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Offloading Interrupt Load Balancing from SMP
Virtual Machines to the Hypervisor
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Abstract—Cloud computing increasingly leverages SMP virtual machines (VMs) to host multi-threaded applications. Interrupt
balancing as a problem becomes more challenging because VMs are subject to the hypervisor’s scheduling. Since the scheduling
delays are typically tens of milliseconds, when they are added to one VM’s interrupt delivery, they can seriously degrade the
VM’s I/O performance. Traditional balancing techniques are designed for dedicated environments, which cannot work well in
virtualized environments because VMs are disallowed to directly control the hardware in many cases. In this paper, we present
hBalance, a very simple approach to offload interrupt load balancing from SMP-VMs to the hypervisor. To accelerate the interrupt
processing, our approach does not require shortening the hypervisor’s scheduling time slice, but dynamically redirects interrupts
from preempted virtual CPUs to running ones in a balanced manner. hBalance supports both Fully Virtualiized (FV) guests
and Para-Virtualized (PV) guests, and exhibits high portability among various hypervisors. With our prototype implementation in
Xen, the experimental results with both micro-level and application-level benchmarks show that hBalance significantly improves
SMP-VMs’ I/O performance while introduces moderate overhead.

Index Terms—SMP Virtual Machines, Interrupt Load Balancing, I/O Performance

F

1 INTRODUCTION
Cloud platforms adopt VMs to provide on-demand
computing services. To improve hardware resource
utilization, independent workloads are often consol-
idated in the same machine using VMs. As multi-
core computer systems become prevalent, SMP-VMs
have been widely deployed to exploit their inher-
ent parallelism to cope with heavy workloads. One
useful feature of SMP-VMs is the ability to adapt to
the changing resource demand. For example, when
the workload increases, an SMP-VM can expand its
computing capability by running on dedicated cores;
while during off-peak periods, it can be simply con-
solidated with other VMs via live migration [14]. In
this environment, I/O performance is critical, espe-
cially for communication-intensive applications.

To guarantee I/O performance, interrupts must be
served as soon as possible. Interrupt processing in
physical SMPs typically includes two stages: (1) when
a core receives an interrupt, it must suspend the
current task to fetch the data from the I/O device
to the kernel stack; (2) after the data is passed to
the user space, a number of child threads may be
created or waked up by the corresponding application
to process the data. This is true of many web server
applications: in Apache HTTP server, which is a multi-
process multi-threaded application, the daemon lis-
tens to a TCP port and after receiving a new request,
it will spawn a copy of itself to process the request
while the parent goes back to listening. Since each
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Fig. 1: In a virtualized system, the hypervisor trans-
lates hardware interrupts into virtual interrupts, and
one pCPU is often time-shared by several vCPUs.

child inherits almost everything from its parent (e.g.,
memory address space, global variables, binary code
and loaded libraries), initially they run on the same
core. Regarding virtual SMP systems, the scenario
is similar but starts to deviate when the hypervisor
takes over the hardware and multiplexes the un-
derlying resources among different VMs. Figure 1
clearly shows this difference: when there are multiple
virtual CPUs (vCPUs) running on one physical CPU
(pCPU), vCPU preemption is usually inevitable; such
scheduling delays can seriously affect the timeliness
of interrupt processing.

In a dedicated environment, to amortize the over-
head of the first stage, the OS either relies on hard-
ware chipsets to automatically distribute the inter-
rupts to different cores, or adopts a user-level daemon
(such as irqbalance [1] in Linux) to periodically change
the interrupt-receiving core. To balance the spawned
threads in the second stage, the process scheduler
takes the role to migrate them among different cores.
However, in a virtualized environment, the problem
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is more complicated in that hardware interrupts are
served by the hypervisor which carries all the native
device drivers, and VMs see and process only vir-
tual interrupts. Therefore, the need for load balancing
exists in three levels: hardware interrupts, virtual
interrupts and the spawned threads.

Take Xen [11] for example, hardware interrupts are
balanced by the driver domain (dom0) which is out
of any guest VM’s concern (§2 has more details). As
dom0 often runs on dedicated pCPUs, it is similar
to a dedicated environment. However, for virtual
interrupts, traditional OS-level methods are subop-
timal in several aspects. First, vCPU preemption is
totally transparent to VMs; if an interrupt is routed
to a waiting vCPU, it will not be seen by the SMP-
VM until that vCPU gets scheduled again. Second,
since the newly created threads have many things
in common with their parent, the process scheduler
would tend to retain them on the same core as long
as possible in order to maximize the CPU cache effect;
this is different from exec() in which the child is
replaced with another program, and the kernel will
try to migrate the child to another core for load
balancing because it has the smallest effective memory
and cache footprint. Third, the process scheduler may
attempt to use as fewer cores as possible, assuming
that idle cores can stay in sleep mode to save power
(§3 has more details); however, this assumption is not
true for VMs because power is managed by the hyper-
visor which sits on the bare-metal CPUs; on the other
hand, as the hypervisor scheduler treats all vCPUs
of an SMP-VM equally when allocating CPU quota,
imbalanced load potentially causes wasted resources.

We observe that the vCPUs of an SMP-VM are
mostly scheduled independently in each pCPU’s run
queue, so it is very likely that when one vCPU is wait-
ing, some other is already running. Therefore, if inter-
rupts can be dynamically migrated from preempted
vCPUs to running ones: (1) they can be processed
immediately; (2) no vCPU context switch will occur.
In our prior work, we propose an OS-level solution
called vBalance [13] to migrate virtual interrupts within
the guest. However, this approach only works for PV
guests, without any support for FV guests; besides,
its portability is also very limited. In this paper, we
argue that the hypervisor is actually on a vantage point
to balance I/O for SMP-VMs, because it knows exactly
about each vCPU’s runtime scheduling state. To this
end, we propose hBalance to offload such functionality
from the guest OS to the hypervisor. Our new design is
based on two representative interrupt delivery mod-
els: virtual APIC, adopted by most hypervisors; and
event channel, introduced by Xen’s PV technology.
For APIC-based guests, hBalance simply reuses its
logical destination mode, requiring no modifications
to the OS; regarding PV guests, we introduce OS-
specific event channel, which decouples I/O receiving
from a specific vCPU so that all vCPUs can process the

virtual interrupts (more details are in §4). At the core
of hBalance, a scheduling-aware routing algorithm is
proposed to avoid vCPU scheduling delays as much
as possible. We also optimize the current proportional-
share scheduler for SMP-VMs, making it more I/O-
friendly by periodically compensating vCPUs that
have served I/O on behalf of the whole SMP-VM.

We implement a prototype of hBalance in Xen
4.2.2. The experimental results show that hBalance
significantly reduces I/O latency and improves I/O
throughput. In the SPECWeb tests, hBalance improves
throughput by 48.1% for a FV guest and 15.5% for a
PV guest, while reducing average response times by
48.5% and 64.2% respectively. Such benefit is obtained
without shortening vCPU scheduling time slice, but
by appropriately routing virtual interrupts. When the
current targeted vCPU is preempted, in the FV tests
there are over 60% cases that hBalance can find an-
other running vCPU to receive virtual interrupts; in
the PV tests, such preemption-free opportunities are
above 80%. hBalance introduces acceptable overhead:
only about 18% extra vCPU context switches in the
FV tests and less than 50% in the PV tests.

The remainder of the paper is as follows. §2 makes
plain the interrupt delivery procedures in SMP-VMs.
§3 discusses the limitations of existing solutions. §4
introduces the principles and algorithms of our hBal-
ance. We present the prototype implementation de-
tails in §5. Our solution is evaluated in §6. §7 discusses
the related work. We conclude our work in §8.

