
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

1

Dissecting GPU Memory Hierarchy through
Microbenchmarking

Xinxin Mei, Xiaowen Chu, Senior Member, IEEE

Abstract—Memory access efficiency is a key factor in fully utilizing the computational power of graphics processing units (GPUs).
However, many details of the GPU memory hierarchy are not released by GPU vendors. In this paper, we propose a novel fine-grained
microbenchmarking approach and apply it to three generations of NVIDIA GPUs, namely Fermi, Kepler and Maxwell, to expose the
previously unknown characteristics of their memory hierarchies. Specifically, we investigate the structures of different GPU cache
systems, such as the data cache, the texture cache and the translation look-aside buffer (TLB). We also investigate the throughput and
access latency of GPU global memory and shared memory. Our microbenchmark results offer a better understanding of the mysterious
GPU memory hierarchy, which will facilitate the software optimization and modelling of GPU architectures. To the best of our
knowledge, this is the first study to reveal the cache properties of Kepler and Maxwell GPUs, and the superiority of Maxwell in shared
memory performance under bank conflict.

Index Terms—GPU, CUDA, memory hierarchy, cache structure, throughput

F

1 INTRODUCTION

THe past decade has witnessed a boom in the devel-
opment of general-purpose graphics processing units

(GPGPUs). These GPUs are embedded with hundreds to
thousands of arithmetic processing units on one die and
have tremendous computing power. They are one of the
most successful types of many-core parallel hardware and
are deployed in a great variety of scientific and commercial
applications. The prospect of more thorough and broader
applications is very promising [1], [2], [3], [4], [5], [6].
However, their realistic performance is often limited by the
huge performance gap between the processors and the GPU
memory system. For example, NVIDIA’s GTX980 has a raw
computational power of 4,612 GFlop/s, but its theoretical
memory bandwidth is only 224 GB/s [7]. The realistic
memory throughput is even lower. The memory bottleneck
remains a significant challenge for these parallel computing
chips [2], [3]. The GPU memory hierarchy is rather complex,
and includes the GPU-unique shared, texture and constant
memory. According to the literature, appropriate leverage
of GPU memory hierarchies can provide significant per-
formance improvements [4], [5], [6], [8]. For example, on
GTX780, the memory-bound G-BLASTN achieves an overall
14.8x speedup compared with the sequential NCBI-BLAST
by coordinating the use of GPU texture and shared memory
[4]. On GTX980, the performance of a naive compute-bound
matrix multiplication kernel without memory optimization
is only 148 GFlop/s, that of a kernel with clever application
of shared memory is 598 GFlop/s, and that of a kernel with
extremely efficient optimization of memory is as high as

• Xinxin Mei and Xiaowen Chu are with the Department of Computer
Science, Hong Kong Baptist University. Xiaowen Chu is also with HKBU
Institute of Research and Continuing Education.
E-mail: {xxmei, chxw}@comp.hkbu.edu.hk

• Our source code and experimental data are publicly available at:
http://www.comp.hkbu.edu.hk/∼chxw/gpu benchmark.html.

1,225 GFlop/s [9], [10]. Hence, it is vital to expose, exploit
and optimize GPU memory hierarchies.

NVIDIA has launched three generations of GPUs since
2009, codenamed as Fermi, Kepler and Maxwell, with com-
pute capabilities of 2.x, 3.x and 5.x, respectively. Com-
pared with its former 1.x hardware, NVIDIA has devoted
much effort to improving GPU memory efficiency, yet the
memory bottleneck is still a primary limitation [7], [11],
[12], [13], [14], [15], [16]. Because NVIDIA provides very
limited information on its GPU memory systems, many of
their details remain unknown to the public. Existing work
on the disclosure of GPU memory hierarchy is generally
conducted using third-party benchmarks [17], [18], [19],
[20], [21], [22]. Most of them are based on devices with
a compute capability of 1.x [17], [18], [19], [20]. Recent
explorations of Fermi architecture focus on a part of the
memory system [21], [22]. To the best of our knowledge,
there are no state-of-the-art works on the recent Kepler and
Maxwell architectures. Furthermore, the above benchmark
studies on GPU cache structure are based on a method that
was developed for early CPU platforms [23], [24] with a
simple memory hierarchy. As memory designs have become
more sophisticated, this method has become out of date and
inappropriate for current generations of GPU hardware [25].

In this paper, we investigate the GPU memory hierarchy
of three recent generations of NVIDIA GPUs: Fermi, Kepler
and Maxwell. We investigate them using a series of mi-
crobenchmarks targeting their cache mechanism, memory
throughput, and memory latency. In particular, we propose
a fine-grained pointer chasing (P-chase) microbenchmark,
which reveals that many of the characteristics of a GPU
cache differ from those of a CPU. All our experimental
results are based on many rounds of experiments and are re-
producible. Our work illuminates the currently mysterious
architecture of GPU memory. In addition, by comparing the
properties of three generations of GPU memory hierarchy,
we can clearly perceive the evolution of GPU memory de-

http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

2

signs. The Kepler device is designed to maximize compute
performance by aggressively integrating many emerging
technologies, whereas the latest Maxwell device is more
conservative and aims at energy efficiency rather than pure
compute performance.

We highlight the contributions of our work as follows.
1) We propose a novel fine-grained P-chase microbench-

mark to explore the unknown GPU cache parameters.
Our results indicate that GPUs have many features that
differ from those of traditional CPUs. We discover the
unequal sets of L2 translation look-aside buffer (TLB),
the 2D spatial locality optimized set-associative map-
ping of the texture L1 cache, and the non-traditional
replacement policy of the L1 data cache.

2) We quantitatively benchmark the throughput and ac-
cess latency of a GPU’s global and shared memory. We
study the various factors that influence the memory
throughput, and the effect of the shared memory bank
conflict on the memory access latency. For the first time,
we verify that Maxwell is highly optimized to avoid
long latency under shared memory bank conflict.

3) Our work provides comprehensive and up-to-date in-
formation on the GPU memory hierarchy. Our mi-
crobenchmarks cover the architecture, throughput and
latency of recent generations of GPUs. To the best of
our knowledge, this paper is the first to study the new
features of the Kepler and Maxwell GPUs.

The remainder of this paper is organized as follows.
Section 2 summarizes the related work and Section 3 gives
an overview of GPU memory hierarchy. Section 4 intro-
duces the fine-grained P-chase microbenchmark and how
we apply it to dissect the GPU cache micro-architectures.
Section 5 presents our study on the effective global memory
throughput and memory access latencies under different
access patterns. Section 6 investigates the shared memory
in terms of latency, throughput, and the impact of bank
conflict. We conclude our findings in Section 7.

2 RELATED WORK

Many studies have investigated GPU memory system, some
of which have confirmed that the performances of many
GPU computing applications are limited by the memory
bottleneck [2], [3], [6], [26]. Using characterization ap-
proaches, several studies located the causes of low memory
throughput to relative memory spaces [6], [26], [27]. Some
designed a number of data mapping/memory management
algorithms with the aim to improve memory access effi-
ciency [27], [28], [29], [30], [31]. Recently, Li et al. proposed a
locality monitoring mechanism to better utilize the L1 data
cache for higher performance [32]. All of these studies have
contributed to the field and inspired our work.

We summarize the related GPU microbenchmark work
in Table 1. Most of the work on memory structure and
access latency is based on the P-chase microbenchmark,
which was first introduced in [23], [24] (referred to as Saave-
dra1992 hereafter). Saavedra1992 was originally designed
for CPU hardware and was quite successful for various CPU
platforms [33]. Duchateau et al. developed P-ray, a multi-
threaded version of P-chase to explore multi-core CPU cache
architectures [34]. They exploited false sharing to quickly

TABLE 1
Summary of GPU Memory Microbenchmark Studies

Reference Year Device Scope
[17] 2008 8800GTX Architectures and latencies

[18], [19] 2009 GTX280 Architectures and latencies
[20] 2011 GTX285 Throughput
[21] 2012 TeslaTMC2050 Architectures and latencies
[22] 2013 TeslaTMC2070 Architectures and latencies

[25] 2014 GTX560Ti
GTX780 Architectures and latencies

Stream multiprocessor (SM)

Shared

memory

L1 R/W data

cache

Register

Unified L2 Cache

Read-only data

cache / texture L1

cache

Primary cache

Secondary cache

Constant

cache

DRAM DRAM DRAM

Off-chip

memory

On-chip

memory

Main memory

Fig. 1. Memory hierarchy of the GeForce GTX780 (Kepler).

determine the cache coherence protocol block size. As the
multi-threading feature on GPU is different from that of
CPU, we cannot apply their method on GPU directly. Volkov
and Demmel used P-chase for a very early GPU device,
Nvidia 8800GTX, with a relatively simple memory hierarchy
[17]. Papadopoulou et al. applied Saavedra1992 to explore
the global memory TLB structure [18]. They also proposed
a novel footprint experiment (referred to as Wong2010 here-
after) to investigate the other GPU caches [19]. Baghsorkhi
et al. applied Wong2010 to benchmark a Fermi GPU and
disclosed its L1/L2 data cache structure [21]. Different from
previous studies, we proposed a novel fine-grained P-chase
and disclosed some unique characteristics that both Saave-
dra1992 and Wong2010 neglected [25]. Our target hardware
includes the caches of three recent generations of GPUs.

