achieve power balance in the Smart Grid. Among
existing works, [22] and [23] are mostly related to this work,
in which all three types of energy management (i.e., sup-
ply, demand, and storage) are jointly considered for power
balancing. However, the algorithm in [22] is distributed in
nature but designed for offline use such as in day-ahead
scheduling, and therefore cannot be implemented in real
time. In [23], a real-time algorithm for power balance is
proposed but the algorithm is executed centrally through
a system operator. In addition, none of the works from [11]-
[23] consider the stochastic network effects of renewable energy
transmission, and the role of the transmission network topology
in effectively achieving the power balance task. As a matter of
fact, for the emerging dynamic prosumer-based grid, it is an
important challenge to design and maintain reliable trans-
mission network topologies that promote the achieving of
real-time supply-demand balance with a high probability at
low costs. To the best of our knowledge, this is the first work
that addresses all the drawbacks of the above mentioned
works and proposes a distributed real-time algorithm for
power balance in the dynamic Smart Grid.

In relation to the salient methodologies used in this
paper to solve the power balance problem, (i) the use of
Lyapunov optimization framework for stochastic optimiza-
tion is not new and has been adopted by some of the above
mentioned works [22][23], however, in this paper we use it
to solve the power balance at problem by explicity modeling
the grid network topology, and (ii) the use of Alternating
Direction Method of Multipliers (ADMM) is not new either
and we use its power to achieve faster convergence for
the topology-driven power balance problem compared to
the convergence rates obtained via seminal subgradient-
based algorithms [24]. In a very recent work [25], the
author proposes a general framework for joint detection-

learning-control algorithm design, and develop the receding
learning-aided control (RLC) algorithm for potentially non-
stationary dynamic systems such as the Smart Grid. RLC
is an online algorithm that requires zero a-priori statistical
knowledge and aids in the fast convergence of reaching
optimal solutions to resource allocation problems at mini-
mum cost. RLC quickly detects changes in system dynamic
statistics via receding sampling, and efficiently incorporates
learned system information into network control via dual
learning and drift-augmentation. Even though RLC works
well in non-stationary environments of zero system sta-
tistical knowledge, for our given data sets, we found it
more fitting to adopt a real-time solution to the power
balance problem with the assumption of system stationarity.
However, we emphsize that the methodology in [25] can
also be used to solve our problem.

1.3 Research Contributions
We make the following research contributions in this paper.

• We propose our dynamic Smart Grid system model,
and formulate the real-time power balance problem
as a constrained stochastic network optimization
module. Our proposed model of the Smart Grid
paints a realistic picture of the emerging grid, and
captures the relevant system uncertainties prevalent
in a prosumer-based energy network (See Section 2).

• Despite capturing the realistic system constraints in
a dynamic Smart Grid, we show that our constrained
power balance optimization task does not allow for
the design of real-time algorithms that will find the
optimal solution, i.e., system parameters that ensure
power balance in the grid at minimum cost. To alle-
viate this issue, we reduce the problem formulation
in Section 2 to an equivalent formulation on which
real-time algorithms could be developed to reach
approximately optimal solutions. In this regard, we
propose a real-time algorithm, MATCH, to solve our
modified stochastic network optimization problem
for the optimal system parameters. MATCH is based
on the theory of Lyapunov optimization. We char-
acterize the performance (cost to ensure balance),
gap, due to MATCH away from the optimum, and
show that the algorithm is asymptotically optimal as
the renewable energy storage capacity increases for
prosumers, and the ramping constraint of the non-
renewable generation unit loosens (See Section 3).

• We design a distributed version of MATCH that
scales with the number of prosumer-contributed en-
ergy storage devices in a power network, and enjoys
a fast convergence rate (See Section 4).

• We validate the efficacy of MATCH through experi-
ments conducted using data modeled on proprietary
data obtained from two public utilities, on various
practical transmission network topologies. We show
that mesh transmission network topologies result in
the best system performance using MATCH, com-
pared to point-to-point and parallel edge topologies
(See Section 5).

2 PROBLEM SETUP

In this section, we propose our system model, and follow
it up with formulating the power-balance optimization task
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Fig. 1: A Representative Prosumer Smart Grid Architecture

for our model.

2.1 System Model
Here, we first provide a comprehensive overview of our
power grid setting, which is followed by a description of
the primary elements of the power grid. A diagrammatic
representation of the comprehensive overview is shown in
Figure 1.

2.1.1 Comprehensive Overview
We consider a power grid setting consisting of one conven-
tional energy generator (CEG) (e.g., nuclear, coal-fired, or
gas-fired generator) and N renwewable energy generators
(REGs) (e.g., wind or solar generators). We note here that
our work easily extends to the case of multiple CEGs.
Each REG is co-located with an on-site energy storage unit.
The power grid consists of an energy manager (EM) that
manages all the possible energy sources, both renewable
and non-renewable, balances the power across the grid (by
satisfying load demands), and in case of energy shortage
connects itself to external energy markets to buy energy.
The CEG and REGs are connected to the EM via an overlay
star network topology through which both, energy as well as
information flows. Information flows are possible due to
the Advanced Metering Infrastructure (AMI) available in
the Smart Grid. The energy flows are unidrectional from
the CEG and REGs to the EM, where information flows
are bidirectional between the EM and the CEG/REGs. We
assume that there is no connectivity between the REGs,
or between the CEG and any REG. We also assume that
the system operates in finite discrete time with time slot
t ε {0, 1, 2, ·, ·, T}. As a result, we will work with energy
units instead of power units, throughput the paper, i.e., we
only deal with the energy generated within a time slot of the
form [t − 1, t], rather than the instantaneous power at any
point in the interval.

2.1.2 Description of Primary Grid Elements
We have the following main elements characterizing the
emerging prosumer-driven Smart Grid.

The Transmission Network - We assume an overlay star
topology between the REGs, CEG, and the EM. A trans-
mission network is dynamic and prone to losses, and we
model the losses to grid energy transfers via random vari-
able coefficients Φri,t ∈ [0, 1], and Φct ∈ [0, 1] denoting the
transmission efficiency from renewable energy and conven-
tional energy sources (See below), respectively, to the energy
manager (EM) at various discrete time instants. We note that
each overlay edge in the star topology could be comprised of
a single physical link, parallel physical links representing mul-
tiple paths through which energy can be transferred from
an energy source to the grid (EM), or a network of physical
links between the generating source, and the EM sink. In
this regard, Φri,t and Φct represent the efficiency coefficients
in the physical sense, i.e., taking the physical link topology
of an overlay edge into account. The transmission efficiency
parameters for a given (source, sink) pair, for a general
physical link topology with stochastic/dynamic links can
be computed using the seminal theory proposed in [26] in
conjunction with Monte Carlo methods.
Conventional Energy Generator (CEG) - A CEG generates
energy from conventional energy sources like coal and nu-
clear. The energy output of the CEG is controllable. We de-
note CGt to be the random variable describing the random
net energy output of the CEG during time slot t, satisfying
0 ≤ CGt ≤ cgmax, where cgmax is the maximum amount of
the energy output. Due to the operational limitations of the
CEG, the change of the outputs in two consecutive time slots
is bounded instead of being arbitrarily large. This practical
limitation is typically reflected by a ramping constraint on
the CEG outputs [27]. Assuming that the ramp-up and
ramp-down constraints are identical, we express the overall
ramping constraint as