2 BACKGROUND

To understand how interrupts are delivered in virtual-
ized environments, in this section, we detail two typ-
ical models for SMP-VMs: (a) “virtual APIC” model,
which is broadly implemented in Xen [11], KVM [23],
VMware [38] and Hyper-V [9] to support unmodi-
fied FV guests; (b) “event channel” model, which is
specific to Xen’s PV technology. Since Xen includes
both models, in Figure 2, we use it as an example to
illustrate their differences.

Xen provides basic mechanisms for its upper-layer
domains, such as CPU proportional sharing, memory
sharing and I/O device emulation. Hardware inter-
rupts from I/O devices first arrive at the physical
IOAPIC (pIOAPIC) which is responsible to redirect
the signal to a physical Local APIC (pLAPIC) via
the connected interrupt pin1. After that, the so-called
driver domain which contains the real device driver2,
will process the interrupts in step 1. The requests are
then forwarded to the targeted VM’s virtual devices
(fully-virtualized or para-virtualized).

1. Modern PCIe devices are not pin-based, but use in-band
MSI/MSI-X to directly interact with pLAPIC, bypassing pIOAPIC.

2. It is worth noting that some other hypervisor like VMware’s
ESX(i) contains device drivers as components (called VMkernel) [7],
so sometimes the driver domain is also considered as a secondary
part of Xen hypervisor.
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Fig. 2: Xen adopts virtual APIC to support FV guests
and event channel to support PV guests.

2.1 Virtual APIC

To support FV guests, the hypervisor needs to present
a similar interrupt processing architecture to VMs as
that in dedicated environments. Xen adopts QEMU
[12] to emulate I/O devices. Once the QEMU thread
receives a virtual interrupt in step 2, it will invoke the
VM’s virtual IOAPIC (vIOAPIC). Depending on how
the guest OS configures vIOAPIC, the interrupt will
be injected into a certain virtual Local APIC (vLAPIC)
in step 3. If the targeted vCPU runs on another pCPU,
which is very likely because the driver domain often
runs on dedicated pCPUs to guarantee I/O efficiency,
Xen will send an IPI (Inter-Processor Interrupt) to let
the remote pCPU trap into the hypervisor. Finally
in step 5, the hypervisor scheduler will determine
whether or not the targeted vCPU should get sched-
uled to process the interrupt.

Virtual APIC is commonly implemented according
to Intel 82093AA chipset specification [6]. Basically,
there are two fields in the I/O redirection table
(IOREDTBL) dictating how an I/O interrupt should
be routed: destination mode and delivery mode. Figure 3
shows the options for the two modes. When physical
destination mode is used, the interrupt will be deliv-
ered to one predefined core, regardless of the delivery
mode; the guest OS also disables the other cores to
serve this interrupt, and if accidentally another core
receives this interrupt, it will be viewed as spurious
and then discarded. When the destination mode is
logical, more than one core are allowed to receive this
interrupt: in Fixed delivery mode, the interrupt will
be broadcasted to all cores listed in the destination
filed of IOREDTBL; in Lowest Priority delivery mode,
the interrupt will be delivered to the core that has
the lowest “task priority” at the moment, resulting
in a round-robin (RR) fashion in practice. Linux does
not use the Fixed delivery mode, as the broadcast
operation is too expensive and also unnecessary.

Destination Mode Delivery Mode

Physical Logical Fixed LowestPrio

Fig. 3: Intel IOAPIC uses the above two modes to
determine how an I/O interrupt should be routed. It
should be noted that in the delivery mode, there are
other options (SMI, NMI, INIT and ExtINT) which are
not used for I/O interrupts.

2.2 Event Channel

Xen’s PV technology uses event to abstract interrupt,
and introduces a split-driver model for I/O commu-
nication: a frontend residing inside the guest OS com-
municates with its backend counterpart in the driver
domain. Upon receiving data, the backend will put
the data in the shared memory for the frontend to
retrieve, and then notify a predefined guest vCPU via
event channel in step 2. For the notified vCPU, it will
receive a pending event in step 3. Similarly in steps
4 and 5, after an IPI, the hypervisor will determine
whether the targeted vCPU should be scheduled or
not to process the event.

By comparison, Xen’s event channel is actually an-
other form of the physical destination mode of virtual
APIC: each event channel is statically bound to one
vCPU, while the other vCPUs are disallowed to see
this type of event. For an SMP-VM, if the hypervisor
redirects the event to another vCPU, the event cannot
be processed because it has been masked out for the
other vCPUs by the guest kernel. In current imple-
mentation, all I/O events are delivered to vCPU0 by
default, and this mapping can only be changed by
the guest OS. For UniProcessor (UP) VMs, it makes no
difference because all interrupts are bound to the only
vCPU; but for SMP-VMs, virtual APIC is apparently
more flexible because it allows multiple vCPUs to
serve I/O in the logical destination mode.

3 PROBLEMS

3.1 Physical mode or Logical mode

In physical SMP systems, the RR routing of the logical
destination mode can cause performance problems in
some scenarios, because the change of the targeted
core of every interrupt will reduce the CPU cache
effect. Take network I/O for example, when one in-
terrupt arrives, IOAPIC directs it to one of the cores;
and next time, the interrupt will be directed to yet
a different core; as a result, two different cores will
work with the same TCP connection and both of them
have to fetch its content into their own caches. As
such, IOAPIC’s RR routing is usually disabled by
setting the interrupt’s CPU affinity, resulting in the
same effect as that in the physical destination mode.
To achieve load balancing, Linux counts irqbalance [1]
software daemon to periodically migrate interrupts
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from overloaded cores to underloaded cores, in a
coarse-grained manner (e.g., every 10 seconds).

In virtualized SMP systems, irqbalance is still rec-
ommended to balance hardware interrupts in the driver
domain when it runs on dedicated pCPUs [8]. But for
guest domains, since there are often several vCPUs
sharing one pCPU, vCPU scheduling delays are un-
avoidable. If the targeted vCPU has been preempted
when an interrupt comes, I/O processing will be
delayed, by typically 10× milliseconds (the default
scheduling time slice is 30ms in Xen [5] and 50ms
in VMware ESX(i) [10]). Due to the semantic gap, the
guest OS has no knowledge of each vCPU’s runtime
state; therefore irqbalance has no way to properly
respond to VM scheduling delays. Besides, its second-
level IRQ remapping interval is also incapable to
timely react to a vCPU’s millisecond-level preemption.

In conclusion, the logical destination mode allows
multiple cores to serve I/O, which is a useful feature,
but its RR routing is not much desired; the physi-
cal destination mode plus irqbalance can effectively
balance the interrupts when pCPUs are dedicated to
vCPUs, but this combination is less effective when one
pCPU is time-shared by multiple vCPUs.

3.2 Task Balancing in the Guest OS

To efficiently utilize CPU cycles in multi-core sys-
tems, contemporary OSes use per-core runqueues to
schedule tasks, and tasks are dynamically migrated
across different cores for load balancing. Take Linux’s
process scheduler (CFS) for example, task migration
happens typically in three situations: (1) when one
core goes idle, it will attempt to pull a task from the
busiest runqueue if the average idle period is larger
than the cost of migrating a task; (2) when a task
wakes up or a new task is created, runqueue selection
will consider the overall task balance of the system; (3)
a periodic attempt will be made to balance the current
scheduling domain if it has not been balanced for
longer than a predefined time interval. However, there
are also constraints on migrating tasks. In particular,
the balancer resists migrating cache-hot tasks, and one
task is prone to be scheduled on a particular core for
as long as possible. Besides, power saving has also
been taken into account: if tasks can be consolidated
on fewer cores when the system is not heavily loaded,
idle cores can enter low-power states [33]. In the
scenario of Apache web server as shown in Figure
1, we observe that child threads are largely running
on the interrupt-receiving core, while the other cores
are much less loaded.

