
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

1

Time-Reversibility for Real-Time Scheduling on
Multiprocessor Systems

Jinkyu Lee, Member, IEEE

Abstract—The real-time systems community has widely studied real-time scheduling, focusing on how to guarantee schedulability
(i.e., timely execution) of a set of real-time tasks. However, there still exist a number of task sets that are actually schedulable by a
target scheduling algorithm, but proven schedulable by none of existing schedulability tests, especially on a multiprocessor. In this
paper, we propose a new paradigm for real-time scheduling, called time-reversibility, which views real-time scheduling under a change
in the sign of time, and present how to utilize the paradigm for schedulability improvement. To this end, we first define the notion of a
time-reversed scheduling algorithm and a time-reversible schedulability test ; for example, the time-reversed scheduling algorithm
against EDF (Earliest Deadline First) is LRF (Latest Release-time First). Then, we develop time-reversibility theories for schedulability
improvement, which utilizes the definitions so as to compose schedulability. Finally, we generalize the definitions and theories to
job-level dynamic-priority scheduling in which the priority of a job may vary with time, such as EDZL (Earliest Deadline first until Zero
Laxity). Specifically, we accommodate time-varying job parameters to the time-reversibility definitions, and adapt the time-reversibility
theories for the additional necessary deadline-miss conditions specialized for a class of job-level dynamic-priority scheduling
algorithms. As case studies, we demonstrate that the time-reversibility theories help to find up to 13.6% additional EDF- and
EDZL-schedulable task sets.

Index Terms—Real-time scheduling, schedulability analysis, time-reversibility

F

1 INTRODUCTION

THE real-time systems community has addressed how
to guarantee timely execution of real-time tasks, by

developing scheduling algorithms and their schedulability
tests. A scheduling algorithm decides the order of execution
of jobs periodically/sporadically invoked by a set of real-
time tasks, and its schedulability test judges whether all
the jobs scheduled by the algorithm finish their executions
within their deadlines.

Although multiprocessor systems have become popular
due to its potential for high performance at low cost, the
real-time scheduling theories for the systems have a long
way to go. For example, no exact (i.e., sufficient and nec-
essary) schedulability test that exhibits polynomial time-
complexity has been developed on a multiprocessor even for
the most popular preemptive scheduling algorithms: EDF
(Earliest Deadline First) and RM (Rate Monotonic) [1].1 In-
stead, different sufficient schedulability tests have been de-
veloped, aiming at finding additional schedulable task sets
that are not deemed schedulable by any existing schedula-
bility tests. Although useful in covering additional task sets,
all the existing schedulability tests have shared the common
principle—investigating real-time scheduling as it is in terms
of a time order.

• J. Lee is with Department of Computer Science and Engineering,
Sungkyunkwan University (SKKU), Republic of Korea.
E-mail: jinkyu.lee@skku.edu

1. There are some exact schedulability tests with exponential time-
complexity [2, 3].

In this paper, we propose a new paradigm for real-
time scheduling, called time-reversibility, and exploit the
paradigm for schedulability improvement. Different from
existing studies that focus on scheduling of a series of jobs
in a time-ordered manner, we view real-time scheduling by
tracing back to time, i.e., under a change in the sign of time.
To this end, we construct a job J−qi that corresponds to a
given job Jqi as follows: (i) J−qi ’s deadline is set to Jqi ’s
release time under a change in the plus-minus sign, (ii)
J−qi ’s release time is set to Jqi ’s deadline under a change
in the sign, and (iii) the priority of J−qi is set to that of
Jqi . Fig. 1 shows an example; since the release time and
deadline of J2

i are 10 and 17, respectively, the release time
and deadline of J−2i are −17 and −10, respectively. Then,
for a given scheduling algorithm G that prioritizes {Jqi }, a
scheduling algorithm that prioritizes {J−qi } is said to be a
time-reversed scheduling algorithm against G (denoted by
G−). For example, since EDF gives the highest priority to
a job with the earliest deadline, a time-reversed scheduling
algorithm against EDF is LRF (Latest Release-time First),
which assigns the highest priority to a job with the latest
release time; the converse also holds.

For a connection between a time-reversed scheduling
algorithm against G (i.e., G−) and a schedulability test AG
for G, we define the notion of time-reversibility of AG with
respect to task-set-, task-, and execution-level schedulability.
For example, a schedulability test AG for a scheduling
algorithm G is said to be time-reversible with respect to task-
set-level schedulability, if all task sets deemed schedulable by
AG are also schedulable by G−. And, a schedulability test
for a scheduling algorithm G is said to be time-reversible
with respect to execution-level schedulability, if the following

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

2

Job release

ri
1 di

1 ri
2 di

2 ri
3 di

3

Ji
1 Ji

2 Ji
3

–27 –20 –17 –10 –7 0

Ji
–3 Ji

–2 Ji
–1

0 7 10 17 20 27

ri
–3 di

–3 ri
–2 di

–2 ri
–1 di

–1

Job deadline

Scheduled by G

Scheduled by G–

Fig. 1. Time-reversibility for real-time scheduling: jobs under a schedul-
ing algorithm G and the corresponding jobs under its time-reversed
scheduling algorithm G−

statements holds: if the test guarantees that every job of
a task under G executes X time units between its release
time and the release time after ` time units, it is guaranteed
that every job of the task under G− executes X time units
between its deadline ahead of ` time units and the deadline
(see Fig. 2). As an example, we focus on EDF and its time-
reversed scheduling algorithm LRF, and prove that RTA
(Response-Time Analysis) and DA (Deadline Analysis) for
EDF (developed in [4, 5]) and those for LRF (developed in
this paper) are time-reversible with respect to all the three
levels of schedulability.

To utilize the notion of time-reversibility for schedula-
bility improvement, we can exploit the time-reversibility
definition as it is. That is, provided that a schedulability
test AG of G is time-reversible with respect to task-set-level
schedulability, all task sets deemed schedulable by AG are
actually schedulable by G−, potentially finding additional
task sets schedulable by G−. For example, we show that
RTA for LRF (developed in this paper) finds additional EDF-
schedulable task sets that are not deemed schedulable by
any existing EDF schedulability tests.

Beyond simple application of the time-reversibility def-
initions, we further improve schedulability by composing
schedulability using the notion of time-reversibility with re-
spect to task- and execution-level schedulability. For exam-
ple, a task’ schedulability under G− can be composed by
two schedulability tests: (i) the first some execution directly
guaranteed by a schedulability test for G−, and (ii) the
remaining execution indirectly guaranteed by an execution-
level time-reversible schedulability test for G. As a case
study, we demonstrate that a collaboration between RTA for
EDF and RTA for LRF results in covering additional EDF-
schedulable task sets, which are not deemed schedulable by
any single schedulability tests including themselves.

While the above time-reversibility definitions and theo-
ries are confined to job-level fixed-priority scheduling, we
want to make them applicable even to job-level dynamic-
priority scheduling in which a priority of the same job
may vary with time. To this end, we generalize the time-
reversibility definitions by accommodating time-varying job
parameters. Then, we target a class of job-level dynamic-

priority scheduling algorithms called ZL-based (zero-laxity)
scheduling algorithms [6], which give the highest priority to
jobs with the zero-laxity state, where a laxity of a job at an
instant is defined as the difference between the time to its
deadline and the remaining execution at the instant. The ZL-
based scheduling algorithms have an additional necessary
deadline-miss condition; for a deadline miss, there should
be at least m+ 1 tasks that are capable of reaching the zero-
laxity state, where m is the number of processors. By accom-
modating the necessary deadline-miss condition, we adapt
the time-reversibility theories for ZL-based scheduling al-
gorithms, and demonstrate the application to a popular ZL-
based scheduling algorithm EDZL (Earliest Deadline first
until Zero Laxity) [7], which gives the highest-priority to
zero-laxity jobs and schedules other jobs by EDF.

We then demonstrate via extensive simulation that
our new EDF schedulability test derived from the time-
reversibility theories can find up to 13.6% additional EDF-
schedulable task sets that are not covered by the best ex-
isting EDF schedulability test on a multiprocessor platform.
We also show that our new EDZL schedulability test covers
additional EDZL-schedulable task sets.

In summary, this paper makes the following contribu-
tions:

• Proposal of the new paradigm for real-time schedul-
ing, called time-reversibility,

• Establishment of the theoretical foundation of time-
reversibility for schedulability improvement,

• Application of the time-reversibility theories to a
popular scheduling algorithm EDF, demonstrating
the effectiveness of the notion in improving schedu-
lability,

• Generalization of the time-reversibility definitions
for job-level dynamic-priority scheduling and adap-
tation of the time-reversibility theories for EDZL,
demonstrating their wide applicability, and

• Substantiation of quantitative schedulability im-
provement through extensive simulation.

The rest of this paper is structured as follows. Section 2
describes our systems model and notations. Section 3 gives
formal definitions of time-reversibility of a schedulability
test, and perform case studies for EDF and LRF schedula-
bility tests. Section 4 develops time-reversibility theories to-
wards schedulability improvement, and applies the theories
to EDF schedulability tests. Section 5 generalizes the time-
reversibility definitions and theories to job-level dynamic-
priority scheduling, with a case study for EDZL. Section 6
evaluates the new schedulability tests developed in this
paper, in terms of schedulability improvement and time-
complexity. Finally, this paper concludes with Section 7.

