
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

1

Fast Consensus Using Bounded Staleness for
Scalable Read-mostly Synchronization

Haibo Chen, Senior Member, IEEE , Heng Zhang, Ran Liu, Binyu Zang and Haibing Guan

Abstract—Reader-mostly synchronization schemes, such as rwlocks and RCU, aim to maximize parallelism among readers, but many

existing designs either cause readers to contend, or significantly extend writer latency, or both. This paper attributes such a problem to

the lack of a fast consensus protocol between readers and writers, by which the two parts cooperate to obey the semantics of a

synchronization construct.

This paper describes FCP, a fast consensus protocol among readers and writers that provides scalable read-side performance as well

as small writer latency for TSO architectures. The heart of FCP is a version-based consensus protocol between multiple

non-communicating readers and a pending writer. FCP leverages bounded staleness of memory consistency to avoid atomic

instructions and memory barriers in readers’ common paths, and uses message-passing (e.g., IPI) for straggling readers so that the

writer latency can be bounded. To demonstrate the effectiveness of FCP, this paper applies FCP to construct a scalable reader-writers

lock (rwlock) and a scalable RCU implementation. Evaluation on a 64-core machine shows that FCP significantly boosts the

performance of the Linux virtual memory subsystem, a concurrent hashtable and an in-memory database. Micro-benchmarks show

that FCP achieves smaller reader-side latency and lower writer-side latency when compared to state-of-the-art rwlocks and RCU

implementation.

Index Terms—Consensus, reader-mostly synchronization, reader-writer lock, RCU

✦

1 INTRODUCTION

Read-mostly synchronization targets usage scenarios where ac-

cesses to shared data structures are read-mostly. For such scenar-

ios, using mutual exclusion locks, such as spin locks or mutex

locks can significantly constrain parallelism among readers. To

this end, researchers have described synchronization constructs to

unleash parallelism by allowing readers to proceed in parallel in

the absence of writers. Currently, there are two widely used read-

mostly synchronization constructs, namely reader-writer locks

(rwlock) and read-copy update (RCU).

Reader-writer locking is an important synchronization primi-

tive that allows multiple threads with read accesses to a shared

object when there is no writer, and blocks all readers when there

is an inflight writer [13]. While ideally rwlock should provide

scalable performance when there are infrequent writers, it is

widely recognized that traditional centralized rwlocks have poor

scalability [9], [34], [10]. For example, it is explicitly recom-

mended to not use rwlocks unless readers hold their locks for

sufficiently long time [9].

Researchers sometimes relax semantic guarantees by allowing

readers to see stale data. Specifically, RCU [26] allows a writer to

proceed in parallel even if there are still readers in progress, but at

the cost that a writer must use the single-pointer update to change a

data structure at a whole and memory cannot be reclaimed until all

• Haibo Chen, Heng Zhang, Ran Liu, Binyu Zang and Haibing Guan are

with the Shanghai Key Laboratory for Scalable Computing and Systems,

Shanghai Jiao Tong University, Shanghai, China, 200240.

• E-mail: {haibochen, shinedark, byzang, hbguan}@sjtu.edu.cn,

naruilone@gmail.com.

A preliminary version of this paper focused on designing scalable reader-

writer locks is published in [23]. This work is supported in part by China

National Natural Science Foundation (61572314), National Youth Top-notch

Talent Support Program of China, and Singapore CREATE E2S2.

readers have finished referencing the old data. Since its invention,

RCU has been widely used in Linux kernel for some relatively

simple data structures. However, it would require non-trivial effort

for some complex kernel data structures and may be incompatible

with some existing kernel designs [10], [11]. Hence, there are still

thousands of usages of rwlocks inside Linux kernel [25].

After a careful study of the design of rwlock and RCU, we

find that the consensus among readers and writers is the key

limiting factor to the performance and scalability of both schemes.

Specifically, rwlock needs to know whether there are any readers

pending until a writer can enter the writer-side critical section.

While in RCU, a writer (or a dedicated reclamation thread) must

know if all readers have discarded references to a stale object

before it can free the memory.

However, current consensus protocols for both rwlock and

RCU still suffer from some performance issues. Typical imple-

mentations of rwlock usually use a shared counter among readers

and writers to do consensus, which, however, causes severe perfor-

mance and scalability issues on a relatively large number of cores.

While there have been intensive efforts to improve the scalability

of rwlocks, prior approaches either require memory barriers and

atomic instructions in readers [28], [22], or significantly extend

writer latency [5], or both [12], [2]. For RCU, typical imple-

mentations usually use scheduler-based consensus (also called

quiescence detection) such that all CPU cores must have executed

past a context or ring switch, and thus may have latency that is

at least a schedule quantum (e.g., 10ms in Linux by default) in

the degenerate case. Besides, some prior designs cannot cope with

OS semantics like sleeping inside critical section, preemption and

supporting conditional synchronization (e.g., wait/signal) [12], [2].

This paper describes the FCP, a fast consensus protocol

for read-mostly synchronization for TSO (Total Store Ordering)

architectures. Like prior consensus protocols such as those in

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

2

brlock [12], [2], instead of letting writers actively bookkeep status

regarding inflight readers, FCP decentralizes such information to

each reader and only makes a consensus among readers when a

writer explicitly inquires. By leveraging the ordered store property

of TSO architectures, such as x86 and x86-64, FCP achieves truly

scalable reader performance. On TSO, it not only requires no

atomic instructions or memory barriers on the common path, but

it also limits writer latency when there are concurrent readers.

The key of FCP is a version-based consensus protocol between

multiple non-communicating readers and a pending writer. A

writer advances the lock version and waits for other readers to

see this version to ensure that they have left their read-side critical

sections. Unlike prior designs such as brlocks, this design is based

on our observation that even without explicit memory barriers,

most readers are still able to see a most-recent update of the

lock version from the writer within a small number of cycles. We

call this property bounded staleness. For straggling readers not

seeing and reporting the version update, FCP uses a message-

based mechanism based on inter-processor interrupts (IPIs) to

explicitly achieve consensus. Upon receiving the message, a reader

will report to the writer whether it has left the critical section.

As currently message passing among cores using IPIs is not pro-

hibitively high (around 1,500 cycles as shown in section 3.1) and

only very few straggling readers require message-based consensus,

a writer only needs to wait shortly to proceed. Hence, FCP closely

follows the design philosophy of “common case fast, rare case

correct”.