|CGt − CGt−1| ≤ r · cgmax,

Here, CGt = ΦctCEGt, where CEGt is the energy gen-
erated by a CEG at time slot t without any transmission
losses. The ramping coefficient, r, 0 ≤ r ≤ 1, indicates
the tightness of the ramping requirement. In particular, for
r = 0, the CEG produces a fixed output over time, while
for r = 1, the ramping requirement becomes non-effective.
Furthermore, we denote the generation cost function of the
CEG by CCG().
Renewable Energy Generators (REGs) - A REG generates
energy from renewable sources such as wind and solar.
For a given REG i, we denote the amount of the renew-
able generation during time slot t by the random variable
RGi,t ∈ [0, rgi,max]. The rationality behind RGi,t being a
random variable is the stochastic nature of the renewable
sources. We assume that each REG is co-located with one on-
site energy storage unit capable of charging and discharg-
ing. We denote the charging or discharging energy amount
of the i-th storage unit during time slot t by the random
variable Xi,t, with Xi,t > 0(resp.Xi,t < 0) indicating
charging (resp. discharging). Because of the battery design
and hardware constraints, the value of Xi,t is bounded by
the interval [xi,min, xi,max] containing the maximum charg-
ing and discharging amounts. Let ESi,t be random variable
denoting the energy state of the i-th colocated storage unit
during time slot t, where ESi,t ∈ [esi,min, esi,max]. We have
the following relation describing the evolution of ESi,t.

ESi,t+1 = ESi,t +Xi,t.
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During every time slot, an REG supplies energy to the
energy manager. We denote the amount of the contributed
energy by the i-th REG (including transmission losses)
during time slot t by the random variable Ri,t. Since the
energy flows of the REG should be balanced, we have

Ri,t = Φri,t(RGi,t − ηXi,t), Ri,t ≥ 0, η ∈ [0, 1],

where η is the charging/discharging efficiency of the stor-
age unit. In particular, if Xi,t > 0 (charging state), the
contributed energy Ri,t directly comes from the renewable
generation; if Xi,t < 0 (discharging state), Ri,t comes from
both the renewable generation, as well as storage unit.
Grid Loads - We model two types of loads: (a) conventional
loads (CLs), and (b) elastic loads (ELs). Conventional loads
represent critical energy demands such as lighting, that
must be satisfied once requested. The elastic loads here
represent some time-controllable energy requests that can be
partly curtailed or shifted over time, if the energy provision
cost is high. At time slot t, we denote the amount of the
total requested conventional load by the random variable
Lc,t, where Lc,t ∈ [lc,min, lc,max]. Similarly, we denote the
amount of the total requested elastic load by Le,t where
Le,t ∈ [le,min, le,max]. The amounts Lc,t and Le,t are gener-
ated by consumers based on their own needs. We denote the
amount of the total load at time t to be Ltot,t, which satisfies
Ltot,t ≤ Lc,t + Le,t. The control of ELs need to meet cer-
tain quality-of-service (QoS) requirement. In this paper, we
impose an upper bound on the portion of unsatisfied elastic
loads. Formally, we introduce the following constraint.

1

T

T−1∑
t=0

E

[
lc,t + le,t − ltot,t

le,t

]
≤ α,

for a given T . Here, α ∈ [0, 1], is generally less than 0.05 in
practice to indicate a tight QoS requirement.
Energy Trading - It is quite possible in the process of supply-
demand balance that internal energy resources within the
grid get exhausted. In such situations, the energy manager
can resort to external energy markets if needed. For exam-
ple, the energy manager can buy energy from the external
energy markets in the case of energy deficit, or sell energy
to the markets in the case of energy surplus. At time slot t,
we denote the unit prices of the external energy markets for
buying and selling energy by random variables Pbuy,t ∈
[pbuy,min, pbuy,max], and Psell,t ∈ [psell,min, psell,max], re-
spectively. We typically keep the prices Pbuy,t and Psell,t
random to model unexpected market behaviors. To avoid
energy arbitrage, the buying price is assumed to be strictly
greater than the selling price, i.e., Pbuy,t > Psell,t. Let ebuy,t
and esell,t be the energy amount bought and sold by the
energy manager from/to external sources.Then, we have the
following relation to ensure balance in the smart grid.

CGt + ebuy,t +
N∑
i=1

Ri,t = esell,t + Ltot,t.

We note that in the absence of an energy trading environ-
ment, the supply-demand balance condition at a particular
time slot t would be an inequality of the form

CGt +
N∑
i=1

Ri,t ≥ Ltot,t,

which might be harder to satisfy in practice, both, in a single
time-slot, as well as across multiple time slots. In this work
we consider the presence of an energy trading environment,
as a practically viable design choice.

2.2 Optimization Problem Formulation
In this section, we formulate a stochastic optimization prob-
lem based on the above described system model. In an
intuitive sense, it ‘costs’ the energy manager to maintain
power-balance in the grid at real-time. In this regard, our
main goal in this section is (i) to propose our cost metric
for the energy manager, and (ii) formulate a constrained
optimization problem whose solution minimizes this cost
of ensuring supply-demand balance in the grid at all times.

We define the cost metric for the energy manager (EM)
in our work as a random variable CMt as follows.

CMt = CCG(CEGt)+

N∑
i=1

DGi(Xi,t)+Pbuy,tebuy,t−Psell,tesell,t.

The first term of the metric is the cost to the grid to produce
energy from conventional energy sources at time slot t. The
second term is the total degradation cost of the renewable
energy battery storage for charging or discharging amount
Xi,t, during time slot t, across all the batteries [28]. The
third and fourth terms represent the cost and revenue to the
grid respectively for buying and selling energy during time
slot t. We now provide the formulation of our stochastic
optimization problem, which we term as ST-OPT, and that
follows from the system model in Section 2.1.

ST-OPT: arg min
{
−→
Rt,
−→
Xt,Ltot,t,CEGt,ebuy,t,esell,t}

1

T

T−1∑
t=0

E[CMt],

where
−→
Rt = {R1,t, R2,t, ..., RN,t};

−→
Xt = {X1,t, X2,t, ...., XN,t}

subject to
Ltot,t ≤ Lc,t + Le,t, ∀t. (1)

Lc,t ∈ [lc,min, lc,max]; Le,t ∈ [le,min, le,max], ∀t. (2)

1

T

T−1∑
t=0

E

[
Lc,t + Le,t − Ltot,t

Le,t

]
≤ α. (3)

Xi,t ∈ [xi,min, xi,max], ∀i, t. (4)

ESi,t+1 = ESi,t +Xi,t, ∀i, t. (5)

Ri,t = Φri,t(RGi,t − ηXi,t), Ri,t ≥ 0, η ∈ [0, 1], ∀i, t, (6)

where

Φri,t ∈ [0, 1], ESi,t ∈ [esi,min, esi,max], RGi,t ∈ [0, rgi,max]

.
Ri,t ∈ [0, ri,max], ∀i, t. (7)

CGi,t ∈ [0, cgmax],∀i, t. (8)

CGt = ΦctCEGt,∀t, (9)

where Φct ∈ [0, 1]; CEGt ∈ [0, cgmax

Φc
t

],∀t.

|CGt − CGt−1| ≤ r · cgmax, ∀t. (10)

ebuy,t ≥ 0, ∀t. (11)
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esell,t ≥ 0, ∀t. (12)

CGt + ebuy,t +
N∑
i=1

Ri,t = esell,t + Ltot,t, ∀t. (13)

Due to the stochastic nature of the problem variables,
the objective function minimizes the expected cost of en-
suring supply-demand balance averaged over the total
number of discrete time slots. The functions CCG, and
DG are assumed to be convex and continously differentiable,
with CCG′() and DG′() being bounded by the inter-
vals [CCG′i,min, CCG

′
i,max] and [DG′i,min, DG

′
i,max], respec-

tively. Constraints (1) to (13) reflect the various constraints
as per our system model described in Section 2.1. Constraint
(13) ensures power balance in the Smart Grid at all times.