Meltzer et al. used both Saavedra1992 and Wong2010
to study the L1/L2 data cache of Fermi architecture [22].
They found that the L1 data cache does not use the least
recently used (LRU) replacement policy, which is one of
the basic assumptions of the traditional P-chase [19]. They
also found that the L2 cache associativity is not an integer.
Our experimental results coincide with theirs. Moreover, our
fine-grained P-chase microbenchmarks allow us to obtain
the L1 cache replacement policy.

Zhang and Owens quantitatively benchmarked the glob-
al/shared memory throughput from the bandwidth per-
spective [20]. Our work also includes a throughput study,
but we are more interested to study the major factors that
affect the effective memory throughput. Moreover, we in-
clude the study of memory access latencies which are also
important factors for performance optimization.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

3

TABLE 2
Features of Common GPU Memory

Memory Type Cached Scope
Global R/W Yes (CA 2.0 or above) All threads
Shared R/W N/A Thread block
Texture R Yes All threads

3 OVERVIEW OF GPU MEMORY HIERARCHY

Following the terminologies of CUDA, there are six types
of GPU memory space: register, constant memory, shared
memory, texture memory, local memory, and global mem-
ory. Their properties are elaborated in [15], [16]. In this
study, we limit our scope to the three common types: global,
shared, and texture memory. Specifically, we focus on the
mechanism of different memory caches, the throughput and
latency of global/shared memory, and the effect of bank
conflicts on shared memory access latency.

Table 2 lists some salient characteristics of the target
memory spaces. Unlike the early devices studied in [19], in
recent GPUs the global memory access has become cached.
The cached global/texture memory uses a two-level caching
system. The L1 cache is located in each stream multipro-
cessor (SM), while the L2 cache is off-chip and shared
among all SMs. It is unified for instruction, data and page
table access. Furthermore, page table is used by GPU to
map virtual addresses to physical addresses, and is usually
stored in the global memory. The TLB is the cache of the
page table. Once a thread cannot find the page entry in the
TLB, it would access the global memory to search the page
table, which causes significant access latency. Although the
global memory and texture memory have similar dataflows,
the former is read-and-write (R/W) and the latter is read-
only. Both of them are public to all threads in the kernel
function. The GPU-specific R/W shared memory is also
located in the SMs. On the Fermi and Kepler devices it
shares memory space with the L1 data cache, whereas on
the Maxwell devices it has a dedicated space. In CUDA,
the shared memory is declared and accessed inside a coop-
erative thread array (CTA, a.k.a. thread block), which is a
programmer-assigned set of threads executed concurrently.
Fig. 1 shows the block diagram of the memory hierarchy of
a Kepler device, GeForce GTX780. The arrows indicate the
dataflow. The architecture of the L1 cache in the Maxwell
device is slightly different from that shown in Fig. 1 due to
the separate shared memory space.

In Table 3, we compare the memory characteristics of the
old Tesla GPU discussed in [18], [19] and our three target
GPU platforms. The compute capability is used by NVIDIA
to distinguish the generations. Table 3 shows that the most
distinctive difference lies in the global memory. On the Tesla
device, the global memory access is not cached, whereas
on the Fermi device it is cached in both the L1 and the L2
data cache. The Kepler device has an L1 data cache, but it
is designed for local rather than global memory access. In
addition to the L2 data cache, global memory data that is
read-only for the entire lifetime of a kernel can be cached
in the read-only data cache with a compute capability of 3.5
or above. On the Maxwell device, the L1 data cache, texture
on-chip cache and read-only data cache are combined in one

physical space. Note that the L1 data cache of the Fermi and
the read-only data cache of the Maxwell can be turned on or
off. It is also notable that modern GPUs have larger shared
memory spaces and more shared memory banks. On the
Tesla device, the shared memory size of each SM is fixed at
16 KB. On the Fermi and Kepler devices, the shared memory
and L1 data cache share 64 KB of memory space. On the
Maxwell device, the shared memory is independent and has
96 KB. The maximum volume of shared memory that can be
assigned to each CTA has been increased from 16 KB on
the Tesla device to 48 KB on the later devices. The texture
memory is cached on every generation of GPUs. The Tesla
texture units are shared by three SMs (i.e., thread processing
cluster). However, texture units on later devices are per-SM.
The texture L2 cache shares space with the L2 data cache.
The size of the texture L1 cache depends on the generation
of the GPU hardware.

4 CACHE STRUCTURES

The greatest difference between recent GPUs and the old
Tesla GPUs lies in their cache systems. In this section, we
first present a novel fine-grained P-chase method, and then
explore two kinds of cache: the data cache and the TLB. We
focus on the architectures of the Fermi/Maxwell L1 data
cache, Fermi/Kepler/Maxwell texture memory L1 cache,
read-only data cache, L2 cache and TLBs.

4.1 Why Not Typical P-chase?

By exploiting the principle of locality, cache memory is used
to back up a piece of main memory for faster data access and
plays a major role in modern computer architectures. Most
existing GPU microbenchmark studies on cache architecture
assume a classical set-associative cache model with the least
recently used (LRU) replacement policy, the same as that of
a conventional CPU cache [23], [24]. The cache size (C) is
much smaller than main memory size. Data is loaded from
main memory to cache with the basic unit of a cache line.
The number of words in a cache line is referred to as the line
size (b). For the classical LRU set-associative cache, the cache
memory is divided into T cache sets, each of which consists
of a cache lines. Fig. 2 shows an example of a 12-word set-
associative cache and its memory mapping. There are three
essential assumptions for this kind of cache model:

Assumption 1. All cache sets have the same size, and the
cache parameters satisfy T ∗a∗b = C. If any three of the four
parameters are known, the remaining one can be found.

Assumption 2. In the memory address, the bits that identify
the cache set are immediately followed by the bits that
identify the offset (the intra-cache line location of data).

Assumption 3. The cache replacement policy is LRU.

Assumption 1 implies that all cache sets have the same
number of cache lines. Assumption 2 indicates that the data
mapping from the main memory to the cache follows a
predictable, regular pattern. For instance, in Fig. 2, two out
of every six consecutive words are mapped to one cache
set, and they may appear in either of the two cache lines in
the set. Assumption 3 implies that if we perform sequential

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

4

TABLE 3
Comparison of the Memory Properties of the Tesla, Fermi, Kepler and Maxwell Devices

Device Tesla Fermi Kepler Maxwell
GTX280 GTX560Ti GTX780 GTX980

Compute capability 1.3 2.1 3.5 5.2
SMs * cores per SM 30 * 8 8 * 48 12 * 192 16 * 128

Global memory
Cache mechanism N/A L1 and L2 L2, or read-only L2, or unified L1

Cache size N/A L1: 16/48 KB Read-only: 12 KB Unified L1: 24 KB
L2: 512 KB L2: 1.5 MB L2: 2 MB

Total size 1024 MB 1024 MB 3072 MB 4096 MB

Shared memory
Size per SM 16 KB 48/16 KB 48/32/16 KB 96 KB
Maximum size per CTA 16 KB 48 KB
Bank No. 16 32
Bank width 4 B 8 B 4 B

Texture memory
Texture units per-TPC per-SM
L1 cache size 6-8 KB 12 KB 12 KB 24 KB

...

Set 1 Set 2

1-2

7-8

3-4

9-10

5-6

34

Set Offset

(c) Memory address =

(a) 2-way set-associative cache

2 1 0

Way 1:

Way 2:

(b) Main memory:

1-2

3-4

Set 3

5-6

11-12

7-8

9-10

11-12

17-18

13-14

15-16

Data

Consider the memory address of a single byte of

data. There are 2 words/8 bytes in a cache line, thus

the memory address needs 3 bits to indicate the

location of the data inside a cache line (), i.e., the

offset. Similarly, the memory address needs 2 bits to

indicate the cache set.

32 8

Fig. 2. An example of a 12-word 2-way set-associative cache. Assume
each word has 4 bytes, each cache line can store 2 words (b = 2), and
the data array is sequentially accessed. The cache lines are grouped
into 3 separate cache sets (T = 3), each of which has 2 cache lines
(i.e., Way 1 and Way 2), and we say its cache associativity is 2 (a = 2).

data indices:

access pattern:

1, 2, ... 12,

M M ... M

13, 1, 2, ... , 6, 7, 8, ... , 12,

M M H ... H M H ... H

pattern cycle: P0

index cycle: I0

I0, I0, ...

