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Reproducible MPI Benchmarking
Is Still Not As Easy As You Think

Sascha Hunold and Alexandra Carpen-Amarie

Abstract—The Message Passing Interface (MPI) is the prevalent programming model used on today’s supercomputers. Therefore, MPI
library developers are looking for the best possible performance (shortest run-time) of individual MPI functions across many different
supercomputer architectures. Several MPI benchmark suites have been developed to assess the performance of MPI implementations.
Unfortunately, the outcome of these benchmarks is often neither reproducible nor statistically sound. To overcome these issues, we show
which experimental factors have an impact on the run-time of blocking collective MPI operations and how to measure their effect. Finally,
we present a new experimental method that allows us to obtain reproducible and statistically sound MPI measurements.

Index Terms—MPI, benchmarking, clock synchronization, reproducibility, statistical analysis
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1 INTRODUCTION

Since the Message Passing Interface (MPI) was standardized
in the 1990s, it has been the prevalent programming model on
the majority of supercomputers. As MPI is an essential build-
ing block of high-performance applications, performance
problems in the MPI library have direct consequences on the
overall run-time of applications.

Library developers and algorithm designers have one
question in common: which algorithm works better (is faster)
for a given communication problem? For example, which
implementation of broadcast is faster on p = 128 processors
using a payload of m = 64 Bytes? As today’s parallel
systems can hardly be modeled analytically, empirical eval-
uations using run-time tests of MPI functions are required
to compare different MPI implementations. It is therefore
important to measure the run-time of MPI functions correctly.

Library developers rely on benchmark suites to test their
implementations. The problem is that the results of these
benchmarks may vary significantly, where Table 1 shows one
example. The table compares the minimum and maximum
run-time of an MPI_Bcast on 16 nodes that were reported
by 30 different calls (mpiruns) to the Intel MPI Benchmarks.
The third column lists the difference between the minimum
and maximum run-time in percent. We can see that for
payloads of up to 512 Bytes, the run-times have an error
of roughly 10 %. One solution might be to change the default
parameters of the Intel MPI Benchmarks. For example, one
could force the benchmark to perform more measurements.
But the question then becomes: how many runs are sufficient
to obtain reproducible results?

It is a common practice—when comparing MPI imple-
mentations as part of a scientific publication—to choose one
of the available benchmarks and compare the results. Many
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Table 1
Minimum and maximum run-time of MPI_Bcast obtained from 30

different runs of the Intel MPI Benchmarks on 16× 1 processes with
NEC MPI 1.2.8 on TUWien.

Msg. size min(avg) max(avg) diff
[Bytes] [µs] [µs] [%]

1 2.93 3.12 6.09
2 2.83 3.20 11.56
4 2.82 3.06 7.84
8 2.86 3.13 8.63

16 2.84 3.14 9.55
32 3.13 3.44 9.01
64 3.15 3.51 10.26

128 3.62 4.03 10.17
256 4.34 4.90 11.43
512 5.41 5.91 8.46

1024 6.88 7.05 2.41

MPI benchmarks report either the mean, the median, or the
minimum run-time. The problem is that without using a
dispersion metric and a rigorous statistical analysis, we can
hardly determine whether an observation is repeatable or
the result of chance.

We make the following contributions to the problem of
accurately benchmarking blocking collective MPI operations:
1) We establish a list of (experimental) factors that, we

show, do significantly influence the outcome of MPI
performance measurements.

2) We propose a novel benchmarking method, including an
experimental design and an appropriate data analysis
strategy, that allows for a fair comparison of MPI libraries,
but which is most importantly (1) statistically sound and
(2) reproducible.
We start by summarizing other MPI benchmarking

approaches in Section 2 and discuss their strengths and
shortcomings. Section 3 introduces our general experimental
framework, which has been used for all experiments con-
ducted as part of this article. Section 4 takes a closer look at
factors that may influence the experimental outcome (the run-
time of an MPI function). Section 5 describes our method for
comparing the performance of MPI libraries in a statistically
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Table 2
Comparison of metrics for several MPI benchmark suites.

benchmark name ref. version mean min max measure of dispersion

Intel MPI Benchmarks [1] 4.0.0 3 3 3 7
MPIBench [2] 1.0beta 3 3 sub-sampled data
MPIBlib [3] 1.2.0 3 conf. interv. of the mean (default 95%)
mpicroscope [4] 1.0 3 3 3 7
mpptest [5] 1.5 min of means 7
NBCBench [6] 1.1 3(+median) 3 3 7
OSU Micro-Benchmarks [7] 4.4.1 3 3 3 7
Phloem MPI Benchmarks [8] 1.0.0 3 3 3 7
SKaMPI [9] 5.0.4 3 std. error

sound manner. We summarize related work in Section 6 with
an emphasis on statistically sound experiments, before we
conclude in Section 7.

2 A BRIEF HISTORY OF MPI BENCHMARKING

We now give a history of MPI benchmarking. Ever since
the first MPI standard was announced in 1995, several MPI
benchmark suites have been proposed. Some of the best-
known MPI benchmark suites are summarized in Table 2.
The table includes information about the measures (e.g., min,
max) that each benchmark uses to present run-times and
which measure of dispersion is provided. It is complemented
with the run-time measurement approaches implemented by
each benchmark, which are separately summarized in the
four pseudocode listings in Table 3. Furthermore, Table 4
details the methods selected by each of the investigated
benchmarks for computing and presenting the measured
run-times. The data in Table 2 was gathered to the best of
our knowledge, since some benchmarks, like the Special
Karlsruher MPI-Benchmark (SKaMPI), have been released in
many incarnations and some other ones, like the MPIBench,
are currently not available for download1. We therefore also
rely on the respective articles describing the benchmarks.

mpptest was one of the first MPI benchmarks [5]
and was a part of the MPICH distribution. Gropp and
Lusk carefully designed mpptest to allow reproducible
measurements for realistic usage scenarios. They pointed
out common pitfalls when conducting MPI performance
measurements, such as ignoring cache effects. In particular,
to ensure cold caches when sending a message, mpptest
uses a send and a receive buffer which are twice as big as
the cache level that should be “cold”. Then, the starting
address of a message to be sent is always advanced in this
larger buffer, trying to ensure that the data accessed are not
cached. If a starting address does not leave enough space
for the message to be sent, it is reset to the beginning of
the buffer. At the time of designing mpptest, most of the
hardware clocks were coarse-grained and therefore did not
allow a precise measurement of one call to a specific MPI
function (as this would have often resulted in obtaining a 0).
To overcome this problem and to improve the reproducibility
of results, mpptest measures the time t of nrep consecutive
calls to an MPI function and computes the mean t̄i = t/nrep
of these nrep observations. This measurement is repeated k

1. We obtained the source code of MPIBench 1.0beta through private
communication.

times and the minimum over these k samples is reported,
i.e., min1≤i≤k t̄i.

The SKaMPI benchmark is a highly configurable MPI
benchmark suite [9]. It features a domain-specific language
for describing individual MPI benchmark tests. SKaMPI also
allows to record MPI timings by using a window-based
process synchronization approach, in addition to the com-
monly used MPI_Barrier (cf. measurement schemes (MS1)
and (MS4) in Table 3). Each SKaMPI execution reports the
arithmetic mean and the standard error. SKaMPI uses an
iterative measuring process for each test case, where a
test is repeated until the current standard error is below
some predefined maximum relative standard error, i.e., the
coefficient of variation of the sample mean is small.