3 THE DESIGN OF ‘MATCH’
In this section, we design MATCH, a real-time supply-
demand balancing algorithm for prosumer energy net-
works. The first part of the section derives the design of
MATCH from a modified optimization framework of ST-
OPT. The second part analyses MATCH for its effectiveness
in ensuring real-time power balance at a minimum cost, and
lays down corresponding long-term practical implications
when optimal system operating points are achieved over
every time slot. We provide non long-term practical impli-
cations of MATCH in Section 5.

3.1 The MATCH Algorithm

We will use the theory of Lyapunov optimization [29]
to design a real-time algorithm that solves ST-OPT. The
Lyapunov framework enables the design of real-time al-
gorithms for optimization problems based upon complex
dynamic systems, such as the emerging Smart Grid. How-
ever, given the formulation for ST-OPT, the Lyapunov
optimization framework cannot be directly applied to it,
simply because of the absence of certain non time-averaged
constraints such as constraint (5) and (10). To alleviate this
problem, we propose a modified relaxed formulation of ST-
OPT, that is a real-time convex optimization formulation
for ST-OPT and obeys the conditions required for us to
apply the Lyapunov framework, but at the same time paves
the path for a real-time algorithm that outputs a good
approximation to the optimal solution to ST-OPT. We first
define the relaxed formulation of ST-OPT, followed by the
description of MATCH.

3.1.1 Modified ST-OPT
We define, M-(ST-OPT), the modified real-time convex for-
mulation of ST-OPT as follows.

M-(ST-OPT): arg min
{
−→
Rt,
−→
Xt,Ltot,t,CEGt,ebuy,t,esell,t}

OBJt,

where

OBJt =

[
N∑
i=1

H ·DGi(Xi,t) + (ESi,t − βi)Xi,t

]
+ H · CCG(CEGt) +H · Pbuy,tebuy,t

− H · Psell,tesell,t −
Jt
Le,t

Ltot,t,

where
H ∈ [0, Hmax];

Hmax = min
∀i

{
ESi,max +Xi,min −Xi,max

Pbuy,max − Psell,min +DG′i,max −DG′i,min

}
,

βi = H(Pbuy,max +DG′i,max)−Xi,min,

and

Jt = max{Jt−1 − α, 0}+
Lc,t + Le,t − Ltot,t

Le,t
.

subject to
Ltot,t ≤ Lc,t + Le,t, ∀t. (14)

Lc,t ∈ [lc,min, lc,max]; Le,t ∈ [le,min, le,max], ∀t. (15)

Xi,t ∈ [xi,min, xi,max], ∀i, t. (16)

Ri,t = Φri,t(RGi,t − ηXi,t), Ri,t ≥ 0, η ∈ [0, 1], ∀i, t, (17)

where Φri,t ∈ [0, 1], and RGi,t ∈ [0, rgi,max].

Ri,t ∈ [0, ri,max], ∀i, t. (18)

CGi,t ∈ [0, cgmax],∀i, t. (19)

CGt = ΦctCEGt,∀t, (20)

where Φct ∈ [0, 1]; CEGt ∈ [0, cgmax

Φc
t

],∀t.

|CGt − CGt−1| ≤ r · cgmax, ∀t. (21)

ebuy,t ≥ 0, ∀t. (22)

esell,t ≥ 0, ∀t. (23)

CGt + ebuy,t +
N∑
i=1

Ri,t = esell,t + Ltot,t, ∀t. (24)

The problem, M-(ST-OPT), is convex, suited for the use of
the Lyapunov framework, and satisfies all the constraints
imposed in ST-OPT. A striking difference of M-(ST-OPT)
with ST-OPT is the absence of constraint (3) in ST-OPT in
M-(ST-OPT). In order to meet constraint (3) in M-(ST-OPT),
we introduce a virtual queue backlog Jt in line with the
theory of Lyapunov optimization [29]. The virtual queue Jt
accumulates the portion of elastic loads. Maintaining the
stability of Jt is equivalent to satisfying (3) in ST-OPT [29].
Another striking difference of M-(ST-OPT) with ST-OPT is
the absence of constraint (5) in ST-OPT in M-(ST-OPT). In
this regard, the parameter βi in M-(ST-OPT) guarantees
the boundedness of ESi,t as expressed through constraint
(5) in ST-OPT. Also note that to ensure the feasibility of
CEGt, constraint (10) in ST-OPT stays in M-(ST-OPT) as
constraint (23), even though it is not time-averaged. The
objective function, OBJt in M-(ST-OPT) is a drift-plus-cost
function that is a linear combination of the system cost, drift
related to the virtual queue Jt, and energy states. The goal
of the optimization objective is to minimize this system cost.
We show in Section 8 that the objective function is upper
bounded. For stochastic objective functions such as the one in
M-(ST-OPT), an alternative primal-dual method makes decisions
similar to drift-plus-penalty decisions, but uses a penalty defined
by partial derivatives of the objective function.
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Algorithm 1: MATCH - ensures real-time power
balance

Input:
−−→
RGt, Lc,t, Le,t, Pbuy,t, Psell,t

Output:
−−→
Roptt ,

−−→
Xopt
t , Lopttot,t, CEG

opt
t , eoptbuy,t, e

opt
sell,t

1 Initialize J0 = 0. EM does the following for every time
slot t

2 while time slots are not exhausted do
3 Observe

−−→
RGt, Lc,t, Le,t, Pbuy,t, Psell,t,

−−→
ESt, Jt.

4 Solve M-(ST-OPT) for
−−→
Roptt ,

−−→
Xopt
t , Lopttot,t, CEG

opt
t , eoptbuy,t, e

opt
sell,t.

5 Use the solution to M-(ST-OPT) to update
−−→
ESt, Jt

based on the following:

Jt = max{Jt−1 − α, 0}+
Lc,t + Le,t − Ltot,t

Le,t
,

and
ESi,t+1 = ESi,t +Xi,t, ∀i, t.

3.1.2 Description of MATCH
The real-time MATCH algorithm is described in Algorithm
1. MATCH needs to be run by the energy manager at every
time slot.

3.2 Algorithm Analysis
In this section, we analyse the performance of MATCH, and
compare the optimal time-averaged solution of M-(ST-OPT)
usign MATCH, denoted by CMmst−opt, with the optimal
time-averaged solution of ST-OPT, denoted as CMst−opt.
The performance metric is the system cost to ensure supply-
demand balance in the grid at all times. In this work we
consider the time-averaged system cost over all time slots.
We have the following theorem in this regard, the proof of
which is in Section 8.

Theorem 1. Given that
−−→
RGt, Lc,t, Le,t, Pbuy,t, Psell,t are

i.i.d’s, we have

1)
−−→
Roptt ,

−−→
Xopt
t , Lopttot,t, CEG

opt
t , eoptbuy,t, e

opt
sell,t is a feasible

solution to ST-OPT.
2) CMmst−opt(r,H)− CMst−opt(r) ≤ K, where

K = (1− r)cgmax
Φct

max{pbuy,max, CCG
′
max}+

B

H
.

