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Abstract—Among uncertain graph queries, reachability, i.e., the probability that one vertex is reachable from another, is likely the most
fundamental one. Although this problem has been studied within the field of network reliability, solutions are implemented on a single
computer and can only handle small graphs. However, as the size of graph applications continually increases, the corresponding graph
data can no longer fit within a single computer’s memory and must therefore be distributed across several machines. Furthermore, the
computation of probabilistic reachability queries is #P-complete making it very expensive even on small graphs. In this paper, we
develop an efficient distributed strategy, called DistR, to solve the problem of reachability query over large uncertain graphs.
Specifically, we perform the task in two steps: distributed graph reduction and distributed consolidation. In the distributed graph
reduction step, we find all of the maximal subgraphs of the original graph, whose reachability probabilities can be calculated in
polynomial time, compute them and reduce the graph accordingly. After this step, only a small graph remains. In the distributed
consolidation step, we transform the problem into a relational join process and provide an approximate answer to the #P-complete
reachability query. Extensive experimental studies show that our distributed approach is efficient in terms of both computational and
communication costs, and has high accuracy.
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F

1 INTRODUCTION

G RAPHS have become increasingly popular data models in
today’s big data processing environments, with applications

in areas such as social network analysis and pattern discovery
in biological networks. In many practical applications, however,
there is inherent noise, incompleteness, or delay during data
collection [1] [2], so that the corresponding graphs are uncertain,
i.e., the presence of edges is probabilistic. Over the past decade,
researchers have developed a number of techniques to query and
mine uncertain graphs (e.g., see [3] [4] [5]).

One of the most fundamental queries over graphs is reacha-
bility, that is, given a start vertex s and a terminal vertex t, can
t be reached from s? In uncertain graphs, the reachability query
cannot assert whether t can be reached from s; rather, it computes
the probability that t can be reached from s. The reachability query
over uncertain graphs has important applications in estimating the
similarity and influence between vertices. In addition, several other
important queries over uncertain graphs, such as shortest path [4],
k-nearest neighbor [6], and pattern match [7], are based on the
reachability query.

As an example of the use of the reachability query over
uncertain graphs, consider the uncertain graph depicted in Fig. 1.
Assume that the graph represents a simple social network, such
that each vertex is an individual and there is an edge between
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two vertices if the corresponding individuals are friends. If the
probability of each edge is defined as the influence one individual
has over the other (e.g., when a1 recommends a product to b1, the
probability that b1 also likes the product is 0.7), as in [8], then the
reachability query can be used to estimate the influence among
individuals in the social network. Alternatively, if the probability
of each edge captures the interest similarity between individuals
(e.g., the probability that a1 and b1 like the same movie is 0.7),
as in [9], then the reachability query can be used to estimate the
interest similarity among individuals in the social network.
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Fig. 1. An Example of a Distributed Uncertain Graph

In addition to exhibiting inherent uncertainty, many interesting
graph applications are much too large to be stored on a single
computer. For example, popular social networking platforms,
such as Twitter, Facebook, WeChat and Sina Weibo, serve huge
numbers of users (more than 1 billion in some cases), and their
corresponding graph data must be distributed over a number of
servers or data centers [10], as illustrated in Fig. 1. Several
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distributed systems, such as Pregel [11] and GraphLab [12], have
been designed explicitly to deal with large graphs in distributed
environments.

Although the problem of reachability over uncertain graphs
has been widely studied in the field of network reliability [13]
[5], existing methods assume that the graph is stored on a single
server. Moreover, as the reachability probability problem is #P-
complete [13] [5], computational costs can be prohibitive even
on small graphs. For large graphs, these methods are impractical
both in terms of storage requirement and computational cost.
Thus, it is desirable to develop efficient and effective solutions
to the reachability probability problem for distributed graphs. We
propose one such solution here.

Our approach is based on the following key insight: even
though computing the reachability probability over the complete
graph is #P-complete, computing the reachability of a large portion
of the graph can be done in polynomial time. We proceed by
decomposing the larger problem into tractable subproblems and
combining their partial solutions to produce an estimate of the
final solution. In so doing, we make a number of contributions.

1) We develop a distributed graph reduction method that
finds all subgraphs of the original graph whose reachabil-
ity probability can be computed in polynomial time.

2) We show that these polynomial-time-computable sub-
graphs form a special class of graphs known as maximal
series-parallel subgraphs of the original graph.

3) We design an efficient algorithm, known as Dist-2hop,
that reduces each maximal series-parallel subgraph to a
single edge labeled by its reachability probability, in a
distributed environment.

4) We show that the final reachability probability can be
obtained via a simple table join process based on the
reduced graph.

This paper is a significant extension of one of our recent
short papers [14], where we provided only a brief introduction,
problem definition and basic algorithmic framework. Here, we add
a number of examples to the background and motivation, describe
the theoretical foundation for and implementation details of our
algorithm, and report the results of extensive experiments.

The remainder of the paper is organized as follows. We begin
with a formal definition of the reachability probability problem in
Section 2. We then describe the details of our distributed graph
reduction and consolidation framework in Section 3. Section 4
presents a thorough evaluation of the performance of our algorithm
over a range of graph applications. Finally, Section 5 reviews some
of the most relevant related work, and Section 6 concludes the
paper.

2 PROBLEM STATEMENT

Since it has been shown previously that any directed graph can
be converted into a directed acyclic graph (DAG) by merging the
graph’s strongly connected components into single vertices [15],
we assume, without loss of generality, that the graphs we operate
on here are (simple) DAGs.

Recall that a DAG is a pair G = (V,E), where V is a set of
vertices and E ⊆ V × V is a set of edges among the vertices of
V , such that G contains no cycles. We denote by |V | and |E| the
number of vertices, respectively edges, of G.

Definition 2.1 (Uncertain Graph). An uncertain graph with respect
to a DAG gc = (V,E) is a pair G = (gc,Pr), where Pr is a
probability mass function on E. All edges are assumed to be
independent of each other.

Definition 2.2 (Possible World Graph). A possible world graph
g = (V ′, E′) of an uncertain graph G = (gc,Pr) is a
subgraph of gc, such that V ′ = V , E′ ⊆ E, and the edges
in E′ are sampled from E according to Pr. The existence
probability pr(g) of g, is thus given by:

pr(g) =
∏
e∈E′

pr(e)
∏

e∈E\E′
(1− pr(e)) (1)

where pr(e) is the existence probability of edge e, as per
E’s probability mass function Pr , and E \ E′ is the relative
complement of E′ in E, i.e., the set of edges from E that do
not appear in g.