MPIBlib by Lastovetsky et al. [3] works similarly to
SKaMPI, as it computes a confidence interval of the mean
based on the current sample. It stops the measurements
when the sample mean is within a predefined range (e.g., a
5 % difference) from the end of a 95% confidence interval.
MPIBlib implements multiple methods for computing the
sample mean, as shown in schemes (PS2) and (PS4) in Table 4.
It also provides an additional scheme that measures the run-
time on the root process only, but which we omitted for
reasons of clarity.

mpicroscope [4] and OSU Micro-Benchmarks [7] per-
form repeated measurements of one specific MPI func-
tion for a predefined number of times. They report the
minimum, the maximum, and the mean run-time of a
sample. mpicroscope attempts to reduce the number of
measurements using a linear (or optionally exponential)
decay of repetitions, i.e., if in one sample of nrep consecutive
MPI calls no new minimum execution time has been found,
the remaining number of repetitions is decreased.

The Intel MPI Benchmarks [1] use a measurement method
similar to mpptest, i.e., the time is taken before and after
executing nrep consecutive calls to an MPI function. Then,
the benchmark computes the mean of the run-times over
these nrep consecutive calls for each MPI rank. The final
report includes the minimum, maximum, and average of
these means across all ranks.

The Phloem MPI Benchmarks [8] for MPI collectives
measure the total time to execute nrep consecutive MPI
function calls and compute the mean run-time for each rank.
In addition, the Phloem MPI Benchmarks can be configured
to interleave the evaluated MPI function calls with calls
to MPI_Barrier in each iteration. Minimum, maximum,
and average run-times across MPI ranks are provided upon
benchmark completion.
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Table 3
Measurement schemes (MS) found in MPI benchmarks. In scheme (4), depending on the implementation, Get_Time returns the local time

(measured with MPI_Wtime or RDTSC) or a logical global time.

(MS1) SKaMPI, NBCBench,
MPIBlib, MPIBench,

mpicroscope,
OSU Micro-Benchmarks

(MS2) Intel MPI Benchmarks,
mpptest

(MS3) Phloem MPI Benchmarks (MS4) SKaMPI, NBCBench

1: for obs in 1 to nrep do
2: MPI_Barrier
3: ls_time[obs] = MPI_Wtime
4: execute MPI function
5: le_time[obs] = MPI_Wtime

1: MPI_Barrier // or omitted
2: s_time = MPI_Wtime
3: for obs in 1 to nrep do
4: execute MPI function
5: e_time = MPI_Wtime
6: t = (e_time− s_time)/nrep

1: MPI_Barrier
2: s_time = MPI_Wtime
3: for obs in 1 to nrep do
4: execute MPI function
5: MPI_Barrier // or omitted
6: e_time = MPI_Wtime
7: t = (e_time− s_time)/nrep

1: SYNC CLOCKS()
2: DECIDE on start_time and win_size
3: for obs in 1 to nrep do
4: WAIT_UNTIL(start_time + obs · win_size)
5: ls_time[obs] = GET_TIME()
6: execute MPI function
7: le_time[obs] = GET_TIME()

Table 4
Commonly used processing schemes (PS) for benchmark data.

(PS1) SKaMPI (PS2) MPIBlib, mpicroscope, NBCBench (PS3) OSU Micro-Benchmarks

1: for obs in 1 to nrep do
2: lt_local[obs] = le_time[obs] - ls_time[obs]
3: REDUCE nrep local run-times from each process

on root process
// lmax[obs] = MAXp(lt_local

p [obs])
4: SORT(lmax)
5: lmax= lmax[ nrep/4 : (nrep - nrep/4)]
6: print AVGnrep/2(lmax), STDEVnrep/2(lmax)

1: for obs in 1 to nrep do
2: lt_local[obs] = le_time[obs] - ls_time[obs]
3: REDUCE nrep local run-times from each process

on root process
// lmax[obs] = MAXp(lt_local

p [obs])
4: print AVGnrep(lmax), MINnrep(lmax), MAXnrep(lmax)

1: for obs in 1 to nrep do
2: lt_local[obs] = le_time[obs] - ls_time[obs]
3: local_time = AVGnrep(lt_local)
4: GATHER local_time from each process on root

process into lt

5: print MINp(lt), MAXp(lt), AVGp(lt)

(PS4) MPIBlib (PS5) MPIBench (PS6) Intel MPI Benchmarks,
Phloem MPI Benchmarks (PS7) mpptest

1: lglobal= NORMALIZE_TIME(le_time)
2: for obs in 1 to nrep do
3: REDUCE p local lglobal[obs] from

each process to root
// lmax_gl[obs] = MAXp(lglobal

p [obs])
4: lt[obs] = lmax_gl[obs] - ls_time[obs]
5: print lt, AVGnrep(lt), CInrep(lt)

1: for obs in 1 to nrep do
2: lt_local[obs] = le_time[obs] - ls_time[obs]
3: GATHER lt_localfrom each process on

root process into lt

4: lt= REMOVE_OUTLIERSp·nrep(lt)
5: print MIN(lt), MAX(lt), AVG(lt)

1: GATHER average times t on
root process

2: print MINp(lt), MAXp(lt),
AVGp(lt)

1: BROADCAST t from the root
process

2: collect MINreps(t) over sev-
eral repetitions of the bench-
mark

Grove and Coddington developed MPIBench [2], which,
in addition to mean and minimum run-times, also plots
a sub-sample of the raw data to show the dispersion of
measurements. They discuss the problem of outlier detection
and removal. In their work, the run-times that are bigger
than some threshold time tthresh are treated as outliers. To
compute tthresh, they determine the 99th percentile of the
sample, denoted as t99, and then define tthresh = t99 · a for
some constant a >= 1 (default a = 2). Grove also shows
the distribution of run-times obtained when measuring
MPI_Isend with different message sizes [10, p. 127]. He
highlights the fact that the execution time of MPI functions
is not normally distributed.

NBCBench was initially introduced to assess the run-time
of non-blocking collective implementations in comparison to
their blocking alternatives [6]. Later, Hoefler et al. explained
how blocking and non-blocking collective MPI operations
could be measured scalably and accurately [11]. The authors
show that calling MPI functions consecutively can lead to
pipelining effects, which could distort the results. To address
these problems, they implement a window-based synchro-
nization scheme, requiring O(log p) rounds to complete,
compared to the O(p) rounds needed by SKaMPI, where
p denotes the number of processes.

3 EXPERIMENTAL SETUP

As our paper heavily relies on the empirical analysis of ex-
perimental data, we first introduce our scheme for measuring
the run-time of blocking, collective MPI functions, the data
processing methods applied, and the parallel machines used
for conducting our experiments.

3.1 Notation

The benchmarks NBCBench and Netgauge are related, as
Hoefler et al. stated the following: “We [..] implement a
new benchmark scheme in the benchmark suite Netgauge.
The implementation bases on NBCBench [..]” [12]. In the
present article, NBCBench refers to the MPI benchmark and
Netgauge refers to the algorithm that synchronizes clocks
hierarchically.