In virtualized environments, the above balancing
strategies cannot work effectively in several aspects.
First, the underlying pCPU topology is usually in-
visible to the guest OS; adding to the complication,
one vCPU can be occasionally relocated to a different
pCPU by the hypervisor scheduler for global load

vCPU vCPU … 

I/O events in hBalance All events in Xen 

vCPU vCPU … 

OS-specific 
Event Channel 

vCPU-specific 
Event Channel 

Fig. 4: For Xen PV guests, we extend I/O events to be
OS-specific, while the other vCPU-specific events are
not affected.

balancing. Second, power management is in fact an
onus on the hypervisor which dictates the hardware
(e.g., xenpm module in Xen), out of any VM’s concern.
Third, from the perspective of an SMP-VM, since each
vCPU only gets a portion of CPU cycles in each
allocation period, to better utilize the limited resource,
it is more desired to spread the tasks across all vCPUs
rather than using as fewer as possible. Lastly, Linux
kernel relies on each core’s historical utilization to
determine whether the core has ever been overloaded
or not; but when multiple vCPUs time-shares one
pCPU, the measurements inside the guest OS are not
accurate so the kernel is unable to correctly estimate
each vCPU’s utilization, making CFS fail to migrate
many tasks.

4 SOLUTION

We propose hBalance, a shim layer residing in the
hypervisor to balance interrupt workloads for SMP-
VMs, in a very simple but effective way. Our solution
supports both FV guests and PV guests, and has very
high portability among various hypervisors.

4.1 Basic Principles
4.1.1 Enable the Flexibility – Decouple I/O from vCPU
In SMP systems, some interrupts are generated for
specific CPUs, which cannot be redirected to elsewhere.
For instance, periodic timer interrupts are generated
for the local core to create timed events for many
kernel services; performance monitoring interrupts
report runtime information of the local core, which
are critical for performance profiling tools; IPIs are
largely used to wake up processes on remote CPUs,
to pull a process remotely in an effort to spread the
workload, and to synchronize the cache and memory
management unit between CPUs.

In contrast, interrupts from external I/O devices do
not have bias towards a particular CPU; therefore
they are OS-specific rather than CPU-specific. However,
recall the two representative interrupt delivery mod-
els mentioned in §2, in vAPIC’s physical mode and
Xen PV’s event channel, virtual interrupts are forcibly
delivered to one predefined vCPU, preventing the hy-
pervisor from redirecting them to other vCPUs. To be
not bound by this limitation, with vAPIC, hBalance
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Fig. 5: hBalance dynamically routes virtual interrupts
from a preempted vCPU to a running one. In this way,
the spawned child threads would not crowd into a
single interrupt-receiving vCPU.

simply reuses logical mode’s flexibility; with Xen’s
event channel, we introduce OS-specific event channel
which allows every vCPU to access it, as shown in Fig-
ure 4. In this way, the hypervisor gains full flexibility
to select vCPUs when delivering virtual interrupts,
regardless of the VM’s type. Note that our OS-specific
event channel will not introduce contentions between
different vCPUs, because from a micro-view, one I/O
interrupt is set as pending to only one vCPU at a time,
therefore the guest OS will never observe two vCPUs
accessing the same event channel simultaneously.

4.1.2 Offload the Responsibility – In-hypervisor Vir-
tual Interrupt Routing
With the routing capability enabled in the above, in-
terrupt balancing can be offloaded from the guest OS
to the hypervisor. The rationality behind our design
is that: it is the hypervisor rather than the guest OS
that schedules vCPUs, and virtual interrupts are ini-
tiated by the hypervisor and then applied to the guest
OS. The hypervisor thereby has all the smartness to
optimize interrupt routing policies. Since interrupt
redirection is totally transparent to VMs, the guest OS
does not need to instrument each IRQ’s CPU affinity.
Furthermore, when interrupts are evenly distributed
at the millisecond time granularity, the child threads
triggered by interrupts can be uniformly created on
all vCPUs as shown in Figure 5, without completely
counting on the process scheduler to balance them.
This is more efficient than to migrate the threads
after they have all been spawned on one vCPU as
shown in Figure 1. This way, we do not need to
modify the process scheduler, which is not possible
for commodity OSes and also likely to lack the general
applicability for other scenarios.

4.1.3 hBalance vs. vBalance
Without the above two principles, as a comparison,
our previous work vBalance [13] has to migrate in-
terrupts within the guest OS. This is because Xen’s
vCPU-specific event channel forbids the hypervisor to
redirect I/O events, so the guest OS has to perform
this duty. To obtain each vCPU’s scheduling status,

vBalance requires the hypervisor to pass such runtime
information to the guest space, using an additional
communication channel. This OS-level method, how-
ever, has many limitations. First, it is tightly coupled
with Xen PV implementation, leaving all FV guests
(which are more widely deployed) unsupported. Sec-
ond, when vBalance remaps an interrupt to another
vCPU, the guest OS must trap into the hypervisor
to synchronize this change, via a hypercall. Although
hypercall has been optimized to be very light-weight,
it still incurs certain CPU overhead when it happens
too frequently, e.g., every 10×ms as introduced by VM
scheduling delays. More importantly, this approach
has no portability for other hypervisors.

In contrast, hBalance is in-hypervisor so it can di-
rectly access all vCPUs’ runtime information. Figure 6
illustrates the primary differences between hBalance
and vBalance. hBalance requires no interactions be-
tween the guest OS and the hypervisor. This feature
is important in that FV guests would not allow any
modification to the OS kernel. Even for PV guests,
with the use of the OS-specific event channel, no
hypercall will be involved when interrupt migration
happens. All these advantages are obtained by just
enabling the routing flexibility in the hypervisor. De-
spite its simplicity, it is very powerful to unlock
the performance. Table 1 summarizes the advantages
of hypervisor-level balancer over OS-level balancer.
From the perspective of the design and implemen-
tation, hypervisor-level solution is obviously much
simpler and more light-weight.

4.2 Components
4.2.1 Scheduling-Aware Interrupt Routing
To balance I/O interrupts, hBalance does not rely on
vCPUs’ IRQ statistics, which is unavailable in the
hypervisor and also too heavy-weight to implement.
Instead, we adopt a statistics-free method by circularly
delivering interrupts to all vCPUs. The details are
described in Algorithm 1. Each time when the current
vCPU is preempted, hBalance will select a new target
starting from the one that is logically next to the
current one. In this way, all vCPUs are treated equally.

Compared with the RR routing of IOAPIC’s logical
destination mode, which changes the targeted vCPU
for every interrupt, hBalance is different in two ways:
(1) small batching: interrupts will not be redirected
to another vCPU until the current vCPU has used up
its time slice so that the system can be used more
effectively by maintaining the cache effect; (2) when
interrupts have to be migrated, hBalance will try
selecting a vCPU that has unused CPU quota rather
than in the native RR way. Specifically, hBalance will
find a running vCPU first so that no vCPU context
switch will be introduced; if there are no running
vCPUs, a blocked vCPU will be considered as a second
choice. Although both blocked and waiting vCPUs
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Fig. 6: vBalance [13] is a cross-layer design to migrate interrupts in the guest OS kernel, which is only applicable
to PV guests. By comparison, hBalance offloads such functionality from the guest OS to the hypervisor,
supporting both FV and PV guests.

TABLE 1: Hypervisor-level balancer is apparently more generic and neater than OS-level balancer.