Note that Definition 2.2 is a generalization of the traditional
notion of subgraph. When the graph G is certain, or deterministic,
each edge in E has probability 1, and all other possible edges
are missing or have probability 0. In this case, one can view
all subgraphs of G as being constructed by randomly selecting
edges from E to produce E′, i.e., each edge in E has probability
1
2 of appearing in E′. Hence, assuming that edges are selected
independently of each other, the probability of any subgraph being
thus generated, or its existence probability, is ( 12 )

|E|, which is
identical to Equation 1, since E = E′ ∪ (E \ E′). There are
2|E| subgraphs of G, and as expected, the sum of the existence
probabilities of all of these subgraphs is ( 12 )

|E|×2|E| = 1. When
graphs are uncertain, each edge has its own existence probability,
as given by the probability mass function Pr . It follows that the
space of subgraphs, here referred to as possible world graphs,
no longer follows a uniform distribution. Equation 1 specifies the
probability of each possible world graph in that space, based on
the probability of each edge being selected (i.e., appearing in E′)
or not (i.e., belonging to E\E′). As with deterministic graphs, the
total existence probability of possible world graphs of an uncertain
graph sums to 1.
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Fig. 2. Two of the Possible World Graphs of Fig. 1

As an example, consider Fig. 2 that shows two of the 224

possible world graphs of Fig. 1. The possible world graph g1
shows the case in which ea1b1 has been selected (probability
pr(ea1b1)), ea1c1 has been selected (probability pr(ea1c1)), ...,
eb1f1 has not been selected (probability 1− pr(eb1f1)), ea2b2 has
not been selected (probability 1− pr(ea2b2)), etc. As specified by
Equation 1, the existence probability of g1 is given by:

pr(g1) = pr(ea1b1)× pr(ea1c1)× · · · × (1− pr(eb1f1))× · · ·
= 0.7× 0.9× · · · × (1− 0.6)× · · ·
= 3× 10−7
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Definition 2.2, in turn, makes it clear how to define probability cal-
culations over uncertain graphs, such as shortest path probability [4],
k-nearest neighbor probability [6], pattern matching probability [7],
or reachability probability (Definition 2.3 below), by summing over
the existence probabilities of relevant possible world graphs.
Definition 2.3 (Reachability Query over Uncertain Graphs). Given an

uncertain graph G = (gc,Pr), a start vertex s ∈ V , and a terminal
vertex t ∈ V , a reachability query R(s, t) returns the probability
that s can reach t in G. This probability, denoted RPr(s, t), is
called the reachability probability, and is computed as follows.

RPr(s, t) =
∑
i

pr(gi) (2)

where the gi’s are all of the possible world graphs of G in which
s can reach t.

As an example, consider again the uncertain graph of Fig. 1.
Assume that the start vertex is a1 and terminal vertex is f2. Then,
the reachability probability RPr(a1, f2) is the sum of the existence
probabilities of all of the possible world graphs in which a1 can reach
f2, such as the graphs g1 and g2 of Fig. 2. That is,

RPr(a1, f2) = pr(g1) + pr(g2) + · · ·

Definition 2.4 (Distributed Uncertain Graphs). An uncertain graph
is distributed over a number of servers using a master-slave
framework [16]. The graph is partitioned by vertices. The slaves
store the partitioned graph; the master is used for scheduling and
light calculations. Edges whose vertices are on different servers
are called cross edges, and edges whose vertices are on the same
server are called inner edges. A cross edge is represented as
e((v1, ser1), (v2, ser2), pre), where ser1 is the server holding
v1 and ser2 is the server holding v2, and stored in both servers.

Note that the partition method used to distribute uncertain graphs
has direct influence on the efficiency and effectiveness of any designed
algorithm. If the partition is not well balanced, i.e., one server contains
a large part of the original graph while the others together contain
a small part of the original graph, then the server containing the
large part of the original graph would become a bottleneck for any
distributed algorithm. On the other hand, if many of the high degree
vertices and their neighbors are stored in different servers, then there
would be many cross edges in the distributed environment, causing
significant communication overhead.

Problem Statement: Given an uncertain graph G = (gc,Pr)
distributed over a master-slave system as per Definition 2.4,
a start vertex s ∈ V , and a terminal vertex t ∈ V , efficiently
compute RPr(s, t).

Note that graph partitioning is not part of our problem statement.
That is, we consider that the graph of interest has been distributed to
different slaves prior to our computation. This is consistent with what
can be expected in practice, since in the type of large applications we
are considering, the graph data is already organized in a distributed
environment. For example, a Facebook user’s information is stored in
the server located near the place where he/she registers [10].

3 THE DistR METHOD
As stated above, our approach is inspired by the realization that
although computing the reachability probability over a complete graph
is #P-complete, the reachability probability on some parts of the graph
can be calculated in polynomial time. This is illustrated in Fig. 3.

Consider the uncertain graph gc of Fig. 3(a) (edge existence
probabilities are not shown for simplicity), and assume that the
reachability query is R(s, t). Clearly, gc can be decomposed into
two subgraphs: one containing the vertices s, a, b, c, and d, together
with the corresponding edges, call it g1c (depicted in Fig. 3(b)), and
the other containing the vertices d, e, f , and t, together with the
corresponding edges. Subsequently, R(s, t) may be decomposed into

Fig. 3. An Uncertain Graph and its Equivalent Reduction

two reachability queries on each of these subgraphs, namely R(s, d)
and R(d, t).

Let Pv1v2...vk denote the path from vertex v1 to vertex vk through
vertices v2, . . . , vk−1. For example, Psab in gc1 corresponds to the
path from s to b through a (i.e., the two edges esa and eab) in
gc1. We can transform the graph gc1 of Fig. 3(b) into the equivalent
graph of Fig. 3(c), where some of the edges have been labeled with
the corresponding paths in gc1 (details of this transformation are in
Section 3.1). It follows, and we will generalize this result shortly,
that R(s, d) can be solved in polynomial time, and the corresponding
reachability probability is given straightforwardly by:

RPr(s, d) = pr[(Psab ∨ Psb) ∧ (Pbcd ∨ Pbd) ∨ Psd] (3)

where:

pr(Pv1v2...vk ) = pr(ev1v2 ∧ . . . ∧ evk−1vk ),

pr(P ∧Q) = pr(P )× pr(Q), and
pr(P ∨Q) = 1− [1− pr(P )]× [1− pr(Q)]

so that,

RPr(s, d)=1− [1− [1− (1− pr(esa)× pr(eab)× (1− pr(esb))]
×[1− (1− pr(ebc)× pr(ecd)× (1− pr(ebd))]]
×[1− pr(esd)]

Following this efficient computation, g1c can be replaced by a
single edge esd labeled with the value of RPr(s, d), and the graph gc
subsequently reduced to the graph shown in Fig. 3(d).

While one may be tempted to apply the same idea to the other
subgraph of gc, such a reduction cannot be performed in polynomial
time. We must enumerate all of the paths from d to t to calculate
RPr(d, t). As we will show in Section 3.1, the structures whose
RPr’s can be calculated in polynomial time are known as series-
parallel subgraphs. If we can find all such maximal series-parallel
subgraphs in a distributed way, compute their exact RPr’s, and
replace them by single edges, then we only need to approximate the
RPr of the smaller reduced graph. We contend that this approach
avoids unnecessary enumerations, speeds up the calculation, and
improves the accuracy of the results.

The proposed DistR strategy thus consists of first reducing all
maximal series-parallel subgraphs of the original graph in a distributed
fashion, and then consolidating the results via a process of graph
sampling and table join over the transformed version of the graph to
get a final approximation of RPr(s, t). These steps are detailed in the
following subsections.

Note that DistR computes RPr(s, t), the reachability probability
between a start vertex s and a terminal vertex t. It is clear that no
part of the graph G linked to from t has any relevance to RPr(s, t).
Hence, as is typical in related work on DAGs (e.g., see [17]), the part
of the graph “following” t, which can be found efficiently through
vertex ordering, is ignored by DistR.
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3.1 Distributed Graph Reduction
The first step of the DistR algorithm is the heart of the process, where
all subgraphs whose reachability probabilities can be computed in
polynomial time are reduced to single edges. To show how this is
done, we make use of the notion of series-parallel graph, and prove
that the subgraphs whose reachability probabilities can be calculated
in polynomial time are the maximal series-parallel subgraphs of the
original graph. Recall that we restrict our attention to DAGs.
Definition 3.1 (Series-Parallel Graph [18]). A series-parallel graph G

is defined recursively as follows.