We use the following notation—borrowed from
Kshemkalyani and Singhal [13]—in the remainder of the
article. The clock offset is the difference between the time
reported by two clocks. The skew of the clock is the difference
in the frequencies of two clocks and the clock drift is the
difference between two clocks over a period of time.
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Algorithm 1 MPI timing procedure.
1: procedure TIME_MPI_FUNCTION(func, msize, nrep)

// func - MPI function
// msize - message size
// nrep - nb. of observations

2: initialize time array lt with nrep elements
3: for obs in 1 to nrep do
4: SYNC_PROCESSES() // either MPI_BARRIER or window-based sync.
5: ls_time_local[obs] = GET_TIME()
6: execute func (msize)
7: le_time_local[obs] = GET_TIME()
8: if sync method == MPI_Barrier then
9: for obs in 1 to nrep do

10: lt_local[obs] = le_time_local[obs]− ls_time_local[obs]
11: MPI_REDUCE(lt_local, lt, nrep, MPI_DOUBLE, MPI_MAX, root)
12: else
13: normalize ls_time_local, le_time_localto the global reference clock
14: MPI_REDUCE(ls_time_local, ls_time, nrep, MPI_DOUBLE, MPI_MIN, root)
15: MPI_REDUCE(le_time_local, le_time, nrep, MPI_DOUBLE, MPI_MAX, root)
16: for obs in 1 to nrep do
17: lt[obs] = le_time[obs]− ls_time[obs]
18: if my_rank == root then
19: for obs in 1 to nrep do
20: print lt[obs]

3.2 Timing Procedure and Process Synchronization
In all experiments presented in this article, we measured the
time for completing a single MPI function using the method
shown in Algorithm 1. Before the start of a benchmark run,
the experimenter can select the number of observations nrep
(sample size) to be recorded for an individual test, where
a test consists of an MPI function, a message size, and a
number of processes. Before starting to measure the run-time
of an MPI function, all processes need to be synchronized. We
examine two synchronization approaches: (1) MPI_Barrier
and (2) a window-based scheme.

The window-based synchronization scheme works as
follows: (1) The distributed clocks of all participating MPI
processes are synchronized relative to a reference clock.
(2) The master process selects a start time, which is a future
point in time and broadcasts this start time to all participating
processes. (3) Since each process knows the logical global
time, it is now able to wait for this common start time
before executing the respective MPI function synchronously
with the others. (4) When one MPI function call has been
completed, all processes will wait for another future point in
time before starting the next measurement. The time period
between these distinct points is called a “window”.

3.2.1 Window-based Process Synchronization
To apply a window-based process synchronization scheme, a
clock synchronization algorithm needs to be selected.

As mentioned in Section 2, the benchmarks SKaMPI and
NBCBench provide window-based run-time measurements
of MPI functions. However, the clock synchronization al-
gorithms implemented in both benchmarks account for the
clock offset only. The problem is that the clocks of compute
nodes are quickly drifting over time. As a consequence,
the logical global clocks implemented in SKaMPI and
NBCBench lead to inaccurate results for a large number
of repetitions [14]. For that reason, we are interested in
clock synchronization algorithms that consider the clock drift,
since we want to conduct several hundreds or thousands of
measurements of individual MPI functions.

One such an algorithm is the clock synchronization
method proposed by Jones and Koenig [15], which assumes

that the clock drift is linear in time. Each process learns a
linear model of the clock drift by exchanging ping-pong
messages with a single reference process. After computing
the linear model of the logical global clock, each process can
determine the logical global time by adjusting its local time
relative to the time of the reference process.

As the algorithm of Jones and Koenig requires a relatively
long synchronization time, we combined the advantages
of the synchronization algorithms of Jones & Koenig and
Hoefler et al. Our novel algorithm synchronizes distributed
clocks in a hierarchical way, but takes the clock drift into
account [14]. Similar to the algorithm of Jones and Koenig,
our algorithm learns a linear model of the clock, defined by
a slope (the clock drift) and an intercept. We proposed two
variants of the new algorithm [14]: The first variant (HCA)
computes the intercepts in O(p) rounds after completing the
hierarchical computation of the clock models, which only
requires O(log p) rounds. The advantage of HCA is that the
intercept is measured for each clock model separately, which
leads to a more accurate global clock. The second variant
(HCA2) computes the intercepts during the hierarchical
computation of the clock model in O(log p) rounds. The
advantage of this method compared to the first approach is
its better scalability (run-time). The downside is that relying
on a combined intercept for the linear model increases the
error of the logical global clock.

3.2.2 Measurement Scheme Applied
In this paper, we use the measurement schemes (MS1) and
(MS4) of Table 3 for experiments with MPI_Barrier-based
or window-based process synchronization, respectively. Both
schemes are implemented in the ReproMPI benchmark suite2.

When applying the window-based scheme (MS4), we
employ either the algorithm of Jones and Koenig or the
algorithm of Hunold and Carpen-Amarie (variant HCA).
The accuracy of both algorithms is similar for the number
of processes used in our experiments, but HCA reduces the
time to conduct the experiments. For each figure showing
performance results, we state which synchronization option
has been used (MPI_Barrier, JK, or HCA).

Depending on the type of synchronization, we use
different ways to compute the time to complete a collective
MPI operation (see Algorithm 1, lines 8–17).

3.2.2.1 Run-times based on local times: When we
apply measurement scheme (MS1), each MPI process holds
an array containing nrep (process-)local time measurements
(run-times to complete a given MPI function). We apply
a reduction operation (max) on that array and collect the
results on the root process. Thus, the run-time of an MPI
function func using p processes in iteration i, 0 ≤ i ≤ nrep, is
given as lt[i] = max0≤r<p{lt[i]}. In other words, the run-time
of an MPI function is defined as the maximum (process-)local
run-time over all processes. This run-time computation
procedure is typically applied for measurements where
processes are synchronized using MPI_Barrier.

3.2.2.2 Run-times based on logical global times:
When globally-synchronized clocks are available (MS4),
we define the time to complete an MPI operation as the
difference between the maximum finishing time and the

2. http://hunoldscience.net/projects.html
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Table 5
Overview of parallel machines used in the experiments.

name nodes interconnect MPI libraries compilers

TUWien 36 Dual Opteron 6134 @ 2.3GHz IB QDR MT4036 NEC MPI/LX 1.2.{8,11} gcc 4.4.7
MVAPICH 2.1a

VSC-3 2000 Dual Xeon E5-2650V2 @ 2.6GHz IB QDR-80 MVAPICH 2.2b gcc 4.4.7
Edel (G5k) 72 Dual Xeon E5520 @ 2.27GHz IB QDR MT26428 MVAPICH 1.9 gcc 4.7.2
JUQUEEN IBM BlueGene/Q, 28.672 nodes @ 1.6GHz 5D Torus MPICH2-based IBM XL C/C++ V12.1

minimum starting time among all processes. All nrep starting
and finishing timestamps from all processes are gathered as
vectors on the root node. Then, the root node computes the
time of an MPI function func using p processes in iteration i
like this lt[i] = max0≤r<p{le_time[i]}−min0≤r<p{ls_time[i]}. We
use this method to compute the completion time in all our
experiments where a window-based process synchronization
method is employed.