2 SYSTEM MODEL AND NOTATIONS

We consider a task set τ consisting of |τ | sporadic real-time
tasks τi(Ti, Ci, Di), where Ti is the minimum separation,
Ci is the worst-case execution time, and Di is the relative
deadline [8]. We focus on implicit- and constrained-deadline
tasks, which satisfy Di = Ti and Di ≤ Ti, respectively.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

3

For convenience’ sake, we assume a quantum-based time
with the quantum length equal to one time unit, without
loss of generality. All task parameters are multiples of the
quantum.

A task τi invokes a series of sporadic jobs, each separated
from its predecessor by at least Ti time units. Each job of
τi, once released, should finish its execution within Di time
units. The qth job of τi is denoted by Jqi , and the release time
and deadline of Jqi are denoted by rqi and dqi , respectively
(where dqi = rqi +Di).

In this paper, we consider a multiprocessor computing
platform consisting of m identical processors, where m is
an integer value. For the ease of presentation, we will not
specify the computing platform when no ambiguity arises
in the rest of the paper.

When it comes to scheduling algorithms, this paper
focuses on scheduling algorithms that are global, preemptive,
and work-conserving. That is, a job can execute at any core
(global); a higher-priority job can preempt a lower-priority
job at any time (preemptive); and no processor can be left
idle as long as there is an unfinished job in the system (work-
conserving).

A schedulability test AG for a target scheduling algo-
rithm G judges schedulability of a task or a task set under
G, defined as follows. A task τk ∈ τ is said to be schedulable
by G, if no job invoked by τk triggers the first deadline miss
when τ with any legal job arrival sequence is scheduled by
G [9]. Also, τ is said to be schedulable by G, if every task τk
belonging to τ is schedulable by G.

3 TIME-REVERSIBILITY DEFINITIONS

As a first step to exploit the notion of time-reversibility
towards schedulability improvement, this section presents
time-reversibility definitions for real-time scheduling. To
this end, this section introduces the notion of a time-reversed
scheduling algorithm. Followed by the notion, the section
gives a formal definition of a time-reversible schedulability
test, with respect to three different levels of schedulability.
Finally, the section checks time-reversibility of (i) existing
schedulability tests for EDF and (ii) newly-developed ones
for LRF (i.e., a time-reversed scheduling algorithm against
EDF).

3.1 Definition of a time-reversed scheduling algorithm

Suppose that a series of jobs invoked by τ (denoted by
{Jqi }τi∈τ) is executed by a scheduling algorithm G. We now
look at {Jqi }τi∈τ under a change in the sign of time. To this end,
we synthesize another series of jobs (denoted by {J−qi }τi∈τ),
which is a one-to-one mapping of {Jqi }τi∈τ as follows.

R1. The release time of J−qi (i.e., r−qi) is set to −dqi , and
the deadline of J−qi (i.e., d−qi) is set to −rqi ; recall
that dqi and rqi denote the deadline and the release
time of Jqi , respectively.

R2. The worst-case execution time of J−qi is set to that
of Jqi .

R3. The priority of J−qi is set to that of Jqi .

For example, since the release time of J2
i in Fig. 1 is r2i = 10,

the deadline of J−2i (corresponding to J2
i) is d−2i = −10.

Likewise, provided that the deadline of J2
i in the same

figure is d2i = 17, the release time of J−2i is r−2i = −17.
Note that {J−qi }τi∈τ is also an instance of a series of jobs

invoked by τ in that it conforms with all the task parameters
of τ . We also note that R1–R3 provide mapping of static job-
parameters only (e.g., the release time, the deadline and the
worst-case execution time of a job), which are components
of job-level fixed-priority scheduling algorithms in which
the priority of a job cannot change over time. Section 5 will
generalize them for job-level dynamic-priority scheduling
algorithms.

If we pay attention to two corresponding job-level fixed-
priority scheduling algorithms that prioritize {Jqi }τi∈τ and
{J−qi }τi∈τ , respectively, there is a relationship between the
two, defined as follows.

Definition 1. Suppose that for a given {Jqi }τi∈τ which is pri-
oritized by a job-level fixed-priority scheduling algorithm
G, {J−qi }τi∈τ is generated according to R1–R3. Then, we
can derive a corresponding scheduling algorithm G−,
such that G− directly assigns job priorities to {J−qi }τi∈τ .
A scheduling algorithm G− is said to be a time-reversed
scheduling algorithm against G.

Here we present two examples of G− for a given G.

Example 3.1. Since Jqi ’s deadline matches J−qi ’s release
time under a change in the plus-minus sign, scheduling
of {Jqi }τi∈τ by EDF (that gives the highest priority to
a job with the earliest deadline) corresponds to that of
{J−qi }τi∈τ by a scheduling algorithm that gives the
highest priority to a job with the latest release time, which
is called LRF (Latest Release-time First). In other words,
LRF is a time-reversed scheduling algorithm against EDF
(denoted by LRF = EDF−). Similarly, EDF = LRF−

holds.

Example 3.2. Scheduling of {Jqi }τi∈τ by RM corresponds
that of {J−qi }τi∈τ by the same scheduling algorithm RM
because the priority of a job does not depend on its
release time and deadline. In other words, RM = RM−

holds. The same relationship holds for DM (Deadline
Monotonic) [10].

3.2 Definition of a time-reversible schedulability test

Since we are interested in schedulability guarantees, we
need to establish a relationship between a schedulability
test AG for a scheduling algorithm G and its time-reversed
scheduling algorithm G− in terms of schedulability. Based
on the notion of a time-reversed scheduling algorithm, we
provide formal definitions of a time-reversible schedula-
bility test as for three different levels of schedulability,
recorded in the following definition.

Definition 2. A schedulability test AG for a scheduling
algorithm G is said to be time-reversible with respect to

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

4

ri
q

di
q

ri
–q di

–q

AG guarantees three time

units execution of Ji
q in

[ri
q, ri

q+5) under G.

Ji
–q scheduled by G–

Job release/deadline Execution

ri
q+5

di
–q – 5

Three time units execution

of Ji
–q in [di

–q–5, di
–q) under

G – is guaranteed.

Ji
q scheduled by G

Fig. 2. Time-reversibility of a schedulability test with respect to
execution-level schedulability

• task-set-level schedulability, if the following statement
holds for every τ :

– if τ is deemed schedulable by AG, τ is also
schedulable by G−;

• task-level schedulability: if the following statement
holds for every τi ∈ τ :

– if τi ∈ τ is deemed schedulable by AG, τi ∈ τ
is also schedulable by G−; and

• execution-level schedulability, if the following state-
ment holds for every τi ∈ τ , C ′i ∈ [0, Ci], and
` ∈ [0, Di]:

– if AG guarantees that the amount of execution
of every job of τk ∈ τ under G (denoted by Jqk)
performed in [rqk, r

q
k + `) is C ′k, that of every

job of τk ∈ τ under G− (denoted by J−qk)
performed in [d−qk − `, d

−q
k) is equal to either

(a) at least C ′k if the amount of the remaining
execution of J−qk at d−qk − ` is no smaller
than C ′k or (b) the amount of the remaining
execution of J−qk at d−qk − ` otherwise.

Fig. 2 illustrates time-reversibility of a schedulability test
with respect to execution-level schedulability.

Then, there exist relationships between the above time-
reversibility definitions, as stated in the following lemma.

Lemma 1. The following inclusive relationship holds among
the three time-reversibility definitions of a schedulability
test AG for a scheduling algorithm G.

I1. If AG is time-reversible with respect to task-level
schedulability, then it is also time-reversible with
respect to task-set-level schedulability.

I2. If AG is time-reversible with respect to execution-
level schedulability, then it is also time-reversible
with respect to task- and task-set-level schedulability.

Proof: By the definition of the schedulability of a task
and a task set in Section 2, I1 holds immediately.

If we substitute C ′i with Ci and ` with Di, the
time-reversibility definition with respect to execution-level

schedulability is equivalent to that with respect to task-level
schedulability. Then, by I1, the remaining part of I2 holds.

3.3 Time-reversibility of EDF schedulability tests

This subsection discovers time-reversibility of existing EDF
schedulability tests. To this end, we first recapitulate popu-
lar schedulability test frameworks for EDF, and then prove
their time-reversibility.

In order to judge whether every job invoked by a set
of real-time tasks finishes its execution within its deadline,
many schedulability test frameworks have been developed.
Among the frameworks, RTA (Response-Time Analysis) [4]
and DA (Deadline Analysis) [5, 11] have been popular due
to their applicability and schedulability performance.

RTA focuses on a job of interest of τk (called Jqk) and
calculates the length of cumulative intervals in [rqk, r

q
k + `)

such that jobs of τi execute while Jqk cannot, where 0 <
` ≤ Dk. This is called interference of τi on τk in an interval
[rqk, r

q
k+ `), and denoted by Ik←i(r

q
k, r

q
k+ `). Since a job can-

not execute in a time slot only when other m higher-priority
jobs execute, 1

m

∑
τi∈τ−{τk} Ik←i(r

q
k, r

q
k + `) represents the

length of cumulative intervals in [rqk, r
q
k + `) such that Jqk

cannot execute due to other jobs’ execution. Therefore, if the
value is no larger than ` − Ck, the job Jqk finishes its full
execution (as much as Ck) at or before rqk + `. Using the
notion of interference, RTA judges the schedulability of a
task as follows.