• Basis: The graph consisting of two vertices s and t, with an
edge from s to t, is a series-parallel graph. The nodes s and t
are known as terminal nodes.

• Series Operation: If Gx is a series-parallel graph with termi-
nal nodes sx and tx, and Gy is a series-parallel graph with
terminal nodes sy and ty , then the graph G formed by setting
s = sx, tx = sy and t = ty is a series-parallel graph with
terminals s and t.

• Parallel Operation: If Gx is a series-parallel graph with
terminal nodes sx and tx, and Gy is a series-parallel graph
with terminal nodes sy and ty , then the graph G formed by
setting s = sx = sy and t = tx = ty is a series-parallel
graph with terminals s and t.

Definition 3.2 (Maximal Series-Parallel Subgraph). A series-parallel
subgraph is maximal if it is not a subgraph of any other series-
parallel subgraph.

Fig. 4 provides a visual representation of the series and parallel
operations used to construct series-parallel graphs.
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Fig. 4. Series and Parallel Operations

The reachability from s to t after a series operation follows
naturally from the reachability of sx to tx and the reachability from
sy to ty . Its probability is given by:

RPr(s, t) = RPr(sx, tx)× RPr(sy, ty) (4)

As with series operations, the reachability from s to t after a parallel
operation follows naturally from the reachability of sx to tx or the
reachability from sy to ty . Its probability is given by:

RPr(s, t) = 1− (1− RPr(sx, tx))× (1− RPr(sy, ty)) (5)

Clearly, Definition 3.1, together with Equations 4 and 5, also
provide the basis for what we now define as the reduction of an
uncertain series-parallel graph.
Definition 3.3 (Series Link). Edges evivj and evjvk form a series link

if both the in-degree and out-degree of vj are 1.

Definition 3.4 (Triangle Link). Edges evivj , evjvk and evivk form a
triangle link if both the in-degree and out-degree of vj are 1.

Note that a triangle link can be thought of as consisting of a series
link (evivj and evjvk ) combined with a single edge (evivk ) via a
parallel operation. It will be useful in our implementation, to consider
triangle links, rather than parallel links, as minimum units of a series-
parallel graph, along with series links. Simple examples of a series
link and a triangle link are depicted on the left-hand side of Fig. 5(a)
and Fig. 5(b), respectively.

The reduction of an uncertain series-parallel graph, depicted on
the right-hand side of Fig. 5(a) and Fig. 5(b), can now be defined
recursively as follows.
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Fig. 5. Series and Triangle Links

Definition 3.5 (Series-parallel Reduction). A series-parallel graph G
is reduced recursively as follows.

• Basis: A series link consisting of edges evivj and evjvk is
reduced to a single edge evivk with probability reachability
given by Equation 4. A triangle link consisting of edges
evivj , evjvk and evivk is reduced to a single edge evivk with
probability reachability given by Equations 4 and 5.

• Recursive step: If G is a series-parallel graph composed of
two subgraphs Gx and Gy connected by a series operation
(respectively, a parallel operation), then G can be reduced to
the reduction of Gx and the reduction of Gy connected by
a series operation (respectively, a parallel operation) and its
reachability probability is given by Equation 4 (respectively,
Equation 5).

Note that although a graph may not be series-parallel, any of its
series-parallel subgraphs can be reduced by the above procedure. If a
graph is series-parallel, its reduction will yield a single edge with the
associated reachability probability. If a graph is not series-parallel, the
following lemma characterizes its partial reduction.

Lemma 1 (Contrapositive of Lemma 3.5 [19]). If a graph is not a
series-parallel graph, then its partial reduction will yield one of the
structures shown in Fig. 6. Note that in the context of DAGs, there
are 8 such possible structures. They are captured by bidirectional
edges between vertices b and c.
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Fig. 6. The Minimum Units of a Non-series-parallel Graph

The following theorem then provides the theoretical justification
for the approach advocated by DistR.

Theorem 1. The subgraphs of an uncertain graph on which reachability
queries can be computed in polynomial time are its maximal
series-parallel subgraphs.

Proof: We first show that the computation of reachability
probability over a series-parallel graph is polynomial. Note that
Equation 4 consists of a single multiplication, and Equation 5 involves
3 subtractions and 1 multiplication, thus making each require only
constant time. A series-parallel graph G = (V,E) is formed by
applying only series or parallel operations as per Definition 3.1. The
number of such operations is at most |E|, which is polynomial (i.e.,
|E| = O(|V |2)). Hence, computing reachability probability on a
series-parallel graph requires only polynomial time.
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Secondly, we show that the same computation on a non-series-
parallel graph is not polynomial. We do so indirectly, using related
work on nested paths [13] [18] [5].
Definition 3.6 (Nested Path [18]). A path P1 from s1 to t1 is said

to be contained in a path P2 from s2 to t2 if the end points
of P1 (i.e., s1 and t1) appear as internal points in P2. The path
between s1 and t1 in P2 is called the projection of P1. A set P =
{P1, P2, . . . , Pn} of paths is said to be nested if the following
conditions hold.

1) For all 1 < i ≤ n, there exists j < i such that Pi is contained
in Pj .

2) If Pi and Pj are both contained in Pk, the projections of Pi

and Pj are such that either one contains the other or they are
disjoint from each other.

(a)   is contained in (b)   is disjoint from 

Fig. 7. Nested Paths

For example, in Fig. 7(a), the path Pi is contained in the path Pj ,
while in Fig. 7(b), the paths Pi and Pj are both contained in Pk, and
the projections of Pi and Pj are disjoint from each other.
Lemma 2 (adapted from [13] [18] [5]). If a graph is not composed of

nested paths, the computation of reachability probability over this
graph cannot be performed in polynomial time.

The minimum unit of a non-series-parallel graph are the structures
shown in Lemma 1. It is clear that none of these structures are
composed of nested paths. Hence, it follows from Lemma 2 that the
computation of reachability over non-series parallel graphs cannot be
performed in polynomial time.

We now turn our attention to the task of efficiently reducing all
maximal series-parallel subgraphs. To do so, we rely on the concept
of a 2-hop path defined as follows.
Definition 3.7 (2-hop Path). Let G = (V,E) be a graph, with

v0, v1, v2 ∈ V , and ev0v1 , ev1v2 ∈ E. The path Pv0v1v2 is a
2-hop path of v0, and v2 is in the 2-hop vertex set of v0.

It is clear that the subgraph formed by a vertex and its 2-hop vertex
set is series-parallel, and that its minimum units are either series links
or triangle links. Hence, if Pv0v1v2 is a 2-hop path of vertex v0, and
both the in-degree and out-degree of v1 are 1, then Pv0v1v2 can be
reduced to a single edge ev0v2 labelled by RPr(v0, v2).

The following theorem then provides the computational motiva-
tion for our distributed algorithm.
Theorem 2. All maximal series-parallel subgraphs of an uncertain

graph G are reduced after recursively detecting the 2-hop vertex
set of each of its vertices.