3.3 On the Resolution of Clocks

Hoefler et al. discussed the problem that the resolution of
MPI_Wtime is typically not high enough for measuring
short time intervals [12]. They therefore use the CPU’s clock
register to count the number of processor cycles since reset.
More specifically, Netgauge implements a time measurement
mechanism based on the atomic RDTSC instruction, which
provides access to the TSC register and which is supported by
the x86 and x86-64 instruction set architectures (ISA). How-
ever, several problems can arise when using this mechanism.
First, Hoefler et al. point out that dynamic frequency changes,
which are automatically enabled in modern processors,
can modify the CPU clock rate and thus compromise the
time measurements. Second, in multi-processor systems,
CPU clocks are not necessarily synchronized, requiring the
processes to be pinned to their allocated core to guarantee
valid cycle counter values.

Since we use Linux-based experimental platforms, we can
read the TSC-related flags from /proc/cpuinfo. Except on
the JUQUEEN, all our systems had the flags constant_tsc
and nonstop_tsc set, indicating that updates of the TSC
register are independent of the current core frequency. We
also made sure that processes are pinned to cores throughout
the measurements to avoid accidentally reading the TSC
register of another core.

On the JUQUEEN, we use MPI_Wtime, as it provides a
clock resolution of 6.25× 10−10 s. For all the other experi-
ments presented in this article, we performed our measure-
ments using the equivalent RDTSCP call, which guarantees
instruction serialization, i.e., RDTSCP makes sure that all
instructions have been executed when the timestamp counter
is read. Unless otherwise specified, we fixed the frequency
to the highest available value and pinned each process to a
specific CPU in all our experiments involving RDTSCP-based
time measurements.

3.4 Data Processing and Outlier Removal

Most of the benchmarks listed in Table 2 use some form of
implicit outlier removal (e.g., by taking the minimum time
recorded and dismissing the other data points). In addition,

several benchmarks perform a number of warm-up rounds
to fill caches or to set up communication links. After the
initial warm-up phase has completed, the measurements
taken are used to compute the final statistics. One problem
is that the operating system noise can lead to relatively large
variations of the measured run-time at any moment within
the benchmark execution. A second problem is that it is
hard to estimate how many warm-up rounds are sufficient
to reach a “steady state”. To make our benchmark method
robust against these two problems, we use Tukey’s outlier
filter to remove outliers after all measurements have been
recorded [16, p. 126]. When applying this filter, we remove
all measurements from the sample that are either smaller
than Q1− 1.5 · IQR or larger than Q3 + 1.5 · IQR. The IQR
denotes the interquartile range between quartiles Q1 and Q3.

3.5 Parallel Machines
The parallel machines used for conducting our experiments
are summarized in Table 5. On the TUWien system, we have
dedicated access to the entire cluster. The Edel (G5k) system
belongs to Grid’50003, which features the OAR job scheduler
that allows us to gain exclusive access to a set of nodes
connected to the same InfiniBand (IB) switch. On VSC-3 and
JUQUEEN, the processor allocations include dedicated nodes
only, but a dedicated access to the switches is not guaranteed.

4 INFLUENCING FACTORS OF MPI BENCHMARKS

After examining the MPI benchmarking process, we now
turn to characterizing and analyzing the performance data. A
good understanding of the performance data is essential for
selecting and applying the right statistical test for comparing
MPI alternatives. But for a rigorous statistical analysis, we
need a deeper insight into our system and the factors that
influence the run-times to be measured. Le Boudec points out
that “knowing all factors is a tedious, but necessary task. In
particular, all factors should be incorporated, whether they
interest you or not” [17].

Hence, we will first examine the shape of sampling
distributions of run-time measurements. Then, we will ana-
lyze potential experimental factors in the remainder of this
section. However, we decided to exclude “obvious” factors
of MPI performance experiments, such as the communication
network, the number of processes, and the message size.

Due to space limitations, we show only a subset of all
the measurements conducted throughout our study. More
information on individual experiments, pseudocodes of
experiments, or performance plots for other machines can be
found in our arXiv report [18].

3. http://www.grid5000.fr
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Figure 1. Histogram of the time needed to complete a call to MPI_Scan
with 10 000Bytes (left) and to MPI_Allreduce with 1000Bytes (right)
on TUWien, (MPI_Barrier synchronization, NEC MPI 1.2.8).

4.1 Sampling Distributions of MPI Timings

To apply a statistical hypothesis test, we need to make sure
that all its assumptions are met. Many tests assume that the
data follow a specific probability distribution, e.g., the dataset
is normally distributed. We now examine the experimentally
obtained distributions of MPI function run-times.

We first ran a large number of MPI experiments to
investigate various sampling distribution of MPI timings.
The experiments were conducted for several MPI functions
such as MPI_Bcast, MPI_Allreduce, MPI_Alltoall, or
MPI_Scan. Figure 1 shows the distribution of run-times for
10 000 calls to MPI_Scan with a payload of 10 000 Bytes
and to MPI_Allreduce with a payload of 1000 Bytes, both
for 16× 1 processes. We used a kernel density estimator
(density in R) to obtain a visual representation of the
sampling distribution. The figure indicates that the sampling
distributions are clearly not normal, and interestingly, in
both distributions we can see two distinct peaks. The peak
on the right is much smaller, but it appears in many other
histograms for small execution times (less than 200 µs).
Similar distributions were obtained for experiments with
MPI_Alltoall and MPI_Bcast, as well as on other parallel
machines [18].

Since the measured run-times do not follow a normal
distribution, we must be careful when computing statistics
such as the confidence interval for the mean. The central
limit theorem (CLT) states that sample means are normally
distributed if the sample size is large enough. In practice, we
most often do not know in advance how large the sample
size should be such that the CLT holds. Many textbooks,
like the books by Lilja [19] or Ross [20], state that a sample
size of 30 is large enough to obtain a normally distributed
mean. However, Chen et al. [21] report in a recent study that
samples need to include at least 240 observations, such that
the sample means follow a normal distribution.

We conducted an experiment to verify how large the
sample size should be when measuring run-times of MPI
functions. We are specifically interested in how many repeti-
tions of a single measurement are needed within one call to
mpirun such that the CLT holds for the computed sample
mean. To answer this question, we analyzed distributions of
sample means by randomly sampling from the set of 10 000
previously measured MPI run-times of MPI_Allreduce (cf.
Figure 1). In particular, we drew 500 samples containing
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Figure 2. Distribution of sample means when sampling using different
sample sizes from the probability distribution for MPI_Allreduce (cf.
Figure 1).

10, 20, . . ., 500 observations each, computed the mean of
each sample, and built a histogram of the sample means for
each sample size. Figure 2 shows two histograms and their
corresponding Q-Q plots for a sample size of 30 and 500.
The data provides evidence that a sample size of 30 is not
large enough to obtain a normally distributed sample mean.
In our particular case, 500 observations were required such
that the distribution of sample means was normally shaped.
We therefore advise scientists to carefully verify the sample
distribution to compute meaningful confidence intervals of
the sample mean when benchmarking MPI functions. A
similar suggestion has been made recently by Hoefler and
Belli [22].