As a reader might sleep in the read-side critical section, it may

not be able to receive messages from the writer. Hence, a sleeping

reader might infinitely delay a writer. To address this issue, FCP

falls back to a shared counter to count sleeping readers. As

sleeping in read-side critical sections is usually rare, the counter

is rarely used and contention on the shared counter will not be

a performance bottleneck even if there are a small number of

sleeping readers.

FCP is built with a parallel wakeup mechanism to improve

performance when there are multiple sleeping readers waiting for

an outstanding writer. As traditional wakeup mechanisms (like

Linux) usually use a shared queue for multiple sleeping readers,

a writer needs to wake up multiple readers sequentially, which

becomes a scalability bottleneck with the increasing number of

readers. Based on the observation that multiple readers can be

woken up in parallel with no priority violation in many cases, FCP

introduces a parallel wakeup mechanism such that each reader is

woken up by the core where it slept from.

We have implemented FCP as a kernel mechanism for Linux,

which compromises around 300 lines of code (LoC). We have

also applied FCP to construct a scalable rwlock and an RCU

implementation inside Linux kernel. To further benefit user-level

code, we also created a user-level FCP library (comprising about

500 LoC) and added it to a user-level RCU library (about 100 LoC

changes). The rwlock version of FCP can be used in the complex

Linux virtual memory system (which currently uses a semaphore),

with only around 30 LoC changes. The implementation is stable

enough and has passed the Linux Test Project [1]. We have also

applied the rwlock version of FCP by substituting a contended

rwlock in the Kyoto Cabinet database [18].

Performance evaluation on a 64-core AMD machine shows

that rwlock-FCP has extremely good performance scalability for

read-mostly workloads and still good performance when there

are quite a few writers. The performance speedup of FCP over

TABLE 1: A comparison of consensus protocol in read-mostly

synchronization.

T
ra

d
it

io
n
al

b
rl

o
ck

1

b
rl

o
ck

2

C
-S

N
Z

I

C
o
h
o
rt

R
M

L
o
ck

P
R

W

P
er

cp
u
-r

w
lo

ck

R
C

U

No memory barrier in read X X X X

No atomic instruction in read X X X X X

No comm. among readers X X X X X X

Sleep inside critical section X X X X X X X

Condition wait X X X X X -

Writer preference X X X X X X X -

Reader preference X X -

Short writer latency w/ small #thread X X X X * -

Unchanged rwlock semantic X X X X X X X

*The writer latency of Percpu-rwlock is extremely long in most cases

stock Linux is 2.85X, 1.55X and 1.20X for three benchmarks on

64 cores and FCP performs closely to a recent effort in using

RCU to scale Linux virtual memory [10]. Evaluation using micro-

benchmarks and the in-memory database shows that rwlock-

FCP consistently outperforms rwlock in Linux (by 7.37X for the

Kyoto Cabinet database). Our evaluation also shows that FCP also

improves the performance and quiescence detection latency of

RCU.

The rest of this paper is organized as follows. The next section

gives a brief overview of the rwlock and summarizes related

work. Section 3 describes the design of FCP by illustrating design

rationale, its key data structure, and the fast consensus mechanism.

Section 6 describes the parallel wakeup mechanism. Section 7 de-

scribes the implementation issues and usages. Section 8 evaluates

the performance and scalability of FCP and Section 9 concludes

this paper.

2 BACKGROUND AND RELATED WORK

The key to read-mostly synchronization is a fast consensus proto-

col that incurs low overhead in the reader side and requires only

bounded latency in the writer side. Table 1 shows a comparative

study of different consensus designs, using a set of criteria related

to performance and functionality. The first three rows list the

criteria critical to reader performance, including memory barriers,

atomic instructions and communication among readers. The next

four rows depict whether each design can support sleeping inside

critical section (which also implies preemption) and conditional

wait (e.g., wait until a specific event such as queue is not empty),

and whether the consensus is writer or reader preference. The last

two rows indicate whether the writer in each design has short

writer latency when there are a small number of threads, and

whether the design retains the original semantics of rwlock.

2.1 Consensus in Reader/Writer Locks

The reader/writer problem was described by Courtois et al. [13]

and has been intensively studied afterwards. However, most prior

rwlocks implement consensus by sharing states among readers and

thus may result in poor critical section efficiency on multicore.

Hence, there have been intensive efforts to improve consensus of

rwlocks.

Big-reader Lock (brlock): The key idea of doing consensus

for brlock is trading write throughput for read throughput. There

are two designs of brlock: 1) requiring each thread to obtain a

private mutex to acquire the lock in read mode and to obtain all

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

3

private mutexes to acquire the lock in write mode (brlock1); 2) us-

ing an array of reader flags shared by readers and writer (brlock2).

However, brlock1 requires heavyweight operations for both reader

and writer sections, as the cost of acquiring a mutex is still non-

trivial and the cost for the writer is high for a relatively large

number of cores (i.e., readers).

Brlock2, like FCP, uses per-core reader status and forces

writers to check each reader’s status, and thus avoids atomic in-

structions in reader side. However, it still requires memory barriers

in readers’ common paths. Further, both do not support sleeping

inside read-side critical sections as there is no centralized writer

condition to sleep on and wake up. Finally, they are vulnerable

to deadlock when a thread is preempted and migrated to another

core. As a result, brlocks are most often used with preemption

disabled.

FCP borrows the per-core reader status design from brlock2,

but uses a version-based consensus protocol instead of a single

flag to avoid memory barriers in readers’ common paths and to

shorten writer latency. Further, by leveraging a hybrid design with

counters as a fallback solution for sleeping readers, FCP can cope

with complex semantics like sleeping and preemption, making it

viable to be used in complex systems like the virtual memory

sub-system in Linux kernel.

C-SNZI: Lev et al. [22] use scalable nonzero indicator

(SNZI) [17] to implement consensus for rwlocks. The key idea is

instead of knowing exactly how many readers are in progress, the

writer only needs to know whether there are any inflight readers.

This, however, still requires actively maintaining reader status in

a tree and thus may have scalability issues under a relatively large

number of cores [8] due to the shared tree among readers.

