
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 1

REFRESH: REDEFINE for Face Recognition
using SURE Homogeneous Cores

Gopinath Mahale, Hamsika Mahale, S.K.Nandy, Senior Member, IEEE, Ranjani Narayan

Abstract—In this paper we present design and analysis of a scalable real-time Face Recognition (FR) module to perform 450
recognitions per second. We introduce an algorithm for FR, which is a combination of Weighted Modular Principle Component Analysis
and Radial Basis Function Neural Networks. This algorithm offers better recognition accuracy in various practical conditions than
algorithms used in existing architectures for real-time FR. To meet real-time requirements, a Scalable Parallel Pipelined Architecture
(SPPA) is developed by realizing the above FR algorithm as independent parallel streams and sub-streams of computations. SPPA is
capable of supporting large databases maintained in external (DDR) memory. By casting the computations in a stream into hardware,
we present the design of a Scalable Unit for Region Evaluation (SURE) core. Using SURE cores as computer elements in a massively
parallel CGRA, like REDFINE, we provide a FR system on REDEFINE called REFRESH. We report FPGA and ASIC synthesis results
for SPPA and REFRESH. Through analysis using these results, we show that excellent scalability and added programmability in
REFRESH makes it a flexible and favorable solution for real-time FR.

Index Terms—Face and gesture recognition, Real-time systems, Parallel Architectures, Reconfigurable hardware,
Multi-core/single-chip multiprocessors

F

1 INTRODUCTION

T HE field of biometrics has changed the manner in which iden-
tities are perceived in the real world. Ranging from accurate

finger print recognition to recent iris recognition, individuals are
recognized beyond human capacity. Inclusion of these automated
biometric methods in security systems has been popular these
days to avoid manual human handling errors. Although various
biometric methods are in use, reliability of these systems in critical
applications is a matter of concern. Face Recognition (FR) is
one such biometric method to identify individuals from features
present in their face images. This non-contact based system is
preferred over other biometric methods due to its ease of use
and ability to recognize without the knowledge of the subject. FR
system has numerous applications which include human-computer
interaction, authentication, surveillance etc. FR system is also used
in law enforcement applications such as identification of crime
suspects in crowds. The factors that influence accuracy of FR in
the real world are variations in illumination, pose angle, facial
expressions, occlusions, and variations due to ageing of subjects.
For critical applications of FR, such as identification of crime
suspects in crowd, real-time response is very much necessary. The
latency in recognition is affected by complexity of algorithm being
used for recognition. Although there are numerous algorithms [1]
[2] [3] proposed for FR, it has been hard to achieve high frame-rate
real-time FR for efficient, but compute intensive, algorithms. As
available software solutions for FR have significantly large latency
in recognizing individuals, they are not suitable for real-time
applications. Existing hardware solutions in literature use simple
classifiers to reduce the complexity for real-time performance,

• G. Mahale, H. Mahale and S.K.Nandy are with Computer Aided Design
Laboratory, Indian Institute of Science, Bangalore, India
E-mail: {mahalegv,hamsika,nandy}@cadl.iisc.ernet.in

• R. Narayan is with Morphing Machines Pvt. Ltd., Bangalore, India
E-mail: ranjani@morphing.in

Manuscript received April 19, 2005; revised September 17, 2014.

Pre-
Processing

Face
Detection

Image
scaling

Face
Recognition

Capture
Still image or
Video stream

Filtering noise

Histogram
Equalization

Haar-like
features

Local Binary
Pattern features

Skin Color based
detection

Bi-linear
Interpolation

Bi-cubic
Interpolation

Feature based
Face Recognition

Holistic Face
Recognition

Fig. 1. A general face recognition system

resulting in poor recognition accuracy. In addition, due to limited
expensive on-chip memory resources, these architectures limit the
database size to a small number. Therefore there is a need for
a scalable real-time architecture for FR module that ensures good
recognition accuracy, large number of recognitions per second and
targets very large databases.

A block schematic of various stages of a real-time FR system
is given in Fig. 1. Input image or a frame of video stream, which
may consist of more than a single face, is captured by a camera.
An optional pre-processing stage performs filtering of noise or
nullification of illumination changes. The locations of faces in
the input image, which are regions of interest, are detected by a
face detection module. These images of detected faces in different
sizes are resized by an image scaling module to the size specified
by the face recognition module following it. The final block of
FR system, a FR module, extracts features in the input image and
matches it against images available in the database.

In this paper, we design a scalable real-time FR module with
good recognition accuracy that targets databases of large sizes. The
first step towards design of scalable FR module is the selection
of FR algorithm. We explore algorithms with good recognition

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 2

accuracy and modularity suitable for real-time applications. We in-
troduce a combination of Weighted Modular Principle Component
Analysis (WMPCA) and Radial Basis Function Neural Network
(RBFNN) [4], which is found to show better recognition accuracy
than algorithms used in existing hardware solutions in various
practical conditions. According to the industry standards, a frame
rate of 15 per second is sufficient to capture public movement
in crowded places [5]. We target to recognize at most 30 faces
in each of these frames, which amounts to 450 recognitions to
be performed per second. To achieve real-time performance at
this frame rate, we exploit modularity in WMPCA to come up
with a Scalable Parallel Pipelined Architecture (SPPA) [4] for
real-time FR. The parallelism in our FR algorithm is exploited
at the level of image regions using streams of computation.
Parallel sub-streams under each stream are realized to perform
computations in corresponding regions. The data is stored off-
chip for scalability with respect to database sizes. In addition,
a novel data layout is used to store data on off-chip memory
to achieve good memory throughput. The SPPA is emulated on
Virtex-6 LX550T FPGA for functional verification. The emulated
system operating at 107 MHz is able to perform 450 recognitions
per second on databases containing at most 450 classes. For
scalability and flexibility in usage, we extend this design to a
reconfigurable multi-core environment such as REDEFINE [6].
Reconfigurability in REDEFINE allows composition of custom
data paths at run-time, which serve as accelerators for certain
critical application specific functionalities. We dwell more on
this in section 5. We exploit parallelism in the algorithm to
distribute computations over the nodes of REDEFINE. To achieve
real-time FR, each processing node in REDEFINE is enriched
with embedded hardware accelerator core capable of performing
macro operations in hardware. Such an accelerator core performs
computations that are analogous to the computations performed in
a single stream of SPPA. We refer to such an accelerator core as
Scalable Unit for Region Evaluation (SURE) core. Such multiple
SUREs connected by the NoC constitutes our scalable FR module
which we term REFRESH, REDEFINE for Face Recognition
using SURE Homogeneous cores. REFRESH with 16 SUREs,
emulated on Virtex-6 FPGA operating at 100MHz, is capable of
performing 450 real-time recognitions per second on a face image
database consisting 417 classes. The number of recognitions per
second, number of classes and image dimensions supported by
REFRESH scale with number of SUREs. FPGA emulation of
REFRESH offers performance that is almost equal to that of
SPPA on FPGA. The negligible degradation in performance of
REFRESH compared to SPPA, is a price easily borne for meeting
the larger objectives of programmability and scalability.

The rest of the paper is organized as follows. In section 2, we
explore algorithms in literature suitable for real-time implemen-
tation. In addition, we discuss in brief the existing hardware and
software solutions for real-time FR from literature. In section 3,
we summarize the FR algorithm from [4]. In addition, we analyse
its recognition accuracy on images with occlusion and report its
performance with different clustering methods. In section 4, we
reproduce from [4] a scalable modular parallel pipelined architec-
ture for the FR algorithm along with FPGA and ASIC synthesis
results and comparison against existing real-time architectures for
FR. In section 5, we describe our extended work in SURE based
acceleration on REDEFINE with emulation on FPGA and ASIC
synthesis results. We conclude the paper in section 6.

2 ALGORITHMS FOR FR AND EXISTING FR SYS-
TEMS

Significant research is being pursued towards design of efficient
algorithms for face recognition. However, it has been hard to find
an algorithm that targets all the factors affecting its recognition
accuracy. Considering trade-off between recognition accuracy and
computation complexity, we look for algorithms with good recog-
nition accuracy and scope for hardware acceleration of parallel
computations. The choice of algorithm is also done by considering
the ease with which the FR module can be trained on-line.

In this exposition we restrict to two dimensional FR algorithms
as three dimensional FR deals with complicated camera set-up
and compute intensive algorithms. In two dimensional FR, feature
based FR algorithms [3] detect individual features in the input
image of face and perform recognition. Recognition performance
of these algorithms depends on accuracy of feature detection. In
addition, the compute intensiveness of these algorithms make them
not a suitable option for real-time applications. On the other hand,
holistic FR algorithms [3] use the whole input image of face for
recognition of individual. As holistic FR algorithms are simple
and very well suited for real-time implementations, we consider
them in our algorithm exploration for the designed FR module. To
recognize faces, holistic FR algorithms include two steps.

The first step is extraction of features in the input image. The
goal of feature extraction is to use only significant information in
the input image, thereby reducing the dimension of input vector.
Principle Component Analysis (PCA) [7], Linear Discriminant
Analysis (LDA) [8], wavelet decomposition [9] are some of the
popular feature extraction methods. PCA is a popular technique
used in extraction of discriminating features in the input data.
It has been experimentally shown that, with respect to recognition
accuracy, LDA is outperformed [8] by PCA in practical conditions.
Some major modifications to PCA, such as Modular PCA (MPCA)
[10], Weighted Modular PCA (WMPCA) [11], have shown better
feature extraction capabilities. PCA along with these modifications
are discussed in detail in [4].

