
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

1

Shadow/Puppet Synthesis: A Stepwise
Method for the Design of Self-Stabilization

Alex Klinkhamer and Ali Ebnenasir

Abstract—This paper presents a novel two-step method for automated design of self-stabilization. The first step enables the
specification of legitimate states and an intuitive (but imprecise) specification of the desired functional behaviors in the set of
legitimate states (hence the term “shadow”). After creating the shadow specifications, we systematically introduce the main
variables and the topology of the desired self-stabilizing system. Subsequently, we devise a parallel and complete backtracking
search towards finding a self-stabilizing solution that implements a precise version of the shadow behaviors, and guarantees
recovery to legitimate states from any state. To the best of our knowledge, the shadow/puppet synthesis is the first sound and
complete method that exploits parallelism and randomization along with the expansion of the state space towards generating
self-stabilizing systems that cannot be synthesized with existing methods. We have validated the proposed method by creating
both a sequential and a parallel implementation in the context of a software tool, called Protocon. Moreover, we have used
Protocon to automatically design three new self-stabilizing protocols that we conjecture to require the minimal number of states
per process to achieve stabilization (when processes are deterministic): 2-state maximal matching on bidirectional rings, 5-state
token passing on unidirectional rings, and 3-state token passing on bidirectional chains.

Index Terms—Self-Stabilization, Distributed computing, Program synthesis

F

1 INTRODUCTION
Self-stabilization is an important property of to-
day’s distributed systems as it ensures convergence
in the presence of transient faults (e.g., loss of co-
ordination and bad initialization). That is, from any
state/configuration, a Self-Stabilizing (SS) system re-
covers to a set of legitimate states (a.k.a. invariant)
in a finite number of steps. Moreover, starting from
its invariant, the executions of an SS system remain
in the invariant; i.e., closure. Design and verifica-
tion of convergence are difficult tasks [1], [2], [3] in
part due to the requirements of (i) recovery from
any state; (ii) recovery under distribution constraints,
where processes can read only the state of their
neighboring processes (a.k.a. their locality), and (iii)
the non-interference of convergence with closure. One
approach to facilitate the development of SS systems
is to separate the concerns of closure and convergence
for the designer; i.e., separate functional concerns
from self-stabilization. Moreover, automating the de-
sign steps could potentially decrease development
costs. However, there are two important impediments
before such a two-step design method. First, for some
protocols (e.g., token passing systems like Dijkstra’s 4-
state chain [1] and Gouda’s 3-bit ring [4]) specifying
the functional behaviors (in the absence of faults)
amounts to specifying their self-stabilizing version!

• The authors are with the Department of Computer Science, Michigan
Technological University, Houghton, MI 49931, U.S.A.
E-mail: {apklinkh,aebnenas}@mtu.edu

This work was sponsored by the NSF grant CCF-1116546.
Superior, a high performance computing cluster at Michigan Technolog-
ical University, was used in obtaining the experimental results presented
in this paper.

That is, the actions enabled in the invariant (a.k.a.
closure actions) also provide convergence from ille-
gitimate states. Second, existing automated methods
are either incomplete [5], [6], [7], [8] or complete [9],
[10] but require exact specification of legitimate states
using formal logics (e.g., temporal logic), which are
difficult to use by mainstream engineers. This paper
presents a novel method where we address these
challenges.

Most existing methods for the design of self-
stabilization are either manual [1], [11], [12], [13], [14],
[15], [2] or rely on heuristics [5], [6], [7], [8] that
may fail to generate a solution for some systems.
For example, Awerbuch et al. [11] present a method
based on distributed snapshot and reset for locally
correctable systems; systems in which the correction
of the locality of each process results in global recov-
ery to invariant. Gouda and Multari [12] divide the
state space into a set of supersets of the legitimate
states, called convergence stairs, where for each stair
closure and convergence to a lower-level stair are
guaranteed. Stomp [13] provides a method based on
ranking functions for design and verification of self-
stabilization. Gouda [2] presents a theory for design
and composition of self-stabilizing systems. Demirbas
and Arora [16] present a method for stabilization-
preserving refinement of abstract designs using wrap-
pers at the specification and implementation levels.
Nesterenkol and Tixeuil [17] define the notion of ideal
stabilization where all states are considered legitimate,
and show how ideal stabilization can facilitate the
design and composition of some stabilizing systems.
Methods for algorithmic design of convergence [5],
[6], [7], [8] are mainly based on sound heuristics that

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

2

search through the state space of a non-stabilizing sys-
tem in order to synthesize recovery actions while en-
suring non-interference with closure. However, these
heuristics may fail to find a solution while there
exists one; i.e., they are sound but incomplete. The
approach in [9], [10] is sound and complete, but it
employs constraint solvers as a blackbox. By contrast,
the shadow/puppet synthesis relies on a backtracking
algorithm that is customized for the synthesis of self-
stabilization and can be micromanaged towards pro-
viding better efficiency (evident by our experimental
results). Moreover, to increase the likelihood of find-
ing a solution, we exploit parallelism and randomiza-
tion in our backtracking algorithm. Bounded synthesis
[18] allows for a systematic state space expansion, but
it does not consider all states as potential initial states.

This paper proposes a two-step method for auto-
mated design of self-stabilization where we enable
designers to deal with the concerns of closure and
convergence separately, and provide a method for
state space expansion. The underlying philosophy
behind our work is that the constraints that the syn-
thesis algorithm must follow (e.g., read restrictions due to
distribution) should not be imposed on designers. Specifi-
cally, the proposed approach includes two layers (see
Figure 1): (1) intuitive specification of an invariant and
functional behaviors in the absence of faults (i.e., clo-
sure behaviors/actions), called the shadow specifica-
tion, and (2) automated synthesis of a self-stabilizing
system that implements a precise characterization of
the shadow behavior in the invariant and enables
convergence to the specified invariant in terms of
some superposed variables, called the puppet system.
This shadow/puppet synthesis is inspired by the way
a puppeteer wishes to tell a story via shadows of
puppets on a screen. A puppet itself can be more
intricate than the shadow it casts. To make our desired
shadow (functional behavior), we therefore rely on a
clever puppeteer (the computer) to construct a puppet
(synthesized protocol).

Fig. 1: The proposed shadow/puppet synthesis method.

The algorithmic design of the puppet actions is
based on a backtracking search. The backtracking

search is conducted in a parallel fashion amongst a
fixed number of threads that simultaneously search
for an SS solution in the space of all acceptable actions.
When a thread finds a combination of design choices
(i.e., actions) that would result in the failure of the
search (a.k.a. a conflict), it shares this information with
other threads, thereby improving resource utilization.
Contributions. The contributions of this work are
multi-fold. First, we devise a two-step design method
that separates the concerns of closure and conver-
gence for the designer, and enables designers to in-
tuitively specify functional behaviors and systemati-
cally include computational redundancy. Second, we
propose a parallel and complete backtracking search
that finds an SS solution if one exists. If a solu-
tion does not exist in the current state space of
the program, then designers can include additional
puppet variables or alternatively increase the domain
size of the existing puppet variables and rerun the
backtracking search. Third, we present three different
implementations of the proposed method as a soft-
ware toolset, called Protocon (http://asd.cs.mtu.edu/
projects/protocon/), where we provide a sequential
implementation and two parallel implementations;
one multi-threaded and the other an MPI-based im-
plementation. We also demonstrate the power of
the proposed method by synthesizing several new
network protocols that all existing heuristics fail to
synthesize. These case studies include 2-state maximal
matching on bidirectional rings, 5-state token passing
on unidirectional rings, and 3-state token passing on a
bidirectional chains. In [19], [20], we perform detailed
serial and parallel benchmarks for simpler systems
such as coloring on Kautz graphs [21] which can
represent a P2P network topology, the 3-bit token ring
of Gouda and Haddix [4], ring orientation, and leader
election on a ring.
Organization. Section 2 provides a motivating ex-
ample for shadow/puppet synthesis. Section 3 in-
troduces the basic concepts of protocols, transient
faults, closure and convergence. Section 4 formally
states the problem of designing self-stabilization. Sec-
tion 5 presents the backtracking algorithm. Section 6
provides an overview of our case studies. Section 7
discusses related work. Finally, Section 8 makes con-
cluding remarks and presents future/ongoing work.