Here,

CMmst−opt = sup
1

T

T∑
t=1

CMmst−opt
t ;

is the optimal solution produced by MATCH for M-(ST-
OPT), and

CMst−opt = sup
1

T

T∑
t=1

CMst−opt
t ,

and

B =
1

2

{
(1 + α2) +

N∑
i=1

max{x2
i,min, x

2
i,max}

}

3) CMst−opt(r) ≥ CMmst−opt(1, H)− B
H .

4) ESi,t ∈ [0, esi,top], where esi,top equals

H(pbuy,max−psell,min+DG′i,max−DG′i,min)−xi,min+xi,max.

5) Jt ∈ [0, H · pbuy,maxle,max + 1]; eoptbuy,t · e
opt
sell,t = 0.

Here, eoptbuy,t and eoptsell,t are outputs of MATCH.

Theorem Implications: The important practical implica-
tions of Theorem 1 are (i) The performance gap between
the optimal solution to ST-OPT and M-(ST-OPT), i.e., the
difference between the time averaged costs of ST-OPT and
M-ST-OPT is bounded from above by K, which intuitively
asymptotically reaches zero with increasing H (the capacity
of a storage unit), and the loosening of the ramping param-
eter, r (following from Theorem 1.2 and 1.3), (ii) the results
will hold true even for non i.i.d.

−−→
RGt, Lc,t, Le,t, Pbuy,t,

Psell,t, and extends to the case when these random vari-
ables evolve based on a finite state, irreducible, and aperiodic
Markov chain (follows from the applicability of the Lya-
punov optimization framework to non i.i.d. settings), (iii)
the maximum value of the energy state (the ES variable)
for each storage device (a) increases linearly with H , (b) is
larger if the energy prices are more volatile or the marginal
degradation cost increases fast, and (c) is minimum if the
prices for buying and selling energy are equal and constant,
and the degradation cost is zero (follows from Theorem 1.4),
and (iv) the queue backlog, i.e., the portion of unsatisfiable
elastic loads, is upper bounded and the energy manager
(EM) does not simultaneously buy or sell energy (follows
from Theorem 1.5).

4 DESIGNING DISTRIBUTED (D) MATCH

Algorithm MATCH can be used by the energy manager at
every time slot to ensure supply-demand balance in the
power grid. However, MATCH is centralized in nature.
In reality, we could be looking at potentially a million
renewable energy sources in a large metropolitan locality.
In such a setting, the REGs may not be willing to give
direct control of storage or offer private information to the
centralized EM regarding the same. In addition, the com-
putational complexity of centralized control would grow
quickly as the number of REGs increase. In this section, we
propose D-MATCH, a distributed version of the MATCH
algorithm for solving M-(ST-OPT). We first lay down the
theory behind our distributed algorithm, which is followed
by the description of the practical implementation aspects
of D-MATCH.

4.1 The Theory Behind D-MATCH

Our intuition here is to formulate M-(ST-OPT) in a manner
so as to be able to use the Alternating Direction Method
of Multipliers (ADMM) approach proposed in [30] for the
design of a distributed version of MATCH through an
iterative process. We denote this new formulation, D-(ST-
OPT), as follows.

D-(ST-OPT) argmin
−→γt,
−→
δt

OBJt,
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where

OBJt =
N+4∑
i=1

[Fi,t(αi,t) + 1(γi,t ∈ Γi,t)]

+ 1

(
N+4∑
i=1

δi,t =
N∑
i=1

Φri,tRGi,t

)
,

subject to
−→γt −

−→
δt , ∀t. (25)

Here, 1(·) is an indicator function that equals 0 if the
enclosed event is true and infinity otherwise. −→γt =
[γ1,t....., γN+4,t] is the vector of random variables related to
the M-(ST-OPT) by the relations γi,t = Xi,t for 1 ≤ i ≤ N ,
γN+1,t = Ltot,t, γN+2,t = −CEGt, γN+3,t = −ebuy,t, and
γN+4,t = esell,t. Γi,t is the constraint set associated with
γi, and function Fi,t(γi,t is part of the objective if M-(ST-
OPT) and associated with the optimization variable in M-
(ST-OPT) that is equivalent to γi,t. The expression inside the
indicator variable of the second half of OBJt denotes the
supply-demand balancing requirement during time slot t.
Note that

−→
δ is an auxilliary variable and copy of −→γ .

In order to solve D-(ST-OPT) we first introduce the dual
random variable vector

−→
dt = [d1,t, d2,t, ..., dN+4,t]. Using

the general ADMM approach, D-MATCH uses an iterative
scheme where, at the k + 1-th iteration, the variables γi,t,
δi,t, and di,t are updated as follows:

γk+1
i,t = argmin

γi,t

{
Fi,t(γi,t) +

ρ

2
(γi,t − δki,t +

dki
ρ

)2|γi,t ∈ Γi,t

}
, ∀i, t,

(26)
−−→
δk+1
t = argmin−→

δt

{
N+4∑
i=1

(δi,t −
dki,t
ρ
− γi,t)2|

N+4∑
i=1

δi,t =

N∑
i=1

Φri,tRGi,t

}
,

(27)
and

dk+1
i,t = dki,t + ρ(γk+1

i,t − δ
k+1
i,t ), ∀i, t. (28)

Here, ρ is a positive penalty parameter, which needs to be
adjusted for good convergence performance [30]. We now
define AVG(γki,t) per time slot t to equal 1

N+4

∑N+4
i=1 γki,t. We

also define AVG(dki,t) per time slot t to equal 1
N+4

∑N+4
i=1 dki,t.

Solving the optimization problem in (31) then yields

δk+1
i,t =

dki,t
ρ

+γk+1
i,t −

AV G(dki,t)

ρ
−AV G(γk+1

i,t )+

∑N
i=1 Φri,tRGi,t

N + 4
.

(29)
Replacing the right hand side of (33) for δk+1

i,t in (31), we
get

dk+1
i,t = AV G(dki,t) + ρ

(
AV G(γk+1

i,t )−
∑N
i=1 Φri,tRGi,t

N + 4

)
, ∀i, t.

(30)
Equation (34) implies that the dual variables dk+1

i,t are
identical for all i for each iteration in time slot t. Thus, we
rewrite (34) as

dk+1
t = AV G(dkt ) + ρ

(
AV G(γk+1

i,t )−
∑N
i=1 Φri,tRGi,t

N + 4

)
, ∀t.

(31)
We again replace the right hand side of (33) for δi, tk in (30),
and using the fact that (i) dki are identical for all i, and (ii)−→
δt is not used for the −→γt or dual variable updates, yields a
modified (30) as follows.

γk+1
i,t = argmin

γi,t

{
Fi,t(γi,t) +

ρ

2
(γi,t − ψki,t)2|γi,t ∈ Γi,t

}
, ∀i, t,

(32)

where

ψki,t = γki,t −AV G(γk+1
i,t )− dkt

ρ
+

∑N
i=1 Φri,tRGi,t

N + 4
, ∀i, t,

Based on the theory in [31], the above updates lead to a
worst case convergence rate of O( 1

k ) for D-MATCH, which
is much faster than the convergence rates obtained by the
use of the seminal subgradient-based algorithm in [24].