The second step in holistic FR algorithm is to recognize the
input image using the feature vector made of features extracted
from the input image. This process is termed classification. An
example for a simple classifier is Nearest Neighbour Classifier
(NNC) with rectilinear or Euclidean distance as distance measures.
Being the simplest classifier, NNC has been used in many real-
time FR systems due to its lower complexity. However, due to its
greedy nature, NNC often results in misclassification. There exist
sophisticated classifiers such as RBFNN, Multi-Layer Perceptrons
(MLP) and Support Vector machines (SVM), which have shown
better classification abilities compared to that of NNC. We use
RBFNN in the algorithm for real-time FR due to the following
reasons.

• RBFNNs are well suited for pattern recognition problems
and it is stated that due to locally tuned processing nodes,
it provides scope for faster learning [12]

• RBFNNs with just one hidden layer can achieve universal
approximation [13]

• RBFNNs are shown to exhibit shift, scale and pose invari-
ance after training [14]

• RBFNN shows better generalization performance and are
computationally faster than SVM for large training data
sets [15]

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 3

PCA with RBFNN has shown better recognition accuracy than
wavelet decomposition with RBFNN [16]. In addition, availability
of simpler incremental training algorithms [17] for RBFNN has
encouraged us in using it for our real-time FR module [18]. The
computations involved in RBFNN are described in [4]. Although
SVM with Gaussian kernel resembles RBFNNs with Gaussian
activation function [15], they differ in selection of mean and
variances of clusters and training of weights. RBFNN has shown
better classification abilities compared to SVM in some pattern
recognition problems [19]. Incremental training of SVM does
not show much scope for on-line real-time hardware realizations.
Enormous amount of computations involved in training and clas-
sification in deep neural networks [20] and convolutional neural
networks [21] have restricted us from considering it for our FR
module. Similarly, dictionary based FR algorithm using sparse
representation [22] involves large amount of computations which
make it not a suitable candidate for real-time systems. There are
probabilistic approaches for FR such as using Hidden Markov
Models [23] which have not shown considerable improvements
over other techniques.

There has been substantial work towards design of real-time
FR. A real-time face tracking and FR using RBFNN was realized
by Yang et al. [24] on FPGA, ZISC processor and DSP processor
to get 14, 25 and 4.5 recognitions per second respectively. A
near real-time Embedded FR proposed by Zuo et al. [25] with
feature based FR algorithms was able to work at 4 frames per
second on a Pentium 4 processor. Rajkiran Gottumukkal et al.
[26] have proposed a MPCA based FRS with a fixed number of
20 Principle Components (PCs) and input image down sampled
to a very small size. A WMPCA and NNC based FR module as
a system on programmable chip with 26 recognitions per second
was proposed by Pavan Kumar et al. [27]. Visakhasart et al. [28]
have proposed a multi-pipeline PCA and NNC based FR module
for a very small face database. Janarbek et al [29] proposed a
PCA and NNC based FR system which could recognize 45 faces
per second with input images down sampled to 20 × 20. A
MPCA and NNC based self configurable systolic architecture was
proposed by Sudha et al. [30]. A very large number of recognitions
per second is reported for this architecture. However, for large
number of training images in database, throughput is affected by
transfer of data from off-chip memory to on-chip Block RAMs.
In addition, classification by NNC and use of low resolution
images for better throughput are downsides of the architecture.
We conclude from the literature that the existing FR systems
either use simple algorithms to meet real-time requirements or
use small databases due to limited on-chip memory resources.
In addition, the architectures are not scalable with growing image
dimensions, number of classes, number of recognitions per second
etc. These growing requirements necessitate design of a scalable
hardware architecture for FR. In the following sections we focus
on a modular algorithm and a hardware architecture to accelerate
it for real-time FR that address accuracy and scalability issues in
the existing architectures.

3 A HYBRID ALGORITHM: COMBINED WMPCA
AND RBFNN ALGORITHM

In [4] we build on the algorithm for FR which is a combination of
WMPCA and RBFNN. Recognition performance of our algorithm
on AT&T Lab (ORL) [31], Sheffield database (UMIST) [32]
and Extended Yale database B [33] is discussed. In addition, a

20 40 60 80 100
25

35

45

55

65

75

85

95

Number of classes

R
ec

og
ni

tio
n

ac
cu

ra
cy

PCA+NNC[29]
PCA+RBFNN
MPCA+NNC [26][30] Nreg = 4
MPCA+NNC [26][30] Nreg = 16
MPCA+NNC [26][30] Nreg = 64
WMPCA+NNC [27] Nreg = 4
WMPCA+NNC [27] Nreg = 16
WMPCA+NNC [27] Nreg = 64
Our Algorithm Nreg = 4
Our Algorithm Nreg = 16
Our Algorithm Nreg = 64

Fig. 2. Recognition accuracy of algorithms on different databases as
observed on MATLAB

real-time parallel pipe-lined architecture for the algorithm and
emulation results are reported. It can be concluded about the
algorithm from [4] that

• The algorithm shows good recognition accuracy on im-
ages with considerable variations in pose, expression and
illumination conditions

• Increase in the number of regions has positive impact on
recognition accuracy

• Compared to algorithms used in existing architectures for
real-time FR, we see improved recognition accuracy by
our algorithm even with large number of classes.

• Modularity in the algorithm makes it suitable for acceler-
ation by parallel processing in real-time applications

We assume that input to our algorithm is output from a face
detector module that detects and normalizes faces from a video
frame or a still image. We evaluate our algorithm on AR face
database [34] which contains images with illumination variations
and images with occlusion by sun glass and muffler scarf. Using
this database, we analyse recognition accuracy of our algorithm
in law enforcement applications such as criminal identification in
crowded places.

From each class of AR database, first seven regular images
were used for training and rest 19 images with occlusion, change
in illumination and expression were used as test images to mimic
the scenario of criminal identification in public. For PCA with
RBFNN, whole images were used for feature extraction and
resultant feature vectors were classified by RBFNN. µ and σ [4]
for the hidden nodes were chosen as mean of samples from each
class and average distance of samples from the mean respectively.
Thus, number of hidden nodes is equal to the number of classes.
For NNC, Euclidean distance measure was used for similarity
measure. We fix the number of Principle Components (PC) to
32 [4]. In Fig. 2 we plot recognition accuracy of algorithms
used in existing architectures against the number of classes for
AR face database. For AR database, the algorithm works much
better on images with variations in illumination, expression and
occlusions than rest of the algorithms. Increasing the number
of regions results in smaller image regions which gives rise to
vectors of smaller dimensions. This leads to smaller domain of
classification resulting in better classification. However, in the case
of AR database, due to occlusion of faces, smaller regions are not
able to capture discriminating features from the input image. Due
to this, we see a decrease in recognition accuracy for very large
number of regions.

The selection of mean, µ, and standard deviation, σ, of clusters
in the feature space [4] can be done in any of the following
methods.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 4

• By supervised clustering with number of hidden nodes
equal to number of classes

• By unsupervised clustering of feature space
• By intra-class clustering

Supervised clustering by making number of hidden nodes equal
to the number of classes is simplest among the listed methods, as
there are no iterative computations involved. µ for a hidden node is
equal to the mean of samples belonging to the corresponding class.
σ for a hidden node is taken as the average distance of samples
from the corresponding mean. The results shown in Fig. 2 and [4]
follow this method of clustering the data. The disadvantage of this
method is that it may cause cluster overlapping.

Unsupervised clustering of feature space is accomplished by
applying algorithms such as k-means clustering [24] on the entire
feature space. Using this method, we can create arbitrary number
of clusters, where samples from two different classes may also fall
under a single cluster. Basically k-means clustering is an iterative
algorithm whose outcome depends on the initialization conditions.
Therefore, to get an optimal clustering, the algorithm needs to
be run a number of times to select the best clustering. Finally a
supervised training is performed on the output layer of RBFNN to
tune the weights accordingly. Fig. 3(a) shows plot of recognition
accuracy against the number of k-means clusters for Extended
Yale database B. We observe that, recognition accuracy increases
with increase in the number of k-means clusters. This is because of
reduced confusion in classification due to better separated clusters.
However, recognition accuracy falls beyond a certain point due to
overfitting of data.

If each class is assigned a single cluster, they may overlap and
samples may not be classified accurately. To address this problem,
samples under each class are clustered to get more than one
clusters. We term this process intra-class clustering and we call
such clusters under each class as sub-clusters. Number of methods

40 60 80 100 120 140 180 220 240
80

82

84

86

88

90

92

94

96

85.35 85.67

90.27
91.21 91.48

94.19
93.24

90.67 90.14

Number of k-means clusters

R
e
c
o

g
n

it
io

n
 r

a
te

(a) Recognition accuracy for Ex-
tended Yale Database B with differ-
ent number of clusters formed by
k-means clustering

Class A

Class B

(b) Intra-class clustering

1 2 3 4 5 6 7
80
82
84
86
88
90
92
94
96
98

100

85.81

93.9

97.16 97.29
96.21 96.21

91

Number of sub-clusters per class

R
e
c
o

g
n

it
io

n
 R

a
te

(c) Recognition accuracy for Ex-
tended Yale Database B with dif-
ferent number of sub-clusters un-
der each class formed by k-means
clustering

1 2 5 10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

67

69.43
70.39

75.05

77.54

81.08
82.32 82.53

80.24 79.62
78.17

71.93

64.24

Number of clusters for negative class

R
e
c
o

g
n

it
io

n
 a

c
c
u

ra
c
y

(d) Recognition accuracy for Ex-
tended Yale Database B with dif-
ferent number of sub-clusters for
negative class

Fig. 3. Recognition accuracy by clustering and sub-clustering

have been proposed in literature for such intra-class clustering [35]
[36] [24]. In our experiment, we perform k-means clustering on
each class whose clusters may otherwise overlap with a single
cluster per class. Fig. 3(b) shows two well separated classes due
to sub-clustering. Finally synaptic weights [4] of output layer
are trained accordingly. For demonstration, we plot recognition
accuracy of our algorithm against number of sub-clusters per class
for Extended Yale Database B in Fig. 3(c). Here too we observe
improvement in recognition accuracy with number of sub-clusters
per class, which is superior to that observed for unsupervised
clustering over the entire feature space. Here too we see decline
in recognition accuracy due to overfitting of data beyond a limit.