P0 P0 ...

Fig. 3. Periodic memory access pattern of a classical LRU set-
associative cache. M means cache miss and H means cache hit.

loading of a piece of data, the memory access is periodic.
Taking the cache model in Fig. 2 as an example, we initialize
an array with 13 words and read it one word by one word.
Fig. 3 shows the full memory access process and its access
pattern (a cache miss or a cache hit generated by visiting one
array element). As the array size is one word larger than
the cache size, the cache miss occurs. With the exception
of the first 12 data accesses, which are cold cache misses,
those data accesses to the 1st, 7th and 13th array elements
are cache misses while the rest are cache hits. The 13-25th
memory accesses form a pattern P0, which recurs until the
end of the data loading process. The period of this memory

TABLE 4
Notations for Cache and P-chase Parameters

Notation Description Notation Description
C cache size N array size
b cache line size s stride size
a cache associativity k iterations
T number of cache sets r cache miss rate

access pattern is 13, which equals the array length.
1 for (i =0 ; i<a r r a y s i z e ; i ++){
2 A[i] = (i + s t r i d e)%a r r a y s i z e ;
3 }

Listing 1. P-chase: array initialization

1 s t a r t t i m e = clock () ;
2 for (i t =0 ; i t<i t e r a t i o n s ; i t ++){
3 j =A[j] ;
4 }
5 end time=clock () ;
6 // c a l c u l a t e average memory l a t e n c y
7 tva lue =(end time−s t a r t t i m e) / i t e r a t i o n s ;

Listing 2. P-chase: kernel function

The P-chase microbenchmark is a successful method for
obtaining cache parameters [17], [18], [19], [21], [22], [23],
[24], [33]. The core idea of P-chase is to traverse an array
whose elements are initialized as the indices for the next
memory access. The distance between two consecutively
accessed array elements is called stride and is usually fixed
in an experiment. The memory access latency is highly de-
pendent on the stride due to the cache effect. By measuring
the average memory access latency of a great number of
memory accesses, the cache parameters can be deduced
from the array size and the stride size. Listing 1 and Listing
2 give the array initialization and the kernel function of
P-chase. In Listing 2, j=A[j] is repeatedly executed over
iterations of times, so that the array A is sequentially
traversed with a fixed stride. Before the timing, we load
the array elements for a number of times to eliminate the
cold instruction cache misses. The average memory access
latency, tvalue, is calculated by dividing the total clock

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

5

cycles by iterations. We denote the array size, stride size,
and iterations by N , s and k, respectively. We summarize
the notations in Table 4.

Based on Assumptions 1-3, the output of P-chase, i.e.,
the average memory access latency, tavg , satisfies

tavg = t0 ∗ (1− r) + (t0 + tm) ∗ r = t0 + tm ∗ r

where r denotes the cache miss rate, t0 denotes the cache ac-
cess latency and tm denotes the cache miss penalty. Because
t0 and tm are hardware-dependent constants, the typical P-
chase method actually relies on the cache miss rate, r.

It has been believed that the cache parameters can
be deduced from the tvalue-s graph (Saavedra1992) or
the tvalue-N graph (Wong2010). As mentioned, under
Assumptions 1-3, the memory access, or the cache miss
patterns are periodic. Moreover, both Saavedra1992 and
Wong2010 suggest that not only the cache miss patterns are
predictable, but also the possible values of r are predictable.

In particular, Saavedra1992 suggests to run the experi-
ments for multiple times, each with a different stride. Both
array size N and stride size s are usually set to be power-
of-two. If N is much larger than the cache size C, and s
is smaller than cache line size b, there is a cache miss when
loading the data mapped to the beginning address of a cache
line, i.e., the cache miss rate is s/b. If s ≥ b but not exceeding
N/a, every data loading is a cache miss. When s continues
growing, the loaded data can fit into the cache so that there
is no cache miss. To summarize, the cache miss rate satisfies
Eq. (1) for all (N, s) pairs.

r ∈ {0, s/b, 1}, N >> C (1)

Wong2010 suggests visiting arrays of various sizes with a
fixed stride, which is chosen carefully and should be around
cache line size. If we choose s = b, then every time we
increase array size by b, there are much more cache misses.
The cache miss rate satisfies Eq. (2) for all (N, s) pairs.

r ∈ {0, 1
T
, ...,

k

T
, ..., 1}, N ∈ [C,C + T ∗ b], s = b (2)

Fig. 4 and Fig. 5 show the experimental results when we
apply Saavedra1992 and Wong2010 on the texture L1 cache
on GTX780. Surprisingly, we obtain different results from
the two methods. In Fig. 4, the N=12KB line suggests that
C = 12 KB. The N=48KB line at log2(s) = 5 suggests b = 32
bytes, and at log2(s) = 11 suggests a = N/s = 24 so that
T = C/(ab) = 16. In Fig. 5, there are 4 plateaus between the
minimum and maximum memory latency, which indicates
there are 4 cache ways in a cache set. The cache line size
equals the width of every plateau. Overall, it suggests that
C = 12 KB, b = 128 bytes, T = 4, and a = C/(bT) = 24.
Here we face a contradiction: Fig. 4 and Fig. 5 are based
on the same hardware, yet they lead to different cache
parameters. This motivates us to seek the underlying causes.

Both Saavedra1992 and Wong2010 methods are based on
Assumptions 1-3 so that the cache miss rates satisfy Eqs.
(1) and (2). However, our experimental results reveal that
Assumptions 1-3 seldom hold for different types of GPU
cache, consequently Eqs. (1) and (2) are ineffective. Thus, the
typical P-chase results become inappropriate to expose the
GPU cache structure. For example, if Assumptions 1 and 2
hold but Assumption 3 does not, and the cache replacement

1 2 3 4 5 6 7 8 9 101112131415
0

100

200

t0

cache line size

cache associativity

log2s

La
te

nc
y

(c
lo

ck
cy

cl
es

)

N=12KB
N=48KB

Fig. 4. tvalue-s of the Kepler tex-
ture L1 data cache.

12 12.13 12.25 12.38 12.5
100

150

200

way size

cache line size

cache size

Array size, N (KB)

La
te

nc
y

(c
lo

ck
cy

cl
es

)

Fig. 5. tvalue-N of the Kepler tex-
ture L1 data cache (8-byte stride).

policy is random, then the measured tavg can vary even for
a given (N, s) pair. The value of r also varies and may not
belong to those listed in (1) or (2). Hence, tavg alone fails to
serve as an indicator of GPU cache architecture.

Motivated by the above observation, we designed a mi-
crobenchmark that utilizes GPU shared memory to display
the latency of every single memory access. We refer to it as
fine-grained P-chase microbenchmark because it provides
the most detailed information on the data access process.

4.2 Our Methodology: Fine-grained P-Chase

1 global void KernelFunction (. . .) {
2 //dec lare shared memory space
3 shared unsigned i n t s tva lue [] ;
4 shared unsigned i n t s index [] ;
5 preheat the data ;
6 for (i t =0 ; i t<i t e r a t i o n s ; i t ++) {
7 s t a r t t i m e =clock () ;
8 j =my array [j] ;
9 // s t o r e the array index

10 s index [i t]= j ;
11 end time=clock () ;
12 // s t o r e the a c c e s s l a t e n c y
13 s tva lue [i t]= end time−s t a r t t i m e ;
14 }
15 }

Listing 3. Fine-grained P-chase kernel (single thread, single CTA)

The core idea of our fine-grained P-chase is to record and
analyze every single data access latency in a kernel with a
single thread and single CTA. Such method is difficult to be
used for CPU cache because of the challenge of recording
every data access latency without interfering the normal
data access. However, we can exploit GPU shared memory
to store a sequence of data access latencies, based on which
we can deduce the cache structure and parameters. The
shared memory access is prompt and does not affect the data
cache. Listing 3 gives the kernel code of our single-thread
fine-grained P-chase. Notice that before the measurement,
we need to visit the data in an initial iteration, aiming to
load the data into L2 cache. Doing so can avoid the cold
instruction cache miss and the interference from possible
hardware pre-fetching. The core statement in line 8, j =
my array[j], is the same as in the conventional P-chase. The
difference lies in the location of the timing function. We put
the timing statements inside a long loop, as shown in lines
7 and 11. The clock() function provided by CUDA is imple-
mented by reading a special register, the value of which is
incremented every clock cycle. We measure the overhead
of clock() as the difference between two consecutive clock()
calls in a single kernel thread. Based on our experimental

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

6

results, the overhead of clock() is 14, 16, and 6 cycles on
Fermi, Kepler, and Maxwell platforms, respectively.