Proof: From the foregoing presentation, given any vertex v,
the edges that can be reduced are those linked to the neighbors of v
whose in-degree and out-degree are both 1. The only cases where any
such neighbor vertex has in-degree or out-degree larger than 1 is when
there are either underlying parallel operations or the structures shown
in Lemma 1. If there exist parallel operations, they are transformed
into the formation of triangle links during the recursion, and can thus
be reduced according to Definition 3.5. If not, then the subgraph is
not series-parallel.

From Theorem 2, we can see that the only information needed
for graph reduction is the in-degree and out-degree of each vertex. In
other words, if we keep track of the in-degree and out-degree of each
vertex, we can find out the edges to be reduced without needing to
know the structure of the whole graph. This means that each vertex
can determine the edges to reduce in parallel, entirely based on the
units formed by its 2-hop vertex sets. This locality property is well

suited for a distributed computing environment, and is duly exploited
as each slave node i executes Algorithm 1 on the portion Gi of the
uncertain graph it receives.

Algorithm 1: The Dist-2hop Algorithm
Input: Gi = (gci, Pr) with gci = (Vi, Ei), s, t
Output: The reduced non-series-parallel graph Gi

1 Vnv = Vi

2 while Vnv is not empty do
3 Choose v0 from Vnv
4 Lock v0
5 Find the neighbor vertex set Vne of v0
6 Find the 2-hop vertex set V2-hop of v0
7 while V2-hop is not empty do
8 Find a 2-hop path Pv0v1v2

of v0
9 if inDegree(v1) == outDegree(v1) == 1 then

10 if v1 and v2 are not locked then
11 Lock v1 and v2
12 Reduce v1 and v2
13 if v1 and v2 are in the same slave with v0 then
14 V2-hop = V2-hop + children(v2)− v2,

Vi = Vi − v1, Vnv = Vnv − v1
15 if v1 is in the same slave with v0 but v2 is not then
16 V2-hop = V2-hop − v2, Vi = Vi − v1,

Vnv = Vnv − v1
17 else
18 V2-hop = V2-hop − v2

19 Vne = Vne − v1 + v2
20 Unlock v2

21 else
22 V2-hop = V2-hop − v2
23 Unlock v1 and v2 ;

24 Vnv = Vnv − v0 ;
25 Unlock v0

26 Return (Gi)

The algorithm uses a set Vnv to record the vertices that are not
visited in Gi and initializes it to the set Vi of vertices of Gi (Line 1). A
vertex v0 from Vnv is chosen, a lock is secured on v0 so that it cannot
be processed by other slaves, and v0’s neighbor vertex set Vne and
2-hop vertex set V2-hop are computed (Lines 3-6). For each 2-hop path
Pv0v1v2 of v0, if both the in-degree and out-degree of v1 are equal
to 1, and v1 and v2 are not locked, a lock is secured on v1 and v2,
and the structure formed by v0, v1 and v2 is reduced (Lines 8-18).
Finally, the lock on v2 is released (since v1 is deleted, there is no
need to unlock it) (Line 20). On the other hand, if either the in-degree
or out-degree of v1 is not 1, v2 is removed from V2-hop (Lines 22),
and both v1 and v2 are released (Line 23). This process is repeated
until V2-hop is empty (Line 7). Once the process completes for v0,
the lock on v0 is released (Line 25), and other vertices in Vnv are
similarly handled until all vertices have been processed. Finally, the
now reduced non-series-parallel graph Gi is returned (Line 26).

As the reduction process takes place on Lines 8-18, graph struc-
tures, i.e., relevant sets of vertices, are updated accordingly. If v0, v1
and v2 are in the same slave, the structure can be updated by that
slave (Line 13). In this case, v1 is removed from both the neighbor
vertex set Vne of v0 and the vertex set Vi of Gi, v2 is added to the
neighbor set of v0, and v2’s children (i.e., terminal vertices of the
outgoing edges from v2) are added to v0’s 2-hop vertex set V2-hop
(Lines 14 and 19). If v0 and v1 are in the same slave, but v2 is in
a different slave (Line 15), v0’s slave tells v2’s slave to update its
corresponding cross edges synchronously with v0’s slave. As v1 is
essentially removed from the original graph, v1 is also removed from
both Vi and Vnv; v2 is removed from V2-hop, and Vne is updated by
removing v1 and adding v2 (Lines 16 and 19). If v0, v1 and v2 are
in three different slaves (Line 17), v0’s slave tells both v1’s and v2’s
slaves to update their corresponding cross edges synchronously with
v0’s slave. Then, v2 is removed from V2-hop, and Vne is updated by
removing v1 and adding v2 (Lines 18 and 19).

We illustrate Algorithm 1 with the uncertain graph of Fig. 1
distributed across 3 slaves, using a1 as the start vertex and f2 as
the terminal vertex.
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Example 1 (Dist-2hop Algorithm). The 3 slaves are started at the same
time. Firstly, each slave chooses a vertex, secures a lock on it to
prevent conflicts, and computes its 2-hop vertex set. For instance,
Slave 1 chooses a1 and computes V2-hop(a1) = {c1, d1, f1, u1};
Slave 2 chooses a2 and computes V2-hop(a2) = {c2}; and Slave 3
chooses a3 and computes V2-hop(a3) = {c3, d3}. For vertex a1,
Slave 1 locks a1’s neighbor vertices b1 and c1, and 2-hop vertices
c1, d1, f1, and u1. Because the degrees of a1’s neighbor vertices,
b1 and c1, are not 1, no 2-hop path of a1 is changed. Slave 1
unlocks all of a1’s neighbor vertices and 2-hop vertices, and goes
on to choosing another vertex, say b1. There, it computes the 2-
hop path Pb1d1f1 , locks b1, d1 and f1, and finds that both the
in-degree and out-degree of its neighbor d1 are equal to 1. Slave 1
reduces the structure formed by b1, d1 and f1 to a single edge
eb1f1 , with probability 1− (1−0.5×0.8)× (1−0.6) = 0.76. As
d1 has been removed, only f1 needs to be unlocked. Similar local
computations take place in Slave 2 and Slave 3, and the resulting
graph is shown in Fig. 8(a).
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Fig. 8. Dist-2hop Processing of the Graph in Fig. 1

In addition to the inner edges that can be processed locally,
information must be communicated among slaves so cross edges
can also be handled. For example, when u1 is processed, Slave 1
will find that the neighbor vertices and 2-hop vertices of u1 are not
in Slave 1. So it will send messages to Slave 2 to ask for the 2-hop
vertex set of u1 and the degree of u1’s neighbor vertices. Slave 2
returns a message that V2-hop(u1) = {b2, f2}. At the same time,
u1, b2 and f2 are locked in Slave 1 and Slave 2, respectively.
From then on, the rest of the process is the same as for b1,
with the the addition that Slave 2 should update synchronously
with Slave 1. The residue of the graph, after completion of the
distributed execution of the Dist-2hop algorithm, is shown in
Fig. 8(b).

The time complexity of Algorithm Dist-2hop is O(|Vm|d2),
and the communication cost is O(|F | × |Ecr|), where |Vm| is the
maximum number of vertices in each slave, d is the average degree of
the vertices in the original graph, |F | is the fragment number in the
distributed environment, and |Ecr| is the number of cross edges.

3.2 Distributed Consolidation
Once the original distributed graph has been subjected to the reduction
process, the final reachability probability must be computed. After
running Dist-2hop, the output of each slave is of one of two forms.