Recognition accuracies reported in Fig. 2 and in [4] are ob-
served in experiments where the output of FR module is the index
of class with maximum similarity with the test image. However,
in practical conditions, FR module needs to reject the subject,
when it is not available in the database. In the case of NNC, it
can be implemented using a distance threshold [30]. For RBFNN,
such images are rejected by training the system with negative
samples and hence creating a set of negative clusters. Assigning
more than one cluster for negative samples helps in achieving
better classification. Fig. 3(d) shows recognition accuracy of our
algorithm on Extended Yale Database B with negative class. Out
of 37 classes with 40 samples each, alternate images from first
10 classes are used for training and 40 samples from the next
20 classes are used as negative samples. Rest of the images
in the database are used for testing. Here we consider both
positive and negative samples for testing to verify performance
of our algorithm for recognition of crime suspects in crowd. We
perform k-means clustering only on negative class to get more
than one cluster for it. We see that increasing the number of sub-
cluster under negative class improves recognition accuracy. The
recognition accuracy is affected beyond a point due to overfitting
of data. Recognition accuracy of the FR module depends on the
number of negative samples used and the type of negative samples
used. Here performance of FR module also depends on the number
of clusters assigned for negative samples. Therefore, for negative
class classification we do not compare our algorithm with rest of
the algorithms mentioned in Fig. 2.

We conclude that our algorithm works well on images of
faces with variation in pose, illumination, expression and also on
occluded images. Recognition accuracy of algorithm is improved
by assigning more than one cluster for each class. In addition,
the algorithm has shown good performance in rejecting images
not present in the database. To support real-time FR using our
algorithm there is a need for a scalable FR module which can ac-
commodate images of large dimensions, large number of clusters
and sub-clusters. We find the required parallelism for acceleration
in the modular computations of WMPCA, where the computations
in each region can be performed in parallel [4]. We further exploit
parallelism in computations under each region to come up with
a Scalable Parallel Pipelined Architecture (SPPA) which can be
used with any of the mentioned clustering techniques. In the next
section we describe SPPA for our algorithm in detail and report
details of realization on hardware.

4 SCALABLE PARALLEL PIPELINED ARCHITEC-
TURE(SPPA) FOR REAL-TIME FR
SPPA for FR is designed to meet the need for recognition of large
number of faces per second and support for very large databases.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 5

Eigenspace

Projection

Eigenspace

Projection

Eigenspace

Projection

Hidden Node

Computation

Decision Unit

PCs and

Input

Image

Mean for

RBFNN

Mean

Image

Input Image Mean

Subtracter

Stream Input

FIFOS

Stream1

StreamNreg

Stream2

Class number

Output Node

Computation

 RBFNN

Weights

External

Memory

PCs

Hidden Node

Computation

Hidden Node

Computation

Output Node

Computation

Output Node

Computation

Stream

Fig. 4. Architecture of SPPA for real-time FR

Acceleration is brought about by exploiting parallel operations
in the algorithm explained in [4]. Modularity in the algorithm
is effectively utilized to come up with parallel and independent
streams and sub-streams of computation. We realize independent
computations in each region as streams. Parallel operations in each
stream are implemented as sub-streams of computations.

We reproduce the architecture of SPPA from [4] in detail. Fig.
4 shows overall view of the architecture. We store the mean image,
RBFNN variances and look-up table for exponentiation in on-
chip memory. The Input image, PCs, RBFNN means and RBFNN
synaptic weights are stored in off-chip RAM. A detailed explana-
tion on data layout for off-chip RAM is given in section 4.5. There
are Nreg number of streams each performing computations in
respective region. Initially for mean subtraction, input image pix-
els from off-chip RAM are subtracted from corresponding mean
image pixels yielding mean subtracted pixels, that are forwarded
to stream of corresponding region. A single subtracter performs
mean subtraction for all the regions in sequence. Computations
in each stream are divided into three stages namely Eigenspace
Projection (ESP), Hidden Node Computation (HNC) and Output
Node Computation (ONC). In ESP, the mean subtracted pixels
are projected on eigenspace computed during training. In HNC,
the RBFNN hidden layer outputs are computed which involves
computing Gaussian outputs. In ONC, RBFNN synaptic weights
are multiplied with hidden node outputs to get corresponding
RBFNN outputs. Decision Unit (DU) combines outputs of all the
streams to perform final classification.

Principle

Components

From

Stream

Input FIFO

To ESP

2 – Nreg

 To HNC

Intermediate

FIFOs

ESP FIFOs

Sesp

sub-streams

PC FIFO

DDR SDRAM

X X X

+ + +

(a) Architecture of ESP unit

00 ^2

1/2σ2

LUT

0

Feature

Vectors

stored

on-chip

Acc Shnc

sub-streams

From ESP

Intermediate

FIFOs

Mean

FIFO

X

To ONC

Means from

DDR

(b) Architecture of HNC unit

Fig. 5. Architectures of Eigen Space Projection and Hidden Node Com-
putation of SPPA

4.1 Eigenspace projection

Architecture of ESP is shown in Fig. 5(a). Operation to be
performed in ESP is basically multiplication of mean-subtracted
image vector with eigenspace matrix consisting of PCs to get fea-
ture vector of reduced dimension [4]. The PC’s stored in external
memory are fetched in bursts and distributed among Nreg number
of streams. These PCs are in turn distributed among FIFOs, termed
ESP FIFOs, of sub-streams. Each stream in ESP consists of Sesp
number of sub-streams to perform independent computations in
parallel. Each such sub-stream has a multiplier, an adder and a
FIFO termed Intermediate FIFO to store the intermediate results.
Eigenspace matrix has Npc number of PCs arranged as columns.
If this vector matrix multiplication is performed in regular fashion,
i.e., multiplication of mean subtracted pixel with each column of
eigenspace matrix, then it would need reading of mean subtracted
pixels multiple times. Otherwise, we would need a storage space
of M × N locations to store the mean subtracted image pixels.
To address this issue and to achieve maximal data locality in our
architecture, we fetch the elements of eigenspace matrix in row-
wise manner. Algorithm 1 in Appendix shows the manner in which
the multiplications are performed. These computations result in
32 intermediate results due to 32 number of PC’s used in our FR
algorithm. These are stored in on-chip intermediate FIFOs and
taken out once the multiplication of mean subtracted pixels in a
region with all the PC’s are performed. As these computations are
divided among sub-streams under each stream, the depth of each
intermediate FIFO is equal to

⌈
Npc

Sesp

⌉
. Outputs of ESP are stored

in a local memory and this data is further consumed by HNC.

4.2 Hidden Node Computation

HNC computes the hidden node outputs of RBFNN which in-
cludes sum of squared differences between the feature vector and
RBFNN means. This result is divided by 2 × σ2, where σ is
standard deviation of RBFNN cluster. Exponentiation of this result
will give the output of corresponding hidden node [4]. Architec-
ture of HNC is shown in Fig. 5(b). There are Shnc sub-streams
of computations each consisting of a subtracter, squaring unit,
an adder and an accumulator. The RBFNN means stored in off-
chip memory are read in bursts and are distributed among streams
and Shnc number of sub-streams. The received RBFNN means
in the mean FIFO are subtracted from feature vectors computed
during ESP and are stored in a local memory. The outputs are
squared and accumulated. Algorithm 2 in Appendix describes
computations involved in detail. The accumulated outputs are
sequentially routed out of sub-streams for division by 2 × σ2.
This division is implemented as multiplication with 1

2×σ2 , which
is precomputed and stored in an on-chip memory. Exponentiation
is performed on the resultant value using a locally stored 13 bit
look-up table. The resulting hidden node outputs are stored in a
local memory and are consumed by ONC for multiplication with
synaptic weights.

4.3 Output Node Computation

Multiplication of HNC outputs with synaptic weights is performed
by Sonc number of sub-streams as shown in Fig. 6(a). Each
sub-stream consists of a multiplier and an adder. Basically this
computation is also a multiplication of hidden node output vector
with synaptic weight matrix. The synaptic weights are read from
off-chip memory in the form of bursts and are distributed among

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 6

X X X X

Hidden

node

outputs

stored on-

chip

0

ACC

RBFNN outputs

From HNC

RBFNN

weight

FIFO

Sonc

sub-streams

X W

RBFNN synaptic weights from DDR

(a) Architecture of ONC unit

RBFNN1

outputs

RBFNN2

outputs

RBFNN Nreg

outputs

Counter mod Nclass

Adders

Max

Max_index

Reset

>

Count

Class Number

yes

(b) Architecture of DU

Fig. 6. Architectures of Output Node Computation and Decision Unit of
SPPA

streams and sub-streams. The synaptic weights in RBFNN weight
FIFO are multiplied with HNC outputs stored in the on-chip mem-
ory as described in Algorithm 3 in Appendix. After multiplication
with all the corresponding synaptic weights, the results in the
accumulator are taken out in sequence and are multiplied with
region weights. These ONC outputs are forwarded to DU for the
final classification.

4.4 Decision Unit

The decision unit combines the outputs of Nreg streams and
performs the final classification. Architecture of decision unit is
shown in Fig. 6(b). Output vectors of all RBFNNs are added
to get combined output which is used in final classification by
finding the maximum. Maximum among the vector elements is
found by sequentially comparing the values as shown in Fig. 6(b).
The output of DU, Max index, gives the recognized class.