Although the idea of fine-grained P-chase is simple,
we need to address the following major challenge: due
to instruction-level parallelism (ILP), function clock() may
overlap with its previous instruction and even return before
the previous instruction finishes. E.g., if we put the second
clock() (line 11) immediately after statement j = my array[j]
(line 8), it may lead to incorrect memory latency measure-
ments because the second clock() could return before line 8
finishes. We overcome this problem by introducing a new
statement, s index[it] = j (line 10), that has data dependency
on line 8, to ensure that the memory access completes when
line 11 is issued. We use a separate program to measure the
overhead of the code segment of lines 10-11, which is 20, 32,
16 cycles on Fermi, Kepler, and Maxwell, respectively. We
can then deduce the latency of line 8 alone.

Our fine-grained P-chase microbenchmark outputs two
arrays, s tvalue[] and s index[], the lengths of which are
equal to the value of iterations. The former contains the
data access latencies and the latter contains the accessed
data indices. With these two arrays, we can reproduce the
entire memory loading process and obtain all of the data
access latencies rather than the average.

We work out a procedure to find the cache parameters
using our fine-grained P-chase microbenchmark with differ-
ent (N, s) configurations. Fig. 6 shows the flowchart of our
two-stage procedure. We could use brute-force N testing to
get the cache size. Then in the first stage, we overflow the
cache with one element, getting the cache line size. We can
also find whether the cache replacement policy is LRU or
not in this stage. In the second stage, we gradually overflow
the cache with the granularity of a cache line, until all the
data accesses become cache miss. We can deduce the cache
associativity and the memory addressing from the second
stage. We further elaborate our method as follows. Notice
that the basic unit of (N, s) is the length of an array element.

1) Determine cache size C. We set s to 1. We then initialize
N with a small value and increase it gradually until
the first cache miss appears. C equals the maximum N
where all memory accesses are cache hits.

2) Determine cache line size b. We set s to 1. We begin
with N = C+1 and increase N gradually again. When
N < C + b + 1, the numbers of cache misses are close.
When N is increased to C + b + 1, there is a sudden
increase on the number of cache misses, despite that
we only increase N by 1. Accordingly we can find b.
Based on the memory access patterns, we can also have
a general idea on the cache replacement policy.

3) Determine number of cache sets T . We set s to b. We
then start with N = C and increase N at the granularity
of b. Every increment causes cache misses of a new
cache set. When N > C + (T − 1)b, all cache sets are
missed. We can then deduce T from cache miss patterns
accordingly.

4) Determine cache replacement policy. As mentioned be-
fore, if the cache replacement policy is LRU, then the
memory access process should be periodic and all the
cache ways in the cache set are missed. If memory
access process is aperiodic, then the replacement policy
cannot be LRU. Under this circumstance, we set N =

C + b, s = b with a considerable large k (k >> N/s)
so that we can traverse the array multiple times. All
cache misses are from one cache set. Every cache miss
is caused by its former cache replacement because we
overflow the cache by only one cache line. We have the
accessed data indices thus we can reproduce the full
memory access process and find how the cache lines
are updated.

Applying the above method, we sketch the structures of
texture L1 cache, read-only data cache, L1/L2 TLBs, and on-
chip L1 data cache in the following sections. We also present
some preliminary results of the off-chip L2 data cache.

4.3 Texture L1 Cache and Read-only Data Cache
We apply our P-chase microbenchmark on the texture L1
cache with the two-stage methodology. We bind an un-
signed integer array to the linear texture, and fetch it with
tex1Dfetch(). In the first stage, we find out the cache size C,
which is 12 KB; and then set s to 1 element (i.e., 4 bytes)
and overflow the cache gradually to get the cache line size,
which is 32 bytes. In the second stage, we increase N from
12 KB to 12.5 KB with s = 32 bytes. Our results suggest a
12 KB set-associative cache with a special memory address
format, as shown in Fig. 7, on Fermi and Kepler devices, and
a 24 KB cache with similar organization on Maxwell device.

On the Fermi and Kepler GPUs, the 12 KB texture L1
cache is divided to 4 cache sets and can store up to 384 cache
lines. Each cache set contains 96 cache lines and each cache
line contains 8 words (i.e., 32 bytes). Each consecutive 32
words (i.e., 128 bytes) is mapped onto 4 successive cache
sets. In particular, the 7-8th bits of the memory address
determine the corresponding cache set, whereas the 5-6th
bits do so in the traditional set-associative cache design.
This mapping is optimized for 2D spatial locality in graphic
processing [16], [35]. To take advantage of this mapping, in
generalized applications, threads within a warp need to visit
adjacent memory addresses, otherwise there would be more
cache misses. The Maxwell texture L1 cache has a similar
structure except it contains 768 cache lines.

Devices with a compute capability of 3.5 or above have
an on-chip per-SM read-only data cache, which is an im-
provement on the texture memory cache [12]. The read-only
data cache is loaded by calling ldg(const restricted ∗
address). On our GTX780, we find a 12 KB read-only data
cache, the same as the texture L1 cache. We overflow the
read-only data cache with a single 4-byte element and find
that the cache line size is 32 bytes and the replacement policy
is LRU. We then examine it with s = 32 bytes and N varying
from 12 KB to 60 KB. When the array is larger than 12.5
KB, each data access results in a cache miss. We infer that
the read-only cache structure is the same as the texture L1
cache: 4 cache sets, with a 32-byte cache line and 96 lines
in each set. Similarly, 128 successive bytes are mapped onto
the same set, but the data mapping is not bits-defined. On
the GTX980, the structure of the read-only data cache is also
the same as that of the texture L1 cache except for the rather
random data mapping.

4.4 Translation Look-Aside Buffer
Previous studies show that the GTX280 has two levels of
TLB to support GPU virtual memory addressing on the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

7

Get cache size from user manual

or footprint experiment

Overflow the cache with

one element

Get the cache line size

from cache miss pattern

Increase array size. Every

increment equals cache line size

Get the first cache set

Get the last cache set

...

Get the second cache set
Get:

Cache associativity

Memory mapping

stage 1

stage 2

Also get cache

replacement policy

Fig. 6. Flowchart of applying fine-grained P-chase.

1-8

9-16

17-24

25-32

33-40

41-48

129-136

3065-3072

Set 1 Set 2 Set 3

1-8

9-16

17-24

25-32

129-136

33-40

41-48

49-56

57-64

2969-2976

65-72

Set 4

97-104

3001-3008 3033-3040 3065-3072

89-96 121-128

4-05678

Set Word

Memory address =
Data:

4-Set Texture L1 Cache:

96 lines

384 lines

Fig. 7. The texture L1 cache structure of the Fermi and Kepler device and the memory address.

130132134136138140142144
0

50

100

Array size (MB)

C
ac

he
m

is
s

ra
te

(%
)

measured
expected

Fig. 8. Miss rate of L2 TLB (2 MB stride).

Set 1

Set 2

17 entries

8 entries

Set 3 8 entries

Set 4 8 entries

Set 5 8 entries

Set 6 8 entries

Set 7 8 entries

7 sets

Fig. 9. L2 TLB structure.

Way 1 Way 2 Way 3 Way 4

1-4 33-36 65-68 97-100
5-8 37-40 69-72 101-104
9-12 41-44 73-76 105-108
13-16 45-48 77-80 109-112
17-20 49-52 81-84 113-116
21-24 53-56 85-88 117-120
25-28 57-60 89-92 121-124
29-32 61-64 93-96 125-128

32
ca

ch
e

se
ts

A
m

aj
or

se
t

Fig. 10. L1 data cache structure (16 KB).

GTX280 [18], [19], where the L1 TLB is 16-way fully associa-
tive and the L2 TLB is 8-way set-associative. We apply our
fine-grained P-chase method to investigate the TLB of three
recent GPU architectures and find them have the same 16-
way fully associative L1 TLB, and the page size is 2 MB. We
plot the cache miss rate of the L2 TLB in Fig. 8 based on our
microbenchmark results. The traditional LRU cache with
equal sets triggers the same number of cache misses each
time, thus the expected cache miss rate increases linearly.
In contrast, our measured miss rate increases piecewise
linearly. When N equals 132 MB, we observe 17 missed
entries; varying N from 134 MB to 144 MB with s = 2 MB
causes 8 more missed entries each time. Considering that
cache misses are triggered set by set, the only explanation
for the piecewise linear increase is that the first cache set has
more cache ways than others. In addition, we deduce that
the replacement policy is LRU, as the number of cache ways
is equal to the number of missed cache entries. This gives us
the conjectured L2 TLB structure as shown in Fig. 9: 1 large
set with 17 entries and 6 small sets with 8 entries each.