Lemma 2 (RTA: Theorem 3 in [4]). A task τk ∈ τ is
schedulable, if every job Jqk invoked by τk satisfies Eq. (1)
for some Ck ≤ ` ≤ Dk:

Ck +

⌊
1

m

∑
τi∈τ−{τk}

min
(
Ik←i(r

q
k, r

q
k + `), `− Ck + 1

)⌋
≤ `.

(1)

Proof: Here, we summarize the proof in [4].
Since a job cannot execute in a time slot only when
other m higher-priority jobs execute, X

def.
= Ck +⌊

1
m

∑
τi∈τ−{τk} Ik←i(r

q
k, r

q
k + `)

⌋
represents the duration

between Jqk ’s release and finishing time. By the definition of
Ik←i(r

q
k, r

q
k+`), if Ik←i(r

q
k, r

q
k+`) > `−Ck+1 holds for some

τi, J
q
k cannot finish its execution in [rqk, r

q
k + `). Therefore,

the following relation holds: if X is strictly larger than `, the
LHS is also strictly larger than `. By the contraposition, the
lemma holds.

We will present how to find such ` later in this subsection.
Different from RTA, DA focuses only on ` = Dk, as

recorded in the following lemma.

Lemma 3 (DA: Theorem 5 in [11]). A task τk ∈ τ is
schedulable, if every job Jqk invoked by τk satisfies Eq. (1)
for ` = Dk.

Proof: Since the lemma is a special case of Lemma 2,
the lemma holds.

Since Ik←i(r
q
k, r

q
k + `) in Eq. (1) is algorithm-dependent,

the main issue to develop RTA and DA for a target

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

5

rk
q

Interval of interest of length ℓ

rk
q+ℓ

Job release/deadline Execution

Ti Ti

Di Di Di

Ci Ci
Ci Si Di-Ci-Si

(a) Wi(`, Si) under any work-conserving scheduling algorithm

rk
q

Interval of interest of length Dk

dk
q = rk

q+Dk

Job release/deadline Execution

Ti Ti

Di Di Di

Ci Si Ci Si Ci Si

(b) Ei(Dk, Si) under EDF

Fig. 3. Upper-bounds of interference Ik←i(r
q
k, r

q
k + `): Wi(`, Si) under

any work-conserving scheduling algorithm and Ei(Dk, Si) under EDF

scheduling algorithm is to derive a tight upper-bound
of Ik←i(r

q
k, r

q
k + `). Existing studies calculate two upper-

bounds of the interference: the one commonly applied to
any work-conserving scheduling algorithm and the other
specialized for the target scheduling algorithm.

Since the amount of interference of τi on τk in an interval
is upper-bounded by that of executions of jobs of τi in
the interval, existing studies found when the amount of
executions of jobs of τi is maximized in a given interval.
That is, the first job of τi in the interval executes as late as
possible and other jobs in the interval execute as early as
possible; also, the interval starts when the first job starts
its execution as shown in Fig. 3(a). In this situation, the
number of jobs of τi executed in the interval except the last
job, denoted by Ni(`, Si), is calculated as follows [4]:

Ni(`, Si) =

⌊
`+Di − Ci − Si

Ti

⌋
, (2)

where Si denotes a lower-bound of the interval between a
completion time and deadline of every job invoked by τi,
called slack value. In other words, every job Jqi of τi finishes
its execution until dqi −Si, and therefore does not execute in
[dqi − Si, d

q
i).

For instance, Ni(`, Si) = 2 holds in Fig. 3(a), and those
Ni(`, Si) jobs of τi fully execute in the interval of length `,
contributing to Ni(`, Si) · Ci. Considering the contribution
of the last job, the amount of maximum execution of jobs of
τi in an interval of length ` can be calculated by Wi(`, Si) as
follows [4]:

Wi(`, Si) =

Ni(`, Si) · Ci +min
(
Ci, `+Di − Ci − Si −Ni(`, Si) · Ti

)
,

(3)

which is an upper-bound of Ik←i(r
q
k, r

q
k + `) for any work-

conserving scheduling algorithm.
On the other hand, if we focus on an interval [rqk, r

q
k+Dk)

between a release time and deadline of Jqk of τk, we can
derive another upper-bound of Ik←i(r

q
k, r

q
k + Dk) tailored

to EDF. Under EDF, a job Jpi can interfere with another job
Jqk only when the deadline of Jpi is no later than that of
Jpk . Therefore, Ik←i(r

q
k, r

q
k + Dk) under EDF is maximized

when the deadline of a job of τi is aligned to the end of
the interval, and all jobs of τi execute as late as possible
as shown in Fig. 3(b). This is calculated by Ei(Dk, Si) [4],
where

Ei(`, Si) =

⌊
`

Ti

⌋
· Ci +max

(
0,min

(
Ci, `−

⌊
`

Ti

⌋
· Ti − Si

))
.

(4)

Finally, by taking the minimum of the two upper-
bounds, RTA for EDF uses the following upper-bound of
interference Ik←i(r

q
k, r

q
k + `).

Ik←i(r
q
k, r

q
k + `) under EDF with slack reclamation

≤min
(
Wi(`, Si), Ei(Dk, Si)

)
. (5)

Then, RTA for EDF works as follows [4]. For each task
τk ∈ τ , Eq. (1) with applying Eq. (5) is investigated with
the initial value ` = Ck. If the inequality holds, the task
is deemed schedulable. Otherwise, RTA for EDF resets ` to
the previous value of the LHS of the inequality, until the in-
equality holds (schedulable task) or ` > Dk (unschedulable
task). If a task τk is deemed schedulable, the value of ` that
satisfies the inequality is an upper-bound of the response
time of τk (denoted by Rk).

In this process, RTA for EDF exploits slack values Si
as follows. Initially, every Si in the LHS of Eq. (5) is set
to zero, and every task’s response time is calculated. Then,
we reset every schedulable task’s slack (i.e., Si) to Di − Ri
(if positive) and repeat to calculate every task’s response
time, until all tasks are deemed schedulable (schedulable
task set) or there is no slack value update (unschedulable
task set). This schedulability test is called RTA for EDF with
slack reclamation.

On the other hand, we skip the repetition for slack
reclamation, by statically setting all slack values to zero as
recorded in Eq. (6). This schedulability test is called RTA for
EDF without slack reclamation.

Ik←i(r
q
k, r

q
k + `) under EDF without slack reclamation

≤min
(
Wi(`, 0), Ei(Dk, 0)

)
. (6)

Similar to RTA for EDF, DA for EDF employs Eqs. (5)
and (6) for ` = Dk, yielding two different schedulability
tests with/without slack reclamation [11]. Here, the slack
value Si is calculated by the difference between Dk and the
LHS of Eq. (1), if Eq. (1) holds for ` = Dk (otherwise 0) [11].

From now on, we investigate time-reversibility of RTA
and DA for EDF, starting from RTA for EDF without slack
reclamation, as stated in the following lemma.

Lemma 4. RTA for EDF without slack reclamation (i.e.,
Lemma 2 with applying Eq. (6)) is time-reversible with
respect to execution-, task-, and task-set-level schedula-
bility.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

6

Processor 1

Processor 2

τ1

τ2

τ3

0 1 2 3 4

Deadline miss

at t=4

Fig. 4. A counter example of time-reversibility of RTA for EDF with slack
reclamation: τ = {τ1(4, 3, 4) = τ2, τ3(40, 3, 40)} on two processors

Proof: By Lemma 1, it suffices to prove the lemma for
execution-level schedulability. Suppose that RTA for EDF
without slack reclamation guarantees that X amount of
execution is performed between each job’s release time and
the time after ` time units (i.e., [rqk, r

q
k + `)). Then, we prove

that X amount of execution is performed between each
job’s deadline ahead of ` time units and the deadline (i.e.,
[dqk − `, d

q
k)) under LRF.

Under LRF, a job of τi can interfere with another job
Jqk only when the release time of the job of τi is no earlier
than Jqk . Therefore, the amount of interference of jobs of
τi on Jqk is maximized when the release time of the first
job of τi is aligned with that of Jqk . Then, the scenario that
yields the maximum interference under LRF shown in Fig. 5
is vertically symmetrical to the scenario of Ei(Dk, 0) in
Fig. 3(b), where [dqk − Dk, d

q
k) in Fig. 3(b) corresponds to

[rqk, r
q
k + Dk) in Fig. 5. This means, jobs of τi under LRF

interfere with Jqk during at most Ei(Dk, 0). We also directly
prove this upper-bound as follows. First, we can calculate
the number of jobs of τi that contribute the full execution in
[rqk, r

q
k + Dk) in Fig. 5, (i.e. the first two jobs in the figure),

which is
⌊
Dk

Ti

⌋
. Second, the contribution of the last job of τi

in [rqk, r
q
k +Dk) is min(Ci, Dk −

⌊
Dk

Ti

⌋
·Ti) (i.e., the third job

in Fig. 5). Therefore, the total interference of jobs of τi to Jqk
is upper-bounded by Ei(Dk, 0), which proves the lemma.

Different from RTA for EDF without slack reclamation,
that with slack reclamation (i.e., Lemma 2 with applying
Eq. (5)) is not time-reversible with respect to even task-
set-level schedulability, as demonstrated in the following
counter example.