4.2 Factor: The Influence of mpirun

When investigating the results of the sampling experiment
presented in Section 4.1, we noticed that the sample means
were slightly changing between calls to mpirun. To in-
vestigate the effect of mpirun, we conducted a series of
experiments to determine whether distinct calls to mpirun
produce different sample means (statistically significant).
We ran the following experiment: We executed 30 distinct
calls to mpirun and within each mpirun measured 1000
times the individual run-time of a given MPI function. All 30
calls to mpirun were executed as part of the same compute
job of the queuing system (e.g., SLURM, PBS, etc.), which
means that all mpiruns used the same node and processor
allocation. We removed outliers as described in Section 3.4.
The Figures 3(a)–3(c) present the experimental results for
the three parallel machines TUWien, VSC-3, and Edel (G5k).
The graphs compare the arithmetic means and their 95 %
confidence intervals for 30 distinct calls to mpirun, a given
MPI function, and a message size. The data yielded by this
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Figure 3. Mean and 95% confidence interval of the time to complete a call to MPI_Bcast (with a different size of the payload) for 30 distinct calls to
mpirun, using MPI_Barrier for synchronization.

experiment provide evidence that the means of the run-times
obtained from distinct calls to mpirun are different. The
differences between these means, however, are often not very
large (3 %–5 %), yet they are statistically significant.

We performed a similar experiment on a BlueGene/Q
to test whether mpirun also has an effect on specialized
supercomputers. Again, the different calls to mpirun are
executed as part of one compute job, and thus, the processor
allocation and the pinning policy between different runs
were identical. Figure 3(d) shows the means and confidence
intervals obtained from 30 calls to mpirun, in which we
repeated the measurement of MPI_Reduce 300 times. In this
case, we also observe varying means between subsequent
calls to mpirun, yet the relative difference between them
was only 1 %–2 %.

Our finding that mpirun can significantly affect the
experimental outcome is very important for designing MPI
benchmarks. As a consequence, it is insufficient for an MPI
benchmark to collect MPI run-time measurements only from
a single call to mpirun. Instead, several calls to mpirun are
required to account for the variance between different calls.

We still need to answer the question of how many calls to
mpirun are required to obtain meaningful statistical results
when means or medians vary between calls? Answering
this question without an explicit assumption about the
underlying distribution is impossible. So far, we have tested
on a handful of parallel machines with various MPI functions,
number of processes, and message sizes. In our experiments,
10 calls to mpirun seemed to be the minimum number of
repetitions needed to obtain a good estimate of the variance
between mpiruns, while 30 repetitions were sufficient in all
cases. Nevertheless, performing 10 to 30 mpiruns should
be considered a rule of thumb, and experimenters need to
carefully investigate the variance introduced by mpirun for
their measurements.

4.3 Factor: Synchronization Method

After introducing and discussing several clock synchroniza-
tion methods in Section 3.2, we now want to evaluate their
effect on MPI benchmarking results.

We start by looking at the evolution of run-time measure-
ments over a longer period of time in Figure 4. The graph
compares the run-times of MPI_Allreduce measured using
a window-based scheme (applying the clock synchronization
algorithm of Jones and Koenig) with the run-times obtained
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Figure 4. Mean and median of run-times of MPI_Allreduce when syn-
chronizing either with the method of Jones and Koenig (JK) (window size:
1ms) or an MPI_Barrier (1000Bytes, 16× 1 processes, 500 000 runs,
bin size: 10 000, MVAPICH 2.1a, TUWien).

using MPI_Barrier for process synchronization. The plot
exposes two critical issues when measuring and analyzing
MPI performance data. First, we see a significant difference
between the mean and median run-times, which were
computed for each bin of 10 000 runs. The difference is
also present even though the outliers were removed (using
Tukey’s method, cf. Section 3.4). Second, the use of a window-
based synchronization method might allow the experimenter
to obtain more accurate results, but even with a very precise
clock synchronization method, such as the algorithm of Jones
and Koenig, the run-times will gradually drift apart.

From the experiments shown above, we also see that
the differences between the run-times measured with either
a window-based or an MPI_Barrier-based scheme are
relatively small. Now, the practitioner may ask the question:
Is MPI_Barrier good enough to reasonably compare MPI
measurements? In our opinion, the question cannot be
answered generally as it depends on the actual goal of an
experiment and the implementation of MPI_Barrier. If the
experimenter seeks to obtain the most accurate timings for
short-running MPI functions, the use of a window-based
scheme should be considered. For a fair comparison of
MPI implementations, relying on MPI_Barrier may be
completely sufficient if the same MPI_Barrier algorithm is
used by all of them (cf. Hunold and Carpen-Amarie [14]).
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Figure 5. Pinning effect on the run-time of MPI_Allreduce (256 pro-
cesses (16× 16), 1000 measurements, 10 calls to mpirun, MPI_Wtime,
HCA synchronization, window size: 1ms, NEC MPI 1.2.11, TUWien).

4.4 Factor: Pinning MPI Processes

It is well-known that the performance of MPI applications
might be sensitive to the way processes are pinned to
CPUs, as pinning can influence several performance-relevant
properties, such as the cache reuse or the applicability of
intra-node communication.

In the context of MPI benchmarking, CPU pinning is
certainly required if we want to use the RDTSC instruction to
measure the run-time, since unpinned processes might result
in erroneous results. Yet, the more general question is: Does
pinning affect the execution time of MPI functions?

Figure 5 shows the results of an experiment in which
we investigate whether the run-time of an MPI function
changes if processes are pinned to CPUs or not (using
MPI_Wtime for time measurements). The figure presents the
histograms of run-times for MPI_Allreduce and various
message sizes. Each histogram is generated by accumulating
all run-time measurements from 10 different calls to mpirun.
We can clearly see a significant difference in the shape of
the histograms and the mean run-times, which are marked
with a vertical line. Even though there could be cases where
pinning has no effect on measurements, we have shown that
pinning is an experimental factor to be considered in the
context of MPI benchmarking.

4.5 Factor: Compiler and Compiler Flags

It seems self-evident to consider the compiler and the
compiler flags as being significant experimental factors of
MPI benchmarking applications. We still need to measure
this effect to support our conjecture.

We conducted an experiment in which we measured
the run-time of a call to MPI_Allreduce with the same
version of MVAPICH. We recompiled the entire library
(MVAPICH 2.1a) with gcc 4.4.7, but for each experimental
run we changed the optimization flag to either -O1, -O2,
or -O3. Figure 6 clearly shows that compiling the library
using -O3 outperforms the versions with other optimization
flags. Even though it seemed obvious, our message is: If
an MPI benchmarking experiment does not clearly state the
compiler and the compilation flags used, the results will not
be comparable or might not even be trustworthy.
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Figure 6. Compiler effect on the run-time of MPI_Allreduce (median
run-time distribution of 30 calls to mpirun, 16× 1 processes, 1000 mea-
surements, HCA synchronization, window size: 1ms, MVAPICH 2.1a,
TUWien).

4.6 Factor: DVFS
The majority of today’s processors offer dynamic voltage and
frequency scaling (DVFS) capabilities to reduce the energy
consumption of the chip. Changing the core frequency is
therefore an obvious factor for computationally-intensive
workloads. In this work, we investigate whether the choice
of the DVFS level may alter the run-times of MPI operations.