• The subgraph Gi received by Slave i is series-parallel. In this
case, the subgraph returned by Slave i consists of a single
edge.

• The subgraph Gi received by Slave i is not series-parallel. In
this case, according to Lemma 1, the subgraph returned by
Slave i will be made up of single edges (from possible series-
parallel subgraphs) and of the structures shown in Fig. 6.

For convenience, we refer to single edges and the structures of
Fig. 6 as P-irreducible structures. Given the above, the residue of
the original uncertain graph after the reduction step of DistR consists
only of P-irreducible structures. Fig. 9 shows the five ways in which
P-irreducible structures may appear combined in graphs following
distributed reduction through the sharing of vertices and/or edges.

Note that directions have been omitted for simplicity. Note also that
each combination is representative of several as, for example, the
shared node in Fig. 9(a) and (d) is irrelevant.
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Fig. 9. P-irreducible Structure Combinations

It should be clear that adding any more edges to the structures
of Fig. 9 would either result in reductions bringing them back to
their original form, or yield more elaborate but similar structures. For
example, if an edge sharing the right vertex of the edge labeled 3
is added to Fig. 9(d), then these two edges would from a series link
(Definition 3.3) and be reduced, so that the structure would return
to Fig. 9(d). On the other hand, For example, two of the structures
in Fig. 9(b) could be connected by an edge, or a 5-clique could
be obtained from 3 of the diamond-shaped P-irreducible structures,
leading to more elaborate yet similar structures.

A quick inspection of Fig. 9 shows that all combinations of P-
irreducible structures consist of k-cliques (k ≥ 2), as highlighted by
the numbers. For instance, Fig. 9(a) is made up of four 3-cliques,
Fig. 9(b) is a single 4-clique, and Fig. 9(e) consists of two 3-cliques
and two 2-cliques. Hence, the residue of the original uncertain graph
after the distributed execution of the Dist-2hop algorithm can also be
seen as consisting exclusively of k-cliques. Returning to our example,
the residue of the graph of Fig. 1 shown in Fig. 8(b) consists of five
2-cliques ({b2, f2}, {b3, f3}, {b2, b3}, {f1, b3}, and {u1, b2}), one
3-clique ({a1, b1, c1}), and one 4-clique ({b1, c1, f1, u1}).

Based on this observation, it is possible to recast the computation
of reachability probability as one of a sequence of join operations over
tables composed of partial results from the cliques of the residual
graph. An illustration will suffice to show how the process works.
Again, we use our running example from Fig. 8(b), with a1 as the
start node and f2 as the terminal node. As mentioned above, the graph
is made up of 7 cliques, which are shown separately at the top of
Fig. 10. It is possible to calculate the needed RPr ’s locally and then
to combine them. The process is as follows.
• 2-clique. A 2-clique is a single edge, say eab. Only RPr(a, b)

must be computed and it is simply the weight of the cor-
responding edge. For example, the 2-clique {b2, b3} returns
RPr(b2, b3) = 0.7

• 3-clique. A 3-clique has 3 vertices, say a, b, and c, and 3
edges. Since the graphs of interest are DAGs, exactly one
vertex of the 3-clique has out-degree 2, say a, and exactly one
vertex has both in-degree and out-degree equal to 1, say b. It
is possible to use triangle reduction as per Definition 3.5 to
compute RPr(a, c). For example, in the 3-clique {a1, b1, c1},
RPr(a1, c1) = 1− (1−RPr(a1, c1))× (1−RPr(a1, b1)×
RPr(b1, c1)) = 1 − (1 − 0.9) × (1 − 0.7 × 0.8) ≈ 0.96.
However, a 3-clique, since it comes from a P-irreducible
structure, cannot be reduced to that single edge. The local
computations here must be aware of the context of the overall
graph. In particular, it is always the case that bc is the shared
edge; if not the clique would have been reduced during the
reduction phase of DistR. Hence, the 3-clique must also return
RPr(a, b). In our example, since eb1c1 is the shared edge,
the 3-clique {a1, b1, c1} must return both RPr(a1, c1) and
RPr(a1, b1).

• k-clique (k ≥ 3). In these cases, possible world graphs have
to be enumerated so as to calculate the RPr’s according to
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Definition 2.3. As stated earlier, this is #P-complete. Thus,
we apply Monte Carlo sampling to compute RPr’s. For
each separate part, we sample its edges with their existence
probability independently in different servers. For example, in
the 4-clique {a1, c1, f1, u1}, the edge eb1f1 is sampled with
existence probability 0.76, and using the same method, we
sample eb1c1 , ec1u1 and ef1u1 . We apply locks to ensure that
all of the shared edges, such as eb1c1 and ef1u1 , are sampled
only once. Then, we test whether each pair of vertices are
reachable. After sampling N times in each server, we count
the number of times where each pair of vertices are reachable,
say nr . Then, the RPr’s are estimated by nr/N .

The results from each clique are stored in tables, that can then
easily be joined as depicted in Fig. 10. For example, joining the tables
of he 3-clique {a1, b1, c1} and the 4-clique {a1, c1, f1, u1} produces a
new table with RPr(a1, f1) and RPr(a1, u1), where RPr(a1, f1) =
(RPr(a1, b1)∧RPr(b1, f1))∨(RPr(a1, c1)∧RPr(c1, f1)) = (0.7×
0.76)∨(0.96×0.7) = 0.532∨0.672 = 1−(1−0.532)×(1−0.672) ≈
0.85. The other tables are obtained in a similar fashion until the final
RPr(a1, f2) = 0.25 is obtained.
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Fig. 10. Verification Method

Since each clique shares at most one edge with any other clique,
and since any path going through a clique would therefore go through
at most two such edges, the maximum size of each reachability
probability recording table is 4. Thus, the computational cost of the
consolidation step is O(N(|V ′m|+ |E′m|)+ lognclique)), where |V ′m|
and |E′m| are the maximum number of remaining vertices and edges,
respectively, in a slave, and nclique is the number of cliques. The
communication cost is O(|V ′c + E′c| + nclique), where |V ′c | is the
number of remaining vertices with cross edges, and |E′c| is the number
of remaining cross edges.

As far as the accuracy of the reachability probability estimates
computed by DistR, the following theorem, adapted from [20], allows
us to provide a bound on the error of each clique’s estimate. Note that
in Monte Carlo sampling theory, usually ξ = η = 0.1.

Theorem 3. For any 0 ≤ ξ ≤ 1 and η > 0, if N ≥ (4 ln
2

ξ
)/η2, then

the reachability probabilities in each clique is bounded by

pr(|nr/N − E(RPr))| < ξE(RPr)) ≥ 1− η

where E(RPr) is the expected value of RPr .

Finally, before turning to an experimental evaluation of DistR,
we show how it can be extended with a simple graph pre-pruning

technique. While not strictly necessary to the function of DistR, such
a priori pruning reduces the size of the graph and may thus improve
the efficiency of DistR.

3.3 Pre-pruning Strategy
Given that reachability has to do with paths from s to t, all vertices
and edges that are not on any of the paths from s to t in any possible
world graph can be safely pruned from the graph. For example, given
the query R(a1, f2) on the graph of Fig. 1, the vertices c3, d3 and
f3 (and associated edges) contribute nothing to RPr(a1, f2) and can
thus be removed from the graph. We begin with a few definitions.

Definition 3.8 (Bi-connected Component). A bi-connected component
of a graph is an induced subgraph which remains connected after
removing any one vertex from it.