2 MOTIVATING EXAMPLE

In order to illustrate the proposed approach, we
discuss the design of the well-known token passing
protocol in a unidirectional ring (proposed by Dijkstra
[1]) using shadow/puppet synthesis. Token passing in
a unidirectional ring includes the following require-
ments: (1) in the absence of faults, there is exactly one
token in the ring (i.e., legitimate states or invariant)
and the token is circulated along the ring, and (2)
if there are multiple tokens in the ring (due to the

http://asd.cs.mtu.edu/projects/protocon/
http://asd.cs.mtu.edu/projects/protocon/

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

3

occurrence of faults), then the protocol will eventually
reach a configuration where exactly one token exists
thereafter. Dijkstra [1] formulated this protocol as
follows: each process has a variable x with a finite
domain of at least N values, where N is the number
of processes in the ring. Each process Pi (0 ≤ i < N)
can read and write its own variable xi and can also
read xi−1, where addition and subtraction are modulo
N . The following actions guarantee both closure and
convergence: (xN−1 = x0 −→ x0 := x0 + 1) of P0

and (xi−1 6= xi −→ xi := xi−1) of each other Pi

(1 ≤ i < N). Each action has a guard condition (placed
before −→) and a statement (placed after −→) that
is executed atomically if the guard evaluates to true.
Process P0 has the token iff (if and only if) xN−1 = x0,
and any other Pi (1 ≤ i < N) has the token iff xi−1 6= xi.
Research Problem. Now, imagine that we did not
have Dijkstra’s solution and we would like to design
a self-stabilizing protocol that meets the aforemen-
tioned requirements. We are faced with two options:
(1) do what Dijkstra did; that is, in a single step design
a protocol that circulates the unique token in legit-
imate states and ensures convergence to legitimate
states if there are multiple tokens, or (2) assume no
faults occur and design a system that ensures the ex-
istence of a unique token in the absence of faults, and
then devise actions that ensure convergence without
interfering with closure actions. It is not hard to see
that the first option seems more difficult since we have
to simultaneously tackle two problems. However, the
challenge of the second option is that specifying the
behaviors in the absence of faults in terms of protocol
variables could be a daunting task for some protocols.
For example, these actions capture the closure actions
of Dijkstra’s token passing protocol: (xN−1 = x0 −→
x0 := x0 + 1) of P0 and (xi−1 = xi + 1 −→ xi := xi−1)
of each other Pi (1 ≤ i < N). Observe that the
design of these actions is not straightforward. For
some protocols (e.g., Gouda’s constant space 3-bit
token passing [4]), it is even impossible to separate
the closure actions from convergence actions (since
closure actions provide convergence). Next, we illus-
trate the proposed approach (Figure 1) in the context
of Dijkstra’s token passing protocol.
Layer 1 - Step 1: Specify legitimate states. Based
on the first layer of the proposed approach in Figure
1, designers should first specify functional behaviors.
This layer includes two steps: the specification of
(i) legitimate states, and (ii) the actions that may
be executed in legitimate states. First, we consider
a shadow Boolean variable toki for each process Pi

indicating whether Pi has the token. Thus, the set of
legitimate states is simply specified as: I = (∃!i : i ∈
ZN : (toki = 1)) capturing the configurations where
there is a unique token in the ring. The quantifier ∃!
means there exists a unique value of i.
Layer 1 - Step 2: Specify shadow actions. To express
that each Pi should pass the token to Pi+1, designers

simply write the intuitive action (toki = 1 −→ toki :=
0; toki+1 := 1;). Notice that Pi explicitly changes
the state of Pi+1, thereby violating the read/write
restrictions of the locality of Pi specified on x variables
in Dijkstra’s protocol. The fundamental idea behind
shadow/puppet synthesis is that such restrictions must
not tie the hands of designers in expressing what they want.
Layer 2 - Step 1: Superpose puppet variables. After
specifying the shadow variables and actions, design-
ers should augment the shadow specification with
the puppet variables (which in the case of token ring
includes the x variables) along with the corresponding
read/write restrictions for processes. The domain of
puppet variables and their read/write restrictions can
respectively be obtained from the system requirement
and topology.
Layer 2 - Step 2: Automated design using a parallel
backtracking search algorithm. This step is fully
automated where designers benefit from the proposed
parallel backtracking algorithm (called the synthesis
algorithm) to find a solution that is self-stabilizing to
the specified legitimate states. We have developed
three implementations of this algorithm, namely a
centralized version, a multi-threaded version and an
MPI-based distributed version. The synthesis algo-
rithm is not allowed to read shadow variables since
the shadow variables/actions provide only an outline
of what is required to guide the synthesis algorithm.
As such, the guards of the actions of the synthesized
protocol will only be specified in terms of puppet
variables.
Layer 2 - Step 3: Existence of a solution. If the
backtracking algorithm fails to find a solution, then
designers should expand the state space by either in-
creasing the domain of puppet variables or introduc-
ing additional puppet variables. This can be achieved
by jumping to Step 1 of Layer 2 and repeating the
steps of Layer 2.

3 PRELIMINARIES

In this section, we present the formal definitions of
protocols and self-stabilization. Protocols are defined
in terms of their set of variables, their actions and their
processes. The definitions in this section are adapted
from [1], [14], [22], [2]. For ease of presentation, we
use a simplified version of Dijkstra’s token ring pro-
tocol [1] as a running example.
Protocols. A protocol p comprises N processes
{P0, · · · , PN−1} that communicate in a shared mem-
ory model under the constraints of an underlying
network topology Tp. Each process Pi, where i ∈ ZN

and ZN denotes values modulo N , has a set of local
variables Vi that it can read and write, and a set of
actions (a.k.a. guarded commands [23]) as defined in
Section 2. Thus, we have Vp = ∪N−1i=0 Vi. The domain
of variables in Vi is non-empty and finite. Tp specifies
what Pi’s neighboring processes are and which one
of their variables Pi can read; i.e., Pi’s locality. A local

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

4

state of Pi is a unique snapshot of its locality and a
global state of the protocol p is a unique valuation of
variables in Vp. The state space of p, denoted Sp, is the
set of all global states of p, and |Sp| denotes the size of
Sp. A state predicate is any subset of Sp specified as a
Boolean expression over Vp. We say a state predicate
X holds in a state s (respectively, s ∈ X) iff X evaluates
to true at s. A transition t is an ordered pair of global
states, denoted (s0, s1), where s0 is the source and s1 is
the target state of t. A valid transition of p must belong
to some action of some process. The set of actions of
Pi represent the set of all transitions of Pi, denoted δi.
The set of transitions of the protocol p, denoted δp, is
the union of the sets of transitions of its processes. A
deadlock state is a state with no outgoing transitions.
An action grd −→ stmt is enabled in a state s iff grd
holds at s. A process Pi is enabled in s iff there exists
an action of Pi that is enabled at s.
Example: Token Ring (TR). For simplicity, consider a
3-process (i.e., N = 3) version of Dijkstra’s Token
Ring (TR) protocol represented in Section 2 (adapted
from [1]). Each process Pi (0 ≤ i ≤ 2) includes an
integer variable xi with a domain {0, 1, 2}. Each Pi can
read and write xi and can read xi−1 (where x0−1 = x2
when i = 0). The actions of processes are as specified
in Section 2. The state predicate ITR captures the set
of states in which only one token exists, where ITR is:

(x0=x1 ∧ x1=x2) ∨ (x0 6=x1 ∧ x1=x2) ∨ (x0=x1 ∧ x1 6=x2)

Minimal Actions. Notice that the guard of an action
A : grd −→ stmt of a process Pi can be specified
in terms of a proper subset of Vi. In such cases, the
action A is the union of a set of k > 1 minimal
actions grd1 −→ stmt1, · · · , grdk −→ stmtk, where
grd = (grd1 ∨ · · · ∨ grdk), and each grdj (1 ≤ j ≤ k)
is specified in terms of the values of all variables
in Vi (where i ∈ ZN). More precisely, a minimal
action of a process Pi includes a single valuation
of all readable variables for Pi in its guard and a
single valuation of all writable variables for Pi in
its assignment statement. For example, consider an
action (x2 = x0 −→ x0 := x0 + 1) in the TR protocol.
This action is the union of the minimal actions (x2 =
0 ∧ x0 = 0 −→ x0 := 1), (x2 = 1 ∧ x0 = 1 −→ x0 := 2),
and (x2 = 2 ∧ x0 = 2 −→ x0 := 0). The proposed
backtracking algorithm in Section 5 explores the space
of all minimal actions.
Computations. Intuitively, a computation of a pro-
tocol p is an interleaving of its actions. Formally, a
computation of p is a sequence σ = 〈s0, s1, · · · 〉 of states
that satisfies the following conditions: (1) for each
transition (si, si+1) in σ, where i ≥ 0, there exists an
action (grd −→ stmt) in some process such that grd
holds at si and the execution of stmt at si yields si+1,
and (2) σ is maximal in that either σ is infinite or if it
is finite, then σ reaches a state sf where no action is
enabled. A computation prefix of a protocol p is a finite
sequence σ = 〈s0, s1, · · · , sm〉 of states, where m > 0,

such that each transition (si, si+1) in σ (where i ∈ Zm)
belongs to some action grd −→ stmt in some process.
The projection of a protocol p on a non-empty state
predicate X , denoted δp|X , consists of transitions of
p that start in X and end in X .
Closure and Invariant. A state predicate X is closed
in an action grd −→ stmt iff executing stmt from any
state s ∈ (X ∧ grd) results in a state in X . We say a
state predicate X is closed in a protocol p iff X is closed
in every action of p. In other words, closure [2] requires
that every computation of p starting in X remains in
X . We say a state predicate I is an invariant of p iff I
is closed in p.
TR Example. Starting from a state in the predicate
ITR, the TR protocol generates an infinite sequence
of states, where all reached states belong to ITR. C

Remark. Some researchers [24], [22] have a stronger
definition for the notion of invariant, where in ad-
dition to closure a program must meet its specifi-
cations from its invariant. Since in the problem of
synthesizing self-stabilization (Problem 4.1) we have a
constraint of preserving specifications in invariant, we
have a more relaxed definition of invariant where only
closure is required. We also note that a program may
have multiple invariants, however, ideally we would
like to use the weakest possible invariant.
Convergence and Self-Stabilization. A protocol p
strongly converges to I iff from any state in Sp, every
computation of p reaches a state in I . A protocol p
weakly converges to I iff from any state in Sp, there
is a computation of p that reaches a state in I . We
say a protocol p is strongly (respectively, weakly) self-
stabilizing to I iff I is closed in p and p is strongly
(respectively, weakly) converging to I . For ease of
presentation, we drop the term “strongly” wherever
we refer to strong stabilization.