Cohort Lock: Irina et al. leverage the lock cohorting [15]

technique to implement several NUMA-friendly rwlocks, in which

writers tend to pass the lock to another writer within an NUMA

node. While writers benefit from better NUMA locality, its readers

are implemented using per-node shared counters and thus still

suffer from cache contention and atomic instructions. FCP is

orthogonal to this design and can be plugged into it as a read

indicator without memory barriers in reader side.

Percpu-rwlock: Linux community is redesigning a new

rwlock, called percpu rwlock [5]. Although, like FCP, it avoids

unnecessary atomic instructions and memory barriers, its writer

requires RCU-based quiescence detection and can only be granted

after at least one grace period, where all cores have done a

mode/context switch. Hence, according to our evaluation (sec-

tion 8), it performs poorly when the ratio of writers over readers is

non-negligible (e.g., 1/15 for psearchy), and thus can only be used

in the case of having extremely rare writers.

Read-Mostly Lock: From version 7.0, the FreeBSD kernel

includes a new rwlock named reader-mostly lock (rmlock). Its

readers enqueue special tracker structures into per-cpu queues.

A writer lock is acquired by instructing all cores to move local

tracker structures to a centralized queue via IPI, then waiting

for all the corresponding readers to exit. Like FCP, it eliminates

memory barriers in reader fast paths. Yet, its reader fast path

is much longer compared to FCP, resulting in inferior reader

throughput. Moreover, as IPIs always need to be broadcasted to all

cores, and ongoing readers may contend on the shared queue, its

writer lock acquisition is heavyweight (section 8.2.2). In contrast,

FCP leverages bounded staleness of memory consistency to avoid

IPIs in the common case.

2.2 Consensus in Read-Copy Update

RCU [27] increases concurrency by relaxing the semantics of

locking. Writers are still serialized using a mutex lock, but readers

can proceed without any lock. RCU delays freeing memory until

there is no reader referencing the object.

Typically, RCU implements consensus by either using

scheduler-based or epoch-based quiescence detection that leverage

context or mode switches. In contrast, the quiescence detection (or

consensus) mechanism in FCP does not rely on context or mode

switches and is thus faster due to its proactive nature.

RCU’s relaxed semantics essentially break the all-or-nothing

atomicity in reading and writing a shared object. Hence, it

also places several constraints on RCU-compliant data structures,

including single-pointer update and readers can only observe a

pointer once (i.e., non-repeatable read). This constrains data struc-

ture design and complicates programming, since programmers

must handle races and stale data and cannot always rely on cross-

data-structure invariants. For example, a recent effort in applying

RCU to page fault handling shows that several subtle races need

to be handled manually [10], which make it very complex and

resource-intensive [11]. In contrast, though the rwlock of FCP can

slightly restrict parallelism by preventing readers from proceeding

concurrently with a single writer, it still preserves the clear

semantics of rwlocks. Hence, it is trivial to completely integrate

the rwlock of FCP into complex subsystems, such as address space

management.

There are also efforts in providing user-level RCU [14]. FCP

also has a user-level version as an alternative to rwlock where

strong semantics must be preserved with good performance, as

evaluated in section 8. Further, we show that the version-based

consensus protocol using bounded staleness can further improve

the performance of a user-level RCU library.

2.3 Consensus in Safe Memory Reclamation

While RCU can be naturally used as a safe memory reclamation

techniques, there have also been a set of other approaches. Hart et

al. [20] made a comprehensive comparison of a set of schemes, in-

cluding quiescent-state-based reclamation (i.e., RCU [27]), epoch-

based reclamation [19], lock-free reference counting [35], [30]

and hazard-pointer-based reclamation [29]. Their analysis (§5)

shows that the greatest source of the performance differences is

the number of atomic instructions used.

The key issue in safe memory reclamation is how to determine

if a variable is still in use by other threads in dynamic-sized

lock-free data structures [21], [29]. Herlihy et al. [21] model the

problem as the repeat offender problem and describe a general

algorithm called “Pass the Buck”, which uses a set of lightweight

guards to identify the status of dynamic variables (like readers in

FCP) and a heavyweight wait-free Liberate thread to reclaims the

variables. Another concurrent work, hazard pointers [29], share

some similarity with the “Pass the Buck” algorithm for safe

memory reclamation for dynamic-size lock-free data structures.

Unlike the use of guard variables in [21], the work in [29] use

a linked list of hazard pointers, which is updated by readers and

scanned by the reclaimer to determine if a pointer is safe to be

reclaimed.

Compared to FCP (whose RCU version can be similarly

applied for safe memory reclamation), both the reclaimer side of

“Pass the Buck” or hazard pointers are wait-free, but require more

heavyweight read-side critical sections like more instructions to

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

4

TABLE 2: IPI latency in different machines

IPI Latency (Cycles) StdDev

AMD 64Core (Opteron 6274 * 4) 1316.3 171.4

Intel 40Core (Xeon E7-4850 *4) 1447.3 205.8

execute and requiring memory barriers and/or atomic instructions

in the read side. Thus, they represent a different set of tradeoffs in

the context of memory reclamation.

3 CONSENSUS USING BOUNDED STALENESS

3.1 Design Rationale

The essential design goal of reader-writer consensus is that readers

should proceed concurrently, and thus should not share anything

with each other. Hence, a scalable consensus design should require

no shared state among readers and no explicit or implicit memory

barriers when there are no writers pending (in the case of rwlock).

However, typical rwlocks rely on atomic instructions to coordinate

readers and writers. On many processors, an atomic instruction

implies a memory barrier, which prevents reordering of memory

operations across critical section boundary and Intel processors

even completely drain the store buffer upon a memory barrier.

In this way, readers are guaranteed to see the newest version of

data written by the last writer. However, such memory barriers

are unnecessary when no writer is present, as there is no memory

ordering dependency among readers. Such unnecessary memory

barriers may cause notable overhead for short reader critical

sections. For example, a recent measurement shows that the cost

of a memory barrier on a 4-core Intel processor ranges from 20-

200 cycles, depending on the number of pending entries in the

store buffer [16].