Example 3.3. Suppose that τ = {τ1(4, 3, 4) = τ2,
τ3(40, 3, 40)} is scheduled by EDF on two processors.
Then, τ is deemed schedulable by RTA for EDF with
slack reclamation. However τ is indeed not schedulable
by LRF (i.e., time-reversed scheduling algorithm against
EDF). This is because, if τ1 and τ2 invoke their jobs at
t = 0 and τ3 invokes its job at t = 1, one of the jobs of
either τ1 or τ2 misses its deadline since the job of τ3 has
a higher priority under LRF, as shown in Fig. 4.

We can explain non-time-reversibility of RTA for EDF
with slack reclamation as follows. Since the slack implies
that a job of interest Jqi cannot execute just before its

rk
q

Interval of interest of length ℓ

rk
q+ℓ

Job release/deadline Execution

Ti Ti

Di Di Di

Ci Ci Ci

Fig. 5. An upper-bound of interference Ik←i(r
q
k, r

q
k+`) under LRF: Li(`)

deadline under a scheduling algorithm G, it implies that the
corresponding job J−qi cannot execute right after its release
time under G−, which does not necessarily hold under G−.
For example, a slack of Jqi under EDF matches no execution
right after J−qi ’s release time under LRF; however, LRF itself
does not prevent a job’s execution right after its release time.

Similar to Lemma 4, DA for EDF without slack reclama-
tion (i.e., Lemma 3 with applying Eq. (6)) is time-reversible
with respect to task- and task-set-level schedulability. This
is because, DA for EDF is a special case of RTA for EDF
(i.e., applying ` = Dk). Note that DA for EDF with slack
reclamation (i.e., Lemma 3 with applying Eq. (5)) is not time-
reversible with respect to even task-set-level schedulability.

3.4 Time-reversibility of new LRF schedulability tests

While the previous subsection focuses on EDF, this sub-
section investigates time-reversibility of schedulability tests
for LRF (i.e., a time-reversed scheduling algorithm against
EDF). Since no schedulability test for LRF exists so far, we
first develop new LRF schedulability tests, and then investi-
gate time-reversibility of the LRF tests. These LRF schedula-
bility tests become a basis for improving EDF schedulability
using time-reversibility theories to be presented in Section 4.

Under LRF, a job Jpi can interfere with another job Jqk
only when the release time of Jpi is no earlier than that of Jqk .
Therefore, Ik←i(r

q
k, r

q
k + `) is maximized when the interval

of interest begins at the release time of the first job of τi
in the interval and all jobs of τi in the interval execute as
early as possible, as shown in Fig. 5. Then, the amount of
maximum interference of jobs of τi on Jqk in [rqk, r

q
k + `) is

calculated by Li(`) as follows:

Li(`) =

⌊
`

Ti

⌋
· Ci +min

(
Ci, `−

⌊
`

Ti

⌋
· Ti
)
. (7)

Combined with the upper-bound of interference under
any work-conserving scheduling algorithm Wi(`, Si), the
interference of τi on τk under LRF is upper-bounded as
follows.

Ik←i(r
q
k, r

q
k + `) under LRF ≤ min

(
Wi(`, Si), Li(`)

)
= Li(`). (8)

Note that since Li(`) does not depend on Si, we have
only one RTA for LRF (without slack reclamation), which
is Lemma 2 with applying Eq. (8). When it comes to DA,
DA for LRF employs Eq. (8) for ` = Dk, i.e., Lemma 3 with
applying Eq. (8).

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

7

Then, RTA for LRF is time-reversible as recorded in the
following lemma.

Lemma 5. RTA for LRF (i.e., Lemma 2 with applying Eq. (8))
is time-reversible with respect to execution-, task-, and
task-set-level schedulability.

Proof: By Lemma 1, it suffices to prove the lemma
for execution-level schedulability. We prove that Li(`) is
no larger than the amount of time in [dqk − `, dqk) jobs of
τi can interfere with Jqk when the scheduling algorithm is
EDF. Then, it holds that any job of τk under EDF does not
miss its deadline as long as RTA for LRF guarantees the
schedulability of τk.

By definition, Li(`) in Eq. (7) is equal to Ei(`) with Si =
0 in Eq. (4). Since Ei(`) with Si = 0 is an upper-bound of
the amount of interference of jobs of τi on Jqk in [dqk − `, d

q
k)

under EDF, the lemma holds.

Since DA for LRF (i.e., Lemma 3 with applying Eq. (8))
is also a special case of RTA for LRF (i.e., applying ` = Dk),
DA for LRF is also time-reversible with respect to task- and
task-set-level schedulability.

4 TIME-REVERSIBILITY THEORIES FOR SCHEDU-
LABILITY IMPROVEMENT

While the previous section introduces formal definitions of
time-reversibility of a schedulability test and discovers time-
reversible schedulability tests, we need to utilize the notion
of time-reversibility for schedulability improvement. To this
end, this section presents how to improve schedulability us-
ing the time-reversibility definition as it is. Then, the section
develops ways to compose schedulability by utilizing the
definitions.

4.1 Schedulability improvement using time-
reversibility definition as it is

For schedulability improvement, we directly use Defini-
tion 2, as stated in the following theorem.

Theorem 1. Suppose that a schedulability test AG for a
scheduling algorithm G is time-reversible with respect
to task-set-level schedulability. Then, if AG deems a task
set τ schedulable by G, τ is schedulable by G−.

Proof: According to Definition 2, the theorem imme-
diately holds.

Although straightforward, Theorem 1 can be useful in
finding additional task sets schedulable by G−, which are
not deemed schedulable by any existing schedulability test
for G−. Here are two examples that demonstrate usefulness
of the theorem in discovering additional schedulable task
sets.

Example 4.1. Suppose that τ = {τ1(3, 1, 3), τ2 = τ3 =
τ4 = (2, 1, 2)} is scheduled by EDF on a two-processor
platform. Then, while τ is not deemed schedulable by
any single existing EDF schedulability test in a survey
[12], RTA for LRF (i.e., Lemma 2 with applying Eq. (8))

guarantees the task set’s schedulability under EDF due
to its time-reversibility proved in Lemma 5.

Example 4.2. Suppose that τ = {τ1(2, 1, 2) = τ2 = τ3} is
scheduled by LRF on a two-processor platform. Then, τ
is deemed schedulable by RTA for EDF without slack
reclamation (i.e., Lemma 2 with applying Eq. (6)); by
time-reversibility proved in Lemma 4, RTA for EDF with-
out slack reclamation guarantees the task set’s schedula-
bility under LRF.
To the best knowledge of the author, no schedulability
test specialized for LRF has been developed. Therefore,
the best existing schedulability test to be applied to LRF
is the state-of-the-art schedulability test for any work-
conserving (WC) scheduling algorithm, which is RTA for
WC with slack reclamation (i.e., Lemma 2 with applying
Ik←i(r

q
k, r

q
k+`) ≤Wi(`, Si)). However, RTA for WC with

slack reclamation does not deem τ schedulable.

4.2 Schedulability composition using time-reversibility

While we can immediately improve schedulability using
the definition of time-reversibility with respect to task-set-
level schedulability as it is, we can compose schedulability
using time-reversibility regarding task- and execution-level
schedulability. The following theorem presents schedulabil-
ity composition2 using time-reversibility as for task-level
schedulability.

Theorem 2. Suppose that there exist two schedulability tests,
one for a scheduling algorithm G and the other for its
time-reversed scheduling algorithm G− (denoted by AG
and BG− , respectively), and AG is time-reversible with
respect to task-level schedulability. Then, a task set τ is
schedulable by G−, if every task τk ∈ τ is deemed
schedulable by either AG or BG− .

Proof: By Definition 2, all tasks deemed schedulable
by AG are also schedulable by G−. Therefore, the theorem
holds.

Beyond composition of task-set-level schedulability from
individual task-level schedulability, we can compose task-
level schedulability from the time-reversibility with respect
to execution-level schedulability, as recorded in the follow-
ing theorem.

Theorem 3. Suppose that there exist two schedulability tests,
one for a scheduling algorithm G and the other for its
time-reversed scheduling algorithm G− (denoted by AG
and BG− , respectively), and AG is time-reversible with
respect to execution-level schedulability. Then, a task τk ∈ τ
is schedulable, if there exist C ′k ∈ [0, Ck] and ` ∈ [0, Dk]
such that AG guarantees that every job of τk ∈ τ under
G (denoted by Jqk) finishes its execution at least as much
as C ′k in [rqk, r

q
k+`) and BG− guarantees that every job of

2. The concept of schedulability composition has been introduced in
[9].

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

8

ri
q

di
q

ri
–q di

–q

AG guarantees three time

units execution of Ji
q in

[ri
q, ri

q+5) under G.

Job release/deadline Execution

ri
q+5

di
–q – 5

AG guarantees three time

units execution of Ji
–q in

[di
–q–5, di

–q) under G–.

BG– guarantees five time

units execution of Ji
–q in

[ri
–q, di

–q–5) under G–.

Fig. 6. Schedulability composition using time-reversibility with respect to
execution-level schedulability (Theorem 3)

τk ∈ τ under G− (denoted by J−qk) finishes its execution
at least as much as Ck − C ′k in [r−qk , d−qk − `).

Proof: By Definition 2, AG guarantees that every job
of τi under G− (denoted by J−qi) finishes its execution at
least as much as C ′i in [d−qi − `, d

−q
i) (or the amount of the

remaining execution at d−qi − ` if it is less than C ′i). Since
BG− guarantees Ci − C ′i amount of execution of J−qi in
r−qi , d−qi − `), we can guarantee that the full execution of
J−qi is finished in [r−qi , d−qi).