4.5 Data layout

As an example we have taken input image dimensions equal to
128×128, 32 principle components, 500 classes and single cluster
per class. For these specifications, with data representation by 32
bits, we need more than 17 MB of memory to store input image,
eigenspace, RBFNN mean and RBFNN synaptic weights. On-
chip SRAM storage for memory of this size results in utilization

Layer3

Layer1

 Layer2

Layer4

(a) Input im-
age divided
into 16 re-
gions

Bank1

Bank2

Bank3

Bank4

One burst of PC’s

from each region in

layer 4

First Row of Layer4

Rest of PC for first

row and one burst

each of 2nd row PC’s

from all regions

2nd Row of Layer4

One burst of PC’s

from each region in

layer 3

First Row of Layer3

Rest of PC for first

row and one burst

each of 2nd row PC’s

from all regions

2nd Row of Layer3

One burst of PC’s

from each region in

layer2

First Row of Layer2

Rest of PC for first

row and one burst

each of 2nd row PC’s

from all regions

2nd Row of Layer2

One burst of PC’s

from each region in

layer1

First Row of Layer1

Rest of PC for first

row and one burst

each of 2nd row PC’s

from all regions

2nd Row of Layer1

(b) Input image and PC values stored in four memory banks

Fig. 7. Data layout for ESP in DDR3 SDRAM for Nreg=16

TABLE 1
Device Utilization of SPPA on Virtex-6 LX550T FPGA ; RecPS=450,
M=128, N=128, Npc=32, Nclass=450 and Nclust=450. For Nreg=16,
Sesp, Shnc, and Sonc are 2, 2 and 8 respectively and that for Nreg=4

are 8, 2 and 8 respectively

SPPA, Nreg =
16

SPPA, Nreg =
4

PCA and
RBFNN

Number of slice
registers

138987 out of
687360 (20%)

74231 out of
687360 (10%)

59652 out of
687360 (8%)

Number of slice
LUTs

168245 out of
343680 (48%)

62874 out of
343680 (17%)

39149 out of
343680 (36%)

Number of Block
RAMs

265 out of 632
(41%)

239 out of 632
(37%)

228 out of 632
(36%)

Number of
DSP48Es

176 out of 864
(20%)

44 out of 864
(5%)

19 out of 864
(2%)

of expensive on-chip resources as well as leads to high power
dissipation. On the other hand, off-chip Synchronous Dynamic
RAMs (SDRAMs) provide large storage space and the memory
throughput can be very well utilized with supporting data layout.
In the SPPA for FR, we use DDR3 SDRAM as external memory.
In DDR3 SDRAM, switching rows in a bank results in more
latency than accessing data from different banks. Therefore in
order to achieve high memory throughput, we deduce a data layout
for elements in the database, which results in minimal intra-bank
row changes. In addition, the data layout supports writing of input
image to the external memory in bursts for continuous operation
of FR module. We store the mean image, RBFNN variances and
look-up table for exponentiation on on-chip memory.

The data from external memory need to be distributed among
streams and sub-streams of designed FR module. Due to modular
processing in WMPCA, computations of different regions happen
in parallel. To facilitate distribution of data to corresponding
streams and also to achieve minimal intra-bank row changes, data
to be distributed in parallel are stored in separate memory banks.
We term group of adjacent regions a layer. Fig. 7(a) shows division
of input image into 4 layers for Nreg equal to 16. For ESP, pixel
values of input image and associated PCs from different layers are
stored in separate memory banks as shown in Fig. 7(b). In each
memory bank shown, a burst of PCs is stored before a row of input
image pixels from each layer. This is done to avoid wait states
in ESP by making the PCs available in ESP FIFO before mean
subtracted pixels reach ESP for multiplication. Following this,
PCs from different regions in the corresponding layer are stored in
Round-robin arbitration as one burst at a time. This form of storage
helps us in maintaining approximately uniform distribution of data
across streams and also in reducing amount of data buffering in
each stream. The same pattern of storage is followed for rest of
the rows of input image and corresponding PCs in each layer. For
HNC, the order of data usage is dependent on the value of Shnc,
which is described by Algorithm 2 in Appendix. Here too, data to
be supplied to each region is written to a bank of memory in the
order of access in Round-robin arbitration as one burst at a time.
Similarly for ONC, a burst of RBFNN synaptic weights each from
all the regions are stored in a bank of memory. Thus, for Nreg
equal to 16, we use six memory banks of DDR3 SDRAM. First
four memory banks are used to store input image and PCs. The
next two memory banks are used to store RBFNN means and
synaptic weights respectively. By this data layout we are able to
achieve high memory throughput for real-time FR module.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 7

TABLE 2
ASIC synthesis results of SPPA on Cadence RTL Compiler;

RecPS=450, M=128, N=128, Npc=32, Nclass=450 and Nclust=450.
For Nreg=16

Maximum Operating Frequency 200 MHz
Area 5.6 mm2

Power 4.4 W

4.6 Synthesis and Performance Analysis of SPPA
Each stream in SPPA is divided into a 3 stage pipeline. The data
set accessed by each stage is kept separate by the design so that
the stages can operate concurrently. In addition, the division is
done in order to make the SPPA scalable with respect to image
dimensions, number of classes and number of PCs, number of
clusters per class etc. DU is also kept as one of the pipe-line
stages to incorporate future enhancements to the decision logic.
Number of clock cycles taken by each of these stages is given by,

TESP = nesp ×
⌈
Npc
Sesp

⌉
×
(
MN

Nreg

)
(1)

THNC = nhnc ×Npc ×
⌈
Nclust
Shnc

⌉
(2)

TONC = nonc × (Nclust + 1)×
⌈
Nclass
Sonc

⌉
(3)

TDU = Nclass + log2Nreg (4)

Here, nesp, nhnc and nonc are the number of clock cycles required
to perform an operation in the corresponding stage. To make it
a balanced pipeline and to compute the number of sub-streams
required in each stage, these values are equated to the number of
clock cycles allotted for each input image for a given recognitions
per second, RecPS.

TESP = THNC = TONC = TDU =
Operating frequency

RecPS
(5)

Increasing sub-streams does not improve recognitions per second
beyond a certain point due to limited off-chip memory bandwidth.
By having a memory with better memory throughput or having
different memories for different stages of streams will increase
the throughput beyond this limit.

For functional verification, SPPA is simulated and then syn-
thesized on Xilinx ISE targeting M503 module of Pico computing
system [37]. M503 has a Xilinx Virtex-6 LX110T FPGA and 2
external DDR3 SDRAMs of 4GB each. For this experiment, we
have fixed the image dimension to 128× 128, Nclass to 450 and
Npc to 32. Hardware specifications are written in Bluespec System
Verilog [38] to generate Verilog specifications. We fix Nreg equal
to 16 beyond which availability of hardware resources becomes
a limiting factor for real-time performance. We use fixed point

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

ESP HNC ONC

Recognitions per second

N
um

be
r

of
 s

ub
-s

tr
ea

m
s

Fig. 8. Recognitions per second of SPPA for different number of sub-
streams, Nclass = Nclust = 450, Nreg=16, Npc = 32, M = 128, N =
128

arithmetic in this architecture which is faster and consumes lesser
hardware resources than floating point arithmetic. The number
of bits used to represent values are chosen such that we do not
lose out on accuracy. Mean image pixels and PCs are represented
using 16 bits. 32 bits are used for RBFNN mean, variance and
synaptic weights. DSP48E’s are used to perform multiplications
in each stage. Block RAMs are used for large sized FIFOs and
buffers between stages. On Pico computing platform with M503
modules, a C++ program is run on the host machine which writes
the input image to predefined locations on DDR3 SDRAM. After
recognition, the recognized class is displayed by the host program.

Although the number of sub-streams can be increased for
higher number of recognitions per second or number of classes,
the performance is limited by the memory throughput provided by
the external memory. By fixing the number of recognitions to be
performed per second to 450, we compute number of classes that
our FR module can support with image of dimensions 128× 128
and 32 PCs using equation 6.

(M ×N × (Bi +Npc ×Bpc) + (Npc ×Nclust ×Bm

+(Nclust + 1)×Nclass ×Bw)×Nreg)

× 1

2×Data width
=
β × FreqDDR

RecPS
(6)

Here, Bi, Bpc, Bm and Bw are the number of bits used to
represent input image pixels, PCs, RBFNN means and synaptic
weights respectively. DDR3 SDRAM on M503 module has a
data width, Data width, of 64 with an operating frequency of
400 MHz. We use a factor β equal to 0.9 to consider the clock
cycles consumed for row changes and periodic refreshes of DDR3
SDRAM. By substituting these values in equation 6, assuming
single cluster per class, we get Nclass equal to 450.