Message passing is not prohibitively expensive: Commodity

multicore processors resemble distributed systems [4] in that each

core has its own memory hierarchy. Each core communicates with

others using message passing in essence, but hardware designers

add an abstraction (i.e., cache coherence) to emulate a shared

memory interface. Such an abstraction usually comes at a cost: due

to serialization of coherence messages, sharing contended cache

lines is usually costly (up to 4,000 cycles for a cache line read on

a 48-core machine [6], [7]). In such contended cases, the cost

may even exceed explicit message passing like inter-processor

interrupts (IPIs). Table 2 illustrates the pairwise IPI latency on

two recent large SMP systems, which is 1,316 and 1,447 cycles

accordingly. This latency is not prohibitively expensive to be

used in rwlocks, whose writer latency may exceed several tens

of thousands of cycles under load.

Further, delivering multiple IPIs to different cores can be

parallelized so that the cost of parallel IPI is “indistinguishable”

from point-to-point interrupt [31]. This may be because point-to-

point cache line movement may involve multiple cores depending

on the cache line state, while an IPI is a simple point-to-point

message.

Bounded staleness without memory barriers: In an rwlock,

a writer needs to achieve consensus among all its readers to

acquire the lock. Hence, a writer must let all readers see its current

status to proceed. Typical rwlocks either use an explicit memory

barrier or wait for a barrier [5] to make sure the version updates

in the reader/writer are visible to each other in order. However,

we argue that these are too pessimistic in either requiring costly

memory barriers that limit read-side scalability or in significantly

extending the writer latency (e.g., waiting for a grace period in

percpu rwlock [5]).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e

 o
f

s
ta

le
 r

e
a
d
e
rs

delta time (cycles)

AMD Opteron 6247 * 4

Intel Xeon E7-4850 * 4

Fig. 1: Cumulative percentage of stale readers

We observe that in commodity processors such as x86(-64),

multiple memory updates can usually be visible to other cores in

a very short time. We use a micro-benchmark to repeatedly write

a memory location and read the location on another core after a

random delay. We then collect the intervals of readers that see

the stale value. Figure 1 shows the cumulative percentage of stale

readers along with time; most readers can see the writer’s update

in a very short time (i.e., less than 400 cycles). This is because

a processor will actively flush its store buffer due to its limited

size. It is reasonable to simply wait a small amount of time until a

reader sees the updated version for the common case, while using

a slightly heavyweight mechanism to guarantee correctness.

Memory barrier not essential for mutual exclusion: To

reduce processor pipeline stalls caused by memory accesses or

other time-consuming operations, modern processors execute in-

structions out of order and incorporate store buffer to allow the

processor to continually execute after write cache misses. This

leads to weaker memory consistency. To achieve correct mutual

exclusion, expensive synchronization mechanisms like memory

barriers are often used. This may cause notable performance

overhead for short critical sections.

Attiya et al. proved that it is impossible to build an algorithm

that satisfies mutual exclusion, is deadlock-free, and avoids both

atomic instructions and memory barriers (which avoid read-after-

write anomalies) in all executions on TSO machines [3]. Although

FCP readers never contain explicit memory barriers, and thus

might appear to violate this “law of order”, FCP uses IPIs to

serialize reader execution with respect to writers for straggling

readers, and IPI handling has the same effect as a memory barrier.

3.2 Basic Design

Consensus using bounded staleness: FCP introduces a 64-bit

version variable (ver) to the lock structure. Each writer increases

the version and waits until all readers see this version. As shown

in Figure 2, ver creates a series of happens-before dependencies

between readers and writers. Suppose a writer sees the status of a

reader equaling to its version, and then dependency 4 is established

because the only one who modifies the status variable is the reader

itself. Since the reader updates its status to the writer’s version,

the reader must see the modification of the version, which means

dependency 3 is established. The dependency 2 is established

because the modification of the status depends on the condition

becomes true. Since the condition becoming true, the reader must

see the lock operation of the writer and thus dependency 1 is

established. A writer can only proceed after all readers have

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

5

seen its new version. This ensures the correct rwlock semantic

on a machine with total-store order (TSO) consistency, since a

certain memory store can be visible only after all previous memory

operations are visible.

Reader Writer

while (writer != FREE) {

 status[my_id] = ver;

}

lock(writer);

ver++;

for_each (id) {

 while(status[id] < ver);

}

Fig. 2: Simple reader-writer lock with version report

However, there are still several issues with such an approach.

First, a writer may never be able to enter the write-side critical

section if a supposed reader never enters the read-side critical

section again. Second, a reader may migrate from one core to

another core so that the departing core may not be updated. Hence,

such an approach may lead to arbitrarily lengthy latency or even

starvation in the write side.

Handling straggling readers: To address the above issues,

FCP introduces a message-based consensus protocol to let the

writer actively send consensus requests to readers when necessary.

The design is motivated by the modest cost for message passing

in contemporary processors. Hence, FCP uses IPIs to request

straggling readers to immediately report their status.

This design solves the straggling reader problem. However, if a

reader is allowed to sleep in a read-side critical section, a sleeping

reader may miss the consensus request so that a writer may be

blocked infinitely.

Supporting sleeping readers: To address the sleeping reader

issue, FCP uses a hybrid design by combining the above mecha-

nism with traditional counter-based rwlocks. FCP tracks two types

of readers: passive and active ones. A reader starts as a passive

one and does not synchronize with others, and thus requires no

memory barriers. A passive reader will be converted into an active

one upon sleeping. A shared counter is increased during this

conversion. The counter is later decreased after an active reader

released its lock. Like traditional rwlocks, the writer uses this

counter to decide if there is any active reader.

We assume that sleeping in a reader-side critical section will

be rare. Hence, FCP enjoys good performance in the common

case, yet still preserves correctness in a rare case where there are

sleeping readers.

4 SCALABLE READER-WRITER LOCK

To demonstrate the usefulness of the fast consensus protocol using

bounded staleness, we have implemented a scalable reader-writer

lock, namely passive reader-writer lock (or prwlock) for both

Linux kernel and user-level applications. We term the rwlock

passive because prwlock only passively maintains reader’s status

to be queried by the writer.

4.1 Prwlock Algorithms

Fig. 3 and Fig. 4 show a skeleton of the read-side and write-side

algorithms of prwlock. For exposition simplicity, we assume that

there is only one lock and preemption is disabled within these

functions so that they can use per-cpu states safely. In section 7.1,

we further show how to support multiple locks.