We conducted an experiment on TUWien, in which
we compared the run-times of MPI_Allreduce for
two different MPI implementations, MVAPICH 2.1a and
NEC MPI 1.2.11, and for two different DVFS levels, 2.3 GHz
and 0.8 GHz. Figure 7 presents the results of this experiment.
The upper graph shows that MVAPICH outperforms NEC
MPI for message sizes of up to 210 Bytes when all processors
are running at a fixed frequency of 2.3 GHz. In contrast,
when we change the frequency to 0.8 GHz for all the
processors, NEC MPI dominates MVAPICH for all message
sizes. Additionally, we see that the individual run-times of
MPI_Allreduce increase significantly when reducing the
cores’ frequencies.

The key observation is that the DVFS level needs to be
carefully stated. Two MPI implementations may compare
and behave differently depending on the chosen DVFS level.

4.7 Factor: Warm vs. Cold Cache
Gropp and Lusk [5] had already named the problem of
“ignor[ing] cache effects” among the perils of performance
measurements. They pointed out that the time to complete a
send or receive operation depends on whether the send and
receive buffers are in the caches or not. Therefore, mpptest
uses larger arrays for sending and receiving messages, but
the offset from where messages are sent or received is
changed in a block-cyclic way at every iteration, to reduce
the chance that data resides in cache.

The influence of caching was shown by Gropp and Lusk
using mpptest for measuring the run-time of point-to-point
communication. In the present work, we investigate how
large the effect of caching is on blocking collective MPI
operations. Instead of using buffer-cycling, we implemented
another approach: we assume that the size of the last level
of data cache, which is private to each core, is known. On
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Figure 7. DVFS configuration effect on MPI_Allreduce run-times
(median run-time distribution of 30 calls to mpirun, 16× 1 processes,
1000 measurements, HCA synchronization, window size: 1ms, MVA-
PICH 2.1a vs. NEC MPI 1.2.11, TUWien).

current hardware this is often cache level 2. Let the size
of this data cache be SLLC Bytes. We allocate an auxiliary
buffer bufaux containing SLLC Bytes. Now, we alter our MPI
benchmark as follows: we override the entire buffer bufaux
(using memset) after each iteration, i.e., when one measure-
ment of a collective MPI call has been completed. This way
we attempt (since we do not know the hardware details) to
ensure that our message buffer used for the MPI operation is
not cached.

The effect of caching is shown in Figure 8, in which we can
see that the reuse of message buffers between subsequent
MPI calls, in this case MPI_Allreduce, has a significant
impact on the run-time. As a result, MPI benchmarks must
clearly state whether and how the caching of messages
(buffers) is controlled.

4.8 Summarizing Experimental Factors

Our initial goal was to allow a fair and reproducible com-
parison of the performance of MPI implementations. A well-
defined experimental design is one requirement to achieve
that goal, and therefore, the analysis of experimental factors
is of major importance. We have analyzed factors, such as
compiler flags or cache control, and evaluated whether they
have a significant effect on the experimental outcome. The
influence of some factors on the performance measurements
was not surprising, for example, we had expected that the
DVFS level would affect the run-times.

However, the experiments led to two main results: The
first lesson we learned was that the execution time of MPI
benchmarks varies significantly between calls to mpirun.
As a consequence, a reproducible and fair comparison of
run-time measurements requires that performance data are
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Figure 8. Cold cache vs. warm cache: Median run-times for
MPI_Allreduce (16× 1 processes, 10 calls to mpirun, 1000 mea-
surements, HCA synchronization, window size: 1ms, MVAPICH 2.1a,
TUWien).

recorded from different calls to mpirun. The second lesson,
that we found quite surprising, was that determining which
MPI implementation is better for a given case depends on
the configuration of the experimental factors. For example,
the run-time of MPI_Bcast might be shorter with library A
using DVFS level “low”, but library B will provide a faster
MPI_Bcast implementation in DVFS level “high”.

Of course, our list of examined experimental factors is
not exhaustive, and we are aware that other factors could
also impact the experimental outcome. One such example is
the operating system. Since many of such factors are often
uncontrollable, we need to address them statistically.

In conclusion, we advise MPI experimenters to carefully
list the settings of all experimental factors, besides the
obvious factors such as number of processes, message size,
and parallel machine. Benchmarking results should also
include the setting of library-specific variables (often done
through environment variables), which can influence the run-
time of MPI libraries, e.g., by selecting a certain algorithm.

5 STATISTICALLY RIGOROUS AND REPRODUCIBLE
MPI BENCHMARKING

After investigating the factors that may influence results of
MPI benchmarks, we now propose a method to compare MPI
implementations by using statistical hypothesis testing. Our
goal is to establish an experimental methodology that aims
to reproduce the test outcome between several experiments.

We motivate the need for a more robust evaluation
method by showing the results in Figure 9. On the left-
hand side, we see a comparison between the run-time of
MVAPICH and NEC MPI when executing MPI_Allreduce
with various message sizes. Each bar represents the mean run-
time computed for 1000 individual measurements of a single
call to mpirun. One might say that such a comparison is fair
(due to the large number of repetitions) and we contend this
is common practice when analyzing experimental results in
the context of MPI benchmarking. However, when we look
at the results shown on the right-hand side, the outcome
changes significantly. For example, the ratio of mean run-
times for a message size of 21 Bytes has now changed. This
observation matches the result of our factor analysis, in
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Figure 9. Comparison of mean run-times of MPI_Allreduce and different message sizes for two distinct calls to mpirun (16× 1 processes, 1000
measurements per message size, HCA synch. with window sizes adapted to each message size, MVAPICH 2.1a vs. NEC MPI 1.2.11, TUWien).

which we have discovered that the call to mpirun is an
experimental factor (cf. Section 4.2). Therefore, we emphasize
again that an MPI benchmark needs to collect data from
multiple mpirun calls to be fair and reproducible.

5.1 Design of Reproducible Experiments

Our new experimental design for measuring MPI per-
formance data is shown in Algorithm 2. The procedure
BENCHMARK generates the experimental layout and has five
parameters, two of them being important for the statistical
analysis: (1) n denotes the number of distinct calls to mpirun
for each message size, and (2) nrep specifies the number
of measurements taken for each message size in each call
to mpirun. In total, we measure the execution time of
a specific MPI function for every message size n · nrep
times. In the BENCHMARK procedure of Algorithm 2, we
issue n calls to mpirun, where the number of processes p
stays fixed. To respect the principles of experimental design
(randomization, replication, blocking) as stated by Mont-
gomery [24], we randomize the experiment by shuffling the
order of experiments within a call to mpirun. The procedure
SCAN_OVER_MPI_FUNCTIONS has three parameters: the
list of message sizes (lmsize), the list of MPI functions to be
tested (lfunc), and the number of observations (nrep) to be
recorded for each message size. The procedure creates a
list (lexp) containing the experiments covering all message
sizes and MPI functions. The order of elements in this list is
shuffled before each item (experiment) is executed.