For example, Fig. 11 shows all 5 bi-connected components of
Fig. 1 (marked with the labels 1 through 5).
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Fig. 11. Bi-connected Components of Fig. 1

The intersection of the vertex sets of two bi-connected component
is a cut vertex [21], which is defined as follows.

Definition 3.9 (Cut Vertex). A vertex in a graph is a cut vertex if its
removal causes the graph to become disconnected.

It follows from Definition 3.9 that any path from a vertex in a bi-
connected component to a vertex in another bi-connected component
must go through their cut vertex. For example, in Fig. 1, all paths
from a1 to f2 must go through b2 and c2. Thus, if we treat a bi-
connected component of a graph as a super vertex, this graph can
be equivalently transformed into a tree [21]. We call this tree a bi-
connected component tree, and define it as follows.

Definition 3.10 (Bi-connected Component Tree). A Bi-connected
Component Tree is a pair T = (V T,ET ). Tree nodes, i.e.,
elements of V T , correspond to the bi-connected components of
the original graph. For every pair of nodes vt1 and vt2 that share a
cut vertex vc, there is a directed tree edge etvt1vt2 ∈ ET labeled
by vc.

As an illustration, Fig. 12(a) shows the bi-connected component
tree of Fig. 1, and Fig. 12(b) shows how the tree is distributed over
different servers. The algorithm to build bi-connected component trees
in distributed environments can be found in [21].

a
3
 
b
3


a
2
 
b
2


a
1
b
1
c
1


d
1
f
1
u
1


vt
1


vt
1


vt
1


Server 
1


vt
2
 b
2
c
2


ser
2


ser
3


ser
1


ser
3


ser
1


ser
2


vt
3
 c
2
d
2
f
2


Server 
2


vt
4
 b
3
c
3
d
3
 vt
5
 d
3
f
3


Server 
3


1


4
 5


2
 3


(
a
) 
Biconnected 


Component Tree
 (
b
) 
The Tree in 
(
a
) 
distributed in servers


b
3


d
3


b
2

c
2


Fig. 12. The Biconnected Component Tree of Fig. 1



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2535444, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, MONTH 2015 8

Theorem 4 (adapted from [22]). There is a path from a start vertex s to
a terminal vertex t in a DAG gc if there is a tree path from the bi-
connected component containing s to the bi-connected component
containing t in the bi-connected component tree T of gc.

It follows from Theorem 4 that if we find the bi-connected compo-
nents containing the start vertex and terminal vertex respectively, and
if we find a tree path between them in the distributed environment,
then the vertices of the original graph found in the tree nodes not on
this tree path can be pruned. The resulting pruning strategy is shown
in Algorithm 2.

The algorithm first hashes s and t to the tree nodes vti and vtj
(Line 2) in the bi-connected component tree. A tree path PT from vti
to vtj is then found on the distributed bi-connected component tree
(Line 3), using the method described in [21]. Note that if no such path
is found, then s cannot reach t, and the DistR algorithm can terminate
immediately with RPs(s, t) = 0. If PT exists, then only the tree
nodes (bi-connected components) on PT are useful to the query; the
graph vertices and edges in all other tree nodes do not contribute
to the computation and can be pruned. Finally, the algorithm returns
the remaining subgraph composed of the bi-connected components of
PT . Following on from our earlier example, Fig. 13 shows the graph
of Fig. 1 after pruning.

Algorithm 2: Bi-connected Component Pruning Algorithm
Input: distributed gc, distributed T , s, t
Output: distributed subgraph of gc after pruning

1 Master sends s and t to slaves
2 Hash s and t into vti ∈ V T and vtj ∈ V T
3 Slaves find a tree path PT from vti to vtj
4 Return subgraph composed of vertices and edges in PT

a
1


b
1


c
1


f
1


u
1


d
1

a
3


b
2


a
2


b
3


d
2


f
2


c
2
b
2


c
2


Server 
1
 Server 
3


Server 
2


Fig. 13. The graph after Pruning

The following theorem provides the basis for computing the
global reachability probability from the reachability probabilities of
individual bi-connected components.
Theorem 5. Given an uncertain graph, a start vertex s and a terminal

vertex t, if s and t are in different bi-connected components, say
s ∈ BC1 and t ∈ BC2, and vc1, vc2. . . vcn are the cut vertices in
the tree path from BC1 to BC2, then

RPr(s, t) = RPr(s, vc1)×RPr(vc1, vc2)×. . .×RPr(vcn, t) (6)

Proof: According to Definition 3.9, any path from s to t across
bi-connected components must go through the cut vertices vc1. . . vcn.
Thus, the occurrence of the event that s can reach t in the uncertain
graph is equivalent to the simultaneous occurrences of the events that
s can reach vc1, vc1 can reach vc2, . . . , and vcn can reach t. And it
follows immediately that RPr(s, t) = RPr(s, vc1)×RPr(vc1, vc2)×
. . .×RPr(vcn, t).

We note that the value of pre-pruning is highly data-dependent.
Indeed, if the graph G has a significant number of bi-connected
components and the queries issued against G are such that s and t
are often in the same bi-connected component, then pre-pruning will
offer significant advantages as large portions of G can be ignored. On
the other hand, if G is such that it consists of a rather small number of

bi-connected components or the queries issued against G are such that
s and t often in different bi-connected components, then pre-pruning
will have little impact since most of the graph will need to be retained.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DistR and compare it
against that of relevant baseline algorithms.

4.1 Baseline Algorithms

Existing centralized (i.e., single server) solutions to the reachability
problem use approximate sampling algorithms, such as random walk,
to calculate the reachability probability. We straightforwardly extend
these centralized solutions into their distributed counterparts to serve
as baseline solutions for comparison with our proposed distributed
approach.

4.1.1 Xfer-To-One Algorithm

The Xfer-To-One solution consists in first transferring the whole
distributed uncertain graph to one server (provided sufficient memory
is available), and then applying the following procedure.

1) Sample each edge of E according to its existence probability
to produce a possible world graph g.

2) Determine whether s can reach t in g.

The process is repeated N times, and, if r is the number of
possible world graphs in which s could reach t, then RPr(s, t) is
approximated by r/N . The computational cost of Xfer-To-One is
O(N(|V |+ |E|)), and its communication cost is O(|V |+ |E|).

We use the implementation of Xfer-To-One, and corresponding
best estimator R̂RHT , from [5].

4.1.2 Dist-Samp

The Dist-Samp solution works on a distributed uncertain graph as
follows.

1) Sample each edge ofE according to its existence probability.
In each server, first sample the inner edges. Then, whenever a
server wants to sample a cross edge, it finds the other server
holding that edge and sends the sampling result (whether
the edge exists) to that server. After sampling all the edges
of the distributed uncertain graph, the resulting graph is a
distributed possible world graph g.

2) Using an algorithm for reachability query over deterministic
graphs in distributed environments, such as the one proposed
in [10], determine whether s can reach t in g.

As with Xfer-To-One, the process is repeated N times, and, if
r is the number of possible world graphs in which s could reach t,
then RPr(s, t) is approximated by r/N . The computational cost of
Dist-Samp is O(N |Vf |(|Vm|+ |Em|)), and its communication cost is
O(N((|Vf |2 + |Ec|))), where|Vf | is the number of vertices involved
in cross edges, |Vm| (respectively, |Em|) is the maximum number of
vertices (respectively, edges) in each server, and |Ec| is the number of
cross edges.