Read-side algorithm: Passive readers are tracked in a dis-

tributed way by a per-core reader status structure (st), which

remembers the newest seen version and the passive status of

a prwlock on each core. A reader should first set its status to

PASSIVE before checking the writer lock, or there would be a time

window at which the reader has already seen that the writer lock

is free but has not yet acquired the reader lock. If the consensus

messages (e.g., IPI) were delivered in this time window, the writer

could also successfully acquire the lock and enter the critical

section, which would violate the semantic of rwlock. If the reader

found that this lock is writer locked, it should set its status back to

FREE, wait until the writer unlocks and try again (line 4-8).

Depending on the expected writer duration, prwlock could

either choose to spin on the writer status, or put the current thread

to sleep. In the latter case, reader performance largely depends on

the sleep/wakeup mechanism (section 6).

If a reader is holding a lock in passive mode while being

scheduled out, the lock should be converted into an active one by

increasing the active counter (ScheduleOut). To unlock a reader

lock, one just needs to check whether the lock is held in passive

mode and unlock it accordingly (ReadUnlock).

Hence, no atomic instructions/memory barriers are necessary

in reader common paths on TSO architectures. Moreover, readers

do not communicate with each other as long as they remain

PASSIVE, thus guaranteeing perfect reader scalability and low

reader latency.

Write-side algorithm: Writer lock acquisition can be divided

into two phases. A writer first locks the writer mutex and increases

the version to enter phase 1 (line 6-20). Then it checks all online

cores in the current domain to see if the core has already seen

the latest version. If so, it means that reader is aware of the

writer’s intention, and will not acquire reader lock until the writer

releases the lock. For cores not seeing the newest version, the

writer sends an IPI and asks for its status. Upon receiving an IPI,

an unlocked reader will report to the writer by updating its local

version (Report). A locked reader will report later after it leaves

the read-side critical section or falls asleep. After all cores have

reported, the consensus is done among all passive readers. The

writer then enters phase 2 (line 21-23). In this phase, the writer

simply waits until all active readers exit. For a writer-preference

lock, a writer can directly pass the lock to a pending writer,

without achieving a consensus again (line 1-2 in WriteUnlock and

line 2-4 in WriteLock).

Example: The right part of Fig. 5 shows the state machine

for prwlock in the reader side. A reader in passive mode may

switch to the active mode if the reader goes to sleep. It cannot be

directly switched back to passive mode until the reader releases

the lock. The following acquisition of the lock will be in passive

mode again.

The left part of Fig. 5 shows an example execution of readers

and how the consensus is done. Before a writer starts to acquire the

lock, reader2 has finished its read critical section, while reader3

sleeps in its read critical section due to waiting for a certain event.

Reader1 and reader4 have just started their read critical sections

but have not finished yet.

In phase 1, there is a writer trying to acquire the lock in

write mode, which will increase the lock version and block all

upcoming readers. It will send IPIs to current active readers that

have not seen the newest lock version. If reader2 in core2 has done

a context switch and another thread is running right now, no IPI is

required for core2. Reader4 in core4 may go to sleep to wait for a

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

6

Function ReadLock(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 st.reader← PASSIVE;

3 while lock.writer 6= FREE do

4 st.reader← FREE;

5 st.version← lock.version;

6 WaitUntil(lock.writer == FREE);

7 st← PerCorePtr(lock.rstatus, CoreID);

8 st.reader← PASSIVE;

9 /* Barrier needed here on non-TSO architecture */;

Function ReadUnlock(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader = PASSIVE then

3 st.reader← FREE;

4 else

5 AtomicDec(lock.active);

6 /* Barrier needed here on non-TSO architecture */;

7 st.version ← lock.version;

Function ScheduleOut(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader = PASSIVE then

3 AtomicInc(lock.active);

4 st.reader← FREE;

5 st.version ← lock.version;

Fig. 3: Pseudocode of reader algorithms

Function WriteLock(lock)

1 lastState ← Lock(lock.writer);

2 if lastState = PASS then

3 return;

4 /* Lock passed from another writer */

5 newVersion← AtomicInc(lock.version);

6 coresWait← /0;

7 for ID ∈ AllCores do

8 if Online(lock.domain, ID) ∧ ID 6= CoreID then

9 if PerCorePtr(lock.rstatus, CoreID).version 6= newVersion then

10 AskForReport(ID);

11 Add(ID, coresWait);

12 for ID ∈ coresWait do

13 while PerCorePtr(lock.rstatus, ID).version 6= newVersion do

14 Relax();

15 while lock.active 6= 0 do

16 Schedule();

Function WriteUnlock(lock)

1 if SomeoneWaiting(lock.writer) then

2 Unlock(lock.writer, PASS);

3 else

4 Unlock(lock.writer, FREE);

Function Report(lock)

1 st← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader 6= PASSIVE then

3 st.version← lock.version;

Fig. 4: Pseudocode of writer algorithms

certain event, which will switch to be an active reader. No IPI is

required for core4 as there is no reader in core4 at that time. At

the end of phase1, all passive readers have left the critical sections.

Thus, in phase 2, the writer waits for all active readers to finish

their execution and finally the lock can be granted in write mode.

For a writer-preference prwlock, the writer can directly pass the

lock to next writer, which can avoid unnecessary consensus among

readers for consecutive writers.

Correctness on TSO architecture: The main difference

between rwlocks and other weaker synchronization primitives is

that rwlocks enforce a strong visibility guarantee between readers

and writers. This is guaranteed in prwlock with the help of TSO

consistency model.

Once a reader sees a FREE prwlock, we can be sure that:

Core#1 reader1

Core#2

reader3

reader2

Core#3

reader4

reader3

Core#4 reader4

TimeRunning

Sleep

reader3

reader4

Active
Reader

Rare case

Common
case

sleep

Passive
Reader

wakeup
/sleep

unlock

lock

unlock

Unlock

phase1 phase2

3

1
2

4

5

1

2

3

4
5

Writer Starts
Passive readers

finish

Sleeping readers
finish

Fig. 5: An example execution of readers (left) and the state

machine of reader (right). Writer is not shown here.

1) That FREE was set by the immediate previous writer, as

writers will always ensure all reader see its LOCKED status before

continuing; 2) As memory writes become visible in order under

TSO architectures, updates made by the previous writer should

also be visible to that reader. The same thing goes with earlier

writers; 3) A writer must wait until all readers to see it, so no

further writers can enter critical section before this reader exits.

Thus, prwlock ensures a consistent view of shared states.