4 PROBLEM STATEMENT

In this section, we formally state the problem of creat-
ing a self-stabilizing puppet protocol from a specified
shadow protocol. Let p be a non-stabilizing protocol
and I be an invariant of p. We manually expand the
state space of p by including new variables. Such
puppet variables provide computational redundancy in
the hopes of giving the protocol sufficient informa-
tion to detect and correct illegitimate states without
forming livelocks. Our experience shows that better
performance can be achieved if variables with small
domains are included initially. If the synthesis fails,
then designers can incrementally increase variable
domains or include additional puppet variables. This
way designers can manage the growth of the state
space and keep the synthesis time/space costs under
control.

Now, let p′ denote the self-stabilizing version of
p that we would like to design and I ′ represent
an invariant. Sp′ denotes the state space of p′; i.e.,

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

5

the state space of p expanded by adding puppet
variables. Such an expansion can be reversed by a
function H : Sp′ → Sp that maps every state in Sp′

to a state in Sp by removing the puppet variables.
The expansion itself is expressed as a one-to-many
mapping E : Sp → Sp′ that maps each state s ∈ Sp to
a set of states {s′ | s′ ∈ Sp′ ∧H(s′) = s}. Observe that
H and E can also be applied to transitions of p and p′.
That is, the function H maps each transition (s′0, s

′
1),

where s′0, s
′
1 ∈ Sp′ , to a transition (s0, s1), where

s0, s1 ∈ Sp. Moreover, E((s0, s1)) = {(s′0, s′1) | s′0 ∈
Sp′ ∧ s′1 ∈ Sp′ ∧ H((s′0, s′1)) = (s0, s1)}. Furthermore,
each computation (respectively, computation prefix)
of p′ in the new state space Sp′ can be mapped to a
computation (respectively, computation prefix) in the
old state space Sp usingH. Our objective is to design a
protocol p′ that is self-stabilizing to I ′ when transient
faults occur. That is, from any state in Sp′ , protocol p′

must converge to I ′. In the absence of faults, p′ must
behave similar to p. Thus, each computation of p′ that
starts in I ′ must be mapped to a unique computation
of p starting in I . We state the problem as follows1:
(The function Pre(δ) takes a set of transitions δ and
returns the source states of δ.)

Problem 4.1: Synthesizing Self-Stabilization.
• Input: A protocol p and an invariant I , the func-

tion H and the mapping E capturing the impact
of puppet variables.

• Output: A protocol p′ and an invariant I ′ in Sp′ .
• Constraints:

1) Preserve the invariant:
I = H(I ′)

2) Preserve transitions in the invariant:(
δp|I = H(δp′ |I ′) \ {(s, s) | s ∈ I}

)
∧ ∀(s′0, s′1) ∈ δp′ : (s′0 ∈ I ′ =⇒ s′1 ∈ I ′)

3) Preserve deadlock freedom in the invariant:
∀s ∈ Pre(δp|I) : (E(s) ∩ I ′) ⊆ Pre(δp′ |I ′)

4) Preserve progress in the invariant:
∀s ∈ Pre(δp|I) : (δp′ |I ′)|E(s) is cycle-free

5) p′ strongly converges to I ′

The first constraint requires that no states are
added/removed to/from I ; i.e., I = H(I ′). The second
constraint requires that each transition of the shadow
protocol δp|I is represented by some transitions in
δp′ |I ′, and all other transitions in δp′ originating from
I ′ remain in I ′ and do not change shadow values. The
third and fourth constraints require that non-silent
states (i.e., where a process is enabled) of p in I should
remain deadlock-free and livelock-free in p′ in order
to ensure progress to a state with different shadow
values. Finally, p′ must be livelock-free and deadlock-
free in ¬I ′.

Example 4.2: 4-State Token Ring
Keeping with the idea of superposition from [20]
for the sake of example, we can specify a token

1. This problem statement is an adaptation of the problem of
adding fault tolerance in [22].

ring using a non-stabilizing 2-state token ring. Each
process Pi owns a binary variable ti and can read
ti−1. The first process P0 is distinguished as Bot, in
that it acts differently from the others. Bot has a
token when tN−1 = t0 and each other process Pi>0

is said to have a token when ti−1 6= ti. Bot has action
(tN−1 = t0 −→ t0 := 1 − t0;), and each other process
Pi>0 has action (ti−1 6= ti −→ ti := ti−1;). Let I denote
the legitimate states where exactly one process has a
token:

I = ∃! i ∈ ZN : ((i=0 ∧ ti−1=ti) ∨ (i6=0 ∧ ti−1 6=ti))

To transform this protocol to a self-stabilizing ver-
sion thereof, we add a binary puppet variable xi to
each process Pi. Each process Pi can also read its
predecessor’s variable xi−1. Let I ′ = E(I) be the
invariant of this transformed protocol. Let the new
protocol p′ have the following actions for Bot and the
other processes Pi>0:

Bot : (xN−1 = x0) ∧ (tN−1 6= t0) −→ x0:=1− x0;

Bot : (xN−1 = x0) ∧ (tN−1 = t0) −→ x0:=1− x0; t0:=xN−1;

Pi : (xi−1 6= xi) ∧ (ti−1 = ti) −→ xi:=1− xi;

Pi : (xi−1 6= xi) ∧ (ti−1 6= ti) −→ xi:=1− xi; ti:=xi−1;

This protocol is stabilizing for all rings of size
N ∈ {2, . . . , 7} but contains a livelock when N =
8. In [20], we found that given this topology and
shadow protocol, no self-stabilizing protocol exists for
all N ∈ {2, . . . , 8}. Gouda and Haddix [4] give a
similar token ring protocol that stabilizes for all ring
sizes. They introduce another binary variable readyi to
each process.

Let us check that the superposition preserves the 2-
state token ring protocol for a ring of size N = 3.
Figure 2 shows the transition systems of the non-
stabilizing 2-state protocol p within I and stabilizing
4-state protocol p′, where each state is a node and
each arc is a transition. Legitimate states are boxed
and reoccurring transitions within these states are
black. Recovery transitions are drawn with dashed
gray lines. Solid gray lines denote transitions within
our maximal choice of I ′ but would serve as recovery
transitions for smaller choices of I ′. Verifying the
conditions from Problem 4.1, we find: (1) I = H(I ′)
is true since I ′ = E(I), (2) the shadow protocol is
preserved since there exists a transition of p′ that
changes rows iff a similar transition exists in the 2-
state protocol p, (3) no deadlocks are introduced in
the invariant since all states in the boxed rows have
outgoing transitions, (4) progress is preserved in the
invariant since since there are no cycles in any of the
boxed rows of p′, and (5) convergence from ¬I ′ to I ′

holds since there are no livelocks or deadlocks within
¬I ′.
Shadow/Puppet vs Superposition. Compare the
shadow/puppet method (Section 2) with the super-
position method (Example 4.2) when used to specify
a token ring’s invariant and behavior. In the shadow

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

6

Non-Stabilizing p

t0t1t2

000

001

010

011

100

101

110

111

Stabilizing p′

x0

x1

x2

∣∣∣∣∣∣
0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Legend

legitimate
state

illegitimate
state

closure
transition

convergence
transition

either
transition

Fig. 2: Transition systems of the non-stabilizing 2-state
and stabilizing 4-state token rings of size N = 3.

specification of Section 2, each toki variable denotes
whether a process has the token, and a token is passed
by simply moving a 1 value forward to toki+1. In the
non-stabilizing protocol of Example 4.2, each ti vari-
able holds token information in a clever way resulting
from a comparison with ti−1, and a token is passed by
flipping the ti bit. We see that in the case of superposi-
tion, a designer must have some foresight about how
the ti variables can be manipulated in a stabilizing
protocol. By contrast, the shadow/puppet method
gives a designer freedom to define token passing
with the toki shadow variables without constraining
the specific actions of the synthesized protocol p′.
It is therefore not surprising that shadow/puppet
synthesis can find protocols that cannot be reasonably
expressed with superposition (Section 6).