We have realized two configurations of SPPA with Nreg equal
to 4 and 16 respectively on FPGA. In addition, for comparison,
a FR module using PCA and RBFNN is also developed, where
acceleration is brought about by a number of sub-streams. Table
1 shows increase in device utilization with increase in Nreg .
Synthesis results show maximum operating frequency to be 108
MHz. This frequency does not change with change in sub-streams
in each stream. Using equation 5 we plot Recognitions per second
against number of streams in each stage as shown in Fig. 8.
From the plot, we observe that to achieve 450 recognitions per
second, we need to have Sesp, Shnc and Sonc equal to 2, 2,
and 8 respectively. To support higher dimension images or more
number of PCs, Sesp can be increased. Similarly to support more
number of clusters or classes Shnc and Sonc respectively can be
increased. But finally image dimensions, Npc, Nclass and Nclust
are limited by external memory throughput for fixed RecPS. We
also synthesized SPPA at 65 nm technology on Cadence RTL
Compiler. Table 2 lists the maximum operating frequency, power
and area of the synthesized module

Table 3 compares SPPA with existing architectures for real-
time FR. The algorithm used in SPPA is shown to be superior
to other algorithms used in the existing architectures. SPPA is
not constrained by available on-chip memory resources due to the
availability of large sized external memory. For a desired RecPS,
as seen from Table 3, dimensions of image used in SPPA is much
larger than images used in other architectures. This in turn helps
in better recognition of subjects due to improved quality of image.
In addition, input image dimensions can be scaled by varying the
number of sub-streams. In SPPA, there is no need to store feature

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 8

TABLE 3
Comparison of SPPA with existing architectures

Architecture [26] [27] [29] [30] SPPA
Face Detection involved No No Yes No No
Feature Extraction MPCA WMPCA PCA PCA and MPCA WMPCA
Classifier NNC NNC NNC NNC RBFNN classifier
Training Off-line Off-line Off-line On-line Off-line
Recognitions per second 91 26 45 19 450

Training database size 1000 images 5 classes, 3 samples
per class

6 classes, 10 samples
per class 2048 images 450 classes, samples

per class not limited

Implementation platform ALTERA
EP20K600C B652C7

ALTERA
EP20K200E FC484-
2X

XILINX Virtex-5
FPGA

XILINX Virtex-4
XC4VFX12

XILINX Virtex-6
LX550T

Maximum operating fre-
quency 91 MHz 33.33 MHz Not mentioned 136.2 MHz 108 MHz

Supported number of PCs 20 PCs stored on set
of registers

20 PCs stored on
FPGA

59 PCs stored on
Block RAMs

16 PCs stored on ex-
ternal memory

32 PCs stored on ex-
ternal memory

Face image dimension 64× 64 Not mentioned 20× 20 32× 32 128× 128

vectors for all the images in the database, instead we store only
mean and variances of clusters. In the architectures using NNC,
RecPS depends on the number of training images in the database.
Instead in SPPA, RecPS depends on the number of classes used,
i.e., real-time operation of SPPA is not constrained by the number
of samples per class.

The SPPA for real-time FR is capable of performing FR on
databases consisting of large number of classes with more than
one cluster per class and images of large dimensions. SPPA
with a real-time high frame rate face detector and a high speed
image resize unit [39], is an ideal solution for real-time FR. We
also observe that scalability of SPPA is limited by the external
memory throughput. In order to assure better scalability and
programmability, in the next section, we extend our design to a
reconfigurable multi-core processor environment.

5 A SCALABLE AND RECONFIGURABLE MULTI-
CORE ARCHITECTURE FOR FACE RECOGNITION

SPPA, typical of a dedicated architecture, requires rebuilding the
circuit every time the specifications, such as RecPS, Nclass,
input image dimensions etc., are changed. Therefore we look
for a reconfigurable solution which can process parallel streams
and sub-streams of computations. We find that REDEFINE [6], a
multi-core CGRA consisting of multiple Compute Elements (CE)
connected over a Network on Chip [40], is a suitable candidate for
this model. Modular processing in our FR algorithm exposes paral-
lel and independent computations under each region. The software
solution of our algorithm implemented on REDEFINE does not
meet the real-time requirements, which necessitates hardware
acceleration. To implement hardware acceleration in REDEFINE,
each stream in SPPA, as shown by a dotted oval in Fig. 4, is
realized as a processing core. We replace the general purpose
CEs on REDEFINE with these domain specific programmable
cores, termed Scalable Unit for Region Evaluation (SURE), to
achieve real-time FR. Through reconfiguration, SURE cores serve
as custom data paths for ESP, HNC, ONC and DU operations.
We call this architecture as REDEFINE for Face Recognition
using SURE Homogeneous cores (REFRESH). This reconfig-
urable multi-core processor environment enables introduction of
a number of processing elements as hardware accelerators based
on the need for scalability with respect to Nclass, Nclust and
image dimensions.

Tile Router SURE Data Distributer

E
x

te
rn

a
l

M
e

m
o

ry

Gateway Tile Execution Fabric

(a) Architecture of REFRESH

Data
Management Unit

Computation
Logic

Private
Memory

Distributed
Shared Memory

(b) Architecture of SURE

Fig. 9. Architectures of REFRESH and SURE

In section 5.1, we explain the architecture of REFRESH and
internals of SURE. In section 5.2, we describe in detail architec-
ture of computation logic in SURE. The intercommunication of
SUREs is described in section 5.3. To achieve high throughput,
each stream of SPPA is pipelined and consists of parallel sub-
streams of computation in every pipeline stage. In the case of
SURE, the limited network data width does not support supply
of multiple data elements to SUREs over NoC. This restricts us
from realizing multiple sub-streams of computation and pipeline
stages in the SUREs. Therefore, we reuse the resources for ESP,
HNC and ONC and use a single sub-stream of computation in each
SURE to reduce resource utilization. To overcome the limitation
due to NoC bandwidth, we exploit parallelism at the level of
input images to achieve scalability in the design. In section 5.4
scalability of REFRESH is discussed in detail. Emulation and
ASIC synthesis results are reported and discussed in section 5.5.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 9

5.1 Architecture of REFRESH and SURE
The architecture of REDEFINE is explained in detail in the work
by Mythri et al. [6]. REDEFINE architecture consists of a number
of tiles connected over a NoC. Each tile in REDEFINE consists
of a Compute Element (CE) for processing data and a router to
accept, send or forward packets of instructions or data to CEs
where they are destined to. Architecture of REFRESH consists of
REDEFINE with the tiles containing CEs and FR specific SUREs
to accelerate the computations for real-time FR. The tiles of
REFRESH containing domain specific SUREs together constitute
the execution fabric. A column of tiles termed Gateway tiles
connect the execution fabric to the external memory. With SUREs
as domain specific hardware accelerators at each tile of execution
fabric, the task of each CE is to receive incoming data and send
the same to the appropriate section of computation logic in SURE.
We make this design further efficient by implementing these
functionalities in a programmable Data Management Unit (DMU)
of SURE and omitting the CEs from REFRESH as shown in Fig.
9(a). The DMU is made programmable to enable configuration
of SUREs for different image dimensions, Nclass, Ncluster etc.
Fig. 9(b) shows functional blocks in SURE. SURE consists of
a programmable DMU, computation logic, a Distributed Shared
Memory (DSM) and a private memory. Programmable units,
termed data distributors, connected to the Gateway tiles perform
the operation of distribution of data received from external mem-
ory to the tiles of corresponding row. The data received from
data distributors over NoC by SURE is stored in corresponding
DSMs. The DMU fetches the data to be processed from DSM and
distributes the data to appropriate inputs of computation logic. The
intermediate results of computation and look-up tables are stored
in a private memory which is accessible only from the computation
logic. Architecture of computation logic in SUREs is explained in
detail in section 5.2.

5.2 Computation logic in SURE for FR
The computation logic in SURE is designed to perform ESP, HNC
and ONC in a single region of input image. During final decision
for classification, all the SUREs communicate among themselves
for weighted addition of RBFNN outputs and find the maximum.

Data path for Mean
subtraction and ESP

Data path for HNC Data path for ONC

 X

+

Mean Image

-

RBFNN
Mean

1/(2*σ2)

Image

PC

LUT
Index

LUT data
From
Private
Memory

Partial results of
ONC from Private Memory

Partial results of
ONC to
Private Memory

From Private
Memory

Region Weight

Output of ONC
From Private
Memory

Weighted
RBFNN output

R1

Fig. 10. Computation logic in SURE for Face Recognition

12

..................

.............

Npc

M X N

Nclass Eigen Space

1st
Hidden
Node
output

Synaptic Weight Matrix

Partial ONC
outputs

Feature Vector

Npc

Nclust

RBFNN mean Matrix

Mean
subtracted

pixels

X
Nclass

Subtract,
square,
accumulate,
Divide by
variance

Npc
Scalar
vector

Multiplication

Nclust + 1

Eigenspace Projection

Hidden Node Computation

Output Node Computation

Fig. 11. Sequence of computations in SURE

The computation logic in each SURE is shown in Fig. 10. It
consists of a multiplier, an adder, a subtracter and a circular FIFO
in combination to perform all the operations in a region. Fig. 11
and Algorithm 1 describe the sequence of computations in SURE
for ESP, HNC and ONC. Computations are sequenced in such a
way that intermediate results are used for further computations
without the need for local buffering and unnecessary write backs
to memory. In addition, the sequence of computations is designed
to achieve high spatial and temporal data localities. Mean image,
Eigen space matrix, RBFNN mean and synaptic weights are
pre-computed during off-line training and are stored in external
memory. An input image to be recognized is written to a pre-
determined location in the external memory. RBFNN variances,
region weights and Look-up table for exponentiation computed
during training are stored in the private memory.

For mean subtraction, the input image pixels and correspond-
ing mean image pixels are fetched from external memory and
subtracted to get mean subtracted image pixels. During ESP, the
mean subtracted image needs to be multiplied with the eigenspace
matrix stored in the external memory. Each output from the mean
subtraction is multiplied with corresponding row of eigenspace
matrix. The partial results are accumulated on a circular FIFO
shown in Fig. 10. Thus, when all the input image pixels go through
mean subtraction and ESP, extracted feature vector for the input
image will be available in the circular FIFO.