In step (2) of Dist-Samp, we apply the algorithm proposed in [10].
Note that, the Dist-Samp method is actually an extended version of
the Xfer-To-One method from centralized to distributed environments,
using its R̂B estimator. The other estimators in [5] are hard to extend
to distributed environment because their sampling algorithms are
serial, i.e., the sampling of one edge depends on the sampling of
its previous edges.
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Fig. 14. Computational Cost Comparison
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Fig. 15. Communication Cost Comparison

TABLE 1
Real Datasets

Datasets |V | |E| Size (MB) Avg. Degree
LiveJournal 4,847,571 68,993,773 1,800 28.5
WikiTalk 2,394,385 5,021,410 726 4.2
DBLP 317,080 1,049,866 115 6.6
Twitter7 17,069,982 476,553,560 24,576 55.8

4.2 Datasets
To facilitate comparison and ensure fairness, we evaluate DistR on
the same three real datasets that were used for Xfer-To-One and Dist-
Samp in [5] [10], namely, LiveJournal, WikiTalk, and DBLP. We also
evaluate DistR on a significantly larger real dataset, Twitter7, which is
too large for the centralized algorithm Xfer-To-One to execute. Details
about each dataset are given in Table 11.

Note that these four graphs are deterministic. To add the needed
uncertainty to the graphs, we generate a probability mass function
using a normal distribution N(µ, σ), as in [5]. The default values of
the distribution parameters are µ = 0.5 and σ = 0.1. In practice,
many graph datasets are inherently uncertain. For example, on a large
social network such as Twitter or Sina Weibo, the level of interac-
tion (measured by mentions, retweets, or direct messaging) varies
significantly among users and offers a natural way of quantifying
uncertainty. Unfortunately, that information is not currently stored in
the social graph and, to the best of our knowledge, there are no such
real-world uncertain graph benchmarks available in the literature.

In addition to the aforementioned three real datasets, we also
use two groups of synthetic graphs, generated by GraphStream2 to
further test the scalability of the algorithms. Table 2 summarizes the
characteristics of our synthetic datasets; default values are shown in
bold. In the first group of graphs, the number of vertices in each graph
is varied from 8M to 128M, with the average degree fixed at 10. In
the second group, the number of vertices in each graph is fixed at 8M,
with the average degree varying from 5 to 20.

TABLE 2
Synthetic Datasets

Number of Fragments |F | 5, 10, 15, 20
Number of Vertices |V | 8M, 16M, 32M, 64M, 128M
Average Degree of Vertices d̂ 5, 10, 15, 20
µ 0.1, 0.3, 0.5, 0.7, 0.9
σ 0.1, 0.3, 0.5, 0.7, 0.9

As stated in Section 2, we use the graph partition method in [23]
to ensure the best possible balance. By default, the fragment number
of the graph data is 5, denoted as |F | = 5. Recall that we assume
that graph partitioning is performed as a pre-processing step, that
is, we consider that the graphs have been distributed to different
slaves prior to our experiments. We use the method in [23] to make

1. All real datasets are from http://snap.stanford.edu/data/.
2. http://graphstream-project.org

the partition as balanced and reasonable as possible. Our cluster is
composed of 1 master server and 10 slave servers. Each server has a
16GB Memory, 8TB hard disk, and 2 6-core Intel(R) Xeon(R) CPU
E5-2620 @2.00GHz.

4.3 Experimental Results and Analysis
In all of our experiments, the results reported for computational and
communication costs are the averages obtained over a set of 1,000
randomly selected pairs of query vertices on each graph dataset.

4.3.1 Performance of DistR
We begin with an analysis of the performance of the distributed graph
reduction and distributed consolidation steps.

TABLE 3
Performance of Dist-2hop

LiveJournal WikiTalk DBLP Twitter7
Computational Cost (s) 111.21 8.19 1.74 1,423.28
Communication Cost (MB) 316.58 53.67 25.46 2,754.25

Table 3 shows the computational (in seconds) and communication
(in MB) costs of the Dist-2hop algorithm over our four real datasets.
As expected, both costs are directly related to the size of the datasets,
with lower costs for smaller graphs and higher costs for larger graphs.

Table 4 shows the computational and communication costs of
the distributed consolidation phase of DistR over the same four real
datasets. As the number of sampling instances increases, the com-
putational cost increases, while the communication cost stays nearly
the same. This is because the sampling is processed independently in
different servers to calculate the reachability probability between the
cuts. An increase in sampling instances only makes the calculation
in each server increase. The number of tables (probability) that need
to be joined stays the same. Thus, the computational cost increases,
but the communication cost does not change. This result verifies our
statement in Section 3.2.

TABLE 4
Performance of the Distributed Consolidation Step

Sampling Datasets
Instances LiveJournal WikiTalk DBLP Twitter7

10 26.39 4.22 0.06 190.08
50 110.84 19.43 0.22 764.80

100 144.09 33.03 0.36 936.58
500 590.77 138.73 1.43 4,194.48
1000 886.15 180.35 2.78 5,494.13
1500 1,054.52 205.60 5.14 6,221.67

Communication Cost (MB) 49.73 26.79 10.14 353.08

4.3.2 Comparative Study
We now turn to a comparison of DistR with the two baseline
algorithms outlined above.
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TABLE 5
Relative Error of Different Algorithms on Real Datasets (%)

Sample LiveJournal WikiTalk DBLP
Size DistR Dist-Samp Xfer-To-One DistR Dist-Samp Xfer-To-One DistR Dist-Samp Xfer-To-One
10 0.01 10.27 9.28 1.06 16.14 18.23 2.35 15.73 15.25
50 0.06 4.13 4.41 0.82 10.38 11.65 1.42 11.23 12.37
100 0.04 3.26 3.37 0.36 4.47 6.37 0.53 6.14 5.96
500 0.01 1.97 1.86 0.11 1.82 1.76 0.16 2.37 2.57
1000 0.01 1.33 1.24 0.04 1.03 0.84 0.07 1.97 1.65
1500 0.00 0.27 0.29 0.02 0.46 0.36 0.03 0.86 0.77
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Fig. 16. Scalability Comparison

Computational Cost: Fig. 14 graphs how computational cost
varies with the number of sampling instances for LiveJournal and
WikiTalk. Note that DistR has on offline process, which could also
be used to improve the centralized solution. Hence, to make clear
the distinction between the improvement due to our novel algorithm
and the improvement inherent in the parallelization process, we also
implement a centralized version of our algorithm, denoted as CenR.

Again, as expected, the computational cost of all of the algorithms
increases with the increase in sampling size. However, the rates of
increase for Xfer-To-One and Dist-samp are much larger than that of
DistR. This is due to the fact that in DistR, only the consolidation step
is influenced by sampling sizes, and the reduced graph used during
consolidation is much smaller than the original graph. Moreover,
when the number of sampling instances is small, CenR is slower than
Xfer-To-One, and DistR is slower than Dist-Samp. As the number of
sampling instances becomes larger, our algorithms are faster. This is
expected, since when sampling fewer instances, our distributed graph
reduction step contributes relatively more to the total computation
cost. Yet the computational cost of the distributed graph reduction step
remains constant over the same dataset after all, and when sampling
more instances, the main contribution to the computational cost is
made by the consolidation step.