VM support Interrupt migration Guest-hypervisor shared data Interrupt load balancing
vBalance PV only Use hypercall to sync vCPU’s scheduling status Use IRQ statistics in the guest OS
hBalance FV and PV Directly in the hypervisor Shareless Scheduling-aware interrupt routing

need to be rescheduled to process interrupts, blocked
vCPUs serve better for load balance in that a vCPU
stays in blocked state primarily because it has no tasks
running and thereby voluntarily yields CPU control
to the hypervisor; in contrast, a waiting CPU still has
tasks in need of CPU cycles. There is also a concern
about resource utilization: if a blocked vCPU cannot
be woken up to use up its quota within the resource
refill interval, the unused allocation will be consumed
by other co-located vCPUs without reimbursement
in the future. When all vCPUs of the SMP-VM are
in waiting state, hBalance simply selects the current
vCPU’s logical neighbor to balance the load. hBalance
allows a blocked or waiting vCPU to preempt the
current running vCPU, but only when the whole SMP-
VM still has unused quota. In this way, CPU fairness
between different VMs will not be compromised.

For cache effectiveness, when a schedulable entity
(either a task or a vCPU) begins to run on a physical
CPU, in practice, cache becomes hot in around 1ms.
For example, Linux CFS scheduler sets this value to
0.5ms (in sysctl_sched_migration_cost),
while Xen’s credit scheduler adopts 1ms (in
vcpu_migration_delay). In our scenario, since
interrupts are migrated at the same pace with that
of vCPU preemption, we believe cache effectiveness
can be maintained in the same degree with the
hypervisor scheduler.

4.2.2 I/O-Friendly CPU Quota Allocation

Cloud computing features pay-per-use usage model
where the service level is priced by the provided
resources. For CPU resources, proportional share (PS)
based schedulers have been largely implemented to
allocate CPU cycles, such as Xen’s credit scheduler
[5], KVM’s CFS scheduler [36] and VMware’s stride
scheduler [39]. Based on each VM’s given share, all
VMs periodically receive certain quota from the hy-
pervisor scheduler, and inter-VM fairness is ensured

Algorithm 1: Scheduling-Aware Interrupt Routing
Data: N , the number of vCPUs of the SMP-VM;

run bitmap, all running vCPUs at the moment;
blk bitmap, all blocked vCPUs at the moment;
int.cur vcpu, the current notified vCPU;
int.nxt vcpu, the next notified vCPU;

for each virtual interrupt “int” of the SMP-VM do
if int.cur vcpu is waiting in the runqueue then

/* Redirect the interrupt */
k = int.cur vcpu.id;
if run bitmap != 0 then

/* Select a running vCPU */
Search from (k + 1)th bit of run bitmap,
find the first marked bit, j;
int.nxt vcpu.id = j;

else /* Wake up a blocked vCPU */
if blk bitmap != 0 then

Search from (k+1)th bit of blk bitmap,
find the first marked bit, j;

else /* All are waiting, let the
neighbor balance the load. */

j = (k + 1)%N ;
end
int.nxt vcpu.id = j;
if the SMP-VM has unused quota then

int.nxt vcpu.priority = HighestPrio;
end

end
int.cur vcpu← int.nxt vcpu;

end
Inject the virtual interrupt into int.cur vcpu;

end

in this level. For an SMP-VM with N vCPUs, since
commodity OSes typically assume that all cores have
identical computing power, to create this symmetric
illusion, the hypervisor scheduler simply divides the
VM’s quota into equal shares:

Quota(vcpui) + =
new quota

N
(0 ≤ i < N) (1)

This simple scheme, however, could potentially
cause inter-vCPU unfairness, because the quota may
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not be equally utilized by all vCPUs. Note that in
virtual APIC’s physical destination mode and Xen’s
event channel, I/O interrupts are bound to only one
vCPU (vCPU0 by default). The incurred interrupt
receiving overhead can sometimes dominate the CPU
consumption of the whole SMP-VM. As a result, the
vCPU (vcpui) that has served I/O would have much
less quota than other vCPUs (vcpuj):

Quota(vcpui) ≪ Quota(vcpuj) (0 ≤ i, j < N) (2)

With the resource allocation scheme in Equation 1,
the quota imbalance between vCPUs will carry over
to every next refill period. As a result, the vCPU
with fewer quotas will get fewer opportunities to run.
Worse still, if an upper bound is set for the VM (e.g.,
“cap” mechanism in Xen’s credit scheduler or “CPU
bandwidth limit” in Linux CFS), the I/O-bound vCPU
will be throttled much earlier than other vCPUs,
introducing extra delays to interrupt processing. On
the other hand, if one vCPU has received too many
credits which exceed a predefined upper bound, the
excess will be automatically deducted, resulting in
wasted allocation for the whole SMP-VM.

Although this problem is less severe when virtual
interrupts can be fairly distributed to all vCPUs, the
vCPU in question actually performs I/O on behalf of
the whole SMP-VM, so it is unfair to charge all the
consumption to only one vCPU. In our new allocation
scheme described in Algorithm 2, in every quota refill
period, we rebalance the quota among all vCPUs.
By compensating the vCPU which has served I/O in
the passed period, the interrupt receiving overhead is
implicitly charged to all vCPUs at a very fine-grained
time interval. In the long run, this method will not
compromise vCPU fairness because virtual interrupts
have been uniformly distributed.

Alternatively, one would be tempted to try as-
signing CPU quota asymmetrically, e.g., giving the
interrupt-receiving vCPU (vCPU0) more CPU quota
so that fewer scheduling delays happen to it. How-
ever, we find this approach can bring serious star-
vation to the rest vCPUs, which causes the kernel
to hang quickly. In Linux, there are many per-CPU
services that must be alive, such as the scheduling
queue and various kernel threads. Simply asking the
hypervisor to starve one vCPU will make all these
services stall unexpectedly.

5 IMPLEMENTATION

We implement a prototype of hBalance in Xen 4.2.2.
For FV guests, we do not make any modification to
the guest OS. For PV guests, Linux 3.10.0 is slightly
modified to use the OS-specific event channel.

5.1 Modifications to Xen Hypervisor
Virtual APIC for FV Guests. Virtual interrupts are

delivered in the function vioapic_deliver(). With

Algorithm 2: I/O-Friendly CPU Quota Allocation
Data: N , the number of vCPUs of the SMP-VM;

new quota, the VM’s allocation in each quota refill
period;

for every quota refill period do
/* Aggregate all remaining quota */

Quota(smp-vm) =
∑N−1

i=0 Quota(vcpui);
for each vCPU of the SMP-VM do

/* Rebalance: make all vCPUs have
the same quota at the end */
Quota(vcpui) =
1
N
(Quota(smp-vm) + new quota);

end
end

the logical destination mode, if the LowestPrio delivery
mode is used, the function vlapic_lowest_prio()
will compare PPR (Processor Priority Register) values
of all vCPUs to select the vCPU that currently has the
lowest task priority. hBalance replaces this selection
algorithm with Algorithm 1. If the Fixed delivery
mode is used, a virtual interrupt will be injected into
all vLAPICs. This is very costly because every vCPU
will be kicked by the hypervisor scheduler, resulting
in many expensive guest-hypervisor switches (i.e.,
VMExit instruction in Intel-VT platform). In fact, only
one vCPU needs to execute the interrupt handler, so
it is unnecessary to bother all vCPUs. Even in non-
virtualized environments, Linux does not support the
use of the Fixed delivery mode. To this end, hBalance
disables this broadcast operation and just kicks the
vCPU selected by Algorithm 1. After that, the func-
tion ioapic_inj_irq() will inject the interrupt into
the targeted vCPU. Finally, the corresponding bit of
IRR (Interrupt Request Register) is set in the func-
tion vlapic_set_irq(). In order to record vCPU
ID of the current interrupt receiver, a new variable
notify_vcpu_id is added to struct hvm_irq.

Event Channel for PV Guests. Xen categorizes
“event” into four types: (1) PIRQs, used by the driver
domain to send and receive hardware interrupts; (2)
IPIs, for inter-vCPU communication; (3) VIRQs, typi-
cally used for per-vCPU events such as local timers;
(4) inter-domain notifications, driven by frontends
and backends. I/O events of guest domains are all
of inter-domain type, so we do not need to explicitly
differentiate them from other events. Our interrupt
routing algorithm is implemented as a subfunction
called by the function evtchn_send().