4.5 L1 Data Cache

On the Fermi and Kepler devices, the L1 data cache and
shared memory are physically implemented together. On
the Maxwell devices, the L1 data cache is unified with the
texture cache.

The Fermi L1 data cache can be either 16 KB or 48 KB.
We only report the 16 KB case here for brevity. We vary
the array size from 15 KB to 24 KB with s = 4 bytes or
s = 128 bytes, and observe the memory access patterns. Fig.
10 gives the Fermi 16 KB L1 cache structure based on our
experimental results. The 16 KB L1 cache has 128 cache lines
mapped onto four cache ways. For each cache way, 32 cache
sets are divided into 8 major sets. Each major set contains 16
cache lines. The data mapping is also unconventional. The
12-13th bits in the memory address define the cache way,
the 9-11th bits define the major set, and the 0-6th bits define
the memory offset inside the cache line.

One distinctive feature of the Fermi L1 cache is that its
replacement policy is not LRU, as pointed out by Meltzer et
al. in [22]. In our experimental results, the memory access

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

8

TABLE 5
Parameters of Common GPU Caches

Parameters Default Fermi
L1 data cache

Fermi/ Kepler/
Maxwell L1

TLB

Fermi/ Kepler/
Maxwell L2

TLB

Fermi/ Kepler texture
L1 cache/ Kepler

read-only data cache

Maxwell L1 data/
texture L1 cache/

read-only data cache
C 16 KB 32 MB 130 MB 12 KB 24 KB
b 128 byte 2 MB 2 MB 32 byte 32 byte
T 32 1 7 4 4

LRU no no yes yes yes

Way1 Way2 Way3 Way4

3 35 68 100 1291st cache set:
read 129: 3 129 68 100 miss
read 3: 3 129 68 100 hit
read 35: 3 129 35 100 miss
read 68: 3 68 35 100 miss
read 100: 3 68 35 100 hit
read 129: 129 68 35 100 miss
read 3: 129 3 35 100 miss
read 35: 129 3 35 100 hit
read 68: 129 3 35 68 miss
read 100: 129 100 35 68 miss
read 129: 129 100 35 68 hit
read 3: 129 100 3 68 miss
read 35: 129 35 3 68 miss

Fig. 11. Aperiodic memory access of the Fermi L1 data cache. In the
figure, the numbers are the data line indices. In the second row, “read
129” stands for loading the 129th data line, and “miss” is the memory
access status given by the output memory latency array. The highlighted
data blocks represent the replaced cache ways according to the output
index array when cache misses occur.

process does not reveal periodicity. We demonstrate part of
the memory access process with N = 16.125 KB (i.e., 129
data lines), s = 128 bytes in Fig. 11. Because we overflow
the cache with only one line, all cache misses are from a
single cache set. In our experiment, cache misses occur when
accessing data line 3, 35, 68, 100 and 129, which therefore
belong to the first cache set. When we read the 129th data
line, it sometimes leads to a cache miss and sometimes a
cache hit. This cannot happen in the conventional LRU cache
model. We find that among the four cache ways, cache way 2
is three times more likely to be replaced than the other three
cache ways. It is updated once every two cache misses. The
replacement probabilities of the four cache ways are 1

6 ,
1
2 ,

1
6

and 1
6 , respectively.

For sequential data loading in our experiment, this non-
LRU cache reduces the number of cache misses compared
with the conventional cache; for example, in Fig. 11, the
listed memory accesses should all be cache misses if the
LRU replacement policy were used.

4.6 L2 Data Cache
The GTX560Ti, GTX780 and GTX980 report the maximum
L2 cache size as 512 KB, 1536 KB and 2048 KB, respectively.
Our fine-grained P-chase microbenchmark method is re-
stricted by the shared memory size. At least 64 KB of shared

memory is required for a single CTA to store one round
of the smallest Fermi L2 cache accesses, much more than
our hardware device can offer. However, our fine-grained
P-chase can still find the following interesting results.

1) The replacement policy of the L2 cache is not LRU,
either, because our experimental results show that the
memory access processes are aperiodic again.

2) The L2 cache line size is 32 bytes by observing the
memory access pattern of overflowing the cache and
visiting array element one by one. The data mapping is
sophisticated and not conventional bits-defined, either,
since the cache miss pattern is very irregular.

3) We detect a hardware-level pre-fetching mechanism
from the DRAM to the L2 data cache on all three
platforms. For example, when we visit an array with
uniform stride P-chase, we only observe a long latency
for the first data item; the latencies of the following data
items all match the L2 cache latency. The pre-fetching
size is about 2/3 of the L2 cache size and the pre-
fetching is sequential. This is deduced from that if we
load an array smaller than 2/3 of the L2 data cache size,
there is no cold cache miss patterns.

To summarize, in this section, we study the various GPU
caches of three generations of GPUs. We propose a novel
fine-grained P-Chase microbenchmark that provides the
most detailed measurements. We list the derived parameters
of various GPU caches in Table 5. According to our ex-
perimental results, the GPU caches are quite different from
those of a CPU: they have unequal cache sets and a special
replacement policy or data mapping. None of the GPU
caches use the traditional bits-defined memory addressing
stated in Assumption 2. To the best of our knowledge, most
of these characteristics have been ignored in previous micro-
benchmark GPU studies.

5 GLOBAL MEMORY

In CUDA terms, global memory access involves accessing
the DRAM, L1 and L2 data caches, TLBs and page tables.
It is the most frequently accessed memory space in GPU
programming. In this section, we use a series of microbench-
marks to quantitatively study the global memory through-
puts and data access latencies on recent GPU platforms.

5.1 Global Memory Throughput

Although GPUs are designed with high memory band-
width, their peak performance can rarely be achieved in re-
ality. The theoretical bandwidth is calculated as fmem * bus
width * DDR factor, where fmem is the memory frequency,

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

9

1

0 1 2 3 4 5 6 7 8
0

50

100

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

GTX560Ti, 256 MB data

(a) ILP=1

0 2 4 6 8 10 12 14 16
0

100

200

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

GTX780, 384 MB data

(b) ILP=1

0 2 4 6 8 10 12 14 16
0

50

100

150

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

GTX980, 512 MB data

(c) ILP=1

0 1 2 3 4 5 6 7 8
0

50

100

Allocated CTA number per SM

Th
ro

ug
hp

ut
(G

B/
s)

(d) ILP=2

0 2 4 6 8 10 12 14 16
0

100

200

Allocated CTA number per SM
T

hr
ou

gh
pu

t(
G

B/
s)

(e) ILP=2

0 2 4 6 8 10 12 14 16

50

100

150

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

(f) ILP=2

0 1 2 3 4 5 6 7 8

20

40

60

80

100

Allocated CTA number per SM

Th
ro

ug
hp

ut
(G

B/
s)

(g) ILP=4

0 2 4 6 8 10 12 14 16

50

100

150

200

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

(h) ILP=4

0 2 4 6 8 10 12 14 16

50

100

150

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

(i) ILP=4

0 1 2 3 4 5 6 7 8

40

60

80

100

Allocated CTA number per SM

Th
ro

ug
hp

ut
(G

B/
s)

(j) ILP=8

0 2 4 6 8 10 12 14 16
50

100

150

200

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

(k) ILP=8

0 2 4 6 8 10 12 14 16

100

150

Allocated CTA number per SM

T
hr

ou
gh

pu
t(

G
B/

s)

(l) ILP=8

32T 64T 128T 256T 512T 1024T

Fig. 12. Achieved throughput of global memory copy against the number of CTAs, CTA size and ILP.

TABLE 6
Theoretical and Achieved Bandwidth of Global Memory

Device GTX560Ti GTX780 GTX980
fmem (MHz) 1050 1502 1753

Bus width (bits) 256 384 256
Theoretical bandwidth (GB/s) 134.40 288.38 224.38
Maximum throughput (GB/s) 109.38 215.92 156.25

Efficiency (%) 81.38 74.87 69.64

and the DDR factor is 4 on all three target platforms. Table
6 lists the theoretical peak bandwidth and our measured
maximum throughput of the three devices.