4.2 Implementing D-MATCH in Practice
The optimization problem in (30) can be solved sepa-
rately at each REG, i ∈ {1, 2, .., N}, and at the EM for
i ∈ {N + 1, .., N + 4}, whereas the updating task in (31) can
be computed solely by the EM. At the initial iteration, each
REG needs to send the amount of its renewable generation
Φri,tRGi,t to the EM. Following this, the EM emits a signal
ψki,t to each REG for its computation, and the REG solves
(30) and sends the solution γk+1

i,t to the EM. The EM finally
integrates the optimal solutions from each REG. We see that
the REGs do not have to release any other private infor-
mation to the EM, and the required information exchange
is limited. The optimization problems in (30) are all strictly
convex and admit a unique (and sometimes closed-form) so-
lution. Furthermore, in (31), only one dual variable is finally
required to be updated. This is because the transformation
of M-(ST-OPT) and the introduction of the new optimization
variables−→γt permit all dual variables to share the same form
of update, hence effectively reducing the number of the
actual dual updates, as well as simplifying the calculation.

5 PERFORMANCE EVALUATION

In this section, we describe our experimental setup, and
follow it up with analysing the performance of MATCH
and D-MATCH under our proposed experimental setting.
Our setting proportionally reflects actual data sets from the
Los Angeles Department of Water and Power (LADWP) and
Sacramento Municipality Utility District (SMUD). Due to the
proprietary nature of LADWP and SMUD data, we are unable to
report experimental results based upon actual data sets.

5.1 Experimental Setup
We consider three types of physical network topologies
for the transmission network between a CEG, REG source,
and the EM sink: (i) a single point-to-point edge, (ii) a set
of 10 parallel edges, and (iii) a randomly generated mesh
network of 30 nodes. The individual reliability, i.e., trans-
mission efficiency, of each edge is uniformly distributed in
the interval [0,1]. The reliability of the entire transmission
network from a given source to the EM is computed using
the algorithm in [26]. We set the length of each time slot to
be of 15 minutes, and run our experiments for 1000 time
slots. The conventional load and elastic loads are uniformly
distributed in the interval [5 kWh, 30 kWh] for each time
slot. We vary α from 0.8 to 1.0, and choose the number of
REGs to lie in the set {500, 1000, 10,000}. For each storage
unit, the maximum discharging and charging amounts are
set to 1.1 kWh, assuming the discharging and charging rate
to be 6.6 kWh. We model the degradation cost function of
storage i via the function of the form DGi(xt) = 5x2

t . We
assume REGi,t to be uniformly distributed in the range [0,
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Fig. 2: Topology-Driven Performance w.r.t. (a) H (left), (b) α (middle left), (c) r (middle right), when #REGs = 500
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Fig. 3: Topology-Driven Performance w.r.t. (a) H (left), (b) α (middle left), (c) r (middle right), when #REGs = 1000
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Fig. 4: Topology-Driven Performance w.r.t. (a) H (left), (b) α (middle left), (c) r (middle right), when #REGs = 10,000

1.1 kWh]. We design the generation cost function, CCG(·)
for the CEG to be of the form CCG(xt) = 4xt, where cegmax

= 50 kWh. We fix the per unit energy buying price per time
slot to be uniformly distributed in the interval [8, 10] cents
per kWh. The per unit energy selling price per time slot is
set to be uniformly distributed in the interval [4, 6] cents
per kWh. For a random mesh topology, each plot point
represents the average of 50 random topology instances. We
use MATLAB and GNU plot to run our experiments and
plot the results, respectively.

5.2 Results

We compare our experimental results of using MATCH
with the lower bound of the optimal system cost obtained
via Theorem 1.3 (we refer to this lower bound as ‘optimal
performance’ in the text and OPT in the plots). We observe
from Figure 2a. that (i) the system cost converges to a given
value for low H values, (ii) even using low storage capac-
ities (controlled via parameter H), one could achieve near
optimal performance for all types of transmission network

topologies under consideration. We observe in Figure 2b.
that with increasing α, the system cost and its marginal
decreases, and this is intuitive given that we have to satisfy
a lesser load. In addition, the system cost from MATCH is
close to the optimal performance for increasing α for all our
network topologies, and equals it as α → 1. With respect
to ramping requirements, we observe from Figure 2c. that
the system cost monotonically decreases with increasing r.
This is intuitive given the lesser use of bought expensive
external energy, with increasing r. We also observe that for
r ≥ 0.4, the system cost stabilizes to a fixed value, this being
due to the CEG supply being sufficient enough for ramping
constraints to be relaxed any further. In addition, the system
cost from MATCH approaches the optimal performance
with increasing r. We study convergence of D-MATCH in
Figure 5a. and observe that for various problem instances,
the algorithm converges much faster than the seminal dis-
tributed subgradient approach in [24] (denoted by SA in
the plot), for all topology types. The speed of convergence
is measured through how fast the average optimality gap
(the difference between the optimal solution to D-(ST-OPT)
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and the output from D-MATCH/SA for D-(ST-OPT)) goes
towards zero, where the average is taken across 50 random
instantiations of a system with 10000 REGs. A common
takeaway message (in turn a design advice for transmission
network managers) from our plots, apart from the efficacy of
MATCH, is that under MATCH, mesh transmission network
topologies from an energy source to the EM lead to the best
system performance due to them opening up more disjoint energy
flow paths from the source to the destination, thereby increasing
power flow reliability. In Figures 3 and 4, we plot Figures 2(a)
- 2(c) with increasing count of the total number of REGs.
Quite evidently, we observe that the system cost for the
grid decreases with increasing REG count because there are
more renewable resources to satisfy consumer demand in
real-time, implying the grid incurring lesser costs in buying
energy and generating more revenue through selling energy.
Figure 5b. plots the actual average running time of MATCH
and D-MATCH (without the information exchange times)
on 50 random system instances consisting of 500, 1000,
and 10,000 REGs respectively. We observe that the run-
ning time gap between MATCH and D-MATCH increases
with increasing REG count, denoting the effectiveness of a
distributed algorithm in significantly reducing the running
time for large system instances.

6 DISCUSSION

In this section, we briefly discuss a pathway to the realiza-
tion in practice of smart power systems that integrate scal-
able, real-time, and distributed optimization components
such as ours.

Traditionally, power grids have been designed as cen-
trally controlled environments. Even with the introduction
of smart meters, devices capable of being programmed re-
motely to sample and transmit data from households to the
utility, this centralized approach has remained unchanged.
However, the increased size of these emerging smart grids
and the stress on the communication network pulling smart
meter data every 15 minutes or less, are challenging this
approach similarly with what the intercloud and the grid
federation have done in the information technology (IT)
domain. Communication networks used in smart grids (e.g.,
wireless, radio, Programmable Logic Controller (PLC)) can-
not cope with the intense traffic required for real-time opti-
mizations [32] such as the one we are proposing. The shift

from a centralized control center to a more distributed one
is motivated also by the introduction of DERs and renew-
ables which can be independently owned and operated and
shared through contracts with the utility. Owners of such
energy sources may not be willing to release control or share
sensitive data for security and privacy issues. This emerging
heterogeneous and distributed smart grid requires a higher
degree of voluntary collaboration between entities. In such
a cooperative environment actors share limited amount of
data with the central orchestrators (EM) and retain their
independence in terms of energy generation and storage.
Through contracts they can share their energy to handle
global or local demand supply imbalances. This approach
of pushing some of the computations towards the edges of
the network, i.e., via fog computing, aims at reducing the
communication bottleneck and the computational stress on
the centralized controller.