We do not store the feature vector components back in private
or external memory and hence avoid memory read and write
cycles. For HNC, feature vector components in the circular FIFO
are subtracted from a column of RBFNN mean matrix. For better
data locality, we store the RBFNN mean matrix in transposed
form in the external memory which enables row-wise access.
After subtraction, each component is squared, and accumulated.
For division by 2 × σ2, a factor 1

2×σ2 is precomputed for each
class and stored in private memory of corresponding SURE.
Here σ is standard deviation of samples in corresponding cluster.
Squared and accumulated result is multiplied with this factor and
exponentiation is performed on the result using a lookup table
stored in the private memory. The output of ith hidden node is
equal to the scalar output from computation on ith row of RBFNN
mean matrix. After computation of HNC output, for ONC it is

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 10

Algorithm 1: Computations in SURE for ESP, HNC and
ONC

Input: Matrices Image1×L, MeanImage1×L,
EigenSpaceL×Npc , RBFMeanNclust×Npc ,
RBFV ar1×Nclust

,
RBFWeight(Nclust+1)×Nclass

and scalar
RegWeight

Here L =M ×N ;
Output: Matrix ONCOut1×NClass

for i = 1 to L do
MeanSubP ixel = Image(1, i) - MeanImage(1, i);

// mean subtraction

// Multiplication of MeanSubP ixel with a

single row of EigenSpace. Partial results

are accumulated in FeatureV ector

for j = 1 to Npc do
FeatureV ector(1, j) = FeatureV ector(1, j) +
MeanSubP ixel × EigenSpace(i, j);

end
end
for i = 1 to Nclust do

// Subtraction of FeatureV ector from a row of

RBFMean, squaring the elements and

addition

for j = 1 to Npc do
SubSqSum = SubSqSum +
(FeatureV ector(1, j) - RBFMean(i, j))2

end
// Multiplication of SubSqSum by 1

2×σ2 and

exponentiation

HNCOut = exp(SubSqSum
2×RBFV ar(i))

// Multiplication of HNCOut by

corresponding row of RBFWeight

for j = 1 to Nclass do
ONCOut(1, j) = ONCOut(1, j) +
HNCOut×RBFWeight(i, j)

end
end
// Bias input multiplication

for i = 1 to Nclass do
ONCOut(1, i) = ONCOut(1, i) +
RBFWeight(Ncluster + 1, i)

end

multiplied with a single row of weight matrix and intermediate
results are stored in private memory and accumulated. These
computations are repeated for the rest of HNC and ONC outputs.
The number of clock cycles required to perform ESP, HNC and
ONC in each region is equal to

Treg = Npc×
(
MN

Nreg

)
+Npc×Nclust+(Nclust+1)×Nclass

(7)
The SUREs that operate independently on corresponding regions
need to communicate among themselves for the final classification,
which is described in section 5.3.

5.3 Connecting SUREs
For the FR algorithm described in [4], with Nreg equal to
16, we need 16 such SUREs connected over the NoC. After

SURE Data Distributer

` SURE 1 SURE 2 SURE 3

SURE 4 SURE 5 SURE 6 SURE 7

SURE 8 SURE 9 SURE10 SURE11

SURE12 SURE13 SURE14 SURE15

SURE 0
1

1

1

1

1

1

1

1

2

2

2

2

3

3

4

5 5

1 : Weighted addition of
 output vectors
 of two SUREs
 horizontally.
 (column 2 and 3,
 column 4 and 5)
2 : Add the sum from
 phase 1 between
 columns 3 and 4
3 : Add the sum from
 phase3 between SUREs
 vertically (SUREs 1 and 5,
 SUREs 9 and 13)
4 : Add the sum from phase 4
 between SUREs 9 and 5.
 Parallelly find the class with
 maximum output in SURE 5.
5 : Move the index of

 recognized class out

Router

Column 1 Column 2 Column 3 Column 4 Column 5

Gateway Tile Execution Fabric

Fig. 12. Exchange of RBFNN output vector between SUREs for final
classification

completion of ESP, HNC and ONC, each SURE holds RBFNN
output vector for its region. During final classification, output
vectors of all the regions are weighted and added. In this stage,
adjacent SUREs communicate between themselves by sending
the computed ONC outputs. Before sending, these ONC output
components are multiplied by corresponding region weights. The
data path shown in Fig. 9(b) includes computation logic for region
weight multiplication. Fig. 12 shows transfer of ONC outputs
between SUREs for final classification with description of steps
involved. Finally the sum of RBFNN outputs of all the regions is
available in a SURE where maximum among them is computed
using a circuit for finding maximum. The circuit for finding
maximum value is similar to the one shown in Fig. 6(b). In order
to retain clarity in Fig. 12, we do not show implementation of
the logic which finds the maximum value. In the REFRESH NoC,
three clock cycles are consumed in forming the data packet in the
routers and sending it. As this process is pipelined, to form and
send X packets from a tile it takes X + 3 number of cycles. As
this latency of three cycles is negligible compared to the number
of packets being transferred, we ignore it in our analysis. Thus,
the number of clock cycles required in exchange of ONC outputs

Tile Router SURE

Data Distributer

External Memory

Data Flow Gateway Tile

Execution Fabric

Fig. 13. Distribution of data from external memory among tiles of RE-
FRESH

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 11

and computation of maximum, Tam, is equal to

Tam = log2Nreg ×Nclass (8)

For data in REFRESH, we use fixed point representation de-
scribed in section 4.6. Among the data stored in external memory
of REFRESH, highest number of bits i.e., 32 bits are used to
represent RBFNN mean and synaptic weights. Equation 7 requires
continuous supply of data for computation at each SURE. If the
data width of NoC is kept at 32 bits, single data distributor in each
row can provide 32 bits of data to each SURE every 4 cycles. As
the supplied 32 bit data gets consumed in a single clock cycle, this
data width of NoC keeps SUREs in waiting state for data most
of the time. Increasing the data width to 128 bit can bring the
average supply rate at each SURE to 32 bit per cycle. A better way
of maintaining this supply rate is by introduction of two columns
of gateway tiles with NoC data width of 64 as shown in figure
13. Data of 128 bits from external memory is divided among two
gateway tiles. Each data distributor in gateway tile distributes data
to two SUREs which makes availability of 32 bit data every cycle
at each SURE possible. The additional column of gateway tiles
help in reducing the NoC data width from 128 bits to 64 bits.
Although this data distribution method restricts horizontal growth
of REFRESH execution fabric, the scaling methods for REFRESH
introduced in section 5.4 do not get affected. We name the set of
16 tiles in execution fabric shown in Fig. 13, that are impregnated
with SUREs as Set16. As there are four rows of tiles in a Set16,
we run the external memory at a clock frequency four times faster
than the one used for execution fabric.

We fix RecPS at 450 recognitions per second according to
the design specification, image dimension at 128 × 128 and Npc
at 32. We find the number of classes that can be supported by a
Set16 as follows.

Treg + Tam =
OperatingFrequency

RecPS
(9)

In section 5.4 we discuss scalability of REFRESH for supporting
databases with larger number of classes and recognitions per
second.

5.4 Scalability of REFRESH
To increase the number of classes that can be supported by the
FR module, we need to increase the computations that are per-
formed in parallel. Increasing the number of arithmetic operators
in SUREs does not increase the system throughput as it needs
higher memory bandwidth to supply data to them in parallel.
From equation 9 it is found that maximum number of classes the
REFRESH can support is dependent on the RecPS. We observe
that during recognition of different input images the data from
external memory vary only in the input image pixels. Scalability
in REFRESH is brought about by reusing the data fetched from
external memory for processing multiple input images in paral-
lel. For a given memory throughput, in order to support larger
database, we suggest two ways of scaling the architecture.

• Single SURE Per Node (SSPN): There is one SURE
implanted in each tile of REFRESH. The hardware struc-
ture is as shown in Fig. 14(a). In this structure we use
multiple Set16s connected in parallel. Each Set16 works
on different input image. For a given RecPS, increasing
the number of Set16s effectively reduces the recognitions
to be performed per Set16. This in turn increases the

available duration for processing each image per SURE,
enabling accommodation of increased number of classes.
If there areNSURE number of SUREs in total, each Set16
performs RecPS×16

NSURE
number of recognitions per second.

ESP, HNC, ONC and final classification are performed in
parallel on all the Set16s. For SSPN, equation 9 is re-
written as

Treg + Tam =
OperatingFreq ×NSURE

RecPS × 16
(10)

• k-SURE Per Node (k-SPN): There are k (k ≥ 2) SUREs
implanted in each tile of REFRESH. In the SSPN set
up, we need to architect network in such a way that the
network grows as the number of Set16s grow. To avoid
this network growth, in k-SPN we reuse the data from
external memory at tile level. As shown in Fig. 14(b), we
implement a single Set16 and we implant more than one
SURE under each tile. Each SURE under a tile works on
a region of separate input image. Here too ESP, HNC and
ONC are performed in parallel on SUREs. But the ONC
output addition and classifications for different images are
performed in sequence due to common network path. For
k-SPN, equation 9 is re-written as

Treg +
NSURE

16
× Tam =

OperatingFreq ×NSURE
RecPS × 16

(11)

Tile Router SURE

Data
Distributer

External Memory

Data
Flow

Gateway
Tile

Execution
Fabric

(a) Single SURE Per Node

Tile Router SURE Data Distributer

External Memory

Data Flow

Gateway Tile Execution Fabric

(b) k-SURE Per Node

Fig. 14. Scalability of REFRESH

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 12

TABLE 4
Device Utilization of REFRESH on Virtex-6 LX550T FPGA ;

RecPS=450, NSURE = 16, M=128, N=128, Npc=32, Nclass=417 and
Nclust=417. For Nreg=16

Number of slice registers 130766 out of 687360 (19%)
Number of slice LUTs 156390 out of 343680 (45%)
Number of Block RAMs 213 out of 632 (33 %)
Number of DSP48Es 176 out of 864 (20 %)

TABLE 5
ASIC synthesis results of REFRESH on Cadence RTL Compiler;

RecPS=450, M=128, N=128, Npc=32, Nclass=417 and Nclust=417,
Nreg=16 and NSURE = 16

Maximum Operating Frequency 184 MHz
Area 5.7 mm2

Power 1.22 W

In equation 10 and equation 11 we see that input image
dimensions, Nclass and Nclust are dependent on NSURE and
the rate at which SUREs operate. Although increasing the number
of SUREs in REFRESH increases RecPS, the data supplied by
external memory only increases by the additional image pixel
data. Similar to equation 6, for SSPN and k-SPN we express the
maximum data that can be supplied by the external memory to
REFRESH as

(M ×N × ((Bi +Bmean)×
NSURE

16
+Npc ×Bpc)

+(Npc ×Nclust ×Bm + (Nclust + 1)×Nclass ×Bw)

×16)× 1

2×Data width
=
β × FreqDDR ×NSURE

RecPS × 16
(12)

In section 5.5 using synthesis results we show that the RE-
FRESH can be scaled to support different input image dimensions,
Nclass, Nclust and RecPS. In addition we show the limitations
introduced by the external memory throughput.