The global memory throughput is affected by many fac-
tors. According to Little’s law, it requires as many memory
requests on the fly as possible to fully utilize the bandwidth.
We perform a plain memory copy on our three devices

with large, fixed amounts of data. We measure the total
elapsed time on the CPU. The throughput is calculated as
2 ∗ datasize/time. For each group of experiments, we vary
the CTA number, the CTA size (number of threads in each
CTA) and the ILP [36]. The ILP is defined as the number of 4-
byte words that each thread copies at one time. Note that we
allocate a number of CTAs to an SM, but these CTAs do not
always execute in parallel because the number of activate
threads in each SM is limited. Each thread executes the data
copying for hundreds of times to ensure there are sufficient
memory requests. We plot the achieved throughput in Fig.
12, where T stands for the number of threads per CTA. In
general, the throughput converges to its maximum when
the ILP/CTA size and the number of CTAs are large. We
find that the throughput is limited by the number of active
warps: when the size and the number of CTAs are both
small, throughput increases almost linearly. The ILP also

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

10

influences the throughput. Fig. 12 shows that for all three
devices, the throughput of a larger ILP saturates faster.
The GTX560Ti relies on ILP the most, because its SM can
launch the fewest warps/CTAs, and a larger ILP helps to
handle more memory requests. The GTX780 has the highest
throughput as it benefits from the highest bus width, but its
convergence speed is the slowest, i.e., it requires the most
memory requests to hide the pipeline latency. Considering
that such a large amount of parallel memory requests is
hardly ever reached in real applications, the higher bus
width is somewhat wasteful. This could be part of the reason
that NVIDIA reduced the bus width back to 256 bits in
Maxwell devices.

5.2 Global Memory Latency
In this section, we report the global memory latencies of var-
ious data access patterns. The global memory access latency
is the whole time accessing a data located in DRAM/L2
or L1 cache, including the latency of page table look-ups.
We apply our fine-grained P-chase with a novel self-defined
data initialization so that we can collect as many memory
latencies as possible in one experiment. We manually set the
values of the array elements to create non-uniform stride
accesses, rather than executing Listing 1. We are motivated
by the convenience of Saavedra1992 method that a single
tvalue-s graph can show memory latencies of different
memory access patterns. Fig. 13 illustrates the difference of
the data access process between the conventional P-chase
and our non-uniform stride fine-grained P-chase.

We measure the global memory latencies with the L1
data cache of the GTX980 and GTX560Ti turned both on and
off through the command options. By default, the Maxwell
L1 cache is turned off and the Fermi L1 cache is turned on.

Fig. 14 shows the global memory latency cycles of six
access patterns (noted as P1-P6). In our fine-grained P-
chase initialization, we first set a very large s1 = 32 MB to
construct the TLB/page table miss and cache miss (P5&P6).
We then set s2 = 1 MB to construct the L1 TLB hit but
cache miss (P4). After a total of 65 data accesses, 65 data
lines are loaded into the cache. We then visit the cached
data lines with s1 again for several times, to construct cache
hit but TLB miss (P2&P3). At last, we set s3 = 1 element
and repeatedly load the data in a cache line so that every
memory access is a cache hit (P1). The latency values in
Fig. 14 are based on the average of ten times of experiments.
The data cache represents the L1 cache with the GTX980 and
GTX560Ti L1 data cache turned on, otherwise it represents
the L2 cache. We list some of our findings as follows.

1) The Maxwell and Kepler devices have a unique mem-
ory access pattern (P6) for page table context switching.
When a kernel is launched, only memory page entries
of 512 MB are activated. If the thread visits an inactivate
page entry, the hardware needs a rather long time to
switch between page tables. This phenomena is also
reported in [22] as page table “miss”.

2) The Maxwell L1 data cache addressing does not go
through the TLBs or page tables. On the GTX980, there
is no TLB miss pattern (i.e., P2 and P3) when the L1 data
cache is hit. Once the L1 cache is missed, the access
latency increases from tens of cycles to hundreds or
even thousands of cycles.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

s = 2

(a) Uniformed stride
s1 = 8

s2 = 4

s3 = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(b) Non-uniformed stride

Fig. 13. Comparison between normal P-chase array access and our
non-uniform stride array access. The numbers inside the square blocks
are the array indices. The arrows indicate the values of the array ele-
ments, for example, the 0th data block pointing to the 2nd block means
that we initialize the 0th array element with 2. In Fig. (a), the array
is initialized with a single stride s = 2 that it forms a single memory
access pattern: loading every one of two array elements. The measured
memory latency is also of this single pattern. In Fig. (b), the array is
initialized with various stride, s1, s2 and s3, likewise, we can get the
memory latencies of various patterns.

P1 P2 P3 P4 P5 P6
0

500

1,000

1,500

2,000

2,500

M
em

or
y

la
te

nc
y

(c
lo

ck
cy

cl
es

)

GTX980-L1on

GTX980-L1off

GTX780

GTX560Ti-L1on

GTX560Ti-L1off

Pattern P1 P2 P3 P4 P5 P6
Data cache hit hit hit miss miss miss

L1 TLB hit miss miss hit miss miss
L2 TLB – hit miss – miss miss

Latency P1 P2 P3 P4 P5 P6
GTX980-L1on 82 – – 385 2439 2740
GTX980-L1off 214 225 289 383 2461 2750

GTX780 198 204 257 339 702 968
GTX560Ti-L1on 96 384 468 635 1239 –
GTX560Ti-L1off 351 378 462 619 1225 –

Fig. 14. Global memory access latency spectrum.

3) The TLBs are off-chip. Fig. 14 shows that on the
GTX560Ti, if the data are cached in L1, the L1 TLB miss
penalty is 288 cycles. If data are cached in L2, the L1
TLB miss penalty is 27 cycles. Because the latter penalty
is much smaller, we infer that the physical memory
locations of the L1 TLB and L2 data cache are close.
The physical memory locations of the L1 TLB and L2
TLB are also close, which means that the L1/L2 TLB
and L2 data cache are shared off-chip by all SMs.

4) The GTX780 generally has the shortest global memory
latencies, almost half that of the Fermi, with an access
pattern of P2-P5. By default, the GTX980 has similar
latencies to those of the GTX780 for P1-P4. However, for
P5 (caused by the cold cache misses), the access latency

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

11

TABLE 7
Theoretical and Achieved Throughput of Shared Memory

Device GTX560Ti GTX780 GTX980
Wbank (byte/cycle) 2 8 4

fcore (GHz) 0.950 1.006 1.279
WSM (GB/s) 60.80 257.54 163.84
W ′

SM (GB/s) 34.90 83.81 137.41
Efficiency (%) 57.4 32.5 83.9

is about 3.5 times longer than on the Kepler and twice as
long as on the Fermi. The page table context switching
of the GTX980 is also much more expensive than that
of the GTX780.

To summarize, the Maxwell device has long global mem-
ory access latencies for cold cache misses and page table
context switching. Except for these rare access patterns,
its access latency cycles are close to those of the Kepler
device. In our experiment, because the GTX980 has higher
fmem than the GTX780, it actually offers the shortest global
memory access time (P2-P4).

6 SHARED MEMORY

The shared memory is designed with high bandwidth and
very short memory latency, and each SM has a dedicated
shared memory space. In CUDA programming, different
CTAs assigned to the same SM have to share the same phys-
ical memory space. On the Fermi and Kepler platforms, the
shared memory is physically integrated with the L1 cache.
On the Maxwell platform, it occupies a separate memory
space. Storing data in shared memory is a recognized opti-
mization strategy for GPU-accelerated applications [4], [5],
[9]. Programmers move the data into and out of shared
memory from global memory before and after arithmetic
execution, to avoid the frequent occurrence of long global
memory access latencies.

In this section, we micro-benchmark the throughput and
latency of shared memory. In particular, we discuss the
effects of the bank conflict on shared memory access latency.
We report a dramatic improvement in performance for the
Maxwell device.

6.1 Shared Memory Throughput
On all three GPU platforms, the shared memory is orga-
nized as 32 memory banks [15]. The bank width of the Fermi
and Maxwell devices is 4 bytes, while that of the Kepler
device is 8 bytes. Each bank has a bandwidth of Wbank,
as shown in Table 7. The theoretical peak throughput of
each SM (WSM) is calculated as fcore ∗ Wbank ∗ 32. Our
microbenchmark results indicate that although the band-
width of shared memory is considerable, the real achieved
throughput could be much lower. This is most obvious on
our Fermi and Kepler devices.

The microbenchmark is designed as follows. We copy
a number of integers from one shared memory region to
another with various grid configurations and ILP levels.
Each thread copies ILP of 4-byte data and consumes 8*ILP
bytes of shared memory. For each SM, we measure the total
elapsed clock cycles with the syncthreads() and clock() for

1 2 4 8 16 32 64
0

50

100

150

200

Active warps per SM

Th
r o

ug
hp

ut
pe

r
SM

(G
B/

s)

GTX560Ti GTX780 GTX980

Fig. 15. Achieved shared memory peak throughput per SM.

all its active warps. The overhead of a pair of syncthreads()
and clock() is measured as 78, 37, and 36 cycles for Fermi,
Kepler, and Maxwell platforms, respectively. The achieved
throughput per SM is calculated as 2 * fcore * sizeof(int) *
(number of active threads per SM) * ILP / (total latency of
each SM). We run the microbenchmark with CTA size = {32,
64, 128, 256, 512, 1024}, CTAs per SM ={1, 2, 3, 4, 5, 6},
and ILP={1, 2, 4, 6, 8}, subject to the constraint of shared
memory size per SM. Usually a large value of ILP results
in less active warps per SM. The peak throughput W ′

SM

denotes the respective maximum throughput of the above
combinations. Two key factors that affect the throughput
are the number of active warps per SM and the ILP level.