In Section 4 we presented D-MATCH, a distributed algo-
rithm for optimizing consumption during demand supply
imbalances based energy coming from DERs and ESSs. The
algorithms functionality depicted in Section 4.2 can be easily
implemented in a distributed computing environment gov-
erned by contracts between the EM and the DER and ESSs
owners. The architecture depicted in Figure 6 is similar to
the MapReduce model where the smart grid is partitioned,
data is independently processed and individual results are
aggregated by the EM for orchestration. We should note
that while the optimization itself is distributed, the control
decision is centralized and enacted by the EM. Partitioning
the smart grid can be done at various levels depending
on its complexity and topology. Ideally, each CEG and
REG would be independent but they can be aggregated to
reduce the costs needed for installing the processing nodes.
Smart meters would be ideal candidates for these processing
nodes; however, while they can be used for controlling
home area network appliances and can be programmed to
sample and deliver data at various intervals, their ability
to perform complex optimization problems is limited. Until
such capability becomes a reality, compute nodes will need
to be installed at every distributed point. These can range
from ordinary computers to tablets linked to a home area
network and will communicate with the EM following the
flow depicted in Section 4.2. The distributed architecture
minimizes the data to be transmitted over the network,
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Fig. 6: Representative Architecture to Realize D-MATCH in Practice

reduces the stress on the EM, and maintains the privacy
requirements of CEGs and REGs. To avoid saturating the
transmission network our proposed algorithm can be exe-
cuted only during unexpected events that can trigger load
imbalances. Efficient data-driven prediction algorithms for
modeling DER generation can be used outside these events
to predict their impact on the network. During these un-
expected events which cause demand spikes, the algorithm
can balance the load by requesting renewable generation
from CEGs and REGs and by running distributed optimiza-
tions. This avoids having to send renewable generation in
real-time continuously to the EM.

7 CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of ensuring power
balance in the prosumer-driven dynamic Smart Grid system
at all times. We modeled the problem as a stochastic net-
work optimization task to capture various uncertainties that
characterize the sytem elements in practice. We designed
MATCH, a fast, real-time, distributed algorithm based on
the standard Lyapunov optimization framework, to solve
the stochastic optimization task. We showed via theory and
experiments that MATCH optimizes system cost to ensure
real-time supply-demand balance, and also scales well to
increasing number of renewable energy sources in the grid.
We also showed that mesh transmission network topologies
from an energy source to the grid lead to the best system
performance, i.e., system cost, when using MATCH. As part
of future work, we plan to deploy MATCH in field trials
conducted by utility companies and study the effectiveness
of our proposed algorithm in the day-to-day functioning of
the Smart Grid.

8 PROOF OF THEOREM 1

In this section, (i) we provide an upper bound of the
objective function in problem M-(ST-OPT), and use it to (ii)
prove Theorem 1.
Upper Bound of Objective Function. We define a vector
Ξt = [ES1,t, ES2,t, ..., ESN,t, Jt], consisting of the energy
states of all storage units, and the virtual queue backlog Jt,

at time slot t. We define L(Ξt) to be a Lyapunov function
given by

L(Ξt) =
1

2
J2
t +

1

2

N∑
i=1

(ESi,t − βi)2.

We also define a conditional Lyapunov drift function given
by

∆(Ξt) = E[L(Ξt+1)− L(Ξt)|Ξt].

The drift-plus-cost function is given by ∆(Ξt) +
HE[CMt|Ξt], which is a weighted sum of ∆(Ξt) and the ob-
jective function with H denoting the weight. The Lyapunov
difference between consecutive time slots is given by

L(Ξt+1)−L(Ξt) =
1

2
[J2
t+1−J2

t ] +
1

2
[

N∑
i=1

(D(ESi,t, ESi,t+1, βi)],

(33)
where

D(ESi,t, ESi,t+1, βi) = (ESi,t − βi)2 − (ESi,t − βi)2.

Given

Jt = max{Jt−1 − α, 0}+
Lc,t + Le,t − Ltot,t

Le,t
,

we have

J2
t+1− J2

t ≤ 2Jt

(
Lc,t + Le,t − Ltot,t

Le,t
− α

)
+ 1 +α2. (34)

We also have

D(ESi,t, ESi,t+1, βi) ≤ 2Xi,t(ESi,t−βi)+max{x2i,min, x
2
i,max}.

(35)
Using Equations (37) - (39), we have

∆(Ξt) +HE[CMt|Ξt] =
1

2
(1 + α2) +

1

2

N∑
i=1

max{x2i,min, x
2
i,max}

+ Jt

[
Lc,t + Le,t − Ltot,t

Le,t
− α|Ξt

]
+

N∑
i=1

(ESi,t − βi)E[Xi,t|Ξt]

+ HE[CMt|Ξt],

which upper bounds the drift-plus-cost or the objective
function in M-(ST-OPT).
Proof of Theorem 1.1 This theorem proof deals with the
ability to obtain system feasibility with MATCH. This in-
volves showing the satisfaction of (i) constraint (3) and (ii)
ESi,t ∈ [esi,min, esi,max]. Under the Lyapunov optimization
framework, it sufficient to show that the virtual queue Jt
is mean rate stable, i.e., limT→∞

E[Ji,T]
T = 0, for constraint

(3) to be satisfied. This automatically follows from the result
in Proposition 2.1, Section 4.4 from [29]. The structure of
the proof to satisfy ESi,t ∈ [esi,min, esi,max] involves first
proving a lemma followed by the use of mathematical
induction.

Lemma 1. If

1.ESi,t < −xi,min, X
mst−opt
i,t = min{Φri,tRGi,t, xi,max}

and if

2.ESi,t > βi −H(psell,min +DG′i,min), Xmst−opt
i,t = xi,min.
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Proof. We transform M-(ST-OPT) as

arg min
{
−→
Xt,Ltot,t,CEGt,esell,t}

OBJt,

where

OBJt =

[
N∑
i=1

H ·DGi(Xi,t) + (ESi,t − βi)Xi,t

]
+ H · CCG(CEGt)

+ H · Pbuy,tebuy,t(esell,t + Ltot,t − CEGt +
N∑
i=1

Xi,t)

− H · Psell,tesell,t −
Jt
Le,t

Ltot,t,

subject to
Ltot,t ≤ Lc,t + Le,t, ∀t. (36)

CGi,t ∈ [0, cgmax],∀i, t. (37)

CGt = ΦctCEGt,∀t. (38)

|CGt − CGt−1| ≤ r · cgmax, ∀t. (39)

esell,t ≥ 0.

xi,min ≤ Xi,t ≤ min{Φri,tRGi,t, xi,max}. (40)

Xi,t ≥
N∑
i=1

Φri,tRGi,t−
N∑
j 6=i

Xj,t−Ltot,t+CEGt−esell,t. (41)

Since the objective function of the above optimization prob-
lem is separable over all variables, an optimal solution of
Xi,t can be derived through the following optimization
problem.

argmin
Xi,t

H ·DGi(Xi,t) + (ESi,t − βi)Xi,t +H · Pbuy,tXi,t,

subject to (44) and (45). Under the assumption that ESi,t <
βi−H(pbuy,max +DG′i,max) = −xi,min, the objective func-
tion is strictly decreasing with respect to Xi,t. Thus, the
optimal value of Xi,t is min{Φri,tRGi,t, xi,max}. In a similar
fashion when ESi,t > βi − H(psell,min + DG′i,min), the
optimal solution to Xi,t is achieved via the solution to the
following optimization problem.

argmin
Xi,t

H ·DGi(Xi,t) + (ESi,t − βi)Xi,t +H · Psell,tXi,t,

subject to (44) and

Xi,t ≤
N∑
i=1

Φri,tRGi,t−
N∑
j 6=i

Xj,t−Ltot,t+CEGt+ebuy,t. (42)

This objective function is strictly increasing with respect to
Xi,t. Thus, the optimal solution to Xi,t is xi,min. Thus, we
have proved Lemma 1. �
Using Lemma 1, we will not show using mathematical
induction that the condition ESi,t ∈ [esi,min, esi,max] is
satisfied. We have the following lemma in this regard.