5.5 Emulation on FPGA and ASIC synthesis
For functional testing, we emulate a Set16 of REFRESH with
single SURE per node on M503 module of Pico Computing
systems [37]. We simulate and synthesize the design for Virtex
6 FPGA on Xilinx ISE. The device utilization is listed in Table
4. DDR3 SDRAM on M503 module has a data width of 64 and
it can supply 128 bits of data every cycle operating at 400 MHz.
From the synthesis report, the maximum operating frequency of
REFRESH on FPGA is found to be 100 MHz. From equation
9, with β equal to 0.9, we get the number of classes that can
be supported by REFRESH with SSPN format is equal to 417.
In addition, we synthesized REFRESH at 65 nm technology on
Cadence RTL Compiler. Table 5 lists the maximum operating
frequency, power and area of the synthesized module.

To scale REFRESH for larger databases, we replicate the
SUREs multiple times either by SSPN or k-SPN as described in
section 5.4. As the SUREs operate in parallel, operating frequency
of REFRESH does not change with additional SUREs. The follow-
ing plots in Fig. 15 and Fig. 16 and related analysis correspond
to the synthesis results on FPGA. In Fig. 15(a) we plot RecPS
for SSPN and k-SPN with Nclass equal to 417 using equation 10
and 11 respectively. Here we take Nclust equal to Nclass similar
to Fig. 2 and [4] for computational convenience. We observe that,
with approximately same amount of data provided by external

16 32 48 64 80 96 112 128 144 160
0

500

1000

1500

2000

2500

3000

3500
 SSPN k-SPN

Number of SUREs

R
e

c
o

g
n

it
io

n
s

 p
e

r
s

e
c

o
n

d

(a) Number of recognitions per
second by REFRESH; M=128,
N=128, Nclust = Nclass = 417

16 32 48 64 80 96 112 128 144 160

0

200

400

600

800

1000

1200 SSPN k-SPN

suported by external memory

Number of SUREsD
im

e
n

s
io

n
 (

M
 =

 N
)

o
f

in
p

u
t

s
q

u
a

re
 im

a
g

e

(b) Maximum dimension (M = N)
of input square image that can
be processed by REFRESH and
that can be supported by external
memory; RecPS = 450, Nclust =
Nclass = 417

16 32 48 64 80 96 112 128 144 160
0

1000

2000

3000

4000

5000

6000
SSPN k-SPN
supported by external
memory

Number of SUREs

N
u

m
b

e
r

o
f

c
lu

s
te

rs

(c) Number of clusters that can
be processed by REFRESH and
that can be supported by external
memory; RecPS = 450, M=128,
N=128, Nclass = 417

16 32 48 64 80 96 112 128 144 160
0

200

400

600

800

1000

1200

1400

1600

1800

2000
 SSPN
 k-SPN
supported by exteranal memory

Number of SUREs

N
u

m
b

e
r

o
f

c
la

s
s

e
s

(d) Number of classes that can
be processed by REFRESH and
that can be supported by external
memory; RecPS = 417, M=128,
N=128, Nclust = Nclass

Fig. 15. Scalability of REFRESH with NSURE ; Nreg=16, Npc = 32

memory, the module is capable of performing higher recognitions
per second with increase inNSURE . Similarly we show scalability
in input image dimensions with number of SUREs in Fig. 15(b).
Recognition accuracy of REFRESH can be improved by having
multiple clusters per class as described in section 3. In Fig. 15(c)
we show the scaling in Nclust for a fixed number of classes
and a given RecPS. We plot the maximum number of classes
that can be processed by REFRESH for a given number of
SUREs as shown in Fig. 15(d). In these plots we observe that by
increasing NSURE we enable REFRESH to operate on database
of large sizes and to support high number of recognitions per
second. Thus, REFRESH is able to achieve the desired scaling by
reusing the data read from external memory. However, for a given
NSURE , the memory throughput of external memory limits the
performance of REFRESH. To show this limitation, in Fig. 15(b),
15(c) and 15(d) we plot the maximum dimensions of input image,

(a) SSPN (b) k-SPN

Fig. 16. Scalability of REFRESH with respect to Nclass, RecPS and
NSURE ; Nclass=Nclust, Npc = 32, M = 128, N = 128 , Nreg=16

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 13

Nclust and Nclass respectively supported by the external memory
on M503 device. Three dimensional plots in Fig. 16(a) and Fig.
16(b) show variations in number of classes and recognitions per
second, in the case of SSPN and k-SPN respectively, supported by
REFRESH for different NSURE .

REFRESH is capable of performing FR on databases of
different sizes and at required rate of recognition. The number
of recognitions per second and size of database can be scaled by
introduction of additional SUREs. Thus, REFRESH is sufficiently
flexible to be used in various practical conditions to meet real-
time requirements due to its high accuracy algorithm and scalable
architecture.

6 CONCLUSION

Real-time Face Recognition (FR) of subjects in crowd requires
large number of recognitions to be performed every second. In
addition, the algorithm used for FR needs to be sufficiently flexible
to work in different practical conditions including illumination and
pose variations of subjects in the captured images.

We introduced a modular algorithm for FR which is a com-
bination of Weighted Modular Principle Component Analysis and
Radial Basis Function Neural Network. The algorithm exhibited
better recognition accuracy on images with illumination and pose
variations than the algorithms used in existing hardware solutions
for FR. In addition, due to inherent modularity, the algorithm
provides scope for real-time hardware implementation. To meet
the real-time requirements of FR, initially we proposed a Scalable
Parallel Pipelined Architecture (SPPA). Parallel and independent
computations in the introduced modular algorithm are performed
as streams and sub-streams of computation. In order to support
large databases, we store the coefficients in external memory.
A novel data-layout in external memory minimizes the memory
access latencies to achieve high memory throughput. Scalability is
brought about by varying the number of sub-streams under each
stream to support large databases and high rate of recognition.

For arbitrarily very large databases and large target recogni-
tions per second, a fully dedicated architecture like SPPA will
be not implementable due to very large problem size. Therefore,
for better scalability and flexibility, we extended this work to a
reconfigurable multi-core solution to achieve a highly scalable
real-time FR. We came up with a programmable computation
core, termed Scalable Unit for Region Evaluation (SURE), that
performs parallel and independent computations in each stream
of SPPA. We proposed an architecture, termed REDEFINE for
Face Recognition using SURE Homogeneous cores (REFRESH),
for real-time FR. REFRESH is made up of SUREs replicated and
connected over an NoC. Computation sequences in SUREs are
configured to achieve good spatial and temporal localities. We
proposed two connection formats of SUREs to achieve scaling
in REFRESH. Using these formats, REFRESH shows excellent
scalability with respect to size of database and rate of recognition.
With approximately same amount of data read from external
memory, REFRESH shows comparable performance as that of
SPPA. In addition, REFRESH can be further scaled with respect to
input image dimensions, rate of recognition, number of classes and
clusters by introduction of additional SUREs. The programma-
bility of REFRESH helps to operate on databases of different
sizes to support desired recognitions per second in a multi-core
environment.

Due to considerably good recognition accuracy of the algo-
rithm, impressive scaling ability and programmability, REFRESH
is an ideal scalable multi-core solution for real-time FR.

ACKNOWLEDGMENTS

The authors would like to thank Sukumar Bhattacharya for his
valuable suggestions and guidance during algorithm exploration.
The authors would also like to thank Batna A. Suryanarayana,
Arnav Goel and Anup Kini for their contributions in the project.

REFERENCES

[1] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2d and 3d face
recognition: A survey,” Pattern Recognition Letters, vol. 28, no. 14, pp.
1885 – 1906, 2007, image: Information and Control. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865507000189

[2] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld,
“Face recognition: A literature survey,” ACM Comput. Surv.,
vol. 35, no. 4, pp. 399–458, dec 2003. [Online]. Available:
http://doi.acm.org/10.1145/954339.954342

[3] R. Jafri and H. R. Arabnia, “A survey of face recognition
techniques.” JIPS, vol. 5, no. 2, pp. 41–68, 2009. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jips/jips5.html# JafriA09

[4] G. Mahale, H. Mahale, A. Goel, S. Nandy, S. Bhattacharya, and
R. Narayan, “Hardware solution for real-time face recognition,” in VLSI
Design (VLSID), 2015 28th International Conference on, Jan 2015, pp.
81–86.