Hypervisor Scheduler. When migrating interrupts
in Algorithm 1, if there was no auxiliary method, all
vCPUs have to be visited in the worst case. Fortu-
nately, Xen assigns each vCPU a priority according to
its remaining CPU resource: UNDER means the vCPU
has unused CPU quota while OVER means the vCPU
has consumed more than its allocation. This priority
is updated mainly in two places: 1) Xen’s periodic ac-
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counting, and 2) when vCPU preemption happens. In
our approach, we simply record the priority changes,
so we can quickly find an UNDER vCPU.

Two bitmaps (run_bitmap and blk_bitmap) are
added to struct domain to record the scheduling
statuses of all vCPUs of the SMP-VM. When one
vCPU is selected to run in the function schedule(),
the corresponding bit of run_bitmap will be up-
dated. Likewise, when one vCPU is blocked in the
function do_block() or wakes up in the function
vcpu_wake(), a particular bit of blk_bitmap will
be set or cleared. Recall that when a blocked or a
waiting vCPU is selected to receive interrupts, if the
SMP-VM still has unused credits, the vCPU is allowed
to preempt the current running vCPU by getting the
highest priority. In Xen’s credit scheduler [5], we
introduce SMP BOOST priority which is higher than
all the other priorities. Regarding Algorithm 2, we
track both vCPU-level and VM-level credit usage in
the function burn_credits(); and in the function
csched_acct(), if one VM is an SMP-VM, we will
recalculate its total credits and then rebalance the
credits among all its vCPUs.

5.2 Modifications to Xen PV Guest OS
The status of each event channel is stored in the
shared_info structure, which is implemented as a
shared memory page between guests and the hyper-
visor for passing runtime information. In the current
implementation, when a vCPU checks its pending
events in __xen_evtchn_do_upcall(), it will first
call active_evtchns() to mask out the events
that do not belong to it. If the guest OS changes
the interrupt mapping in set_affinity_irq(),
only the first bit of the CPU affinity value is used
as the event notifier. This is how Xen’s vCPU-
specific event channel is implemented. To replace it
with our OS-specific event channel, we introduce the
bind_evtchn_to_all_vcpus() function to enable
I/O events to be visible to every vCPU. This change
is only applied to the network and disk interrupt. We
obtain their IRQ numbers from the frontend handlers,
xennet_interrupt() and blkif_interrupt().
Other interrupts such as local timer interrupt and IPI
still use Xen’s vCPU-specific event channel.

5.3 Portability of hBalance
We take KVM [23] as an example to discuss the
portability of our design. KVM adopts virtual APIC
model to deliver interrupts for FV guests. It is worth
mentioning that KVM also has PV drivers [31], and
there are two different implementations: (1) a user-
space implementation in QEMU (qemu-virtio), and (2)
a kernel module implementation (vhost). vhost per-
forms better than qemu-virtio because it avoids data
copy between the user space and the kernel space
[35]. Both implementations share the same guest OS

frontend driver, and also comply with virtual APIC.
Therefore, there is no problem with implementing
dynamic interrupt routing in KVM, i.e., in the function
kvm_irq_delivery_to_apic().

Regarding CPU resource allocation, KVM relies on
Linux CFS group scheduling (cgroup) to schedule
the vCPUs of an SMP-VM. Algorithm 2 can be im-
plemented by adjusting each vCPU’s share within the
group, without affecting other VMs’ CPU budgets.

6 EVALUATION

We conduct our experiments on several Dell Pow-
erEdge M1000e blade servers, connected by a Brocade
FastIron SuperX GbE switch. Each server is equipped
with two quad-core 2.53GHz Intel Xeon 5540 CPUs,
16GB physical memory, and two 250GB SATA disks.

For the FV tests, three different settings are evalu-
ated: (1) the physical destination mode, with vCPU0
being the interrupt receiver; (2) the logical destina-
tion mode, in which I/O interrupts are routed to all
vCPUs in a RR fashion; (3) hBalance, which replaces
the RR routing of the logical destination mode with
its own algorithms. The FV SMP-VM under test is
equipped with an emulated e1000 network adapter
using QEMU. For the PV tests, we compare hBalance
with both vanilla Xen and our previous OS-level
approach vBalance [13]. Vanilla Xen sets vCPU0 as
the default interrupt receiver, similar to FV’s physical
destination mode. The hypervisor’s scheduling time
slice is not changed (30ms).

6.1 Micro-level Benchmarks
We use a set of I/O benchmarks to evaluate hBalance.
The SMP-VM under test is configured with 4vCPUs
and 4GB memory. To observe hBalance’s effectiveness
under different VM consolidation levels, we vary the
number of background VMs running on the same set
of pCPUs. The pCPUs are shared fairly among all
vCPUs by properly setting the ‘weight’ of each VM.
In the experiments, we use lookbusy [2] tool to keep
the CPU load of each VM at a desired level.

6.1.1 Network RTT
We use Linux ping to evaluate the network RTT. Since
ping consumes very few CPU cycles, to trigger the hy-
pervisor scheduling, the SMP-VM also runs the same
CPU load as background VMs. With various VM den-
sities, we ping the SMP-VM for 1000 times and show
the results in Figure 7. In the FV tests, RTT varies
largely in both the physical mode and the logical
mode. In contrast, hBalance keeps RTT mostly within
1 millisecond. Similarly in the PV tests, a large number
of long delays are observed in vanilla Xen, while both
vBalance and hBalance can maintain the RTT around
0.2 millisecond, with sporadic ones approaching but
not exceeding 0.5 millisecond. Compared with the
PV’s split-driver model, the QEMU-based FV device
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(a) 2 vCPUs per pCPU on average.
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(c) 4 vCPUs per pCPU on average.

Fig. 7: The CDF diagrams of ping experimental results with different vCPU densities. Note that to clearly
show the performance differences, we use log scale on the x-axis.

emulation incurs much more overhead. Regarding
the tails in the hBalance’s tests, we suspect they
are caused by Xen’s credit scheduler’s global load
balancing: when sometimes a virtual interrupt arrives
just before a vCPU is migrated to another pCPU, both
the migration cost and the vCPU switching cost are
potentially included in RTTs.

6.1.2 Network Throughput

We measure the benefit of hBalance to network
throughput using iperf. As iperf tests bring certain
CPU load to the SMP-VM, we do not run lookbusy
as we did in the above. Each test lasts for 10 seconds
and we repeat the test for ten times to average out the
results. Figure 8 shows both TCP and UDP through-
put results. In the FV tests, the logical mode performs
similarly to hBalance, but clearly outperforms the
physical mode. This makes sense because iperf is
single-threaded, which invokes only one vCPU at a
time. With the RR routing in the logical mode, since
each vCPU serves only one interrupt at a time, it
consumes very few credits and then goes idle (in the
“blocked” state). Xen’s boost mechanism [28] guar-
antees that blocked vCPUs with unused quota can
be scheduled immediately when it receives another
interrupt next time. hBalance differs from the RR rout-
ing in that it will not turn to another vCPU until the
current one is preempted. In the PV tests, the network
throughput with vanilla Xen degrades along with the
increased number of background VMs, because once
the targeted vCPU (vCPU0) is preempted, the iperf
session has to be delayed until vCPU0 gets CPU cycles
again. Both vBalance and hBalance can adapt to this
situation by migrating interrupts to another vCPU so
that the iperf server can be resumed to receive data.