Lemma 2. The energy state for the ith storage unit is bounded
in the interval [0, esi,max].

Proof. For t = 0, we have ESi,t = 0, which is bounded.
In the inductive step we assume that ESi,t ∈ [0, esi,max],
and need to show that ESi,t+1 ∈ [0, esi,max]. When
ESi,t ∈ [0,−xi,min], using Lemma 1 and Equation (5), we

have ESi,t+1 = ESi,t + min{Φri,tRGi,t, xi,max ≥ ESi,t ≥ 0.
We also have ESi,t+1 ≤ ESi,t + xi,max < esi,max. When
ESi,t ∈ [−xi,min, βi − H(psell,min + DG′i,min], using
(5), we have ESi,t+1 ∈ [ESi,t + xi,min, ESi,t + xi,max].
From the expressions for βi and Hmax, it follows that
ESi,t+1 ∈ [0, esi,max]. When ESi,t ∈ [βi − H(psell,min +
DG′i,min,−xi,max], using Lemma 1 and Equation (5), we
have ESi,t+1 = ESi,t + xi,min < ESi,t ≤ esi,max. Thus, we
have proved Lemma 2. �.
Using Lemmas 1 and 2, the result of Theorem 1.1 easily
follows. �.

Proof of Theorem 1.2 The theorem is proved via two
lemmas.

Lemma 3. Consider the following optimization problem.

OPT: arg min
{
−→
Rt,
−→
Xt,Ltot,t,CEGt,ebuy,t,esell,t}

1

T

T−1∑
t=0

E[CMt],

where
−→
Rt = {R1,t, R2,t, ..., RN,t};

−→
Xt = {X1,t, X2,t, ...., XN,t}

subject to
Ltot,t ≤ Lc,t + Le,t, ∀t. (43)

Lc,t ∈ [lc,min, lc,max]; Le,t ∈ [le,min, le,max], ∀t. (44)

1

T

T−1∑
t=0

E

[
Lc,t + Le,t − Ltot,t

Le,t

]
≤ α. (45)

Xi,t ∈ [xi,min, xi,max], ∀i, t. (46)

Ri,t = Φri,t(RGi,t − ηXi,t), Ri,t ≥ 0, η ∈ [0, 1], ∀i, t, (47)

where
Φri,t ∈ [0, 1], RGi,t ∈ [0, rgi,max]

.
Ri,t ∈ [0, ri,max], ∀i, t. (48)

CGi,t ∈ [0, cgmax],∀i, t. (49)

CGt = ΦctCEGt,∀t, (50)

where Φct ∈ [0, 1]; CEGt ∈ [0, cgmax

Φc
t

],∀t.

ebuy,t ≥ 0, ∀t. (51)

esell,t ≥ 0, ∀t. (52)

CGt + ebuy,t +
N∑
i=1

Ri,t = esell,t + Ltot,t, ∀t. (53)

1

T

T−1∑
t=0

E[Xi,t] = 0, ∀i. (54)

There exists a stationary randomized solution to OPT that satisfies
the following conditions.

E[CMs
t ] ≤ ˜cm, ∀t, (55)

E[Xs
i,t] = 0, ∀i, t, (56)

and
1

T

T−1∑
t=0

E

[
Lc,t + Le,t − Lstot,t

Le,t

]
≤ α, ∀t. (57)
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Here, ˜cm is optimal system cost for OPT, and all the expectations
are taken over the randomness of the system state and the possible
randomness of the decisions.

Proof. The lemma can be easily derived using Theorem
4.5 in [29], which provides sufficient conditions for the
existence of a stationary and randomized solution to OPT,
and the fact that these conditions are met by the problem. �
Minimizing the drift-plus-cost function ∆(Ξt) +
HE[CMt|Ξt], the real-time subproblem for OPT at time slot
t is given by

M1-(ST-OPT): arg min
{
−→
Rt,
−→
Xt,Ltot,t,CEGt,ebuy,t,esell,t}

OBJt,

where

OBJt =

[
N∑
i=1

H ·DGi(Xi,t) + (ESi,t − βi)Xi,t

]
+ H · CCG(CEGt) +H · Pbuy,tebuy,t

− H · Psell,tesell,t −
Jt
Le,t

Ltot,t,

where
H ∈ [0, Hmax];

Hmax = min
∀i

{
ESi,max +Xi,min −Xi,max

Pbuy,max − Psell,min +DG′i,max −DG′i,min

}
,

βi = H(Pbuy,max +DG′i,max)−Xi,min,

and

Jt = max{Jt−1 − α, 0}+
Lc,t + Le,t − Ltot,t

Le,t
.

subject to
Ltot,t ≤ Lc,t + Le,t, ∀t. (58)

Lc,t ∈ [lc,min, lc,max]; Le,t ∈ [le,min, le,max], ∀t. (59)

Xi,t ∈ [xi,min, xi,max], ∀i, t. (60)

Ri,t = Φri,t(RGi,t − ηXi,t), Ri,t ≥ 0, η ∈ [0, 1], ∀i, t, (61)

where Φri,t ∈ [0, 1], and RGi,t ∈ [0, rgi,max].

Ri,t ∈ [0, ri,max], ∀i, t. (62)

CGi,t ∈ [0, cgmax],∀i, t. (63)

CGt = ΦctCEGt,∀t, (64)

where Φct ∈ [0, 1]; CEGt ∈ [0, cgmax

Φc
t

],∀t.

ebuy,t ≥ 0, ∀t. (65)

esell,t ≥ 0, ∀t. (66)

CGt + ebuy,t +
N∑
i=1

Ri,t = esell,t + Ltot,t, ∀t. (67)

This problem is the same as M-(ST-OPT) except the inclusion
of the ramping constraint. Denote the optimal objective
values at time slot t of M-(ST-OPT) and M1-(ST-OPT) by ˜optt
and opt∗t respectively. Denote the corresponsing argument
variables by ˜−−→argt and

−−→
arg∗t respectively. We then have the

following lemma.

Lemma 4. At each time slot t, opt∗t is bounded as

˜optt ≤ opt∗t ≤ ˜optt + ε,

where

ε = H(1− r)cgmax max{pbuy,max, CCG
′
max}.

Proof. Since M-(ST-OPT) is more restricted than M1-(ST-
OPT), we have ˜optt ≤ opt∗t . Now we proceed to upper
bound opt∗t − ˜optt. The proof structure consists of bounding
opt∗t − ˜optt when (i) cg∗t = ˜cgt, (ii) cg∗t < ˜cgt, and (iii)
cg∗t > ˜cgt. For (i) it is trivial to prove that opt∗t = ˜optt.
In the case of cg∗t < ˜cgt, the following holds.

max{CGt−1 − r · cgmax, 0} ≤ CGt ≤ CGt−1 + r · cgmax.