The procedure BENCHMARK of Algorithm 2 is executed
for each MPI implementation. After the measurement results
have been gathered, we apply the data-analysis procedure
shown in Algorithm 3. Here, we group run-time measure-
ments by the message size, the type of MPI function, and the
number of processes. We remove statistical outliers from each

Algorithm 2 Design of an MPI experiment.
1: procedure BENCHMARK(p, n, lmsize, lfunc, nrep)

// p - nb. of processes
// n - nb. of mpiruns
// lmsize - list of message sizes
// lfunc - list of MPI functions
// nrep - nb. of measurements per run

2: for i in 1 to n do
3: mpirun -np p SCAN_OVER_MPI_FUNCTIONS(lmsize, lfunc, nrep)

4: procedure SCAN_OVER_MPI_FUNCTIONS(lmsize, lfunc, nrep)
5: lexp ← ()
6: for all msize in lm do
7: for all func in lfunc do
8: lexp.add( TIME_MPI_FUNCTION(func, msize, nrep) )
9: shuffle(lexp) // create random permutation of calls in place

10: for all exp in lexp do
11: call exp

Algorithm 3 Analysis of benchmark data.
1: procedure ANALYZE_RESULTS(lmsize, lp, lfunc, n)

// lmsize - list of message sizes
// lp - list of processes
// lfunc - list of MPI functions
// n - nb. of mpiruns

2: for all msize ∈ lmsize, p ∈ lp, func ∈ lfunc do
3: for i in 1 to n do
4: lti = { lt[msize][p][func][i][j] for all 1 ≤ j ≤ nrep}
5: lti = remove_outliers(lti)
6: v[msize][p][func][i] = (median(lti),mean(lti))
7: print v // table with results

of these measurement groups. Last, we compute averages
(the median and the mean) for each group of measurements
and store them in a table. By applying this data-analysis
method, we obtain a distribution of averages (medians or
means) over n calls to mpirun for each message size, MPI
function, and number of processes.
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Figure 10. Comparison of the run-time distributions obtained when measuring MPI_Allreduce with a sample size of 10 (left) and 100 (right) per
message size. The statistical significance was computed using the WILCOXON TEST (MVAPICH 2.1a vs. NEC MPI 1.2.11, 16× 1 processes, 30 calls
to mpirun, HCA synchronization with window sizes adapted to each message size, TUWien).

5.2 Fair Performance Comparison Through Statistical
Data Analysis

Now, the situation is as follows: we run our benchmark
on two MPI implementations A and B and perform the
data analysis according to Section 5.1, which gives us a
distribution of averages for each measurement point. The
question then becomes: How can we compare the measured
results in a statistically sound way? We could reduce all
the values from the distribution to a single value using
the minimum, the maximum, or the average, and then
compare two MPI implementations based on this single
value. However, it is our goal to find evidence that a
measured performance difference has a high probability of
being reproducible.

Since we have two averages (the mean and the me-
dian) for each message size, we have several options for
selecting a statistical test. If we use the computed median
in a hypothesis test, we could employ the nonparametric
Wilcoxon–Mann–Whitney test (Wilcoxon sum-of-ranks, in
the remainder: WILCOXON TEST) for comparing alterna-
tives [25]. The advantage of the WILCOXON TEST (besides
being nonparametric) is that it makes no assumption on the
underlying distribution; in particular, it “does not require
the assumption of normality” [20]. We could also employ
the WILCOXON TEST on the distribution of means, but in
this case the T-TEST for two independent samples is also a
promising candidate. The T-TEST assumes that the underlying
population is normally distributed and that the variances
of both populations are equal [23]. In our experiments, the
distributions of sample means (over mpiruns) often followed
a normal distribution, but unfortunately not all of them. We
therefore chose to apply the WILCOXON TEST on median
run-times exclusively in our experiments, and we used the R
statistical environment for the analysis [26].

We now demonstrate how to apply the WILCOXON TEST
to our data and discuss why the test helps us to provide a fair
comparison of MPI implementations. Figure 10 shows our
statistical comparison method applied to run-times measured
for MPI_Allreduce with both NEC MPI and MVAPICH.
Let us focus first on the graph on the left-hand side of this fig-

ure, where we compare the distributions of means recorded
for different message sizes. Each distribution contains 30
elements, which are the median run-times measured in the
30 calls to mpirun. We apply the WILCOXON TEST on the two
distributions of medians for each message size. The test does
not only report whether the null hypothesis (both population
means are equal) is rejected or not, but it also provides a
p-value. To obtain a graphical representation of the p-value
and therefore the statistical significance, we represent the p-
value by a sequence of asterisks. One asterisk (∗) represents a
p-value of p ≤ 0.05, two asterisks denote p ≤ 0.01, and three
asterisks denote p ≤ 0.001. It also means that if asterisks
are absent in a specific case, the null hypothesis could not
be rejected, and thus, the statistical test does not provide
sufficient evidence which implementation is better. We used
a significance level of 0.05 (5 %) for all experiments.

When we look at the left graph of Figure 10, for which we
applied the WILCOXON TEST, we see that using a hypothesis
test can indeed help to separate cases, for which a decision
can hardly be made only by looking at the distributions. For
example, the differences between the distributions for 26

and 27 Bytes seem to be negligible. However, the WILCOXON
TEST reveals that there is evidence that the sample medians
are different in the case of 27 Bytes, but not in the case
of 26 Bytes. The graph on the right-hand side of Figure 10
presents the results when applying the WILCOXON TEST with
a sample size of 100 per mpirun. It is not surprising that
the variances of the distributions of the averages decrease,
and thus, a larger sample size helps the hypothesis test to
separate averages with a higher significance.

The graphs in Figure 10 compare run-time distributions
of two MPI implementations and show the statistical test
results of whether the population averages are equal. Yet, in
a practical scenario one might rather ask a question like: Is
MPI library X faster than library Y for MPI function F ? To
answer this question, we change the alternative hypothesis of
the test to “less” (null hypothesis: H0 : µA = µB , alternative
hypothesis: Ha : µA < µB , where µ denotes the average).
Figure 11 presents the results of the same experiment as
shown on the right of Figure 10, but here we check whether
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Figure 11. Comparison of the run-times of MPI_Allreduce while
applying the WILCOXON TEST with “less” as an alternative hypothesis
(experimental setup as in Figure 10).

the run-time of MPI_Allreduce is smaller with MVAPICH
than with NEC MPI. We see that for the two cases, 211 and
212 Bytes, the null hypothesis could not be rejected, and
thus, in these cases the run-time of MPI_Allreduce using
MVAPICH is not smaller than when using NEC MPI. We
note that this result does not immediately imply that NEC
MPI is faster than MVAPICH in these cases. To verify this,
the test should use the alternative hypothesis “greater”.

5.3 Evaluating the Outcome Reproducibility
Until now, we have investigated the factors that potentially
influence the benchmarking results of MPI functions and
have shown how statistical hypothesis tests help us to fairly
compare the performance of two MPI libraries. One of our
initial goals was to develop a benchmarking method that
leads to a reproducible experimental outcome (cf. example
in Table 1).

To examine the reproducibility of our benchmarking
method, we conducted the following experiment: We ran our
benchmarking method (cf. Algorithm 2) for ntrial=30 times.
Each of the ntrial runs gave us one distribution of run-times
per message size, which contains n=30 values. Since we
obtain a distribution of distributions, we collapse the inner
distribution into a single value. To do so, we compute the
mean of the n=30 values measured for one message size
in each of the ntrial distributions. Then, we normalize the
run-time values by computing the ratio of each mean to
the minimum mean. We obtain a distribution of ntrial=30
normalized run-time values for our benchmarking method,
presented in Figure 12(c). We can observe that the maximum
relative difference between the 30 runs is very small (less
than 5 % for 214 Bytes).