We plot the achieved shared memory peak throughput
per SM against the number of active warps in Fig. 15. In
general the peak shared memory throughput grows with the
increase of active warps, until it reaches some threshold. The
peak shared memory throughput of the GTX560Ti occurs
when the CTA size = 512, CTAs per SM = 1 and ILP = 4,
i.e., 16 active warps per SM. The peak throughput is 34.90
GB/s, which is about 58.7% of the theoretical bandwidth.
The GTX780 reaches its peak throughput when the CTA size
= 1024, CTAs per SM = 1 and ILP = 6, i.e., 32 active warps per
SM. The peak throughput is 83.81 GB/s, which is only 32.5%
of the theoretical bandwidth. The GTX980 reaches its peak
throughput when the CTA size = 256, CTAs per SM = 2 and
ILP = 8, i.e., 16 active warps per SM. The peak throughput is
137.41 GB/s, about 83.9% of the theoretical bandwidth. The
Maxwell device shows the best use of its shared memory
bandwidth, and the Kepler device shows the worst.

Fig. 16 shows the achieved shared memory throughputs
for different combinations of ILP and number of active
warps per SM. Notice that on GTX560Ti and GTX780, when
there are 32 active warps, the maximum ILP is 6 due to
limited shared memory size. On the GTX560Ti, the achieved
throughput grows with the increase of ILP until it reaches 4.
On the GTX780, for low SM occupancy (i.e., 1 to 4 active
warps), ILP = 4 gives the highest throughput; while for
higher SM occupancy (i.e., 8 to 32 active warps), ILP = 6
or 8 give the highest throughput. GTX980 exhibits similar
behavior as GTX780: high ILP is required to achieve high
throughput for high SM occupancy.

According to Little’s Law, we roughly have: number of
active warps * ILP = latency cycles * throughput. Applying
the latency values in Section 6.2, the GTX780 requires about
94 active warps if ILP = 1, but the Kepler device allows

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

12

1 4 8 16 32
0

10

20

30

40

Active warps per SM

T
hr

ou
gh

pu
t(

G
B/

s)
GTX560Ti

1 4 8 16 32
0

20

40

60

80

100

Active warps per SM

T
hr

ou
gh

pu
t(

G
B/

s)

GTX780

1 4 8 16 32
0

50

100

150

Active warps per SM

T
hr

ou
gh

pu
t(

G
B/

s)

GTX980

ILP=1 ILP=2 ILP=4 ILP=6 ILP=8

Fig. 16. Shared memory throughput per SM vs. ILP.

64 warps at most to be executed concurrently [15]. The
gap between the number of required active warps and the
number of allowed concurrent warps is particularly obvious
on the GTX780. We consider this to be the main reason
the achieved throughput of the GTX780 is poor compared
with its designed value. For the Maxwell device, due to
the significantly reduced access latency, we observe a higher
shared memory throughput.

6.2 Shared Memory Latency

1 for (i =0 ; i <= i t e r a t i o n s ; i ++) {
2 data=threadIdx . x∗ s t r i d e ;
3 i f (i ==1) sum = 0 ; //omit cold miss
4 s t a r t t i m e = clock () ;
5 repeat64 (data=sdata [data] ;) ;
6 //64 times of s t r i d e a c c e s s
7 end time = clock () ;
8 sum += (end time − s t a r t t i m e) ;
9 }

Listing 4. Kernel function of shared memory stride access

We first use the P-chase kernel in Listing 4 with single
thread and single CTA to measure the shared memory la-
tencies without bank conflict. The shared memory latencies
on Fermi, Kepler and Maxwell devices are 50, 47 and 28
cycles, respectively. However, the shared memory access
latency will grow when bank conflicts occur. In this section,
we focus on the effect of bank conflicts on shared memory
access latency.

The shared memory space is divided into 32 banks.
Successive words are allocated to successive banks. If two
threads in the same warp access memory spaces in the same
bank, a 2-way bank conflict occurs. Listing 4 is also used
to measure the shared memory access latency with bank
conflicts. Different from the previous case, we launch a warp
of threads with a single CTA to access stride memory. We
multiply the thread id with an integer, stride, to get a shared
memory address. We perform the memory access 64 times
and record the total time consumption. We then calculate
the average memory latency for each memory access.

Fig. 17 illustrates a 2-way bank conflict caused by stride
memory access on the Fermi architecture. For example,
word 0 and word 32 are mapped onto the same bank. If
the stride is 2, threads 0 and 16 will visit words 0 and 32,
respectively, which causes a 2-way bank conflict. The num-
ber of potential bank conflicts equals the greatest common
divisor of the stride number and 32. There is no bank conflict

width: 4-byte threadIdx.x

...
Bank0

0

32

Bank1

1

33

Bank2

2

34

Bank30

30

62

Bank31

31

63

0

16

1

17

15

31

Fig. 17. 2-way shared memory bank conflict (stride=2).

TABLE 8
Shared Memory Access Latency with Bank Conflicts

Bank conflict 2-way 4-way 8-way 16-way 32-way
GTX980 30 34 42 58 90
GTX780 82 96 158 257 484

GTX560Ti 87 162 311 611 1209

for odd strides. Fermi and Maxwell devices have the same
number of potential bank conflicts because they have the
same architecture.

Kepler outperforms Fermi in terms of avoiding shared
memory bank conflicts by doubling the bank width [37].
The bank width of Kepler device is 8 bytes, yet it offers
two configurable modes to programmers: 4-byte mode and
8-byte mode. In the 8-byte mode, 64 successive integers are
mapped onto 32 successive banks, whereas in the 4-byte
mode, 32 successive integers are mapped onto 32 successive
banks. Fig. 18 illustrates the data mapping of the two modes.
A bank conflict only occurs when two or more threads
access different bank rows. Fig. 19 shows the Kepler shared
memory latencies with even strides for the 4-byte and 8-
byte modes. When the stride is 2, there is no bank conflict
in either mode, whereas there is a 2-way bank conflict on
Fermi. When the stride is 4, both modes show a 2-way bank
conflict. When the stride is 6 (Fig. 18), there is a 2-way bank
conflict for the 4-byte mode but no bank conflict for the 8-
byte mode. For the 4-byte mode, half of the shared memory
banks are visited. Thread i and thread i+16 access separate
rows in the same bank (i = 0, ..., 15). For the 8-byte mode,
32 threads visit 32 different banks with no conflict. Similarly,
the 8-byte mode is superior to the 4-byte mode for other
even strides if their number is not to the power of two.

We list our measured shared memory access latencies
according to the number of potential bank conflicts in Table

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

13

threadIdx.xwidth: 4-byte

...
Bank0

0 32

64 96

128 160

Bank1

1 33

65 97

129 161

Bank2

2 34

66 98

130 162

Bank3

3 35

67 99

131 163

Bank4

4 36

68 100

132 164

Bank31

31 63

95 127

159 191

0

16 11

27 22

6

(a) 4-byte mode, 2-way bank conflict.

threadIdx.xwidth: 8-byte

...
Bank0

0 1

64 65

128 129

Bank1

2 3

66 67

130 131

Bank2

4 5

68 69

132 133

Bank3

6 7

70 71

134 135

Bank4

8 9

72 73

136 137

Bank31

62 63

126 127

190 191

0 1

11 12 21

22

(b) 8-byte mode, no bank conflict.

Fig. 18. Kepler shared memory bank conflict (stride = 6).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

0

100

200

300

400

500

Stride

M
em

or
y

la
te

nc
y

(c
lo

ck
cy

cl
es

)

4-byte mode

8-byte mode

Fig. 19. Latency of Kepler Shared Memory with bank conflict: 4-byte mode v.s. 8-byte mode.

8. The memory access latency increases almost linearly with
the number of potential bank conflicts. This confirms that
the data access instructions are sequentially executed in case
of a bank conflict. For the Fermi and Kepler devices, where
there is a 32-way bank conflict, it takes much longer to access
shared memory than regular global memory (TLB hit, cache
miss). Surprisingly, the effect of a bank conflict on shared
memory access latency on the Maxwell device is mild. Even
the longest shared memory access latency is still at the same
level as L1 data cache latency.