Communication Cost: Fig. 15 graphs how communication cost
varies with the number of sampling instances for LiveJournal and
WikiTalk. As clearly shown on the graphs, the communication cost
of Dist-Samp increases with the number sampling instances, while
it remains nearly constant for both Xfer-To-One and DistR. The
communication cost of Xfer-To-One is just the size of the graph that
must be moved to the centralized server. For Dist-Samp, however,
when the number of sampling instances is small, the communication
cost is also small. But that cost increases rapidly with the increase in
sampling instances.

As we will demonstrate shortly, if users want a more accurate
answer, the number of sampling instances must be large, and the
communication cost of Dist-Samp will thus be very large. On the

other hand, the communication cost of DistR is independent of the
number of sampling instances. Furthermore that cost is much lower
(almost one order of magnitude) than the cost of Dist-Samp.

Accuracy: Table 5 summarizes the relative error of each algorithm
in estimating true reachability probability. Relative error is defined
here, as [5], by ε = |R̂Pr−RPr|

RPr
.

Overall, all three algorithms have fairly low errors. Since Dist-
Samp is an extension of Xfer-To-One with the R̂B estimator, its
relative error is larger than that of Xfer-To-One. Since the algorithms
in DistR’s distributed graph reduction step are exact algorithms, and
inaccuracy can only be caused by the distributed consolidation step,
the relative error of DistR is the smallest, reaching almost 0 when the
number of sample instances exceeds 1,500.

Scalability: Fig. 17 shows how computational and communication
costs scale with respect to fragment size (|F |), graph size (|V |), and
uncertainty parameters (µ and σ). The LiveJournal dataset is used to
test |F |, µ, and σ, and the synthetic datasets are used to test |V |. By
default, N = 50, |F | = 5, |V | = 8M (synthetic data), µ = 0.5, and
σ = 0.1.

Scalability with respect to |F | is shown in Fig. 17(a) and
Fig. 17(b). As |F |, the computational cost of both Dist-Samp and
DistR decreases, but that of Xfer-To-One remains constant at a much
higher value. Across all values of |F |, the computational cost of DistR
stays below that of Dist-Samp. Unsurprisingly, the communication
costs of both Dist-Samp and DistR increase with increasing values
of |F |, while the cost of Xfer-To-One remains constant. As with
computational cost, across all values of |F |, the communication cost
of DistR stays below that of the other algorithms.

Scalability with respect to |V | is shown in Fig. 16(a) and
Fig. 16(b). The computational costs of all three of the algorithms
seems to grow linearly with |V |. When |V | reaches 32M, Xfer-To-
One can no longer run due to memory limitations. Across all values
of |V |, the computational cost of DistR stays below that of Xfer-To-
One and Dist-Samp. Similar results are observed for communication
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Fig. 17. Scalability Comparison w.r.t. |F |

costs, with a more significant difference between the cost of DistR
and the cost of Dist-Samp.

Scalability with respect to d̂ is shown in Fig. 16(c) and Fig. 16(d).
The computational costs and communication cost of all three of the
algorithms seems to grow linearly with d̂, but the increase speed of
Xfer-To-One is larger than Dist-Samp and our algorithm. Among all
cases, the computational cost of our algorithm is the smallest.

Scalability with respect to uncertainty (µ and σ) is shown in
Fig. 16(e) to Fig. 16(h). In all four graphs, the costs remain nearly
constant across the ranges of values of µ and σ. As expected from
the design of all three algorithms, including DistR, computational
and communication costs are independent of the graph’s underlying
probability mass function.

4.3.3 Summary
It is clear from the above experiments that the Xfer-To-One solution
is impractical for larger graphs, and even when the graphs can fit
in memory, its computational cost may be prohibitive when high
accuracy (or low error) is expected. As shown above, when sampling
1,000 instances on a graph of 4.8 million vertices and 68 million edges
with an error less than 1%, Xfer-To-One takes more than five hours to
execute.

Superior to the Xfer-To-One solution, the Dist-Samp approach
can be applied to large graphs. However, its computational cost, as
well as its communication cost, can also become prohibitive with the
increase of the number of sampling instances. As shown above, when
sampling 1000 instances on the same graph of 4.8 million vertices and
68 million edges with an error less than 1%, Dist-Samp still needs
about an hour to get the answer, and its communication cost is even
higher than that of Xfer-To-One.

In contrast, DistR scales much better than both Xfer-To-One and
Dist-Samp, and can produce highly accurate answers on large graphs
in a fraction of the time. For example, over the same situation as
above, DistR computes an answer in a little over 16 minutes, and the
gap widens as the number of sampling instances, and hence accuracy
level, increase.

5 RELATED WORK
In this section, we review relevant related works along three lines of
research: reachability query on deterministic graphs, distributed graph
methods, and reachability query on uncertain graphs.

The reachability query on deterministic graphs can be computed
easily by the depth-first search (DFS) or breadth-first search (BFS) al-
gorithms, whose computational complexity isO(|V |+|E|). To further
speed up the algorithms, researchers in database area design different
indexes. One famous index 2-hop labelling [24], whose computation
cost is linear to the size of labels. However, the construction of the
optimal 2-hop labelling needs a large amount of time and memory.
R.Jin et. al proposed a 3-hop labelling index [25] and a path tree
index [26] to increase the efficiency of query and index construction.
Besides the basic reachability query, there are extensive reachability
queries, such as label-constraint reachability query [27] [7]. The above
algorithms cannot be extended into our problem because they are
all based on deterministic graph models, which is different from our
uncertain graph model.

Distributed query processing has been studied on relational
data [28] and XML data [29] for many years. There has also been
recent work on distributed graph processing to manage large-scale
graphs [30] [31] [11] [10]. In this work, we assume that data graphs
are already partitioned. Indeed, how data graphs are partitioned may
have a significant impact on the evaluation of our algorithm. Graph
partitioning is a traditional problem that has been extensively studied
since the 1970s [32] [33]. It is to find a set of non-overlapping
fragments of a given graph such that (a) all fragments have a roughly
equal number of nodes, and (b) the number of edges connecting nodes
in different fragments is minimized. Although graph partitioning is
an NP-hard problem [34], large-scale graph partitioning tools are
available such as the well-known METIS [35]. A refined partition of
data graphs could certainly benefit the computation of our algorithm.
Prior work in this area is complementary but essentially orthogonal to
ours.

Many kinds of queries are done over uncertain environment [36]
[37] [38] [39] [40] [41] [42] [43]. The reachability query over
uncertain graphs is widely studied using basic sampling methods
in the field of network reliability [13]. Moreover, R.Jin et. al [5]
proposed unequal probability sampling method to solve the uncertain
reachability problem. Their proposed methods are centralized ones.
If extending them directly, they turn out to be the two baseline algo-
rithms, Xfer-To-One and Dist-Samp, which are detailed in Section 4.1.
In our experiments, we have shown that our proposed method has
lower computational cost and communication cost compared to the
two baseline algorithms.

6 CONCLUSION

In this paper, we study reachability query over distributed uncertain
graphs, which is to return a reachability probability from two given
query vertices. As this problem is #P-complete, we use a distributed
graph reduction and verification strategy to efficiently calculate the
results. In the distributed graph reduction step, we reduce all the sub-
graphs whose reachability probability can be calculated in polynomial
time to a single edge. In the distributed verification step, we transform
the problem into an efficient table join operation to approximate
the final answer. Our experiments show that our method has low
computational cost, low communication cost and high accuracy.
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