Fig. 6 illustrates an example of Theorem 3. Suppose that
a time-reversible schedulability test AG guarantees three
time units execution of Jqi in [rqi , r

q
i+5) underG and another

schedulability test BG− guarantees five time units execution
of J−qi in [r−qi , d−qi − 5) under G−. Then, we can guarantee
eight time units execution of J−qi in [r−qi , d−qi): the first five
units execution by BG− and the next three units execution
by a time-reversible schedulability test AG.

One may wonder how we can find a proper C ′i that
yields schedulability guarantee, efficiently. Although we
do not have any optimal way, the time-complexity is not
critical because of two reasons. First, since we are usually
interested in offline schedulability guarantee, we can test
all possible integer C ′i in [1, Ci], whose time-complexity
will be discussed in Section 6. Second, if time-complexity
really matters, we can test only some of candidates, e.g.,
C ′i ∈ {0.1 · Ci, 0.2 · Ci, · · · , Ci}, which does not compro-
mise correctness; instead, the more candidates to be tested,
the higher probability to find C ′i that yields schedulability
guarantee.

While Theorem 3 has enormous potential in improving
schedulability, the theorem does not exploit slack reclama-
tion for the time-reversed scheduling algorithm. For exam-
ple, if we use RTA for LRF (i.e., Lemma 2 with applying
Eq. (8)) to guarantee schedulability for EDF, we cannot
utilize the slack value under EDF. This is because, Eq. (8)
cannot accommodate the slack value under EDF. This po-
tentially loses the chance of deriving a tighter schedulability
test by slack reclamation. To this end, we need to accom-
modate the slack value under a time-reversed scheduling
algorithm.

rk
q Interval of interest of length ℓ rk

q+ℓ

Job release/deadline Execution

Ti Ti

Di Di Di

Ci
Si

–

dk
q Interval of interest of length ℓ dk

q – ℓ

Si Si
Si Ci Ci Ci

Ci
Si

–
 Ci

Si
–

Fig. 7. An upper-bound of interference Ik←i(d
q
k − `, dqk) under EDF:

Li(`, Si)

Let S−i denote the reversed slack value; a job Jqi does not
executes S−i amount of time from its release time as shown
in Fig. 7 (shown in the upper figure). Then, Ik←i(r

q
k, r

q
k + `)

under LRF when Jqi does not execute S−i amount of time
from its release, is calculated by Li(`, S−i) as follows.

Li(`, S
−
i) =

⌊
`

Ti

⌋
· Ci +max

(
0,min

(
Ci, `−

⌊
`

Ti

⌋
· Ti − S−i

))
.

(9)

By definition, Li(`, S
−
i) can be an upper-bound of

Ik←i(r
q
k, r

q
k + `) under LRF only when jobs of τi do not

execute S−i amount of time from their release. Therefore,
Li(`, S

−
i) cannot be an upper-bound of Ik←i(r

q
k, r

q
k + `)

under vanilla LRF, because LRF does not restrict the ex-
ecution from each job’s release time. Instead, we can use
Li(`, S

−
i) for EDF. That is, Li(`, Si) can be an upper-bound

of Ik←i(d
q
k − `, d

q
k) under EDF when Si is the slack value

of jobs of τi under EDF; note that the interval of interest
for EDF is [dqk − `, dqk), not [rqk, r

q
k + `). This is because,

Ik←i(r
q
k, r

q
k+`) under LRF with S−i (shown in the upper fig-

ure of Fig. 7) corresponds to Ik←i(d
q
k−`, d

q
k) under EDF with

Si (shown in the lower figure). Therefore, Ik←i(d
q
k − `, d

q
k)

under EDF is upper-bounded as follows.

Ik←i(d
q
k − `, dqk) under EDF ≤min

(
Wi(`, Si), Li(`, Si)

)
=Li(`, Si). (10)

Applying the above inequality to Theorem 3, we can
develop an EDF schedulability test as follows.

Lemma 6. A task set τ is schedulable by EDF, if for every
τk ∈ τ , there exist C ′k ∈ [0, Ck] and ` ∈ [0, Dk] such that
the following two inequalities hold:

Ck − C′k+⌊
1

m

∑
τi∈τ−{τk}

min
(
Wi(`, Si), Ei(Dk, Si), `− (Ck − C′k) + 1

)⌋
≤ `,

(11)

C′k+⌊
1

m

∑
τi∈τ−{τk}

min
(
Li(Dk − `, Si), (Dk − `)− C′k + 1

)⌋
≤ Dk − `.

(12)

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

9

Proof: We divide the interval of interest [rqk, d
q
k) of

length Dk into two: [rqk, r
q
k + `) and [rqk + `, dqk). Then, we

prove that (a) Ck − C ′k amount of execution is performed
in the former interval, and (b) C ′k amount of execution is
performed in the latter interval.

Case (a): A job cannot execute only when there are other
m jobs whose priorities are higher than the job of interest.
Therefore, from Eq. (1), we guarantee Ck − C ′k amount
of execution performed in [rqk, r

q
k + `) of length `, if the

following inequality holds:

Ck − C′k +

⌊
1

m

∑
τi∈τ−{τk}

Ik←i(r
q
k, r

q
k + `), `− (Ck − C′k) + 1

)⌋
≤ `.

Since Ik←i(r
q
k, r

q
k + `) ≤ min

(
Wi(`, Si), Ei(Dk, Si)

)
holds

under EDF (from Eq. (5)), Eq. (11) implies that we can guar-
antee Ck−C ′k amount of execution performed in [rqk, r

q
k+`).

Case (b): Similar to Eq. (1), we also guarantee C ′k amount
of execution performed in [rqk+`, d

q
k) of length Dk−`, if the

following inequality holds:

C′k +

⌊
1

m

∑
τi∈τ−{τk}

min
(
Ik←i(r

q
k + `, dqk), (Dk − `)− C

′
k + 1

)⌋
.

≤ Dk − `

Since Ik←i(r
q
k + `, dqk) ≤ Li(Dk − `, Si) holds under EDF

(from Eq. (10)), Eq. (12) implies that we can guarantee C ′k
amount of execution performed in [rqk + `, dqk).

The lemma holds by Cases (a) and (b).

Section 6 will demonstrate via simulation that Lemma 6
is effective in finding additional EDF-schedulable task sets.
The section will also discuss time-complexity of Lemma 6.

5 GENERALIZATION OF TIME-REVERSIBILITY FOR

JOB-LEVEL DYNAMIC-PRIORITY SCHEDULING

In the previous sections, we gave formal definitions of time-
reversibility and developed theories thereof for schedulabil-
ity improvement. However, the definitions cannot accom-
modate dynamic job-parameters that vary with time such
as the time to deadline and the remaining execution time
at an arbitrary time instant. In this section, we generalize
the definitions of time-reversibility for job-level dynamic-
priority scheduling. Then, we perform cases studies—
investigating time-reversibility of schedulability tests for a
job-level dynamic-priority scheduling algorithm and adapt-
ing the time-reversibility theories to the tests.

5.1 Generalization of time-reversibility definitions

For job-level dynamic-priority scheduling under which a
job priority may vary with time, we need to address dy-
namic job-parameters such as the time to deadline and the
remaining execution time at an arbitrary instant. To this end,
we investigate and generalize R1–R3 in Section 3 so as to
accommodate dynamic job-parameters.

If we focus on R1, it matches the job release time and
deadline only. Beyond matching the simple parameters, we
need to map every instant within an interval between the
release time and deadline of each job as follows.

Job release

ri
1 di

1

t = –15 0

t = 0 15

ri
–1 di

–1

Job deadline

Ji
1 scheduled by G

Ji
-1 scheduled by G–

–10

10 6

–6

Fig. 8. Time-reversibility for job-level dynamic-priority scheduling: map-
ping an arbitrary instant with remaining/performed execution

R′1. A time instant −rqi + α (0 ≤ α ≤ Di) for J−qi is
mapped to dqi − α for Jqi .

For example, since t = 6 of J1
i in Fig. 8 is expressed by

d1i − α = 15 − 9, t = 6 of J1
i is mapped to t = −r1i + α =

−15 + 9 = −6 of J−1i . Similarly, t = 10 of J1
i is mapped to

t = −10 of J−1i .
To address dynamic states of each job regarding the

remaining/performed execution, R′2 should be generalized
as follows.

R′2. The worst-case execution time of J−qi is set to that
of Jqi . And, the amount of remaining execution (like-
wise performed execution) at −rqi + α (0 ≤ α ≤ Di)
for J−qi is mapped to the amount of performed
execution (likewise remaining execution) at dqi − α
for Jqi .

For example, the amount of performed execution of J1
i at

t = 6 (3 units in Fig. 8) in Fig. 8 is mapped to the amount of
remaining execution of J−1i at t = −6 (3 units in the figure).

Finally, the priority of a job should be expressed for an
arbitrary instant as follows.

R′3. The priority of J−qi at −rqi + α (0 ≤ α ≤ Di) is set
to that of Jqi at dqi − α.

Similar to Definition 1, we can define a time-reversed
scheduling algorithm using R′1–R′3 as follows.