In Protocon, the two methods differ only by
whether the variables used to specify the invariant are
marked with the shadow keyword or not. In the case
that shadow variables exist, our synthesis method
treats them as write-only when constructing p′. When
the shadow protocol is silent (i.e., has no actions
in its invariant), processes should know the final
values of their writable shadow variables. Self-loops
are a trivial consequence of this and must be ignored
for actions that only assign shadow variables (e.g.,
Section 6.1). When the shadow protocol is non-silent,
processes should know when they are performing
shadow actions, but they should also be able to act
without affecting the shadow state (i.e. shadow self-

loops). Thus, the minimal actions we use must allow
shadow variables to not be assigned (e.g., Section 6.3).
Deterministic, Self-Disabling Processes. Theorems
4.3 and 4.4 below show that the assumptions of
deterministic and self-disabling processes do not im-
pact the completeness of any algorithm that solves
Problem 4.1. In general, convergence is achieved by
collaborative actions of all processes. That is, each
process partially contributes to the correction of the
global state of a protocol. As such, starting at a state
s0 ∈ ¬I , a single process may not be able to recover
the entire system single-handedly. Thus, even if a
process executes consecutive actions starting at s0, it
will reach a local deadlock from where other processes
can continue their execution towards converging to
I . The execution of consecutive actions of a process
can be replaced by a single write action of the same
process. As such, we assume that once a process
executes an action it will be disabled until the actions
of other processes enable it again. That is, processes
are self-disabling.

Theorem 4.3: Let p be a non-stabilizing protocol
with invariant I . There is an SS version of p to I iff
there is an SS version of p to I with self-disabling
processes.

Proof: The proof of right to left is straightforward,
hence omitted. The proof of left to right is as follows.
Let pss be an SS version of p to I , and Pj be a
process of pss. Consider a computation prefix σ =
〈s0, s1, · · · , sm〉, where m > 0, ∀i : 0 ≤ i ≤ m : si /∈ I ,
and all transitions in σ belong to Pj . Moreover, we
assume that Pj becomes disabled at sm. Now, we
replace each transition (si, si+1) ∈ σ (0 ≤ i < m) by
a transition (si, sm). Such a revision will not generate
any deadlock states in ¬I . Moreover, if the inclusion of
a transition (si, sm), where 0 ≤ i < m−1, forms a non-
progress cycle, then this cycle must have been already
there in the protocol because a path from si to sm
already existed. Thus, this change does not introduce
new livelocks in δp|¬I .

Theorem 4.4: Let p be a non-stabilizing protocol
with invariant I . There is an SS version of p to I
iff there is an SS version of p to I with deterministic
processes.

Proof: Any SS protocol with deterministic pro-
cesses is an acceptable solution to Problem 4.1; hence
the proof of right to left. Let pss be an SS version
of p to I with nondeterministic but self-disabling
processes. Moreover, let Pj be a self-disabling process
of pss with two nondeterministic actions A and B
originated at a global state s0 /∈ I , where A takes the
state of pss to s1 and B puts pss in a different state s2.
The following argument does not depend on s1 and
s2 because by the self-disablement assumption, if s1
and s2 are in ¬I , then there must be a different process
other than Pj that executes from there. Otherwise, the
transitions (s0, s1) and (s0, s2) recover pss to I .

The state s0 identifies an equivalence class of global

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

7

states. Let s′0 be a state in the equivalence class. The
local state of Pj is identical in s0 and s′0, and the part
of s0 (and s′0) that is unreadable to Pj could vary
among all possible valuations. As such, corresponding
to (s0, s1) and (s0, s2), we have transitions (s′0, s

′
1) and

(s′0, s
′
2). To enforce determinism, we remove the action

B from Pj . Such removal of B will not make s0 and s′0
deadlocked. Since s′0 is an arbitrary state in the equiv-
alence class, it follows that no deadlocks are created
in ¬I . Moreover, removal of transitions cannot create
livelocks. Therefore, the self-stabilization property of
pss is preserved in the resulting deterministic protocol
after the removal of B.

5 SYNTHESIS USING BACKTRACKING

In [3], we have shown that Problem 4.1 is an NP-
complete problem in the size of the expanded state
space. In this section, we present an efficient and
complete backtracking search algorithm to solve Prob-
lem 4.1. Backtracking search is a well-studied tech-
nique [25] that is easy to implement and can give very
good results. Throughout this section, we use “ac-
tions” and “minimal actions” interchangeably (unless
otherwise stated). Section 5.1 provides a high-level
description of the algorithm, and Section 5.2 presents
the details of the algorithm. Section 5.3 presents an
intelligent method for the inclusion of new actions
in candidate solutions. Finally, Section 5.4 discusses
some issues related to the optimization of the pro-
posed algorithm.

5.1 Overview of the Search Algorithm
Like any other backtracking search, our algorithm in-
crementally builds upon a guess, or a partial solution,
until it either finds a complete solution or finds that
the guess is inconsistent. We decompose the partial
solution into two pieces: (1) an under-approximation
formed by making well-defined decisions about the
form of a solution, and (2) an over-approximation that is
the set of remaining possible solutions (given the cur-
rent under-approximation). In a standard constraint
satisfaction problem, a backtracking search builds
upon a partial assignment to problem variables. The
partial assignment is inconsistent in two cases: (i) the
constraints upon assigned variables are broken (i.e.,
the under-approximation causes a conflict), and/or
(ii) the constraints cannot be satisfied by the remain-
ing variable assignments (i.e., the over-approximation
cannot contain a solution). Each time a choice is made
to build upon the under-approximation, the current
partial solution is saved at decision level j and a copy
that incorporates the new choice is placed at level j+1.
If the guess at level j + 1 is inconsistent, we move
back to level j and discard the choice that brought
us to level j + 1. If the guess at level 0 is found to be
inconsistent, then enough guesses have been tested to
determine that no solution exists.

Initialize under-approximation as the empty set
and over-approximation as all possible minimal actions

ReviseActions
Remove self-loops from over-approximation

Is under-approximation
equal to over-approximation?

PickAction
Let A be a candidate action that resolves a
deadlock that the fewest candidate actions resolve

ReviseActions
Copy partial solution,
add A to its under-approximation

AddStabilizationRec
Recurse with the copy of the partial solution

ReviseActions
Remove A from over-approximation

Inconsistent
partial solution

No solution exists

Inconsistent

Solution found

Okay Yes

No

Okay

In
co

ns
is

te
nt

In
co

ns
is

te
nt

In
co

ns
is

te
nt

Backtrack! Ba
ck

tr
ac

k
fr

om
to

pm
os

t
de

ci
si

on
le

ve
lOkay

Recurse!

AddStabilizationRec

Add to under-approximation or
remove from over-approximation

Eliminate actions from over-approximation
that violate determinism or self-disablement

Use the partial solution to calculate the weakest
invariant I ′ such that the partial solution
and I ′ meet the constraints of Problem 4.1

Okay

Inconsistent
partial solution

I ′ exists

No I
′ ex

ist
s

ReviseActions

Fig. 3: Overview of the backtracking algorithm.

In the context of our work, we apply a backtracking
search in the space of all valid minimal actions that
can be included in a solution. Specifically, we use a
set of actions, called delegates, that plays the role of
the under-approximation, and another set of actions,
called candidates, that contains the remaining ac-
tions to potentially include in delegates. Thus, the
set (delegates∪candidates) constitutes the over-
approximation.

Figure 3 illustrates an abstract flowchart of the pro-
posed backtracking algorithm. We start with the non-
stabilizing protocol p, its invariant I (which is closed
in p), the topology of p′, and the mappings to (E)
and from (H) its expanded state space. The algorithm
in Figure 3 starts by computing all valid candidate
actions (in the expanded state space) that adhere to
the read/write permissions of all processes. The initial
value of delegates is often the empty set unless
there are specific actions that must be in the solution
(e.g., to ensure the reachability of particular states).
The algorithm in Figure 3 then calls ReviseActions
to remove self-loops from candidates (since they
violate convergence), and checks for inconsistencies in
the partial solution. The designer may give additional
constraints that forbid certain actions.

In general, ReviseActions (see the bottom dashed box
in Figure 3) is invoked whenever we strengthen the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

8

partial solution by adding to the under-approximation
or removing from the over-approximation. It may fur-
ther remove from the over-approximation by enforc-
ing the determinism and self-disablement constraints
(see Theorem 4.3). Then ReviseActions computes the
largest possible invariant I ′ that could be used by the
current partial solution. That is, it finds the weakest
predicate I ′ for which the constraints of Problem 4.1
can be satisfied using some set of transitions δp′ per-
missible by the partial solution. The partial solution
requires δp′ to include all transitions corresponding to
actions in delegates. Additionally, δp′ can include
any subset of transitions corresponding to actions in
candidates. For example, Constraint 5 of Problem
4.1 stipulates that the transitions of delegates are
cycle-free outside of I ′ and that the transitions of
delegates ∪ candidates provide weak conver-
gence to I ′. If such an I ′ does not exist, then the partial
solution is inconsistent.