[5] J. W. King, “Planning and design,” in Cisco IP Video
Surveillance Design Guide. CISCO, 2009. [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Video/IPVS
/IPVS DG/IPVS-DesignGuide.pdf

[6] M. Alle, K. Varadarajan, A. Fell, R. R. C., N. Joseph, S. Das,
P. Biswas, J. Chetia, A. Rao, S. K. Nandy, and R. Narayan, “Redefine:
Runtime reconfigurable polymorphic asic,” ACM Trans. Embed. Comput.
Syst., vol. 9, no. 2, pp. 11:1–11:48, oct 2009. [Online]. Available:
http://doi.acm.org/10.1145/1596543.1596545

[7] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71–86, jan 1991. [Online]. Available:
http://dx.doi.org/10.1162/jocn.1991.3.1.71

[8] A. M. Martı́nez and A. C. Kak, “Pca versus lda,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 2, pp. 228–233, feb 2001. [Online].
Available: http://dx.doi.org/10.1109/34.908974

[9] C. Garcia, G. Zikos, and G. Tziritas, “A wavelet-based framework for
face recognition,” in WORKSHOP ON ADVANCES IN FACIAL IMAGE
ANALYSIS AND RECOGNITION TECHNOLOGY. Publications, 1998,
pp. 84–92.

[10] R. Gottumukkal and V. K. Asari, “An improved face recognition
technique based on modular pca approach,” Pattern Recogn. Lett.,
vol. 25, no. 4, pp. 429–436, mar 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.patrec.2003.11.005

[11] A. Kumar, S. Das, and V. Kamakoti, “Face recognition using
weighted modular principle component analysis,” in Neural Information
Processing, ser. Lecture Notes in Computer Science, N. Pal,
N. Kasabov, R. Mudi, S. Pal, and S. Parui, Eds. Springer Berlin
Heidelberg, 2004, vol. 3316, pp. 362–367. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30499-9 55

[12] J. Moody and C. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Computation, vol. 1, no. 2, pp. 281–294, June
1989.

[13] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, jun
1991. [Online]. Available: http://dx.doi.org/10.1162/neco.1991.3.2.246

[14] A. Howell and H. Buxton, “Learning identity with
radial basis function networks,” Neurocomputing, vol. 20,
no. 13, pp. 15 – 34, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231298000162

[15] R. Debnath and H. Takahashi, “Learning capability: Classical rbf network
vs. svm with gaussian kernel,” in Developments in Applied Artificial
Intelligence, ser. Lecture Notes in Computer Science, T. Hendtlass and
M. Ali, Eds. Springer Berlin Heidelberg, 2002, vol. 2358, pp. 293–302.
[Online]. Available: http://dx.doi.org/10.1007/3-540-48035-8 29

[16] S. Ranganath and K. Arun, “Face recognition using transform
features and neural networks,” Pattern Recognition, vol. 30,
no. 10, pp. 1615 – 1622, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320396001847

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539164, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, OCTOBER 2015 14

[17] Y. W. Wong, K. P. Seng, and L.-M. Ang, “Radial basis function neural
network with incremental learning for face recognition,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 41,
no. 4, pp. 940–949, Aug 2011.

[18] G. Mahale, E. Bhatia, S. Nandy, and R. Narayan, “Vop: Architecture of a
processor for vector operations in on-line learning of neural networks,” in
VLSI Design (VLSID), 2016 29th International Conference on, Jan 2016.
[Online]. Available: http://cadl.iisc.ernet.in/cadlab/Vector processor.pdf

[19] T. Subashini, V. Ramalingam, and S. Palanivel, “Breast mass
classification based on cytological patterns using {RBFNN}
and {SVM},” Expert Systems with Applications, vol. 36, no.
3, Part 1, pp. 5284 – 5290, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417408003886

[20] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast
learning algorithm for deep belief nets,” Neural Comput.,
vol. 18, no. 7, pp. 1527–1554, jul 2006. [Online]. Available:
http://dx.doi.org/10.1162/neco.2006.18.7.1527

[21] J. W. King, “Large-scale fpga-based convolutional net-
works,” in Scaling up Machine Learning. Cam-
bridge University Press, 2011, pp. 399–419. [Online].
Available: ebooks.cambridge.org/chapter.jsf?bid=CBO9781139042918&
cid=CBO9781139042918A158

[22] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 210–227, Feb
2009.

[23] A. V. Nefian, M. H. Hayes, and III, “Hidden markov models for face
recognition,” in Proc. International Conf. on Acoustics, Speech and
Signal Processing, 1998, pp. 2721–2724.

[24] F. Yang and M. Paindavoine, “Implementation of an rbf neural network
on embedded systems: Real-time face tracking and identity verification,”
Trans. Neur. Netw., vol. 14, no. 5, pp. 1162–1175, sep 2003. [Online].
Available: http://dx.doi.org/10.1109/TNN.2003.816035

[25] F. Zuo and P. de With, “Real-time embedded face recognition for smart
home,” Consumer Electronics, IEEE Transactions on, vol. 51, no. 1, pp.
183–190, Feb 2005.

[26] R. Gottumukkal, H. T. Ngo, and V. K. Asari, “Multi-lane architecture
for eigenface based real-time face recognition,” Microprocessors and
Microsystems, vol. 30, no. 4, pp. 216 – 224, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933105000645

[27] A. P. Kumar, V. Kamakoti, and S. Das, “System-on-
programmable-chip implementation for on-line face recognition,”
Pattern Recognition Letters, vol. 28, no. 3, pp. 342 –
349, 2007, advances in Visual information Processing Special
Issue of Pattern Recognition Letters on Advances in Visual
Information Processing. (ICVGIP 2004). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865506000857

[28] S. Visakhasart and O. Chitsobhuk, “Multi-pipeline architecture for face
recognition on fpga,” in Digital Image Processing, 2009 International
Conference on, March 2009, pp. 152–156.

[29] J. Matai, A. Irturk, and R. Kastner, “Design and implementation of an
fpga-based real-time face recognition system,” in Field-Programmable
Custom Computing Machines (FCCM), 2011 IEEE 19th Annual Interna-
tional Symposium on, May 2011, pp. 97–100.

[30] N. Sudha, A. Mohan, and P. Meher, “A self-configurable systolic archi-
tecture for face recognition system based on principal component neural
network,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 21, no. 8, pp. 1071–1084, Aug 2011.

[31] F. Samaria and A. Harter, “Parameterisation of a stochastic model for
human face identification,” in Applications of Computer Vision, 1994.,
Proceedings of the Second IEEE Workshop on, Dec 1994, pp. 138–142.

[32] H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang,
Eds., Face Recognition : From Theory to Applications, ser. NATO ASI.
Springer, 1998, vol. 163.

[33] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting and
pose,” IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 23, no. 6, pp.
643–660, 2001.

[34] A. M. Martinez and R. Benavente, “The AR Face Database,” CVC, Tech.
Rep., jun 1998.

[35] D. Wang, X.-J. Zeng, and J. A. Keane, “A clustering algorithm for
radial basis function neural network initialization,” Neurocomputing,
vol. 77, no. 1, pp. 144 – 155, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231211005200

[36] M. J. Er, S. Wu, J. Lu, and H. L. Toh, “Face recognition with radial basis
function (rbf) neural networks,” Neural Networks, IEEE Transactions on,
vol. 13, no. 3, pp. 697–710, May 2002.

[37] “Hpc modules: Pico computing.” [Online]. Available:
http://picocomputing.com/products/hpc-modules/

[38] “Bluespec.” [Online]. Available: http://www.bluespec.com/
[39] G. Mahale, H. Mahale, R. Parimi, S. Nandy, and S. Bhattacharya,

“Hardware architecture of bi-cubic convolution interpolation for real-
time image scaling,” in Field-Programmable Technology (FPT), 2014
International Conference on, Dec 2014, pp. 264–267.

[40] A. Fell, P. Biswas, J. Chetia, S. Nandy, and R. Narayan, “Generic
routing rules and a scalable access enhancement for the network-on-chip
reconnect,” in SOC Conference, 2009. SOCC 2009. IEEE International,
Sept 2009, pp. 251–254.

Gopinath Mahale Gopinath Mahale is a re-
search scholar at the Indian Institute of Science
(IISc). He received his B.E. from Vishweswariah
Technological Univeristy and MTech in Digital
Systems from College of Engineering, Pune. He
is associated with CAD Laboratory, IISc as a
PhD student since August 2011. His research
interests include digital system design, image
processing and machine learning.

Hamsika Mahale Hamsika Mahale is a project
associate at CAD Laboratory, Indian Institute of
Science. She has received her MTech in Digital
Systems from College of Engineering Pune. She
is currently working on algorithms and architec-
tures for Face detection and recognition system.

S.K. Nandy S.K. Nandy is a Professor at the
Supercomputer Education and Research Cen-
tre, Indian Institute of Science,Bangalore. His
research interests are in the areas of Low Power
and High Performance Embedded Systems on a
Chip, VLSI architectures for Reconfigurable Sys-
tems on Chip, and Architectures and Compiling
Techniques for Heterogeneous Many Core Sys-
tems. Nandy received the B.Sc (Hons.) Physics
degree from the Indian Institute of Technology,
Kharagpur, India, in 1977. He obtained the BE

(Hons) degree in Electronics and Communication in 1980, MSc (Engg.)
degree in Computer Science and Engineering in 1986 and the Ph.D.
degree in Computer Science and Engineering in 1989 from the Indian
Institute of Science, Bangalore. He has over 150 publications in Interna-
tional Journals, and Proceedings of International Conferences.

Ranjani Narayan Dr. Ranjani Narayan has over
15 years experience at IISc and 9 years at
Hewlett Packard. She has vast work experience
in a variety of fields computer architecture, op-
erating systems, and special purpose systems.
She has also worked in the Technical University
of Delft, The Netherlands, and Massachusetts
Institute of Technology, Cambridge, USA. During
her tenure at HP, she worked on various areas
in operating systems and hardware monitoring
and diagnostics systems. She has numerous re-

search publications.She is currently Chief Technology Officer at Morph-
ing Machines Pvt. Ltd, Bangalore, India.