Definition 3. Suppose that for a given {Jqi }τi∈τ which is
prioritized by a scheduling algorithm G, {J−qi }τi∈τ is
generated according to R′1–R′3. Then, we can derive a
corresponding scheduling algorithm G−, such that G−

directly assigns job priorities to {J−qi }τi∈τ . A scheduling
algorithm G− is said to be a time-reversed scheduling
algorithm against G.

While Definition 1 is valid only for job-level fixed-priority
scheduling algorithms, Definition 3 can accommodate both
job-level fixed-priority and job-level dynamic-priority schedul-
ing algorithms. In order words, Definition 3 is a generaliza-
tion of Definition 1 as follows. First, if we apply α to 0 and
Di, R′1 is equivalent to R1. Second, R′2 literally subsumes R2.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

10

Finally, since the priority of a job under any job-level fixed-
priority scheduling does not change over time, R′3 subsumes
R3.

Among job-level dynamic-priority scheduling algo-
rithms, many of them (e.g., EDZL [7], RMZL [13],
DMZL [13], and LLF [14]) prioritize jobs using a notion
of laxity. The laxity of a job at a time instant is defined
as the difference between the time to its deadline and the
remaining execution of the job at the instant. By R′1 and R′2,
the time to the deadline of Jqi matches the time from the
release time of J−qi , and the remaining execution at α ahead
of the deadline of Jqi maps to the performed execution at
α after the release time of J−qi . Therefore, we can define
reversed-laxity under a scheduling algorithm as opposed to
laxity under its time-reversed scheduling algorithm as fol-
lows. The reversed-laxity of a job at a time instant is defined
as the difference between the time from its release time and
the performed execution at the instant. For example, while
the laxity of J−1i at t = −6 in Fig. 8 is 6 (time to the deadline)
- 3 (the remaining execution) = 3, the reversed-laxity of J1

i

at t = 6 in the figure is 6 (time from the release time) - 3 (the
performed execution) = 3.

Now, we present two examples of time-reversed
scheduling algorithms of job-level dynamic-priority
scheduling algorithms.

Example 5.1. Since Jqi ’s laxity matches J−qi ’s reversed-laxity,
scheduling of {Jqi }τi∈τ by the zero-laxity policy (that
gives the highest priority to a job with the zero-laxity
state) corresponds to that of {J−qi }τi∈τ by a schedul-
ing policy that gives the highest priority to a job with
the zero-reversed-laxity state. Therefore, EDZL (Earliest
Deadline first until Zero-Laxity) that gives the highest
priority to a job with the zero-laxity state and sched-
ules other jobs by EDF corresponds to LRZRL (Latest
Release-time first until Zero-Reversed-Laxity) that gives
the highest priority to a job with the zero-reversed-
laxity state and schedules other jobs by LRF. In other
words, LRZRL is a time-reversed scheduling algorithm
against EDZL (denoted by LRZRL = EDZL−). Similarly,
EDZL = LRZRL− holds.

Example 5.2. Since RM = RM− holds and the zero-laxity
policy matches the zero-reversed-laxity policy, schedul-
ing of {Jqi }τi∈τ by RMZL (Rate Monotonic until Zero
Laxity) corresponds that of {J−qi }τi∈τ by the scheduling
algorithm RMZRL (Rate Monotonic until Zero Reversed-
Laxity). In other words, RMZL = RMZRL− and
RMZRL = RMZL− hold. Similarly, the same relation-
ship holds for DMZL (Deadline Monotonic until Zero
Reversed-Laxity) and DMZRL (Deadline Monotonic un-
til Zero Reversed-Laxity).

Once we find a time-reversed job-level dynamic-priority
scheduling algorithm, we can apply Definition 2 to a
schedulability test for a job-level dynamic-priority schedul-
ing algorithm. In the next subsections, we investigate time-
reversibility of schedulability tests for EDZL and its time-
reversed scheduling algorithm LRZRL, and demonstrate

how to adapt time-reversibility theories for EDZL schedula-
bility improvement.

5.2 EDZL and LRZRL schedulability tests

EDZL (Earliest Deadline first until Zero Laxity) deploys the
zero-laxity policy on top of EDF. Different from EDF, EDZL
exhibits an additional necessary deadline-miss condition,
which potentially makes its schedulability tighter. In this
subsection, we develop RTA for EDZL that employs the nec-
essary deadline-miss condition tailored to EDZL, and then
develop RTA for LRZRL (i.e., a time-reversed scheduling
algorithm against EDZL) and show its time-reversibility.

The first step to derive RTA for EDZL is to derive an
upper-bound of Ik←i(r

q
k, r

q
k + `) under EDZL, which was

derived from existing DA for EDZL [15]. That is, a job Jpi
can interfere with another job Jqk only when (i) the deadline
of Jpi is no later than that of Jqk or (ii) Jqi has the zero
laxity. The former was already addressed by Ei(Dk, Si) in
Eq. (4) as EDF interference upper-bound. Even under the
latter situation, a tighter upper-bound of interference is still
Ei(Dk, Si) as explained in [15]. Therefore, we use the same
upper-bound as EDF, i.e., Eqs. (5) and (6) for EDZL with and
without slack reclamation, respectively.

Using the above upper-bounds, Lemmas 2 and 3 can
guarantee the schedulability of a task set, by checking
whether a task’s jobs can trigger the first deadline miss.
In addition, the zero-laxity-based scheduling algorithm that
gives the highest priority to zero-laxity jobs has an addi-
tional necessary deadline miss condition. That is, a deadline
miss occurs only when there are at most m + 1 jobs with
the zero-laxity state under any zero-laxity-based scheduling
algorithm [6]. While the condition was incorporated into
DA [6, 15], it has not been into RTA. Now we develop a way
to check the capability for a task to reach the zero-laxity
state, to be incorporated into RTA for EDZL.

Lemma 7 (Implicitly presented in [15]). Suppose that τ is
scheduled by a zero-laxity-based scheduling algorithm
that gives the highest-priority to zero-laxity jobs. A task
τk ∈ τ cannot reach the zero-laxity state, if its slack value
Sk is positive.

Proof: By the definition, the slack value Sk means a
lower-bound of the interval between a completion time and
deadline of every job invoked by τk. Therefore, a positive
slack Sk implies that τk cannot reach the laxity smaller than
Sk, which proves the lemma.

Using Lemma 7, RTA for EDZL with/without slack
reclamation operates as follows. Initial procedures are the
same as those for RTA for EDF. After checking all tasks’
schedulability by calculating their response times, we deem
the task set schedulable if either all tasks are deemed
schedulable (the same condition as RTA for EDF) or there
are at most m tasks whose slack values are not positive by
Lemma 7 (i.e., whose response times are strictly smaller than
their relative deadlines).

When it comes to LRZRL, a time-reversed scheduling
algorithm against EDZL, it gives the highest priority to zero-
revered-laxity jobs and prioritizes other jobs by LRF. To de-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

11

velop RTA for LRZRL, we need to calculate an upper-bound
of interference. Since a job Jpi can interfere with another job
Jqk only when (i) the release time of Jpi is no earlier than
that of Jqk or (ii) Jpi has the zero-reversed-laxity. The former
situation is the same as LRF, and therefore the interference
is upper-bounded by Li(`) as presented in Eq. (8). For the
latter, we need to figure out the condition for a job to have
the zero-reversed-laxity. By definition, a job Jpi has the zero
reversed-laxity at t, only when it performs its execution
during [rpi , t). Therefore, if we shift the release times of jobs
of τi earlier than the situation that yields Li(`) in Fig. 5, the
first job should continue to perform its execution from its
release time. This yields exclusion of some execution of the
first job from the interference, and therefore the shift does
not increase the interference. Therefore, under LRZRL, an
upper-bound of Ik←i(r

q
k, r

q
k + `) is still Li(`).

Thus, RTA for LRZRL is the same as RTA for LRF (i.e.,
Lemma 2 with applying Eq. (8)). This implies that RTA for
LRZRL is also time-reversible with respect to execution-
, task- and task-set-level schedulability as we proved in
Lemma 5.

5.3 EDZL schedulability improvement using time-
reversibility
In this subsection, we show how to compose schedulability
from a schedulability test for EDZL and a time-reversible
schedulability test for LRZRL. In order to utilize EDZL’s
own necessary deadline-miss conditions related to zero-
laxity tasks, we need to develop a way to compose a
guarantee for every job of a task not to reach the zero-laxity
state, which is different from Theorem 3 that composes a
guarantee for every job of a task to finish its execution
within its deadline.

To this end, we apply a simple necessary condition for a
job not to reach the zero-laxity state: a job Jqk cannot reach
the zero laxity if it finishes its execution at or before dqk − 1.
That is, as long as Jqk finishes its execution before dqk − 1,
the job’s laxity at any instant in [rk, dk − 1] is at least one
(because the time to deadline is always strictly larger than
the remaining execution).

In order to adapt Theorem 3 so as to check each task’s
capability in reaching the zero-laxity state, we need to
upper-bound Ik←i(d

q
k − `, d

q
k − 1) under EDZL. To utilize

existing results of RTA for LRZRL, we first upper-bound
Ik←i(d

q
k − `, dqk) under EDZL. As we mentioned in Sec-

tion 5.2, a job Jpi can interfere with another job Jqk under
EDZL only when (i) the deadline of Jpi is no later than that
of Jqk or (ii) Jqi has the zero laxity. The interference upper-
bound for Case (i) was already addressed by Li(`, Si) in
Eq. (10) as EDF interference upper-bound, and that for Case
(ii) is also Li(`, Si) in that shifting the release pattern later
than Fig. 7 (shown in the lower figure) cannot increase the
amount of interference. Therefore, Ik←i(d

q
k − `, dqk) under

EDZL is upper-bounded as follows.