These three properties together guarantee that a reader should

always see the newest consistent version of shared data protected

by prwlock. Moreover, as all readers explicitly report the newest

version during writer lock acquisition, writers are also guaranteed

to see all the updates (if any) made by readers to other data

structures.

On non-TSO architectures, two additional memory barriers are

required in reader algorithm as marked in Fig. 3. The first one

ensures that readers can see the newest version of shared data after

acquiring the lock in the fast path. The second one makes readers’

memory updates visible to the writer before releasing reader locks.

4.2 User-level Prwlock

While it is straightforward to integrate prwlock in the kernel,

there are several challenges to implementing it in user space. The

major obstacle is that we cannot disable preemption during lock

acquisition at user space. That is to say, we can no longer use

any per-core data structure, which makes the algorithm in Fig. 3

impossible.

To solve this problem, prwlock instead relies on some kernel

support to maintain per-thread information for readers and perfor-

mance quiescence detection for writers. The idea behind is simple:

prwlock registers a user-level buffer to the per-thread kernel struct

(e.g., task struct in Linux kernel) to coordinate synchronization

state.

Instead of using a per-core data structure to maintain passive

reader status, we introduce a per-thread data structure in user

space. Each thread should register an instance of it to the kernel

before performing lock operations, since there is only one thread

running on each core at any time. Such per-thread data structures

resemble a per-core data structure used in the kernel algorithm.

For performance considerations, the reader critical paths

should be entirely in user space, or the syscall overhead would ruin

prwlock’s advantage of short latency. As a user application may

be preempted at any time, our reader lock may experience several

TOCTTOU problems. Recall that in prwlock a passive reader is

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

7

Function ReadUnlock(lock) for user-level prwlock

1 st← PerThreadPtr(lock.rstatus);

2 st.reader← FREE;

3 if st.preempted then

4 AtomicDec(lock.active);

5 st.preempted← FALSE;

6 st.version ← lock.version;

Function ScheduleOut(lock)

1 st← PerThreadPtr(lock.rstatus);

2 if st.reader = PASSIVE then

3 AtomicInc(lock.active);

4 st.preempted← TRUE;

5 st.reader← FREE;

6 st.version ← lock.version;

Fig. 6: Pseudocode of unlock algorithm with preemption detection

tracked using per-core status while active readers are tracked by

the shared counter; checking and changing the passive lock mode

should be done atomically.

For example, line 2-3 of ReadUnlock algorithm in Fig. 6 check

if a reader is a passive one, and if so, release the passive lock by

setting status to FREE. If the thread is preempted between line 2

and line 3, the lock might be converted into an active lock and

the active count is increased. When it is later scheduled, the active

count will not be decreased since the decision has already been

made before. As a result, the rwlock becomes unpaired and a

writer can never acquire the lock again.

To overcome this problem, we add a preemption detection

field into the per-thread data structure. As is shown in Fig. 6, the

reader first sets the status to PASSIVE and checks if it has been

preempted while locking passively. If so, it decreases the active

counter since the lock is now an active lock.

For the write-side algorithm, since it is not possible to send

IPIs in user space, almost all writers should enter kernel to acquire

the lock. Fortunately, the mode switch cost between kernel and

user space (around 300 cycles) is typically negligible compared

to writer lock acquisition time (usually more than 10,000 cycles

under load).

5 READ-COPY UPDATE

We have also applied the fast consensus protocol to read-copy

update (RCU), to implement fast quiescence detection in the writer

side to reduce the latency of RCU and accelerate the reclamation

of stale objects.

5.1 RCU Algorithms

Figure 7 and Figure 8 show a skeleton of the read-side algorithms

of FCP-RCU as well as how to detect a quiescent state in RCU

(i.e., SynchronizedRCU).

Read-side algorithm: Similar to prwlock designs, RCU read-

ers are similarly tracked with a per-core reader status structure

(st). Unlike prwlock, RCUReadLock only needs to set the local

status as INFLIGHT, which indicates that a reader is in progress,

instead of checking whether a writer is in progress or not. Under

RCUReadUnlock, if the CPU context is the same for the RCU

reader, which is the common case (line 2 and 3 of RCURead-

Unlock), the reader simply restores the reader’s status as FREE.

Otherwise, the original CPU has been switched out and thus we

should mark this RCU reader as an active one and track it using

the per-RCU lock’s active reader counter (line 5). Then, the reader

snapshots the current per-core version and the current RCU’s

global version (line 7 and 8); it then checks if the version has been

changed afterwards. If so (which is unlikely), the reader atomically

snapshots the global version to the per-core local version so that

a writer can use this to determine if this reader is aware of the

inflight writer.

In summary, FCP-RCU’s read-side critical section contains no

memory barrier and atomic instruction in the common path and the

critical section itself only comprises a few number of instructions.

Hence, it has high critical section efficiency.

Similarly, the ScheduleOut function is invoked when a core

running a passive reader experienced a context switch to another

core. In this case, the core to be scheduled out needs to invoke

the ScheduleOut function to increase the active RCU reader and

reset the CPU core’s status as FREE. It then snapshots the RCU’s

global version if such a version has been increased.

Synchronize RCU: The key function to detect a quiescent

state for RCU is the SynchronizeRCU function. Prior RCU imple-

mentations usually rely on scheduler-based invariant, by which

each core having experienced a context or ring switch means

that all CPU cores have dropped the references to stale objects.

However, with the pervasive usage of dynamic ticks and increas-

ing number of cores, this approach would suffer from extended

latency, or more complexity, or both.

FCP-RCU leverages the fast quiescence detection of FCP to

implement a fast quiescence detection algorithm, as shown in

Figure 8. Specifically, the SynchronizeRCU function first advances

the global version of an RCU lock and then acquires the RCU’s

writer lock. It then checks if there is any straggling CPU cores not

seeing the new version (line 4-5). Due to the bounded staleness

properties of TSO architectures, most CPU cores should have seen

the new version. For those straggling readers, an explicit request is

issued to ask this core to report its status (line 6) and add the core

ID to the coresWait (line 7). Note that one can group multiple IPIs

together to send them in a batch. For exposition clarity, we did not

show such a case here. For straggling readers in coresWait, we then

check again and wait until the reader has seen the new version.

Finally, we check if there is any active RCU readers pending and

wait until they have finished execution (line 11-12) and unlocks

the RCU writer lock.