6.1.3 HTTP Performance

We use httperf to measure the HTTP performance
of the SMP-VM, which runs the Apache web server.
In the experiments, we set four vCPUs per pCPU
and then vary the requested file size. Httperf reports
reply rate every 5 seconds and we run each test
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Fig. 8: The results of iperf throughput experiments.
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Fig. 9: The results of httperf experiments.

for one minute. Quite different from the iperf tests,
the results in Figure 9 show that FV’s logical mode
performs much worse than the physical mode. This
is because iperf only triggers one vCPU at a time
and the other vCPUs stay in the blocked state; while
Apache web server is a multi-process multi-threaded
application, a large number of child threads are cre-
ated, so all vCPUs are active to concurrently process
the requests. In the physical mode, the requests can
be accepted in a batched manner by vCPU0 within
each scheduling timeslice, so the scheduling delays
would not happen to every request. However, in
the logical mode, the targeted vCPU is changed for
every request, although the current one may still be
running; since all vCPUs are active, it is very possible
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Fig. 10: The results of STREAM experiments.

that the next target is a waiting vCPU which cannot
process the request until it gets scheduled again.
hBalance considers each vCPU’s scheduling status
when routing the interrupts, and therefore substan-
tially improves the reply rate. The improvement for
PV guests is more apparent than FV guests due to the
high performance of Xen’s split-driver model. In the
PV tests, we find that hBalance is particularly suitable
for small files: when the file size is between 1KB
and 32KB, hBalance achieves an improvement from
68.4% to 117.2%. This can be explained simply: under
the fixed network bandwidth, the smaller the file is,
the more requests can be simultaneously served and
thereby more CPU cycles are consumed; when such
CPU demand exceeds one vCPU’s capability, vanilla
Xen shows limited scalability because only vCPU0 is
able to receive interrupts; in comparison, hBalance is
able to utilize all vCPUs to process the requests.

6.1.4 Cache Effectiveness

To investigate whether hBalance would degrade
cache’s performance or not, we use STREAM bench-
mark [4] to measure the VM’s memory bandwidth.
STREAM is specifically designed to work with arrays
much larger than the available cache so that most of
their time is spent on waiting for cache misses to be
satisfied. First, we set up 4 single-vCPU VMs to fairly
share one pCPU, and then reduce the time slice of
Xen’s credit scheduler from 30ms to 1ms. Though a
smaller time slice can potentially reduce VM schedul-
ing delays, the results in Figure 10 (left) show that it
seriously decreases memory access efficiency because
the increased the number of VM context switches
brings more cache flushes. Second, with the same
vCPU density, we rerun the httperf experiments with
16KB file size (in which hBalance achieves the highest
performance improvement), but with one background
VM running STREAM benchmark. The results in Fig-
ure 10 (right) indicate that the background VM’s cache
effectiveness is not affected by hBalance’s interrupt
migrations, because (1) the scheduling time slice is not
shortened, and (2) interrupts will not be redirected to
another vCPU until the current vCPU has used up its
whole time slice.

Prime 
Client 

Client  1 … Client  2 Client  N 

BeSim 

HTTP 

HTTP 

TCP/IP 

Web Server 

Internal 
Storage 

Disk I/O 

System Under Test 

TCP/IP 

Fig. 11: The settings of SPECweb experiments.

6.2 Application-level Benchmarks
We adopt the PHP implementation of SPECweb2009
Banking (v1.2) for evaluation. This benchmark simu-
lates online banking operations and exhibits a mixed
workload patterns: it has 16 different operations such
as login/logout, bank balance inquiry, money trans-
fers, show and modify the user profile, etc, which can
generate various pressures to both CPU and I/O. Each
test lasts for more than 30 minutes.

Figure 11 shows the application’s architecture, con-
sisting of a prime client, a certain number of agent
clients, a web request processing unit and a backend
(BeSim). The primary client drives multiple agent
clients to generate HTTPS requests, and the web
server communicates with the backend to retrieve
specific information needed to dynamically construct
responses. The experimental setting is the same as that
in the httperf tests, having four vCPUs per pCPU on
average. The clients and the backend run on dedicated
machines, which communicate with the web server
via our hardware switch. We launch 400 simultaneous
sessions in the PV tests to saturate the SMP-VM;
in the FV tests, we find the SMP-VM is unable to
sustain given such a workload due to its higher device
emulation overhead, so we reduce the number of
simultaneous sessions to 200.

Table 2 shows the overall experimental results. In
the FV tests, the physical mode again outperforms
the logical destination mode, similar to that in httperf
tests. It proves that when the workload is high, RR
routing is very unsuitable for SMP-VMs because it is
oblivious of the targeted vCPU’s scheduling status.
With hBalance in the FV tests, the performance is sig-
nificantly improved – 30.6% and 48.1% more through-
put respectively, and 42.0% and 48.5% reduction in av-
erage response times. In the PV tests, when comparing
with vanilla Xen, hBalance improves the throughput
by 15.5% and reduces the average response times
by as much as 64.2%. Even compared with vBal-
ance, hBalance achieves 1.1% more throughput and
10.2% less average response times. We attribute the
improvement to the avoidance of hypercalls when
migrating interrupts. Figure 12 and Figure 13 show
the breakdown of the testing results. It can be seen
that hBalance achieves highest performance in nearly
all types of requests.
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TABLE 2: The overall results of SPECweb experiments. FV tests: 200 sessions; PV tests: 400 sessions.

FV phyical FV logical FV+hBalance PV PV+vBalance PV+hBalance
Total Finished Requests (#) 27,837 24,538 36,352 94,704 108,111 109,351
Improvement w/ hBalance +30.6% +48.1% – +15.5% +1.1% –
Avg. Response Times (sec) 3.053 3.443 1.772 1.108 0.442 0.397
Reduction w/ hBalance -42.0% -48.5% – -64.2% -10.2% –
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Fig. 12: The breakdown of the throughput results in the SPECWeb2009 experiments.
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Fig. 13: The breakdown of the average response times in the SPECWeb2009 experiments.

To better understand the experimental results, we
record all interrupt migrations in hBalance. We use
Xen’s debug-key to periodically dump the statistical
data for analysis. Figure 14 shows that when the
current notified vCPU is preempted, in the FV tests,
in as many as 65.2% cases that hBalance is capable to
find another running vCPU as the next target without
preempting other vCPUs; in about 28.1% cases a
blocked vCPU is selected and only 6.7% cases have
all vCPUs are waiting in the queue. The results in the
PV tests are more encouraging: there are about 83.8%
of the cases in which virtual interrupts are migrated to
another running vCPU, and about 12.0% of the cases
where a blocked vCPU is selected and only 4.2% of
the cases have a waiting vCPU being selected. From
the statistics it can be seen that the hypervisor-level
balancer is very advantageous because it can directly
obtain each vCPU’s runtime state to make optimal
interrupt routing decisions.

We also examine the overhead of hBalance. Figure
15 shows the number of vCPU context switches per
pCPU on average. In the FV tests, hBalance introduces
only 17.7% more context switches than the physical
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Fig. 14: The statistics of interrupt migration using
hBalance. Note that “migr-to-running-vcpu” does not
bring vCPU preemptions, while “migr-to-waiting-
vcpu” and “migr-to-blocked-vcpu” will potentially
trigger vCPU scheduling, because the selected vCPU
will receive the SMP BOOST priority if the SMP-VM
has not used up its credits.

mode. In the logical mode, there are much less context
switches because it often routes the interrupts to wait-
ing vCPUs, causing I/O activities to temporarily stall;
whereas in the physical mode, we observe that vCPU0
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Fig. 15: vCPU context switch times per pCPU. The
results are obtained via Xen’s performance counters.

can frequently migrate a certain number of tasks
to other vCPUs, bringing more vCPU preemptions.
Within one time slice, hBalance behaves similarly to
the physical mode in that it routes all interrupts to
only one vCPU; while when that vCPU has been
preempted, hBalance can immediately redirect the
interrupts to other vCPUs. Extra context switches
should be caused by the wakeups of blocked vC-
PUs as illustrated in Figure 14 and the SMP BOOST
priority we introduce in hBalance. In the PV tests,
hBalance brings 47.9% more context switches than
vanilla Xen, but 17.6% less than vBalance. We believe
this is achieved by completely avoiding the guest-
hypervisor race condition in vBalance when passing
vCPU runtime states, proving that hypervisor-level
migration is more accurate and light-weight than
OS-level migration. Considering the benefit hBalance
brings, we argue that its overhead is acceptable. Recall
that different from other works [18] [43] which use a
very small vCPU scheduling timeslice (e.g., 0.1ms),
hBalance does not change it (30ms).