Ik←i(d
q
k − `, dqk) under EDZL ≤min

(
Wi(`, Si), Li(`, Si)

)
=Li(`, Si). (13)

Using the above inequality, Ik←i(d
q
k − `, d

q
k − 1) can be

upper-bounded as follows.

Ik←i(d
q
k − `, dqk − 1) under EDZL

≤min
(
`− 1, Ik←i(d

q
k − `, dqk) under EDZL

)
≤min(`− 1, Li(`, Si)). (14)

Note that `−1 comes from the fact that Ik←i(t0, t1) under
any scheduling algorithm is upper-bounded by the interval
length t1 − t0.

Incorporating Eq. (14) to the necessary deadline-miss
condition for EDZL, we can develop an improved EDZL
schedulability test as follows.
Lemma 8. A task set τ is schedulable by EDZL, if at least

one of the two following conditions holds:

• For every τk ∈ τ , there exists C ′k ∈ [0, Ck] and ` ∈
[0, Dk] such that Eqs. (11) and (12) hold; or

• For at most |τ | − m tasks τk ∈ τ , there exist C ′k ∈
[0, Ck] and ` ∈ [0, Dk−1] such that Eqs. (11) and (15)
hold.

C′k +

⌊
1

m

∑
τi∈τ−{τk}

min
(
Li(Dk − `, Si), (Dk − 1− `)− C′k + 1

)⌋
≤ Dk − 1− `.

(15)

Proof: Since all task sets schedulable by EDF are also
schedulable by EDZL [6], the first condition holds (which is
the same as Lemma 6).

The second condition addresses the necessary deadline-
miss condition for EDZL: a deadline miss occurs only when
there exist at least m + 1 tasks which can reach the zero-
laxity. Therefore, the remaining step is to prove that if there
exist C ′k ∈ [0, Ck] and ` ∈ [0, Dk− 1] such that Eqs. (11) and
(15) hold, τk cannot reach the zero-laxity state.

Then, the remaining proof is similar to that of Lemma 6,
as follows. We divide the interval of interest [rqk, d

q
k − 1) of

length Dk − 1 into two: [rqk, r
q
k + `) and [rqk + `, dqk − 1).

Then, we prove that (a) Ck − C ′k amount of execution is
performed in the former interval (length `), and (b) C ′k
amount of execution is performed in the latter interval
(length Dk − 1 − `). Since Case (a) is the same as that of
Lemma 6, here we cover Case (b) only.

Case (b): By applying Eq. (1), we can guarantee C ′k
amount of execution performed in [rqk + `, dqk − 1) of length
Dk − 1− `, if the following inequality holds:

C′k +

⌊
1

m

∑
τi∈τ−{τk}

min
(
Ik←i(r

q
k + `, dqk), (Dk − 1− `)− C′k + 1

)⌋
≤ Dk − 1− `.

Since Ik←i(r
q
k+ `, d

q
k−1) ≤ min(Dk−1− `, Li(Dk− `, Si))

holds under EDZL (from Eq. (14)), Eq. (15) implies that we
can guarantee C ′k amount of execution performed in [rqk +
`, dqk − 1).

This completes the proof.

6 EVALUATION

In this section, we evaluate the schedulability tests de-
rived from the notion of time-reversibility. For quantitative
schedulability improvement, we generate a number of task
sets, and check that each task set is deemed schedulable

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

12

TABLE 1
The number of constrained-deadline task sets proven schedulable by RTAEDF, TREDF, RTAEDZL, TREDZL, RTAWC, and RTALRF

The number of Ratio The number of Ratio The number of Ratio
schedulable task sets schedulable task sets schedulable task sets

m RTAEDF TREDF
TREDF
RTAEDF

RTAEDZL TREDZL
TREDZL
RTAEDZL

RTAWC RTALRF
RTALRF
RTAWC

2 342813 351966 102.7 % 552968 556911 100.7 % 91000 97687 107.3 %
4 197068 207454 105.3 % 417651 420494 100.7 % 43903 45909 104.6 %
8 119199 130188 109.2 % 350361 352152 100.5 % 20282 20850 102.8 %
16 74741 84891 113.6 % 317569 318600 100.3 % 9006 9176 101.9 %

TABLE 2
The number of implicit-deadline task sets proven schedulable by RTAEDF, TREDF, RTAEDZL, TREDZL, RTAWC, and RTALRF

The number of Ratio The number of Ratio The number of Ratio
schedulable task sets schedulable task sets schedulable task sets

m RTAEDF TREDF
TREDF
RTAEDF

RTAEDZL TREDZL
TREDZL
RTAEDZL

RTAWC RTALRF
RTALRF
RTAWC

2 469330 483458 103.0 % 613284 621851 101.4 % 176238 208941 118.6 %
4 327386 339693 103.8 % 500895 505713 101.0 % 103320 113717 110.1 %
8 238768 253407 106.1 % 445316 448277 100.7 % 58553 62076 106.0 %
16 176414 192963 109.4 % 418609 420378 100.4 % 32373 33680 104.0 %

by existing schedulability tests as well as the new ones
derived in this paper. Then, we compare time-complexity
of the schedulability tests.

Schedulability tests to be evaluated. This section focuses
on the following six schedulability tests.

• RTAEDF: RTA for EDF with slack reclamation, which
is the state-of-the-art EDF schedulability test, i.e.,
Lemma 2 with applying Eq. (5) in this paper,

• TREDF: Lemma 6 developed in this paper, which is
an EDF schedulability test derived from the time-
reversibility theories,

• RTAEDZL: RTA for EDZL with slack reclamation,
which is the state-of-the-art EDZL schedulability test,
presented Section 5.2 in this paper,3

• TREDZL: Lemma 8 developed in this paper, which is
an EDZL schedulability test derived from the time-
reversibility theories,

• RTAWC: RTA for any work-conserving scheduling al-
gorithm with slack reclamation, which is the state-of-
the-art schedulability test for any work-conserving
scheduling algorithm, i.e., Lemma 2 with applying
Ik←i(r

q
k, r

q
k + `) ≤Wi(`, Si) in this paper, and

• RTALRF: Lemma 2 with applying Eq. (8) developed
in this paper, which is an LRF schedulability test
developed in this paper. Note that RTALRF is the same
as RTA for LRZRL, as mentioned in Section 5.2.

Note that it is known that all task sets deemed schedu-
lable by DA are also deemed schedulable by the corre-
sponding RTA [12]; for example, every task set deemed
schedulable by DA for EDF with slack reclamation is also
deemed schedulable by RTA for EDF with slack reclama-
tion. Therefore, this section presents the best schedulability
performance—that of RTAs, not DAs. We also note that since

3. Since no one developed RTA for EDZL, RTA for EDZL is our
contribution. However, for fair comparison, we choose RTA for EDZL
with slack reclamation as a base schedulability test, which dominates
existing DA for EDZL with slack reclamation.

there was no LRF (as well as LRZRL) schedulability test so
far, RTAWC is the state-of-the-art LRF (as well as LRZRL)
schedulability test.

Task set generation. To demonstrate the effectiveness of
time-reversibility in improving schedulability, we generate
real-time task sets based on a popular technique [16], used in
many multiprocessor scheduling papers such as [11, 17]. We
consider three task parameters: (a) the number of processors
m (2, 4, 8 or 16), (b) the type of tasks in each task set (con-
strained deadline: Di ≤ Ti or implicit deadline: Di = Ti),
and (c) task utilization (Ci/Ti) distribution of individual
tasks (bimodal with parameter: 0.1, 0.3, 0.5, 0.7 or 0.9, or
exponential with parameter: 0.1, 0.3, 0.5, 0.7 or 0.9), detailed
in [17]. For each task, Ti is uniformly chosen in [1, 1000], Ci
is chosen based on the bimodal or exponential parameter,
and Di is uniformly selected in [Ci, Ti] for constrained-
deadline tasks or is equal to Ti for implicit-deadline tasks.
To meet the quantum length requirement, we set all task
parameters to the closest integer values.

For each combination of (a), (b) and (c), we repeat the
following steps, and generate 100,000 task sets. As a result,
1,000,000 task sets are generated, for given m (i.e., the
number of processors) and the type of tasks in each task
set (i.e., either implicit- or constrained-deadline task).

1) We generate a set of m+ 1 tasks, because a task set
with m or less tasks is trivially schedulable.

2) We check whether the generated task set can pass
an exact feasibility condition (i.e.,

∑
τ∈τ

Ci/Ti ≤
m) [18] for implicit-deadline task sets and a nec-
essary feasibility condition in [19] for constrained-
deadline ones.