Set ˆoptt = {
−→
Rt,
−→
Xt, Ltot,t, CGt−1 + r · cgmax, ˜ebuy,t + ˜CGt −

CGt−1 − r · cgmax, ˜esell,t} as a feasible solution to M-(ST-
OPT). Thus ˆoptt is the same as ˜optt except the solutions
of CGt and ebuy,t. Intuitively, ˆoptt results from the fact
that due to the ramping constraint, the conventional energy
source is forced to generate less energy, and the aggrega-
tor chooses to buy more energy from the external energy
markets to balance power. The upper bound of the gap
opt∗t − ˜optt for case (ii) is given by

opt∗t − ˜optt ≤ H · pbuy,t( ˜CGt − CGt−1 − r · cgmax) (68)
≤ H(1− r)cgmaxpbuy,max, (69)

where the inequality in (76) holds since ˜CGt > CGt−1 +
r · cgmax, and the function CCG(·) is non-decreasing. Thus,
from (77) we have

opt∗t − ˜optt ≤ ˆoptt − ˜optt ≤ H(1− r)cgmaxpbuy,max (70)

In the case of (iii) when cg∗t > ˜cgt, we have
CGt−1−r·cgmax ≤ CGt ≤ CGt ≤ min{cgmax, CGt−1+r·cgmax}.

Set ˆoptt = {
−→
Rt,
−→
Xt, Ltot,t, CGt−1 − r · cgmax, ˜ebuy,t, ˜esell,t −

˜CGt + CGt−1 − r · cgmax, } as a feasible solution to M-(ST-
OPT). Thus ˆoptt is the same as ˜optt except the solutions
of CGt and ebuy,t. Intuitively, ˆoptt results from the fact
that due to the ramping constraint, the conventional energy
source is forced to generate more energy, and the aggregator
chooses to sell more energy to the external energy markets
to balance power. The upper bound of the gap opt∗t − ˜optt
for case (ii) is given by

opt∗t − ˜optt ≤ H[CCG(CGt−1 − rcgmax)− CCG( ˜CGt](71)
≤ H(CGt−1 − r · cgmax − ˜CGt)CCG

′
max (72)

≤ H(1− r)cgmaxCCG′max, (73)

where the inequality in (79) holds since ˜CGt < CGt−1r ·
cgmax, and (80) is derived through the mean value theorem.
Thus, from (81) we have

opt∗t − ˜optt ≤ ˆoptt − ˜optt ≤ H(1− r)cgmaxCCG′max (74)

Combining (78) and (82), we get

opt∗t − ˜optt ≤ H(1− r)cgmax max{pbuy,max, CCG
′
max},

which completes the proof of Lemma 4. �
Using the result for the upper bound of the cost-plus-
drift function, and Lemmas 3 and 4, we can upper bound
the cost-plus-drift function using the MATCH algorithm as
follows.

∆(Ξt) +HE[CM∗t |Ξt] ≤ B + ε

+ Jt

[
Lc,t + Le,t − ˜Ltot,t

Le,t
− α|Ξt

]
+

N∑
i=1

(ESi,t − βi)E[X̃i,t|Ξt]

+HE[ ˜CMt|Ξt],
(75)
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or
∆(Ξt) +HE[CM∗t |Ξt] ≤ B + ε

+ Jt

[
Lc,t + Le,t − ˜Lstot,t

Le,t
− α|Ξt

]

+

N∑
i=1

(ESi,t − βi)E[X̃s
i,t|Ξt]

+HE[ ˜CMs
t|Ξt],

(76)
or

∆(Ξt) +HE[CM∗t |Ξt] ≤ B + ε+H · CMst−opt. (77)

Here

B =
1

2
(1 + α2) +

1

2

N∑
i=1

max{x2
i,min, x

2
i,max}. (78)

Here (83) is derived via Lemmas 1 to 4, (84) holds since M1-
(ST-OPT) minimizes the righthand side of (83), (85) is based
on Equations (61) - (63) in Lemma 3, and the fact that the
stationary solution to M-(ST-OPT) is independent of Ξt, and
(88) holds since OPT is a relaxed version of ST-OPT. Taking
expectations over Ξt on both sides of (85), and summing
over all time slots, we get

E[L(Ξt)]−L(Ξt)+H
T−1∑
t=0

E[CM∗t ] ≤ (B+ε+H ·CMst−opt.

(79)
Since L(Ξt) is non-negative, we can re-write (87) as

1

T

T−1∑
t=0

E[CM∗t ] ≤ B + ε+H · CMst−opt

H
+
L(Ξt)

TH
. (80)

Taking the limit superior on both sides of the equation gives
us the relation

CM∗−CMst−opt ≤ B

H
+(1−r)cgmax max{pbuy,max, CCG

′
max}.

Thus, we have proved Theorem 1.2. �
Proof of Theorem 1.3 The lower bound on CMst−opt(r) is
derived by setting r = 1 in Theorem 1.2, and using the fact
that CMst−opt(1) ≤ CMst−opt(r). Hence we have proved
Theorem 1.1. �

Proof of Theorem 1.4 The proof follows directly from
Lemmas 1 and 2 with the application of mathematical
induction. �

Proof of Theorem 1.5 We use the principle of mathemat-
ical induction for our proof. For t = 0, we have Jt = 0,
which is upper bounded. In the inductive step, assuming
Jt ≤ Hpbuy,maxle,max + 1, we need to show Jt+1 ≤
Hpbuy,maxle,max + 1. When Jt ≤ Hpbuy,maxle,max, we have

Jt+1+1 ≤ max{Jt−α, 0}+1 ≤ Jt+1 ≤ Hpbuy,maxle,max+1.

When Jt ∈ (Hpbuy,maxle,max, Hpbuy,maxle,max +1), we need
to show that the unique solution to M-(ST-OPT) is Lc,t+Le,t.
In that case we would have

Jt+1 = max{Jt − α, 0} ≤ Jt ≤ Hpbuy,maxle,max + 1.

Consider the optimization problem M’-(ST-OPT). We fix
the variables (

−→
Xt, CEGt, esell,t), and minimize M’-(ST-OPT)

over Ltot,t. The optimal solution Ltot,t can be arrived at
through the following problem.

arg min
Ltot,t

(
Hpbuy,t −

Jt
Le,t

)
Ltot,t

subject to
Lc,t ≤ Ltot,t ≤ Lc,t + Le,t,

Ltot,t ≥
N∑
i=1

(Ri,t) + CEGt − esell,t.

When Jt > Hpbuy,maxle,max, the objective function is
strictly decreasing. Thus, the optimal solution of Ltot,t
is Lc,t + Le,t. Suppose that the optimal solutions of
ebuy,t and esell,t satisfy emst−optbuy,t ≥ emst−optsell,t > 0. We
can then show that there is another feasible solution
{
−−−−−−→
Rmst−optt ,

−−−−−−→
Xmst−opt
t , Lmst−opttot,t , CEGmst−optt , emst−optbuy,t −

emst−optsell,t , 0}, achieving a strictly smaller objec-
tive value, hence contradicting the fact that
{
−−−−−−→
Rmst−optt ,

−−−−−−→
Xmst−opt
t , Lmst−opttot,t , CEGmst−optt , emst−optbuy,t , emst−optsell,t }

is optimal. The proof for the case when emst−optsell,t ≥
emst−optbuy,t > 0 is similar and omitted here. Hence we have
proved Theorem 1.5. �
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