If our initialized delegates and candidates
give a consistent partial solution, then we in-
voke the AddStabilizationRec routine. The objective of
AddStabilizationRec (see the top dashed box in Figure 3)
is to go through all actions in candidates and check
their eligibility for inclusion in the self-stabilizing
solution. In particular, AddStabilizationRec has a loop
that iterates through all actions of candidates until
it becomes empty or an inconsistency is found. In
each iteration, AddStabilizationRec picks a candidate
action to resolve some remaining deadlock at the next
decision level. In general, the candidate action can
be randomly selected. However, to limit the possible
choices, we use an intelligent method for picking
candidate actions described in Section 5.3. After pick-
ing a new action A, we invoke ReviseActions to add
action A to a copy of the current partial solution by
including A in the copy of delegates and removing
it from the copy of candidates. If the copied partial
solution is consistent, then AddStabilizationRec makes
a recursive call to itself, using the copied partial so-
lution for the next decision level. If the copied partial
solution is found to be inconsistent (either by a call
to ReviseActions or by the exhaustive search in the call
to AddStabilizationRec), then we remove action A from
candidates using ReviseActions. If after removal of A
the partial solution is consistent, then we continue in
the loop. Otherwise, we backtrack since no stabilizing
protocol exists with the current under-approximation.

5.2 Details of the Algorithm
This section presents the details of the proposed
backtracking method. Notice that we assume that the
input to this algorithm is a non-stabilizing shadow
protocol already superposed with some new finite-
domain puppet variables. Misusing C/C++ notation,
we prefix a function parameter with an ampersand (&)
if modifications to it will affect its value in the caller’s
scope (i.e., it is a return parameter).

Algorithm 1 Entry point of the backtracking algo-
rithm for solving Problem 4.1.
AddStabilization(p: protocol, I : state predicate,

E : mapping Sp → Sp′ ,
&delegates: protocol actions,
forbidden: forbidden actions)

Output: Return true when a solution delegates can
be found. Otherwise, false.

1: let candidates be the set of all possible actions
that have transitions in E

(
(δp|I)∪{(s, s) | s ∈ Sp}

)
.

2: let adds := delegates {Forced actions, if any}
3: delegates := ∅
4: let dels := candidates ∩ forbidden
5: let I ′ := ∅
6: if not ReviseActions(p, I , E , &delegates,

&candidates, &I ′, adds, dels) then
7: return false
8: end if
9: return AddStabilizationRec(p, I , E , &delegates,

candidates, I ′)

AddStabilization. Algorithm 1 is the entry point
of our backtracking algorithm. The AddStabilization
function returns true iff a self-stabilizing protocol
is found which will then be formed by the actions
in delegates. Initially, the function determines all
possible candidate minimal actions. Next, the func-
tion determines which actions are explicitly required
(Line 2) or disallowed by additional constraints (Line
4). We invoke ReviseActions to include adds in the
under-approximation and remove dels from the
over-approximation on Line 6. If the resulting partial
solution is consistent, then the recursive version of
this function (AddStabilizationRec) is called. Otherwise,
a solution does not exist.
AddStabilizationRec. Algorithm 2 defines the main
recursive search. Like AddStabilization, it returns true iff
a self-stabilizing protocol is found that is formed by
the actions in delegates. This function continuously
adds candidate actions to the under-approximation
delegates as long as candidate actions exist. If no
candidates remain, then delegates and the over-
approximation delegates∪candidates of the pro-
tocol are identical. If ReviseActions does not find
anything wrong, then delegates is self-stabilizing,
hence the successful return on Line 16.

On Line 2 of AddStabilizationRec, a candidate action
A is chosen by calling PickAction (Algorithm 4). Any
candidate action may be picked without affecting the
search algorithm’s correctness, but the next section
explains a heuristic we use to pick certain candidate
actions over others to improve search efficiency. After
picking an action, we copy the current partial solution
into next_delegates and next_candidates, and
add the action A on Line 6. If the resulting partial
solution is consistent, then we recurse by calling

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

9

Algorithm 2 Recursive backtracking function to add
stabilization.
AddStabilizationRec(p, I , E , &delegates,

candidates, I ′)
Output: Return true if delegates contains the solu-

tion. Otherwise, return false.
1: while candidates 6= ∅ do
2: let A := PickAction(p, E , delegates,

candidates, I ′)
3: let next_delegates := delegates
4: let next_candidates := candidates
5: let I ′′ := ∅
6: if ReviseActions(p, I , E , &next_delegates,

&next_candidates, &I ′′, {A}, ∅) then
7: if AddStabilizationRec(p, I , E ,

&next_delegates,
next_candidates, I ′′) then

8: delegates := next_delegates {Assign
the actions to be returned}

9: return true
10: end if
11: end if
12: if not ReviseActions(p, I , E , &delegates,

&candidates, &I ′, ∅, {A}) then
13: return false
14: end if
15: end while
16: return true

AddStabilizationRec. If that recursive call finds a self-
stabilizing protocol, then it will store its actions in
delegates and return successfully. Otherwise, if ac-
tion A does not yield a solution, we will remove it
from the candidates on Line 12. If this removal cre-
ates a non-stabilizing protocol, then return in failure;
otherwise, continue the loop.
ReviseActions. Algorithm 3 is a key component of
the backtracking search. ReviseActions performs five
tasks: it (1) adds actions to the under-approximated
protocol by moving the adds set from candidates
to delegates; (2) removes forbidden actions from
the over-approximated protocol by removing the
dels set from candidates; (3) enforces self-
disablement (Theorem 4.3) and determinism (The-
orem 4.4) which results in removing more actions
from the over-approximated protocol; (4) computes
the maximal invariant I ′ and transitions (δp′ |I ′) in
the expanded state space to satisfy Constraints 2–
4 of Problem 4.1 given the current under/over-
approximations, and (5) verifies Constraints 1 and 5
of Problem 4.1 by ensuring the invariant I ′ captures
all of I , the under-approximation is livelock-free in
¬I ′, and the over-approximation weakly converges
to I ′. If the check fails, then ReviseActions returns
false. Finally, ReviseActions invokes the CheckForward
function to infer actions that must be added to

Algorithm 3 Add adds to the under-approximation
and remove dels from the over-approximation.
ReviseActions(p, I , E , &delegates, &candidates,

&I ′, adds, dels)
Output: Return true if adds can be added to

delegates and dels can be removed from
candidates, and I ′ can be revised accordingly.
Otherwise, return false.

1: delegates := delegates ∪ adds
2: candidates := candidates \ adds
3: for A ∈ adds do
4: Add each action B ∈ candidates to dels if it

belongs to the same process as A and satisfies
one of the following conditions:
• A enables B (enforce self-disabling process)
• B enables A (enforce self-disabling process)
• A and B are enabled at the same time

(enforce determinism)
{Find candidate actions that are now trivially
unnecessary for stabilization}

5: end for
6: candidates := candidates \ dels
7: Compute the maximal I ′ and (δp′ |I ′) such that:

• I ′ ⊆ E(I)
• (δp′ |I ′) transitions can be formed by actions

in delegates ∪ candidates
• All transitions of delegates beginning in I ′

are included in (δp′ |I ′)
• Constraints 2, 3, and 4 of Problem 4.1 hold

8: Check Constraints 1 and 5 of Problem 4.1:
• I = H(I ′)
• The protocol formed by delegates is

livelock-free in ¬I ′
• Every state in ¬I ′ has a computation prefix

by transitions of delegates ∪ candidates
that reaches some state in I ′

9: if all checks pass then
10: adds := ∅
11: dels := ∅
12: if CheckForward(p, I , E , delegates,

candidates, I ′, &adds, &dels) then
13: if adds 6= ∅ or dels 6= ∅ then
14: return ReviseActions(p, I , E , &delegates,

&candidates, &I ′, adds, dels)
15: end if
16: return true
17: end if
18: end if
19: return false

the under-approximation or removed from the over-
approximation, and will return false only if it infers
that the current partial solution cannot be used to
form a self-stabilizing protocol. A trivial version of
CheckForward can just return true.

A good ReviseActions implementation should pro-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

10

vide early detection for when delegates and
candidates cannot be used to form a self-stabilizing
protocol. At the same time, since the function is
called whenever converting candidates to delegates
or removing candidates, it cannot have a high cost.
Thus, we ensure that actions in delegates do not
form a livelock and that actions in delegates ∪
candidates provide weak stabilization.

A good CheckForward implementation should at
least remove candidate actions that are not needed to
resolve deadlocks. This can be performed quickly and
allows the AddStabilizationRec function to immediately
return a solution when all deadlocks are resolved.

Theorem 5.1 (Completeness): The AddStabilization al-
gorithm is complete.

Proof: We show that if AddStabilization returns
false, then no solution exists. Since each candidate
action is minimal and we consider all such actions as
candidates, a subset of the candidate actions would
form a self-stabilizing protocol iff such a protocol
exists. Observe that AddStabilizationRec follows the
standard backtracking [26] procedure where we (1)
add a candidate action to the under-approximation
in a new decision level, and (2) backtrack and re-
move that action from the candidates if an incon-
sistency (which cannot be fixed by adding to the
under-approximation) is discovered by ReviseActions
at that new decision level. Even though ReviseActions
removes candidate actions in order to enforce deter-
ministic and self-disabling processes, we know by
Theorems 4.4 and 4.3 that this will not affect the
existence of a self-stabilizing protocol. Thus, since we
follow the general template of backtracking [26], the
search will test every consistent subset of the initial set
of candidate actions where processes are deterministic
and self-disabling. Therefore, if our search fails, then
no solution exists.