Generalization: Note that, for exposition clarity, we only

show a single RCU lock here. Similar to the design and imple-

mentation of RCU in Linux kernel, one can also group multiple

RCUs to use one quiescence detection round. This helps a lot in

reducing the consensus overhead and the resulted number of IPIs.

Correctness argument: The key to the correctness of quies-

cence detection in an RCU implementation is that a writer (or

a reclaimer) can only reclaim an object after all RCU readers

have dropped references to that object. FCP-RCU guarantees this

through the global version increased by an RCU synchronizer and

the happen-before relationship enforced by FCP.

Specifically, the RCU synchronizer first increases the

rcu.version (line 1 in the SynchronizeRCU function), which essen-

tially creates a new epoch for the RCU. If all RCU readers have

seen and snapshot this new version, this indicates that all RCU

readers have entered into the new epoch and thus have dropped

the old references of any stale objects. This is true because

its version is a snapshot from the rcu.version when invoking

RCUReadUnlock, which naturally delimitates the references to

RCU objects. Besides, even if an RCU reader falls to sleep, FCP-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

8

RCU still leverages a counter to count such active readers to finish.

Hence, FCP-RCU can safely reclaim stale objects without causing

dangling references.

Function RCUReadLock(rcu)

1 st← PerCorePtr(rcu.rstatus, CoreID);

2 st.reader← INFLIGHT;

3 /* Barrier needed here on non-TSO architecture */;

Function RCUReadUnlock(rcu)

1 st← PerCorePtr(rcu.rstatus, CoreID);

2 if likely(st.reader = INFLIGHT) then

3 st.reader← FREE;

4 else

5 AtomicDec(rcu.active);

6 /* Barrier needed here on non-TSO architecture */;

7 old ver← st.version;

8 new ver← rcu.version;

9 if unlikely(old ver < new ver) then

10 AtomicCAS (st.version, old ver, new ver);

Function ScheduleOut(lock)

1 st← PerCorePtr(rcu.rstatus, CoreID);

2 if st.reader = INFLIGHT then

3 AtomicInc(rcu.active);

4 st.reader← FREE;

5 old ver← st.version;

6 new ver← rcu.version;

7 if st.reader = INFLIGHT then

8 AtomicCAS (st.version, old ver, new ver)

Fig. 7: Pseudocode of reader algorithms in FCP-RCU

Function SynchronizeRCU(rcu)

1 newVersion← AtomicInc (rcu.version);

2 Lock (rcu.writer);

3 coresWait← 0;

4 for ID ∈ AllCores do

5 if Online(lock.domain, ID) ∧ ID 6= CoreID then

6 if PerCorePtr(rcu.rstatus, CoreID).version 6= newVersion then

7 AskForReport(ID);

8 Add(ID, coresWait);

9 for ID ∈ coresWait do

10 while PerCorePtr(rcu.rstatus, ID).version 6= newVersion do

11 Relax();

12 while lock.active 6= 0 do

13 Schedule();

14 Unlock (rcu.writer);

Function Report(lock)

1 st← PerCorePtr(rcu.rstatus, CoreID);

2 if st.reader 6= INFLIGHT then

3 st.version← lock.version;

Fig. 8: Pseudocode of SynchronizeRCU algorithms

5.2 User-level RCU

User-level RCU can be implemented by simply replacing per-

core states with per-thread states and using signals to call for

report. However, this solution does not achieve short latency if the

threads number is much more than the cores number. To achieve

better performance, we add a module in OS to provide services for

user-level RCU. In this module, we pre-allocate an RCU array in

the kernel and add a syscall that cooperates with user-level RCU.

Before a program uses user-level RCU, it invokes a syscall with

REG flag to allocate a corresponding RCU data structure from

the pre-allocated array and return its identifier. The following

operations like locking and unlocking work using the identifier.

To track the readers that are preempted and become active,

reader threads invoke the added syscall with a READREG flag

to add preempt notifiers in their task structs. Because read-side

is lightweight, operations of readers should not invoke syscalls.

To ensure that readers are visible by preempt notifiers, we add a

user-space address pointer in task struct which is set up during

the syscall with a READREG flag. The address is filled with the

corresponding RCU identifier in RCUReadLock and is reset to

EMPTY in RCUReadUnlock.

Because programs cannot disable preemption in user-level, we

add a preemption flag to detect whether readers are preempted

before completing unlocking. To guarantee correctness, a compiler

barrier is necessary between resetting the address and check the

preempted flag. SynchronizeRCU is protected by a mutex and

invokes the syscall with a SYNC flag. The syscall with a SYNC flag

increases the global version and waiting for all cores’ reporting.

Because the report needs to work in kernel-level, the syscall

overhead may decrease the performance of readers. Of course,

we can allow the user-level program to operate the local version

directly by locating the local versions in a shared page, but it is

dangerous because the kernel control path flow depends on them.

Hence, our solution is that readers do not report frequently but at

regular intervals or only report after receiving IPIs.

5.3 Performance Analysis

After describing how rwlock and RCU can be implemented based

on FCP, this section presents a performance analysis of both

implementations.

Memory barrier: In the common path of read-side critical

sections of both prwlock and FCP-RCU, FCP requires no memory

barrier in the common path, i.e., when there is no outstanding

writer or SynchronizeRCU. The only memory barrier required is

when a CPU core is about to leave a lock domain, e.g., switch to

another task and make current lock domain offline or online, or

when another core is trying to reclaim stale objects by invoking

SynchronizeRCU. However, such operations are relatively rare in

typical execution. Hence, FCP enjoys good performance scalabil-

ity in common cases.

Writer cost: It appears that using IPIs may significantly

increase the cost of writes, due to the IPI cost, possible mode

switches and disturbed reader execution. However, thanks to the

properties of bounded staleness, the straggling readers are usually

very few. However, the cost of IPIs and mode switches are small

and usually in the scale of several hundred to one thousand cycles.

Further, as a writer usually needs to wait for a while until all

readers have left the critical section, such costs can be mostly

hidden. Though there may be a few cold cache misses due to

disturbing reader execution, such misses on uncontended cache

lines would be much smaller than the contention on shared states

between readers and writers in traditional rwlocks.

Besides, there is one interesting property for prwlock. In

contrast to traditional rwlocks, the more readers are currently

executing in the read-side critical section, the faster that a write can

finish the consensus and get the lock in write mode (section 8.2.2).