In summary, although the shared memory has very short
access latency, it can be rather long if there are many ways of
bank conflicts. This is most obvious on the Fermi hardware.
The Kepler device tries to solve it by doubling the bank
width of shared memory. Compared with the Fermi, the
Kepler’s 4-byte mode shared memory halves the chance
of bank conflict, and the 8-byte mode reduces it further.
However, we also find that the Kepler’s shared memory
is inefficient in terms of throughput. The Maxwell device
has the best shared memory performance. With the same
architecture as the Fermi device, the Maxwell hardware
shows a 2x size, 2x memory access speedup and achieves
the highest throughput. Most importantly, the Maxwell de-
vice’s shared memory has been optimized to avoid the long
latency caused by bank conflicts. As many GPU-accelerated

applications rely on shared memory performance, this im-
provement certainly leads to faster and more efficient GPU
computations.

7 CONCLUSIONS

In this study, we microbenchmarked the cache character-
istics, memory throughput, and memory latencies of three
recent generations of NVIDIA GPUs: Fermi, Kepler and
Maxwell. We perceive an evolution of the NVIDIA GPU
memory hierarchy. The memory capacity is significantly
enhanced in both Kepler and Maxwell as compared with
Fermi. The Kepler device is performance-oriented and in-
corporates several aggressive elements in its design, such as
increasing the bus width of DRAM and doubling the bank
width of shared memory. These designs have some side-
effects. The theoretical bandwidths of both global memory
and shared memory are difficult to saturate, and hardware
resources are imbalanced with a low utilization rate. The
Maxwell device has a more efficient and conservative de-
sign. It has a reduced bus width and bank width, and
the on-chip cache architectures are adjusted, including dou-
bling the shared memory size and the read-only data cache
size. Furthermore, it sharply decreases the shared memory
latency caused under bank conflicts. With its optimized

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2549523, IEEE
Transactions on Parallel and Distributed Systems

14

memory hierarchy, the Maxwell device not only retains
good performance but is also more economical.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable com-
ments. This work is partially supported by Hong Kong GRF
grant HKBU 210412, HKBU FRG2/14-15/059, Shenzhen
Basic Research Grant SCI-2015-SZTIC-002.

REFERENCES

[1] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56–69, 2010.

[2] W. mei Hwu, “What is ahead for parallel computing,” Journal of
Parallel and Distributed Computing, vol. 74, no. 7, pp. 2574–2581,
2014.

[3] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31,
no. 5, pp. 0007–17, 2011.

[4] K. Zhao and X. Chu, “G-BLASTN: accelerating nucleotide align-
ment by graphics processors,” Bioinformatics, vol. 30, no. 10, pp.
1384–91, 2014.

[5] Y. Li, H. Chi, L. Xia, and X. Chu, “Accelerating the scoring module
of mass spectrometry-based peptide identification using GPUs,”
BMC bioinformatics, vol. 15, no. 1, pp. 1–11, 2014.

[6] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W.-m. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
in Proc. of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 2008, pp. 73–82.

[7] NVIDIA GeForce GTX 980 Whitepaper, NVIDIA Corporation, 2014.
[8] P. Micikevicius, “3D finite difference computation on GPUs using

CUDA,” in Proc. of 2nd Workshop on General Purpose Processing on
Graphics Processing Units. ACM, 2009, pp. 79–84.

[9] NVIDIA, “matrixMul,” CUDA SDK 6.5, 2014.
[10] ——, “matrixMulCUBLAS,” CUDA SDK 6.5, 2014.
[11] Fermi Whitepaper, NVIDIA Corporation, 2009.
[12] Kepler GK110 Whitepaper, NVIDIA Corporation, 2012.
[13] Tuning CUDA Applications for Kepler, NVIDIA Corporation, 2013.
[14] Tuning CUDA Applications for Maxwell, NVIDIA Corporation, 2014.
[15] CUDA C Programming Guide - v7.5, NVIDIA Corporation, 2015.
[16] CUDA C Best Practices Guide - v7.5, NVIDIA Corporation, 2015.
[17] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense

linear algebra,” in Proc. of the 2008 ACM/IEEE Conference on Super-
computing, no. 31. IEEE Press, 2008.

[18] M. Papadopoulou, M. Sadooghi-Alvandi, and H. Wong, “Micro-
benchmarking the GT200 GPU,” Computer Group, ECE, University
of Toronto, Tech. Rep, 2009.

[19] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through mi-
crobenchmarking,” in Proc. of Performance Analysis of Systems and
Software (ISPASS), 2010 IEEE International Symposium on. IEEE,
2010, pp. 235–246.

[20] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for GPU architectures,” in Proc. of High Performance Com-
puter Architecture (HPCA), 2011 IEEE 17th International Symposium
on. IEEE, 2011, pp. 382–393.

[21] S. S. Baghsorkhi, I. Gelado, M. Delahaye, and W.-m. W. Hwu,
“Efficient performance evaluation of memory hierarchy for highly
multithreaded graphics processors,” in ACM SIGPLAN Notices,
vol. 47, no. 8. ACM, 2012, pp. 23–34.

[22] R. Meltzer, C. Zeng, and C. Cecka, “Micro-benchmarking the
C2070,” 2013, poster presented at GPU Technology Conference,
March 18-21, San Jose, California.

[23] R. H. Saavedra, “CPU performance evaluation and execution
time prediction using Narrow spectrum benchmarking,” Ph.D.
dissertation, EECS Department, University of California, Berkeley,
Feb 1992.

[24] R. H. Saavedra and A. J. Smith, “Measuring cache and TLB
performance and their effect on benchmark runtimes,” Computers,
IEEE Transactions on, vol. 44, no. 10, pp. 1223–1235, 1995.

[25] X. Mei, K. Zhao, C. Liu, and X. Chu, “Benchmarking the memory
hierarchy of modern GPUs,” in Proc. of Network and Parallel Com-
puting, 2014 IFIP 11th International Conference on, 2014, pp. 144–156.

[26] S. Lal, J. Lucas, M. Andersch, M. Alvarez-Mesa, A. Elhossini, and
B. Juurlink, “GPGPU workload characteristics and performance
analysis,” in Proc. of Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV), 2014 International Confer-
ence on. IEEE, 2014, pp. 115–124.

[27] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and im-
proving the use of demand-fetched caches in GPUs,” in Proc. of the
26th ACM International Conference on Supercomputing. ACM, 2012,
pp. 15–24.

[28] X. Xie, Y. Liang, G. Sun, and D. Chen, “An efficient compiler
framework for cache bypassing on GPUs,” in Proc. of Computer-
Aided Design (ICCAD), 2013 IEEE/ACM International Conference on.
IEEE, 2013, pp. 516–523.

[29] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory
access patterns to improve memory performance in data-parallel
architectures,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 22, no. 1, pp. 105–118, 2011.

[30] S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: Optimizing
memory access patterns for heterogeneous systems,” in Proc. of
2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2011, pp. 13:1–13:11.

[31] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout trans-
formation exploiting memory-level parallelism in structured grid
many-core applications,” in Proc. of the 19th International Conference
on Parallel Architectures and Compilation Techniques. ACM, 2010, pp.
513–522.

[32] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou,
“Locality-driven dynamic GPU cache bypassing,” in Proceedings of
the 29th ACM on International Conference on Supercomputing. ACM,
2015, pp. 67–77.

[33] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for perfor-
mance analysis.” in Proc. of USENIX Annual Technical Conference.
San Diego, CA, USA, 1996, pp. 279–294.

[34] A. X. Duchateau, A. Sidelnik, M. J. Garzarán, and D. Padua, “P-
ray: A software suite for multi-core architecture characterization,”
in Proc. of Languages and Compilers for Parallel Computing, 21th
International Workshop on. Springer, 2008, pp. 187–201.

[35] Z. S. Hakura and A. Gupta, “The design and analysis of a cache
architecture for texture mapping,” ACM SIGARCH Computer Ar-
chitecture News, vol. 25, no. 2, pp. 108–120, 1997.

[36] V. Volkov, “Better performance at lower occupancy,” in the 1st GPU
Technology Conference. San Jose, CA, USA, 2010.

[37] P. Micikevicius, “GPU performance analysis and optimization,” in
the 3rd GPU Technology Conference. San Jose, CA, USA, 2012.

Xinxin Mei received the B.E. degree in elec-
tronic information engineering from the Univer-
sity of Science and Technology of China, P.R.C.,
in 2010. She is currently a Ph.D. student in the
Department of Computer Science, Hong Kong
Baptist University. Her research interests include
distributed and parallel computing and GPU-
accelerated parallel partial differential equation
solvers.

Xiaowen Chu received the B.E. degree in com-
puter science from Tsinghua University, P.R.
China, in 1999, and the Ph.D. degree in com-
puter science from the Hong Kong University
of Science and Technology in 2003. Currently,
he is an associate professor in the Department
of Computer Science, Hong Kong Baptist Uni-
versity. His research interests include distributed
and parallel computing and wireless networks.
He is serving as an Associate Editor of IEEE
Access and IEEE Internet of Things Journal. He

is a senior member of the IEEE.