Theorem 5.2 (Soundness): The AddStabilization algo-
rithm is sound.

Proof: We show that if AddStabilization returns true,
then it has found a self-stabilizing protocol formed
by the actions in delegates. Notice that when
AddStabilizationRec returns true, the AddStabilization or
AddStabilizationRec function that called it simply re-
turns true with the same delegates set. The only
other case where AddStabilization returns true is when
candidates is empty in AddStabilizationRec (Line 16).
Notice that to get to this point, ReviseActions must
have been called and must have returned true af-
ter emptying the candidates set and verifying the
Constraints of Problem 4.1 on Line 8. Therefore, when
AddStabilization returns true the actions of delegates
form a self-stabilizing protocol.

5.3 Picking Actions via the Minimum Remaining
Values Method
The worst-case complexity of a depth-first backtrack-
ing search is determined by the branching factor b and

Algorithm 4 Pick an action using the minimum re-
maining values (MRV) method.
PickAction(p, E , delegates, candidates, I ′)
Output: Next candidate action to pick.

1: let deadlock_sets be a single-element array,
where deadlock_sets[0] holds a set of dead-
locks in ¬I ′∪E(Pre(δp)) that actions in delegates
do not resolve.

2: for all action ∈ candidates do
3: let i := |deadlock_sets|
4: while i > 0 do
5: i := i− 1
6: let resolved := deadlock_sets[i]

∩ Pre(action)
7: if resolved 6= ∅ then
8: if i = |deadlock_sets| − 1 then
9: let deadlock_sets[i + 1] := ∅ {Grow

array by one element}
10: end if
11: deadlock_sets[i] :=

deadlock_sets[i] \ resolved
12: deadlock_sets[i+ 1] :=

deadlock_sets[i+ 1] ∪ resolved
13: end if
14: end while
15: end for
16: for i = 1, . . . , |deadlock_sets| − 1 do
17: if deadlock_sets[i] 6= ∅ then
18: return An action from candidates that

resolves a deadlock in deadlock_sets[i].
19: end if
20: end for
21: return An action from candidates. {Edge case}

depth d of its decision tree, evaluating to O(bd). We
can tackle this complexity by reducing the branching
factor. To do this, we use a minimum remaining
values (MRV) method in PickAction. MRV is classically
applied to constraint satisfaction problems [25] by
assigning a value to a variable that has the minimal
remaining candidate values. In our setting, we pick
an action that resolves a deadlock with the minimal
number of remaining actions available to resolve it.

Algorithm 4 shows the details of PickAction that
keeps an array deadlock_sets, where each element
deadlock_sets[i] contains all the deadlocks that
are resolved by exactly i candidate actions. We ini-
tially start with array size |deadlock_sets| = 1 and
with deadlock_sets[0] containing all unresolved
deadlocks. We then shift deadlocks to the next highest
element in the array (bubbling up) for each candidate
action that resolves them. After building the array, we
find the lowest index i for which the deadlock set
deadlock_sets[i] is nonempty, and then return an
action that can resolve some deadlock in that set. Line

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

11

21 can only be reached if either the remaining dead-
locks cannot be resolved (but ReviseActions catches this
earlier) or all deadlocks are resolved (but CheckForward
can catch this earlier).

5.4 Optimizing the Decision Tree

This section presents the techniques that we use to
improve the efficiency of our backtracking algorithm.
Conflicts. Every time a new candidate action is in-
cluded in delegates, ReviseActions checks for incon-
sistencies, which involves cycle detection and reacha-
bility analysis. These procedures become very costly
as the complexity of the transition system grows. To
mitigate this problem, whenever an inconsistency is
found, we record a minimal set of decisions (subset of
delegates) that causes it. We reference these conflict
sets [25] in CheckForward to remove candidate actions
that would cause an inconsistency.
Randomization and Restarts. When using the stan-
dard control flow of a depth-first search, a bad choice
near the top of the decision tree can lead to infeasible
runtime. This is the case since the bad decision exists
in the partial solution until the search backtracks
up the tree sufficiently to change the decision. To
limit the search time in these branches, we employ
a method outlined by Gomes et al. [27] that combines
randomization with restarts. In short, we limit the
amount of backtracking to a certain height (we use
3). If the search backtracks past the height limit, it
forgets the current decision tree and restarts from the
root. To avoid trying the same unfruitful decisions
after a restart, PickAction randomly selects a candidate
action permissible by the MRV method. This approach
remains complete since a conflict is recorded for any
set of decisions that causes a restart.
Parallel Search. In order to increase the chance
of finding a solution, we instantiate several parallel
executions of the algorithm in Figure 3; i.e., search
diversification. As noted in [27], parallel tasks will
generally avoid overlapping computations due to the
randomization used in PickAction. We have observed
linear speedup when the search tasks are expected
to restart several times before finding a solution [19].
The parallel tasks share conflicts with each other to
prevent the re-exploration of branches that contain
no solutions. In our MPI implementation, conflict
dissemination occurs between tasks using a virtual
network topology formed by a generalized Kautz
graph [21] of degree 4. This topology has a diameter
logarithmic in the number of nodes and is fault-
tolerant in that multiple paths between two nodes
ensure message delivery. That is, even if some nodes
are performing costly cycle detection and do not
check for incoming messages, they will not slow the
dissemination of new conflicts.

Shadow MPI Compute
Protocol Procs Self-Loops Procs Time

1-Bit Maximal Matching 2–7 Forbidden 1 0.54 secs
4-State Token Ring* 2–8 Forbidden 4 1.50 hrs
5-State Token Ring 2–9 Forbidden 4 23.75 mins
3-State Token Chain* 2–5 Forbidden 4 5.29 secs
3-State Token Chain 2–5 Allowed 4 48.93 secs
4-State Token Chain [1] 2–4 Forbidden 4 10.11 secs
4-State Token Chain [1] 2–4 Allowed 4 1.14 mins
3-State Token Ring [1] 2–5 Forbidden 4 1.02 mins
3-State Token Ring [1] 2–5 Allowed 4 5.22 mins

* No protocol is found to stabilize for all system sizes under consideration.

Fig. 4: Synthesis runtimes for case studies.

6 CASE STUDIES

In this section, we look for exact lower bounds for
constant-space maximal matching and token passing
protocols using shadow/puppet synthesis. Section
6.1 presents an intuitive way to synthesize maximal
matching with shadow variables. Section 6.2 explores
the unidirectional token ring with a distinguished pro-
cess. Section 6.3 explores bidirectional token passing
protocols. Each section gives a new self-stabilizing
protocol that we conjecture uses the minimal number
of states per process to achieve stabilization.

Figure 4 provides the synthesis runtimes of all case
studies. The Procs column indicates the system sizes
(numbers of processes) that are simultaneously con-
sidered during synthesis. For example, the maximal
matching case shows 2–7, which means that we are
resolving deadlocks without introducing livelocks for
5 different systems of various sizes. These ranges
are chosen to increase the chance of synthesizing a
generalizable protocol. The Shadow Self-Loops column
indicates whether actions within the I ′ invariant may
leave shadow variables unchanged. This is achieved
by modifying Line 7 of Algorithm 3 to enforce that
(δ′p|I ′) ⊆ E(δp); Forbidding these actions makes every
action of a token passing protocol actually pass a
token. The MPI Procs column indicates the number
of MPI processes used for synthesis.

6.1 2-State Maximal Matching on a Ring

A matching for a graph is a set of edges that do not
share any common vertices. A matching is maximal
iff adding any new edge would violate the matching
property. In a ring, a set of edges is a matching as long
as at least 1 of every 2 consecutive edges is excluded
from the set. For the set to be a maximal matching, at
least 1 out of every 3 consecutive edges must be in-
cluded. To see that the matching is maximal, consider
selecting another edge to create a new matching. The
edge itself cannot be in the current matching nor can
either of the two adjacent edges, but we have already
enforced that one of those three is selected, therefore
the new edge cannot be added!

To specify this problem, use a binary shadow vari-
able ei to denote whether the edge between adjacent

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

12

processes Pi−1 and Pi is in the matching (ei = 1 means
to include the edge, otherwise exclude the edge). The
invariant is therefore the states where at least 1 of
every 3 consecutive e values equals 1, but at least 1
of every 2 consecutive e values equals 0.

I = ∀i ∈ ZN : (ei−1=1∨ei=1∨ei+1=1)∧(ei=0∨ei+1=0)

We would like processes to determine whether
their neighboring links are included in a matching,
therefore we give each Pi write access to ei and
ei+1. Each ei is a shadow variable since it exists only
for specification, therefore processes have write-only
access. Since a matching should not change, there are
no shadow actions. For the system’s implementation,
we give each process Pi a binary puppet variable
xi to read and write along with read access to the
xi−1 and xi+1 variables of its neighbors in the ring.
We only are guessing that an xi domain size of 2 is
large enough to achieve stabilization and represent
(ei, ei+1) values with (xi−1, xi, xi+1) values in some
way. Synthesis gives the following protocol, which we
believe to be generalizable after verification of rings
up to size N = 100. Notice that the e values are fully
determined based on the x values.