Figure 16 shows the balancing effect for the vCPUs.
In FV’s physical mode and PV’s vanilla Xen, since
all interrupts go to vCPU0, it consumes many more
CPU cycles than the other vCPUs, resulting in an
asymmetric use of the allocated resources. Although
FV’s logical mode can utilize CPU cycles as balanced
as vBalance and hBalance, it does not benefit I/O
performance because of its RR routing policy.

7 RELATED WORK

7.1 VM Scheduling for I/O

The “boost” mechanism [28] is introduced to allow
“wakeup preemption” for blocked vCPUs; “partial
boost” is proposed to prevent CPU-bound vCPUs
from compromising CPU fairness [22]. vSlicer [44]
reduces Xen’s scheduling time slice from 30ms to
10ms for latency-sensitive VMs, but it requires users
to explicitly specify such VMs which is difficult in
practice as many VMs run a combination of I/O and
CPU workloads. Soft real-time methods [26], [42] can
improve I/O responsiveness, but maintaining CPU
fairness becomes more challenging because an I/O-
intensive VM can frequently preempt other VMs.
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Fig. 16: Proportion of each vCPU’s run time.

Dynamically partitioning pCPUs into “fast-tick
cores” and “general cores” is proposed in [18], which
requires the hypervisor to predict each VM’s I/O
workload. vAMP [20] proposes asymmetric schedul-
ing for user-interactive workloads, but also requires
to identify the workload’s characteristics in the hy-
pervisor. Janus [30] categorizes vCPUs into “real-
time” type and “best-effort” type, and the schedules
them differentially. vTurbo [43] binds I/O tasks to an
extra “turbo vCPU” which is created by the hyper-
visor for all VMs, and schedules all turbo-vCPUs on
designated pCPUs using 0.1ms time slice. Actually,
the essence of these approaches is to move the extra
vCPU context switches, caused by preempting vC-
PUs to quickly serve I/O, to fewer cores rather than
avoiding them. Moreover, instrumenting tasks’ CPU
affinities is inconvenient when tasks are dynamically
created. Therefore, the practicality of these intrusive
approaches is probably limited.

The side-core approach [24] uses dedicated pCPUs
for costly operations, e.g., to let a remote core carry
out privileged hypervisor instructions so as to avoid
the expensive guest-hypervisor swapping on the local
core. VPE [27] runs dedicated polling threads on ded-
icated pCPUs to help with I/O device virtualization.
SplitX [25] relies on conceptual hardware to split
the execution of guests and the hypervisor. ELI [16]
and ELVIS [17] remove the virtualization overhead
caused by exits/entries during interrupt handling, by
polling I/O cores in the guest. The common problem
of these approaches is the lack of general applica-
bility. Though poll-driven I/O is more efficient than
interrupt-driven I/O when handling extremely high-
rate I/O, such as 10Gb Ethernet and very fast SSDs, it
leads to wasted CPU cycles and longer latencies when
I/O rate decreases. Besides, the dedicated cores are
often seriously under-utilized. In practice, a hybrid
approach is often adopted for the system to adaptively
switch between polling and interrupt.

We argue that, for SMP-VMs, accelerating I/O by
preempting vCPUs should not be the only choice.
hBalance explores another opportunity: the scheduling
asynchronism of vCPUs. Within an SMP-VM, if virtual
interrupts can be redirected from a preempted vCPU
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to a running one, I/O processing will not be delayed
and no vCPU context switch will be introduced. As
our approach is independent of the scheduling time
slice, it is complementary to other time slice based
solutions. Another merit of hBalance is that it takes
advantages of all vCPUs to process interrupts, which
is very useful when to serve a certain I/O workload
is beyond one vCPU’s capability.

7.2 VM Scheduling for Synchronization
Uncoordinated vCPU scheduling can decrease the
performance of multi-threaded applications running
in an SMP-VM: if the vCPU that holds a contended
spinlock is preempted, other vCPUs have to wait for
longer, which is known as Lock-Holder Preemption
(LHP). To deal with it, VMware ESX 2.x adopts strict
co-scheduling to make all vCPUs progress at similar
rates, but it introduces CPU fragmentation problem.
Relaxed co-scheduling only tracks the slowest vCPU
and lets each vCPU make co-scheduling decisions
independently [10], which is introduced in ESX 3.x
and later versions. This technique is further refined
in [41], [45] by detecting long-lived lock contention.
Balance scheduling [34] places vCPU siblings in differ-
ent runqueues, and similar idea has been incorporated
in VMware ESXi 5.x [10]. More adaptively, demand-
based scheduling [21] identifies TLB shutdown and
reschedule IPI as two main sources for vCPU coordi-
nation. vCPU ballooning [32] alleviates LHP by dy-
namically adjusting the number of vCPUs according
to available CPU cycles of the SMP-VM.

There are also optimizations at the guest level. In
[37], an OS-informed approach is proposed to ask the
hypervisor not to preempt lock-holder vCPUs until
the lock is released. Linux PV spinlock [15] allows
LHP, but prevents long active waiting: specifically,
when one vCPU has been busy-waiting for more than
a predefined time threshold, it will return the CPU
control to the hypervisor. For ticket spinlock, authors
in [29] point out that if the waiters are not scheduled
in the same order as they require the lock, waiters
in the tail will be delayed for longer. They propose
to set the waiters’ sleep times to be proportional to
their positions in the lock waiting queue, so that the
hypervisor can schedule them properly.

Hardware-assisted approaches include Intel’s Pause
Loop Exiting (PLE) and AMD’s Pause Filter (PF).
The basic idea is to let the hypervisor take over
CPU control after the guest has executed a certain
number of pause instructions when spinning. In [40],
the authors observe that a spinning thread makes
very few modifications to the program state (e.g., the
store instruction that changes variables in memory),
and they implement Spin Detection Buffer (SDB) to
indicate such busy-waiting, which can assist the hy-
pervisor to schedule vCPUs more wisely.

In general, most concurrencies inside SMP-VMs can
be inferred by the hypervisor, informed by the guest

OS or detected by the hardware. Co-scheduling is only
needed temporarily and selectively for certain vCPUs.
Most of the time, the vCPUs of an SMP-VM are sched-
uled independently in their own runqueues, leaving
much space for hBalance to explore the scheduling
asynchronism for better interrupt routing.

7.3 Receiver-side Network Balancing

At the end host, network processing includes inter-
rupt processing and protocol processing. In physical
SMPs, Receive Side Scaling (RSS) [3] allows a multi-
queue NIC to distribute packets of each flow to a
separate CPU to balance the load. However, in vir-
tualized environments, since virtual NIC is currently
implemented as a mono-queue software entity, RSS
does not apply here. As for the protocol processing,
Receive Packet Steering (RPS) [3] is a kernel approach
to distribute packets to sibling vCPUs, after the pack-
ets have been copied into the VM. Compared to kernel
operations (e.g., interrupt execution) which are mostly
at the cost of microseconds, in consolidated VMs, the
dominant delay actually comes from interrupt delivery
which can be tens of milliseconds when the targeted
vCPU has been preempted.