3) If it fails to pass the feasibility test, we discard the
generated set and return to Step 1). Otherwise, we
include this set for evaluation. This valid task set
serves as a basis for the next new set; we add a new
task into the valid task set, and return to Step 2)
with this new set.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Th
e

ra
tio

 o
f

sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilization

TR-EDF

RTA-EDF

(a) All range of task set utilization

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 3.5 4 4.5 5 5.5 6 6.5 7

Th
e

ra
tio

 o
f

sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilization

TR-EDF

RTA-EDF

(b) Task set utilization focused on [3.0, 7.0)

Fig. 9. The ratio of schedulable constrained-deadline task sets by TREDF and RTAEDF when m = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

Th
e

ra
tio

 o
f

sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilization

RTA-LRF

RTA-WC

(a) All range of task set utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Th
e

ra
tio

 o
f

sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilization

RTA-LRF

RTA-WC

(b) Task set utilization focused on [0.7, 1.5)

Fig. 10. The ratio of schedulable implicit-deadline task sets by RTALRF and RTAWC when m = 2

Schedulability improvement. In Tables 1 and 2, we
present the number of schedulable task sets by the six
schedulability tests and the ratio between the corresponding
schedulability tests, on 2, 4, 8 and 16 processors. In partic-
ular, Tables 1 and 2 deal with constrained- and implicit-
deadline task sets, respectively.

If we compare RTAEDF with TREDF, TREDF covers up
to 13.6% additional EDF-schedulability task sets, and the
largest improvement is achieved for constrained-deadline
task sets on m = 16. The improvement ratio increases as
m increases, and the improvement for constrained-deadline
task sets is larger than that for implicit-deadline task sets.
To show the schedulability improvement according to task
set utilization (i.e.,

∑
τi∈τ Ci/Ti), we draw Figs. 9(a) and

9(b) for the case of constrained-deadline tasks on m = 16.
The X-axis and Y-axis of the figures represent task set
utilization and the ratio of schedulable task sets. While
Fig. 9(a) illustrates all range of task set utilization, Fig. 9(b)
focuses on task set utilization between 3.0 and 7.0, where
the improvement is significant. As seen in the figures, the
improvement is highlighted when task set utilization is
between 3.0 and 7.0. This is because task sets with low
(likewise high) utilization is inherently easy (likewise difficult)
to schedule, yielding small room for further improvement.
In the supplement, we show more graphs with different m
and task type (i.e., implicit- and constrained-deadline task).

When it comes to EDZL schedulability improvement,
TREDZL yields up to 1.4% schedulability improvement com-
pared to RTAEDZL. The amount of schedulability improve-
ment for EDZL is less significant than that for EDF. This
is because, RTAEDZL utilizes the necessary deadline-miss
condition specialized for EDZL effectively, and therefore the
test is already tight enough, yielding small room for further
improvement. However, the notion of time-reversibility can
result in schedulability improvement even for EDZL, in
spite of small quantity.

RTALRF, the first schedulability test tailored to LRF, sig-
nificantly improves the state-of-the-art schedulability test,
RTAWC. For example, if we focus on implicit-deadline tasks
on m = 2, there is 18.6% schedulability improvement.
Similar to Figs. 9(a) and 9(b), we draw Figs. 10(a) and 10(b)
for the case of constrained-deadline tasks on m = 2. The
figures show that schedulability improvement stands out
when task set utilization is in [0.7, 1.5), as task sets with
middle utilization have much room for further improve-
ment, compared to those with low and high utilization.

Time-complexity. One may wonder additional time-
complexity incurred by the notion of time-reversibility, but
it depends on schedulability tests that the notion is applied
to. Therefore, we compare time-complexity of TREDF and
TREDZL, with corresponding existing schedulability tests.
For time-complexity, it is known that RTA without and

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533615, IEEE
Transactions on Parallel and Distributed Systems

14

with slack reclamation requires O
(
n2 · maxτi∈τ Di

)
and

O
(
n3 · (maxτi∈τ Di)

2
)

computations, respectively [4]. The
former includes RTALRF, and the latter includes RTAEDF,
RTAEDZL, and RTAWC. When it comes to TREDF and TREDZL,
they requires Ci+1 values to be checked for each task’s C ′i,
yieldingO

(
n3 ·(maxτi∈τ Di)

2 ·maxτi∈τ Ci
)

time-complexity.
Considering these schedulability tests are usually designed
for offline schedulability guarantees, all the schedulability
tests derived in this paper RTALRF, TREDF and TREDZL are
practical in terms of time-complexity.

7 CONCLUSION

In this paper, we proposed a new paradigm for real-time
scheduling, called time-reversibility, and demonstrated how
to exploit the paradigm for schedulability improvement.
We also showed wide applicability of time-reversibility; it
can be applied to not only simple scheduling algorithms
such as EDF, but also job-level dynamic-priority scheduling
algorithms such as EDZL.

While the target system model was limited to preemp-
tive scheduling algorithms and sequential tasks, we believe
that the notion of time-reversibility can be applied to more
general system models. In the future, we would like to
study how to adapt time-reversibility for other system mod-
els, such as non-preemptive scheduling algorithm, parallel
tasks [20], mixed-criticality tasks [21], and end-to-end peri-
odic tasks [22].

ACKNOWLEDGEMENT

An earlier (shorter) version of this paper was presented at
the IEEE RTSS 2014 [23]. This research was supported by
Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2014R1A1A1035827).

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[2] T. P. Baker and M. Cirinei, “Brute-force determination of multi-
processor schedulability for sets of sporadic hard-deadline tasks,”
in Proceedings of the 11th International Conference on Principles of
Distributed Systems, 2007, pp. 62–75.

[3] V. Bonifaci and A. Marchetti-Spaccamela, “Feasibility analysis
of sporadic real-time multiprocessor task systems,” Algorithmica,
vol. 63, no. 4, pp. 763–780, 2012.

[4] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in Proceedings of
IEEE Real-Time Systems Symposium (RTSS), 2007, pp. 149–160.

[5] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of EDF on multiprocessor platforms,” in Proceedings of
Euromicro Conference on Real-Time Systems (ECRTS), 2005, pp. 209–
218.

[6] J. Lee, A. Easwaran, I. Shin, and I. Lee, “Zero-laxity based real-
time multiprocessor scheduling,” Journal of Systems and Software,
vol. 84, no. 12, pp. 2324–2333, 2011.

[7] S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin, “Efficient real-time
scheduling algorithms for multiprocessor systems,” IEICE Trans.
on Communications, vol. E85–B, no. 12, pp. 2859–2867, 2002.

[8] A. Mok, “Fundamental design problems of distributed systems
for the hard-real-time environment,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1983.

[9] J. Lee, K. G. Shin, I. Shin, and A. Easwaran, “Composition
of schedulability analyses for real-time multiprocessor systems,”
IEEE Transactions on Computers, vol. 64, no. 4, pp. 941–954, 2015.

[10] J. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,” Performance Evaluation,
vol. 2, pp. 237–250, 1982.

[11] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20, pp. 553–566,
2009.

[12] M. Bertogna and S. Baruah, “Tests for global EDF schedulability
analysis,” Journal of systems architecture, vol. 57, no. 5, pp. 487–497,
2011.

[13] R. I. Davis and A. Burns, “FPZL schedulability analysis,” in
Proceedings of IEEE Real-Time Technology and Applications Symposium
(RTAS), 2011, pp. 245–256.

[14] J. Y.-T. Leung, “A new algorithm for scheduling periodic, real-time
tasks,” Algorithmica, vol. 4, pp. 209–219, 1989.

[15] T. P. Baker, M. Cirinei, and M. Bertogna, “EDZL scheduling
analysis,” Real-Time Systems, vol. 40, pp. 264–289, 2008.

[16] T. P. Baker, “Comparison of empirical success rates of global
vs. partitioned fixed-priority EDF scheduling for hard real-time,”
Department of Computer Science, Florida State University, Talla-
hassee, Tech. Rep. TR–050601, 2005.

[17] J. Lee, A. Easwaran, and I. Shin, “Laxity dynamics and LLF
schedulability analysis on multiprocessor platforms,” Real-Time
Systems, vol. 48, no. 6, pp. 716–749, 2012.

[18] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Pro-
portionate progress: a notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[19] T. P. Baker and M. Cirinei, “A necessary and sometimes sufficient
condition for the feasibility of sets of sporadic hard-deadline
tasks,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS),
2006, pp. 178–190.

[20] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global
EDF schedulability analysis for synchronous parallel tasks on
multicore platforms,” in Proceedings of Euromicro Conference on Real-
Time Systems (ECRTS), 2013, pp. 25–34.

[21] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proceedings of
IEEE Real-Time Systems Symposium (RTSS), 2007, pp. 239–243.

[22] J. Yao, X. Liu, Z. Gu, X. Wang, and J. Li, “Online adaptive uti-
lization control for real-time embedded multiprocessor systems,”
Journal of Systems Architecture, vol. 56, no. 9, pp. 463–473, 2010.

[23] J. Lee, “Time-reversibility of schedulability tests,” in Proceedings of
IEEE Real-Time Systems Symposium (RTSS), 2014, pp. 294–303.

Jinkyu Lee is an assistant professor in De-
partment of Computer Science and Engineering,
Sungkyunkwan University (SKKU), Republic of
Korea, where he joined in 2014. He received
the B.S., M.S., and Ph.D. degrees in computer
science from the Korea Advanced Institute of
Science and Technology (KAIST), Republic of
Korea, in 2004, 2006, and 2011, respectively.
He has been a visiting scholar/research fellow
in the Department of Electrical Engineering and

Computer Science, University of Michigan, U.S.A. in 2011–2014. His
research interests include system design and analysis with timing guar-
antees, QoS support, and resource management in real-time embedded
systems, mobile systems, and cyber-physical systems. He won the
best student paper award from the 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS) in 2011, and the
Best Paper Award from the 33rd IEEE Real-Time Systems Symposium
(RTSS) in 2012.