Pi : xi−1=1 ∧ xi=1 ∧ xi+1=1 −→ ei:=1; xi:=0; ei+1:=0;

Pi : xi−1=0 ∧ xi=1 ∧ xi+1=1 −→ ei:=0; xi:=0; ei+1:=0;

Pi : xi−1=0 ∧ xi=0 ∧ xi+1=0 −→ ei:=0; xi:=1; ei+1:=1;

Pi : xi−1=1 ∧ xi=0 −→ ei:=1; ei+1:=0;

Pi : xi−1=0 ∧ xi=0 ∧ xi+1=1 −→ ei:=0; ei+1:=0;

Pi : xi−1=0 ∧ xi=1 ∧ xi+1=0 −→ ei:=0; ei+1:=1;

An implementation of this protocol consists only
of puppet variables, and therefore discards the e vari-
ables. Of the 6 actions above, only the first 3 modify x
values. From these 3, we discard the e variables and
combine the first 2 actions (for simplification). This
leaves us with the puppet protocol that would be used
for implementation, where each Pi has the following
actions:

Pi : xi=1 ∧ xi+1=1 −→ xi:=0;

Pi : xi−1=0 ∧ xi=0 ∧ xi+1=0 −→ xi:=1;

Further, we can derive the meaning of the puppet
variables by observing how the value of (ei, ei+1) is
assigned for each particular value of (xi−1, xi, xi+1).
We could do this by observing all 6 actions, but we
only need to observe the first 3 since they subsume
the last 3. The last 3 actions respectively assign (1, 0),
(0, 0), and (0, 1) to (ei, ei+1) to denote that Pi is
matched with (i) Pi−1, (ii) itself, and (iii) Pi+1. We
use (xi−1, xi, xi+1) values to represent these cases:

xi−1=1 ∧ xi=0 (Pi matched with Pi−1)

xi−1=0 ∧ xi=0 ∧ xi+1=1 (Pi not matched)

xi−1=0 ∧ xi=1 ∧ xi+1=0 (Pi matched with Pi+1)

6.2 5-State Unidirectional Token Ring
In the token ring shadow specification in Section 2,
each process Pi is given a binary shadow variable
toki that denotes whether the process has a token. The

invariant is all states where exactly one token exists
(∃!i : toki = 1), and each process should eventually
pass the token within the invariant (toki = 1 −→
toki := 0; toki+1 := 1;). For synthesis, we give each
Pi a puppet variable xi and also let it read xi−1. Like
in Dijkstra’s token ring, we distinguish P0 as Bot to
allow its actions to differ from the other processes. We
also force each action in the invariant to pass a token
by forbidding shadow self-loops. With this restriction,
we found that no protocol using 4 states per process
is stabilizing for all rings of size N ∈ {2, . . . , 8}.

Using 5 states per process (i.e., each xi has domain
Z5), the synthesized protocol is not always general-
izable, even when we synthesize for all rings of size
N ∈ {2, . . . , 9}. However, we can increase our chances
of finding a generalizable version by allowing the
search to record many solutions and verify correctness
for larger ring sizes. After sufficient synthesize-and-
verify, we are left with the following protocol, which
we think is generalizable after verification of rings up
to size N = 30.

Bot : xN−1 = 0 ∧ x0 = 0 −→ x0:=1; toki:=0; toki+1:=1;

Bot : xN−1 = 1 ∧ x0 ≤ 1 −→ x0:=2; toki:=0; toki+1:=1;

Bot : xN−1 > 1 ∧ x0 > 1 −→ x0:=0; toki:=0; toki+1:=1;

Pi : xi−1 = 0 ∧ xi > 1 −→ xi:=bxi/4c; toki:=0; toki+1:=1;

Pi : xi−1 = 1 ∧ xi 6= 1 −→ xi:=1; toki:=0; toki+1:=1;

Pi : xi−1 = 2 ∧ xi ≤ 1 −→ xi:=2 + xi; toki:=0; toki+1:=1;

Pi : xi−1 ≥ 3 ∧ xi ≤ 1 −→ xi:=4; toki:=0; toki+1:=1;

Our previous work [20] used the approach of Ex-
ample 4.2 to synthesize a 6-state token ring and a 3-bit
token ring similar to that of Gouda and Haddix [4]. In
doing so, we observe an interesting efficiency trade-
off between process memory, convergence speed, and
adherence to the shadow protocol. For example, a
process may act several times in the 3-bit token ring of
Gouda and Haddix [4] without passing a token, but
this protocol converges in fewer steps (faster) than
our 5-state token ring. Dijkstra’s N -state token ring
requires much more process memory, yet it converges
in fewer steps than the 3-bit protocol while also
ensuring that the token will be passed with every
action.

6.3 3-State Token Chain
Rather than around a ring, we can also pass a token
back-and-forth along a linear (chain) topology. For-
mally, the token passing behavior can be described
by guarded commands. As with the ring, let there
be N processes, where each process Pi has a binary
shadow variable toki that denotes whether it has a
token. Each process Pi can read and write toki−1 when
i > 0, and each Pi can read and write toki+1 when
i < N−1. Additionally, all processes can read a binary
shadow variable fwd that denotes the direction the
token is moving (1 means up, 0 means down). That
is, a process P0<i<N−1 passes the token to Pi+1 when
fwd = 1 and passes it to Pi−1 when fwd = 0. The two

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

13

end processes P0 and PN−1 must behave differently
than the others, therefore they are distinguished as Bot
and Top respectively. Both Bot and Top can write fwd,
and do assign it when they pass the token in order
to change the direction of passing. The full shadow
protocol is given by the following actions.

Bot : tok0=1 −→ fwd:=1; tok0:=0; tok1:=1;

Pi : toki=1 ∧ fwd=1 −→ toki:=0; toki+1:=1;

Pi : toki=1 ∧ fwd=0 −→ toki−1:=1; toki:=0;

Top : tokN−1=1 −→ fwd:=0; tokN−2:=1; tokN−1:=0;

For synthesis, give each process a ternary puppet
variable xi. Each P0<i<N−1 can also read xi−1 and
xi+1. Likewise, Bot can read x1 and Top can read xN−2.
One of the synthesized protocols is as follows, which
we conjecture to be generalizable after verification of
chains up to size N = 30.

Bot : xi 6=1 ∧ xi+1=2 −→ x0:=1; fwd:=1; toki:=0; toki+1:=1;

Bot : xi 6=0 ∧ xi+1 6=2 −→ xi:=0;

Pi : xi−1=1 ∧ xi 6=1 −→ xi:=1; toki:=0; toki+1:=1;

Pi : xi−1=0 ∧ xi=1 ∧ xi+1=1 −→ xi:=0;

Pi : xi−1=0 ∧ xi=0 ∧ xi+1=2 −→ xi:=2; toki−1:=1; toki:=0;

Top : xi−1=1 ∧ xi 6=1 −→ xi:=1;

Top : xi−1 6=1 ∧ xi 6=2 −→ xN−1:=2; fwd:=0; tokN−2:=1; tokN−1:=0;

This protocol does not always pass the token within
the invariant, however we found that no such protocol
exists. As shown by Dijkstra [1], we can obtain a
stabilizing protocol with this behavior by either us-
ing 4 states per process or allowing Bot and Top to
communicate. Using the same shadow specification
and the puppet topologies from [1], we synthesized 4-
state token chains and 3-state token rings. Both cases
appear to give generalizable protocols (verified up to
N = 15), regardless of whether we force each action
in the invariant to pass a token.

7 RELATED WORK AND DISCUSSION

This section discusses related work on manual and au-
tomated design of fault tolerance in general and self-
stabilization in particular. Manual methods are mainly
based on the approach of design and verify, where
one designs a fault-tolerant system and then verifies
the correctness of (1) functional requirements in the
absence of faults, and (2) fault tolerance requirements
in the presence of faults. For example, Liu and Joseph
[28] provide a method for augmenting fault-intolerant
systems with a set of new actions that implement fault
tolerance functionalities. Katz and Perry [29] present
a general (but expensive) method for global snap-
shot and reset towards adding convergence to non-
stabilizing systems. Varghese [30] and Afek et al. [31]
provide a method based on local checking for global
recovery of locally correctable protocols. Varghese [15]
also proposes a counter flushing method for detection
and correction of global predicates. Nesterenkol and
Tixeuil [17] employ a mapping to define all system
states as legitimate state of an abstract specification.
This effectively removes the need for convergence,

but it is not always possible or may require human
ingenuity in the specification. Chandy and Misra in-
troduce variable superposition [32], where the functional
concerns are specified on a set of variables, and extra
implementation details are carried out using a set
of superposed variables. Our work further decouples
these two sets but uses their superposition as an
implicit mapping.