As a comparison, we also conducted ntrial=30 runs of
the Intel MPI Benchmarks 4.0.2 and SKaMPI 5. We used
the standard configuration of the two benchmark suites
(in particular, we used the default values of the number of
repetitions for each message size). We compute the normalized
run-time of each measurement for a specific message size as
follows: tnormmsize,i = tmsize,i/t

∗
msize , for all i, 1 ≤ i ≤ ntrial = 30,

where t∗msize = min1≤i≤ntrial tmsize,i. We can see in Figure 12(a)

and Figure 12(b) that the normalized run-times of Intel
MPI Benchmarks and SKaMPI exhibit a significantly larger
variance for smaller message sizes than our benchmarking
approach. The higher variance can be explained by the
influence of system noise on experiments with small message
sizes. In such cases, an MPI benchmark needs to record a
sufficiently large number of repetitions across several calls
to mpirun. The Intel MPI Benchmarks and SKaMPI simply
lack such reproducibility policies.

We also show the results of a similar experiment
in Figures 12(d)–12(f), where we assess the reproducibil-
ity of the measured run-times of MPI_Allgather using
1024 processes on VSC-3. In this experiment, the Intel
MPI Benchmarks also demonstrated a good reproducibil-
ity of results due to by two reasons. First, the run-time
of MPI_Allgather on 1024 processes is relatively large
compared to random system noise. Second, as the Intel MPI
Benchmarks use local times of each process to compute
the final run-time, random system noise is not always
propagated through all processes, as it is the case when
synchronizing between MPI function calls. In general, ex-
perimenters want to optimize two benchmarking criteria:
accuracy and reproducibility. The run-time results of each
MPI function measured with the Intel MPI Benchmarks are
often much smaller than the ones obtained with SKaMPI’s
or our method due to the design of the timing procedure,
where processes are not synchronized between subsequent
calls (cf. Table 3). This scheme may, and often does, causes
pipelining effects [11], which can lead to substantially smaller
mean run-times and also a decreasing accuracy.

Overall, we can state that our benchmarking approach
notably improves the reproducibility of the performance
results compared to the Intel MPI Benchmarks and SKaMPI.
The price for a better reproducibility, however, is a longer
run-time of the overall benchmark, caused by the need to
record a larger number of measurements per message size
and to execute multiple mpiruns.

6 RELATED WORK

The statistically rigorous analysis of experimental data has
been the focus of numerous studies over the last couple of
years, driven by the need for establishing a fair comparison
of algorithms across different computing systems.

Vitek and Kalibera contend that “[i]mportant results
in systems research should be repeatable, they should be
reproduced, and their evaluation should be carried with
adequate rigor”. They show that a correct experimental
design paired with the right statistical tests is the cornerstone
for reproducible experimental results [27]. The authors stress
the fact that knowing and understanding the controllable
and uncontrollable factors of the experiment is crucial for
obtaining sound experimental results.

The state of performance evaluation in Java benchmark-
ing was investigated by Georges et al. [28]. They examined
the performance of different garbage collectors for the Java
Virtual Machine (JVM). The paper demonstrates that the
answer to the question of which garbage collector is faster
changes completely depending on the performance values
investigated (e.g., mean, median, fastest, etc.). The authors
show how to conduct a statistically rigorous analysis of JVM
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(a) Intel MPI Benchmarks 4.0.2
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(b) SKaMPI 5
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(c) Our method
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(d) Intel MPI Benchmarks 4.0.2
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(e) SKaMPI 5
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Figure 12. Distributions of normalized run-times reported by the Intel MPI Benchmarks (left), SKaMPI (center), and our method (right). Top
row: MPI_Bcast, 16× 1 processes, MVAPICH 2.1a, TUWien; Bottom row: MPI_Allgather, 64× 16 processes, MVAPICH 2.2b, VSC-3; HCA
synchronization used in our method.

micro-benchmarks. In particular, they explain the need for
considering confidence intervals of the mean and show that
the Analysis of Variance (ANOVA) can be used to compare
more than two alternatives in a sound manner.

Mytkowicz et al. dedicated an entire article to the prob-
lem of measurement bias in micro-benchmarks [29]. The
authors examine the run-time measurements of several
SPEC CPU2006 benchmarks, when each benchmark is either
compiled with the optimization flag -O2 or -O3. In theory,
the programs compiled with -O3 should run faster than the
ones compiled with -O2. However, the authors discovered
that the resulting performance not only depends on obvious
factors such as the compilation flags or the input size, but
also on less obvious factors, such as the link order of object
files or the size of the UNIX environment. A possible solution
is to apply a randomized experimental setup. Please refer to
the books of Box et al. [30] and Montgomery [24] for more
details on randomizing experiments.

Touati et al. developed a statistical protocol called
Speedup-Test that can be used to determine whether the
speedup obtained when modifying an experimental factor,
such as the compilation flag (-O3), is significant [31]. The
article presents two tests, one to compare the mean and
one to compare the median execution times of two sets of
observations. For a statistically sound analysis, they base
both Speedup-Test protocols on well-known tests, such as
the Student’s t-test to compare means or the Kolmogorov-
Smirnov test to check whether two samples have a common
underlying distribution.

Chen et al. proposed the Hierarchical Performance Testing
(HPT) framework to compare the performance of computer
systems using a set of benchmarks [21]. The authors first
contend that it is generally unknown how large the sample
size needs to be, such that the central limit theorem holds.
They show that for some distributions a sample size “[i]n

the order of 160 to 240” is required to apply statistical
tests that require normally distributed data [21]. Since such
a high number of experiments seems infeasible for them,
they propose a nonparametric framework to compare the
performance improvement of computer systems. The HPT
framework employs the nonparametric Wilcoxon Rank-Sum
Test to compare the performance score of a single benchmark
and the Wilcoxon Signed-Rank Test to compare the scores
over all benchmarks.

7 CONCLUSIONS

We have revisited the problem of benchmarking MPI collec-
tives. Our work was motivated by the need (1) to fairly
compare MPI implementations using a sound statistical
analysis and (2) to allow the reproducibility of results.

We have analyzed experimental factors of MPI experi-
ments, for example, we have demonstrated that changing
the DVFS level or the compiler flags can alter the outcome of
the MPI benchmark. However, our most important finding
is that a call to mpirun is a factor of the experiment, i.e.,
different calls to mpirun can produce significantly different
means (or medians), even if all other factors and the input
data stay unmodified.

After investigating the implications and consequences of
various synchronization methods and experimental factors,
we have proposed a novel MPI benchmarking method. We
have shown how to apply hypothesis tests such as the
WILCOXON TEST to increase the fairness and the evidence
level when comparing benchmarking data. Last, we have
demonstrated that our benchmarking method also improves
the reproducibility of results in such a way that the measured
performance values exhibit a much smaller variance across
different experiments compared to other MPI benchmark
suites.
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In general, benchmarking MPI collective communica-
tion operations is affected by the allocated processors and
the current workload of the system. We therefore advise
experimenters to perform all measurements temporally
close to each other when comparing the run-time of MPI
functions, to ensure that measurements are exposed to similar
workload conditions. It is also important to conduct run-
time experiments on the same set of nodes and using the
same process pinning to allow for a fair and meaningful
comparison of experimental results.
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