8 CONCLUSION AND FUTURE WORK

Traditional interrupt balancing techniques are built
upon the assumption that the OS runs on dedicated
pCPUs. For SMP-VMs, this assumption is not true
when one pCPU is time-shared by multiple vCPUs.
In this paper, we revisit two existing interrupt de-
livery models and point out their limitations. We
present hBalance to offload interrupt balancing from
the guest OS to the hypervisor. hBalance mainly seeks
for preemption-free opportunities when migrating in-
terrupts. Our approach can support both FV and PV
guests and has very high portability among various
hypervisor. The evaluation with SPECWeb application
and several micro-benchmarks shows that hBalance
considerably improves network performance with
moderate overhead.

It will be meaningful to investigate to what extent
our solution can benefit other applications. For exam-
ple, video streaming applications have very different
traffic patterns and scheduling requirements. In the
past, there have already been a few works studying
the soft real-time virtual machine scheduling [19] [46].
The problem space of our paper is different from
theirs in that our approach aims to be agnostic of spe-
cific VM schedulers, but to explore preemption-free
interrupt delivery opportunities to assist them. Mean-
while, since video streaming quality is also affected by
other factors, such as datacenter-level caching policy
and client-side buffering policy, we view it as our
future work to investigate how various layers can
interact with each other.



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2016.2537804, IEEE Transactions on Parallel and Distributed Systems

14

REFERENCES

[1] irqbalance: https://code.google.com/p/irqbalance.
[2] lookbusy – a synthetic load generator:

http://www.devin.com/lookbusy/.
[3] Scaling in the linux networking stack. Linux Kernel Document.
[4] STREAM bechmark: https://www.cs.virginia.edu/stream/.
[5] Xen’s Credit Scheduler:

http://wiki.xen.org/wiki/credit scheduler.
[6] 82093AA I/O ADVANCED PROGRAMMABLE INTERRUPT

CONTROLLER (IOAPIC). Intel, May 1996.
[7] The architecture of VMware ESXi. VMware Technical White

Paper, 2008.
[8] Achieving a fair distribution of the processing of guest net-

work traffic over available physical CPUs. Citrix Technical
White Paper, 2011.

[9] Server Virtualization, Windows Server 2012. Microsoft Technical
White Paper, 2012.

[10] The CPU scheduler in VMware vSphere 5.1. VMware Technical
White Paper, 2013.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, 2003.

[12] F. Bellard. QEMU, a fast and portable dynamic translator. In
USENIX ATC, 2005.

[13] L. Cheng and C.-L. Wang. vBalance: using interrupt load bal-
ance to improve I/O performance for SMP virtual machines.
In ACM SoCC, 2012.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In NSDI, 2005.

[15] T. Friebel and S. Biemueller. How to deal with lock holder
preemption. Xen Developer Summit, 2008.

[16] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,
A. Schuster, and D. Tsafrir. ELI: Bare-metal performance for
I/O virtualization. In ASPLOS, 2012.

[17] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger,
and R. Ladelsky. Efficient and scalable paravirtual I/O system.
In USENIX ATC, 2013.

[18] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/O scheduling
model of virtual machine based on multi-core dynamic parti-
tioning. In HPDC, 2010.

[19] H. Kim, J. Jeong, J. Hwang, J. Lee, and S. Maeng. Scheduler
support for video-oriented multimedia on client-side virtual-
ization. In MMSys, 2012.

[20] H. Kim, S. Kim, J. Jeong, and J. Lee. Virtual asymmetric
multiprocessor for interactive performance of consolidated
desktops. In VEE, 2014.

[21] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-based
coordinated scheduling for SMP VMs. In ASPLOS, 2013.

[22] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-aware virtual
machine scheduling for I/O performance. In VEE, 2009.

[23] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM:
the Linux virtual machine monitor. In The Ottawa Linux
Symposium, 2007.

[24] S. Kumar, H. Raj, K. Schwan, and I. Ganev. Re-architecting
VMMs for multicore systems: The sidecore approach. In
WIOSCA, 2007.

[25] A. Landau, M. Ben-Yehuda, and A. Gordon. SplitX: Split
guest/hypervisor execution on multi-core. In WIOV, 2011.

[26] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Ya-
jnik. Supporting soft real-time tasks in the Xen hypervisor. In
VEE, 2010.

[27] J. Liu and B. Abali. Virtualization polling engine (VPE): using
dedicated CPU cores to accelerate I/O virtualization. In ICS,
2009.

[28] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O in virtual
machine monitors. In VEE, 2008.

[29] J. Ouyang and J. R. Lange. Preemptable ticket spinlocks:
improving consolidated performance in the cloud. In VEE,
2013.

[30] R. Rivas, A. Arefin, and K. Nahrstedt. Janus: a cross-layer soft
real-time architecture for virtualization. In HPDC, 2012.

[31] R. Russell. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review, 42(5):95–103,
2008.

[32] X. Song, J. Shi, H. Chen, and B. Zang. Schedule processes, not
VCPUs. In APSys, 2013.

[33] V. Srinivasan, G. R. Shenoy, S. Vaddagiri, D. Sarma, and
V. Pallipadi. Energy-aware task and interrupt management
in Linux. In Ottawa Linux Symposium, 2008.

[34] O. Sukwong and H. S. Kim. Is co-scheduling too expensive
for SMP VMs? In EuroSys, 2011.

[35] M. S. Tsirkin. vhost-net and virtio-net: need for speed. In KVM
Forum, 2010.

[36] P. Turner, B. B. Rao, and N. Rao. CPU bandwidth control for
CFS. In Linux Symposium, volume 10, pages 245–254, 2010.

[37] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards scalable multiprocessor virtual machines. In Virtual
Machine Research and Technology Symposium, 2004.

[38] C. A. Waldspurger. Memory resource management in VMware
ESX server. In OSDI, 2002.

[39] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Deter-
ministic proportional-share resource management. Technical
report, MIT Laboratory for Computer Science, 1995.

[40] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware support
for spin management in overcommitted virtual machines. In
PACT, 2006.

[41] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive
scheduling for virtual machines. In HPDC, 2011.

[42] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: towards real-time
hypervisor scheduling in Xen. In EMSOFT, 2011.

[43] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu. vTurbo:
Accelerating virtual machine I/O processing using designated
turbo-sliced core. In USENIX ATC, 2013.

[44] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu. vSlicer: latency-aware virtual machine scheduling
via differentiated-frequency CPU slicing. In HPDC, 2012.

[45] L. Zhang, Y. Chen, Y. Dong, and C. Liu. Lock-Visor: An
efficient transitory co-scheduling for MP guest. In ICPP, 2012.

[46] L. Zhou, S. Wu, H. Sun, H. Jin, and X. Shi. Virtual machine
scheduling for parallel soft real-time applications. In MAS-
COTS, 2013.

Luwei Cheng received his PhD in computer
science from the University of Hong Kong
in 2015. He is currently a Research Scien-
tist at Facebook. His research is mainly on
performance problems in cloud datacenters,
including operating system, networking and
distributed storage. He received Best Stu-
dent Paper Award in UCC 2011 conference,
Hong Kong PhD Fellowship in 2012 and Mi-
crosoft Research Asia Fellowship in 2013.

Francis C.M. Lau received his PhD in com-
puter science from the University of Waterloo
in 1986. He has been a faculty member of
the Department of Computer Science, The
University of Hong Kong since 1987, where
he served as the department chair from 2000
to 2005. He is now Associate Dean of Fac-
ulty of Engineering, the University of Hong
Kong. He was a honorary chair professor in
the Institute of Theoretical Computer Science
of Tsinghua University from 2007 to 2010.

His research interests include computer systems and networking,
algorithms, HCI, and application of IT to arts. He is the editor-in-chief
of the Journal of Interconnection Networks.