Since it is unlikely that an efficient method exists
for algorithmic design of self-stabilization [3], most
existing techniques [5], [6], [7], [33], [8] are based on
sound heuristics. For instance, Abujarad and Kulkarni
[5], [6] present a heuristic for adding convergence
to locally-correctable systems. Zhu and Kulkarni [33]
give a genetic programming approach for the design
of fault tolerance, using a fitness function to quantify
how close a randomly-generated protocol is to being
fault-tolerant. Farahat and Ebnenasir [7] provide a
lightweight method for designing self-stabilization
even for non-locally correctable protocols. They also
devise [8] a swarm method for exploiting the com-
putational power of computer clusters towards auto-
mated design of self-stabilization. While the swarm
synthesis method inspires the proposed work in this
paper, it has two limitations: it is incomplete and
forbids any change in the invariant. Methods for
automated design of fault tolerance [22], [34] have the
option to make deadlock states unreachable. This is
not an option in the addition of self-stabilization; re-
covery should be provided from any state in protocol
state space.

8 CONCLUSIONS AND FUTURE WORK

We presented a two-step method for automated de-
sign of self-stabilizing systems, called shadow/puppet
synthesis. In the first step, designers provide a shadow
specification consisting of a set of legitimate states,
system topology and the expected system behaviors
in the absence of faults. In the second step, we al-
gorithmically generate a self-stabilizing system that
accurately implements the behaviors in legitimate
states and provides convergence to legitimate states
in terms of some superposed variables, called the
puppet system. Then, we use a parallel backtracking
search to intelligently look for a self-stabilizing solu-
tion. We have implemented our approach and have
automatically generated self-stabilizing protocols that
none of the existing heuristics can generate (to the
best of our knowledge). These protocols include token
passing protocols on the topologies given by Dijkstra
in [1], 2-state maximal matching, 5-state token ring,
3-state token chain, coloring on Kautz graphs, ring
orientation, and leader election on a ring [19].

We are currently investigating several extensions of
this work. First, we use theorem proving techniques
to figure out why a synthesized protocol may not
be generalizable. Then, we plan to incorporate the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2536023, IEEE Transactions on Parallel and Distributed Systems

14

feedback received from theorem provers in our back-
tracking method. Another extension is to leverage the
techniques used in SMT solvers and apply them in
our backtracking search.

ACKNOWLEDGMENT
The authors would like to thank the anonymous
referees for their valuable comments and suggestions.

REFERENCES
[1] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed

control,” Communications of the ACM, vol. 17, no. 11, pp. 643–
644, 1974.

[2] M. Gouda, “The theory of weak stabilization,” in 5th Interna-
tional Workshop on Self-Stabilizing Systems, ser. Lecture Notes in
Computer Science, vol. 2194, 2001, pp. 114–123.

[3] A. Klinkhamer and A. Ebnenasir, “On the hardness of adding
nonmasking fault tolerance,” IEEE Transactions on Dependable
and Secure Computing, vol. 12, no. 3, pp. 338–350, May 2015.

[4] M. G. Gouda and F. F. Haddix, “The stabilizing token ring in
three bits,” Journal of Parallel and Distributed Computing, vol. 35,
no. 1, pp. 43–48, May 1996.

[5] F. Abujarad and S. S. Kulkarni, “Multicore constraint-based
automated stabilization,” in 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, 2009,
pp. 47–61.

[6] F. Abujarad and S. S. Kulkarni, “Automated constraint-based
addition of nonmasking and stabilizing fault-tolerance,” The-
oretical Computer Science, vol. 412, no. 33, pp. 4228–4246, 2011.

[7] A. Farahat and A. Ebnenasir, “A lightweight method for
automated design of convergence in network protocols,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 7,
no. 4, pp. 38:1–38:36, Dec. 2012.

[8] A. Ebnenasir and A. Farahat, “Swarm synthesis of conver-
gence for symmetric protocols,” in Proceedings of the Ninth
European Dependable Computing Conference, 2012, pp. 13–24.

[9] F. Faghih and B. Bonakdarpour, “SMT-based synthesis of
distributed self-stabilizing systems,” in 16th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS). Springer, 2014.

[10] F. Faghih and B. Bonakdarpour, “SMT-based synthesis of
distributed self-stabilizing systems,” ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 2015, to appear.

[11] B. Awerbuch, B. Patt-Shamir, and G. Varghese, “Self-
stabilization by local checking and correction,” in Proceedings
of the 31st Annual IEEE Symposium on Foundations of Computer
Science, 1991, pp. 268–277.

[12] M. G. Gouda and N. J. Multari, “Stabilizing communication
protocols,” IEEE Transactions on Computers, vol. 40, no. 4, pp.
448–458, 1991.

[13] F. Stomp, “Structured design of self-stabilizing programs,” in
Proceedings of the 2nd Israel Symposium on Theory and Computing
Systems, 1993, pp. 167–176.

[14] A. Arora and M. G. Gouda, “Closure and convergence: A
foundation of fault-tolerant computing,” IEEE Transactions on
Software Engineering, vol. 19, no. 11, pp. 1015–1027, 1993.

[15] G. Varghese, “Self-stabilization by counter flushing,” in The
13th Annual ACM Symposium on Principles of Distributed Com-
puting, 1994, pp. 244–253.

[16] M. Demirbas and A. Arora, “Specification-based design of self-
stabilization,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 27, no. 1, pp. 263–270, Jan 2016.

[17] M. Nesterenko and S. Tixeuil, “Ideal Stabilization,” Interna-
tional Journal of Grid and Utility Computing, vol. 4, no. 4, pp.
219–230, Oct. 2013.

[18] B. Finkbeiner and S. Schewe, “Bounded synthesis,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 15,
no. 5-6, pp. 519–539, 2013.

[19] A. Klinkhamer and A. Ebnenasir, “Synthesizing self-
stabilization through superposition and backtracking,”
Michigan Technological University, Tech. Rep. CS-TR-14-01,
May 2014. [Online]. Available: http://mtu.edu/cs/research/
papers/pdfs/CS-TR-14-01.pdf

[20] A. Klinkhamer and A. Ebnenasir, “Synthesizing self-
stabilization through superposition and backtracking,”
in 16th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS). Springer, 2014, pp.
252–267.

[21] M. Imase and M. Itoh, “A design for directed graphs with
minimum diameter,” IEEE Trans. Computers, vol. 32, no. 8, pp.
782–784, 1983.

[22] S. S. Kulkarni and A. Arora, “Automating the addition of fault-
tolerance,” in Formal Techniques in Real-Time and Fault-Tolerant
Systems. London, UK: Springer-Verlag, 2000, pp. 82–93.

[23] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall,
1990.

[24] A. Arora and S. S. Kulkarni, “Detectors and correctors: A
theory of fault-tolerance components,” International Conference
on Distributed Computing Systems, pp. 436–443, May 1998.

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, 2009.

[26] D. E. Knuth, The Art of Computer Programming, Volume I:
Fundamental Algorithms. Addison-Wesley, 1968.

[27] C. P. Gomes, B. Selman, H. Kautz et al., “Boosting combina-
torial search through randomization,” AAAI/IAAI, vol. 98, pp.
431–437, 1998.

[28] Z. Liu and M. Joseph, “Transformation of programs for fault-
tolerance,” Formal Aspects of Computing, vol. 4, no. 5, pp. 442–
469, 1992.

[29] S. Katz and K. Perry, “Self-stabilizing extensions for message
passing systems,” Distributed Computing, vol. 7, pp. 17–26,
1993.

[30] G. Varghese, “Self-stabilization by local checking and correc-
tion,” Ph.D. dissertation, MIT, 1993.

[31] Y. Afek, S. Kutten, and M. Yung, “The local detection paradigm
and its application to self-stabilization,” Theoretical Computer
Science, vol. 186, no. 1-2, pp. 199–229, 1997.

[32] K. M. Chandy and J. Misra, Parallel Program Design: A Foun-
dation. Addison-Wesley, 1988.

[33] L. Zhu and S. Kulkarni, “Synthesizing round based fault-
tolerant programs using genetic programming,” in Stabiliza-
tion, Safety, and Security of Distributed Systems. Springer, 2013,
pp. 370–372.

[34] A. Ebnenasir, “Automatic synthesis of fault-tolerance,” Ph.D.
dissertation, Michigan State University, May 2005.

Alex Klinkhamer Alex Klinkhamer is a PhD
student in the Department of Computer Sci-
ence at Michigan Technological University.
Alex received his bachelor’s and master’s
degrees in 2010 and 2013, both from Michi-
gan Tech. His research interests include self-
stabilization, distributed systems and parallel
algorithms.

Ali Ebnenasir Ali Ebnenasir is an Associate
Professor of Computer Science at Michigan
Technological University and a senior mem-
ber of the ACM. Ali received his bachelor’s
and master’s degrees in 1994 and 1998 re-
spectively from the University of Isfahan and
Iran University of Science and Technology. In
2005, he received his PhD from the Com-
puter Science and Engineering Department
at Michigan State University (MSU). After
finishing his postdoctoral fellowship at MSU

in 2006, he joined the Department of Computer Science at Michigan
Tech. His research interests include Software Dependability, Formal
Methods and Parallel and Distributed Computing.

http://mtu.edu/cs/research/papers/pdfs/CS-TR-14-01.pdf
http://mtu.edu/cs/research/papers/pdfs/CS-TR-14-01.pdf