This is because readers will likely see the writer, and thus report

immediately. Such a feature fits well with the common usage of

rwlocks (more readers than writers).

Space overhead: Since FCP is essentially a distributed con-

sensus protocol, it needs O(n) space for a lock instance. More

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

9

specifically, the current implementation needs 12 bytes (8 for

version and 4 for reader status) per core per lock to maximize

performance. It is also possible to pack a 7 bit version and a

1 bit status into one byte to save space. Another several bytes

are needed to store writer status, whose exact size depends on

the specific writer synchronization mechanism used. Further, an

additional 1 byte per core is needed to store domain online status

to support the lock domain abstraction.

By using the Linux kernel’s per-cpu storage mechanism, a

lock’s per-cpu status could be packed into the same cache line as

other per-cpu status words. Compared with other scalable rwlock

algorithms (e.g. brlock, SNZI rwlock, read-mostly lock), FCP

imposes similar or lower space overhead.

Applicability: FCP is not a panacea to read-mostly synchro-

nization and performs better for a relatively short reader critical

section where contention on shared data determines performance

scalability. For extremely long read-side critical sections, FCP

would perform similarly with traditional read-mostly synchro-

nization as the cost of message-based consensus will be much

smaller than the cost of the critical section itself. Different with

brlock and many other scalable reader writer lock algorithms,

prwlock is essentially a write-preference sleepable rwlock that

tries to provide small write latency, which fits well with many

kernel synchronization scenarios. Finally, FCP prefers machines

and operating systems with fast inter-core messages so that the

consensus can be done more quickly.

Memory consistency model requirement: As FCP relies on

a series of happened-before relationships on memory operations,

it requires that memory store operations are executed and be-

come visible to others in the issuing order (TSO consistency).

Fortunately, this assumption holds for many commodity processor

architectures like x86(64), SPARC and zSeries.

6 DECENTRALIZED PARALLEL WAKEUP

Many read-mostly synchronization mechanisms need to cope with

complex OS semantics like sleeping inside a reader-side critical

section. This requires the OS to wake up such straggling readers

when certain conditions have been satisfied. On a large-scale mul-

ticore machine, our study shows that existing wakeup mechanism

may spend quite a large amount of time to wake readers. To

this end, this section describes a decentralized parallel wakeup

mechanism to optimize the performance of both traditional syn-

chronization mechanisms as well as those enabled by FCP.

Issues with centralized sequential wakeup: Sleep/wakeup is

a common OS mechanism that allows a task to temporarily sleep

to wait until a certain event happens (e.g., an I/O event). Operating

systems such as Linux, FreeBSD and Solaris use a shared queue

to hold all waiting tasks. It is usually the responsibility of the

signaling task to wake up all waiting tasks. To do this, the signaling

task first dequeues the task from the shared task queue, and then

does something to prepare waking up the task. Next, the scheduler

chooses a core for the task and inserts the task to the percpu

runqueue. Finally, the scheduler sends a rescheduling IPI to the

target core so that the awakened task may get a chance to be

scheduled. The kernel will repeat sending IPIs until all awakened

tasks have been rescheduled.

There are several issues with such a centralized, sequential

wakeup mechanism. First, the shared waiting queue may become

a bottleneck as multiple cores trying to sleep may contend on the

queue. Hence, our first step involves using a lock-free wakeup

P#1 writer

P#2 idle reader1

P#3 idle reader2

P#4 idle reader3

writer

idle reader1

idle reader2

idle reader3

TimeTime

Fig. 9: Issue with centralized, sequential wakeup (left) and how

decentralized parallel wakeup solve this problem (right).

PWake-queue t3 t4

PWaker

Scheduler

 Run-queue t1 t2

CPU Idle

Wakeup condition words Global

Wake cnt

mwait

check

Running

Task sleep & wakeup

①

②

③ ④

⑤

Fig. 10: Key data structure and state transition graph of decentral-

ized parallel wakeup in each core.

queue so that the lock contention can be mitigated. However, this

only marginally improves performance.

Our further investigation uncovers that the main performance

scalability issue comes from the cascading wakeup phenomenon,

as shown in Figure 9. When a writer leaves its write-side critical

section, it needs to wake up all readers waiting for it. As there are

multiple readers sleeping for the writer, the writer wakes up all

readers sequentially. Hence, the waiting time grows linearly with

the number of readers.

Decentralized parallel wakeup: To speed up this process,

FCP distributes the duty of waking up tasks among cores. In

general, this would risk priority inversion, but all FCP readers

always have equal priority.

Figure 10 shows the key data structure used in the decen-

tralized parallel wakeup. Each core maintains a per-core wakeup

queue (PWake-queue) to hold tasks sleeping on such a queue, each

of which sleeps on a wakeup condition word. When a running

task is about to sleep (step 1), it will be removed from the

per-cpu runqueue and inserted into the per-cpu wakeup queue.

Before entering the scheduler, if the kernel indicates that there is a

pending request (e.g., by checking the wakeup counter), each core

will first peek the PWake-queue to see if there is any task to wake

up by checking the status word. If so, it will then insert the task to

runqueue. This may add some cost to the per-cpu scheduler when

there are some pending wakeup requests. However, as there are

usually only very few tasks waiting in a single core, the cost should

be negligible. Further, as all operations are done locally in each

core, no atomic instructions and memory barriers are required.

Finally, as a task generally wakes up on the core that last executed

it, this task may benefit from better locality in both cache and

TLBs. After checking the PWake-queue, each core will execute its

scheduler (step 2) to select a task to execute (step 3).

As the new wakeup mechanism may require a core to poll the

wakeup queue to reschedule wakeup tasks in the per-core sched-

uler, it may cause waste of power when there are no runnable tasks

in a processor. To address this problem, our wakeup mechanism

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

10

lets each idle core use the mwait mechanism1 to sleep on a global

word (step 4). When a writer finishes its work and signals to wake

up its waiting tasks, the writer touches the word to wake up idle

cores, which will then start to check if any tasks in the wakeup

queue should be woken up.

The main advantage of the parallel wakeup mechanism is that

it incurs very little latency to wake up a task. Further, it avoids

the sequential wakeup problem so that multiple waiting tasks can

be woken up to execute in parallel. The downside is that there

might be some imbalance if the task distribution has changed

dramatically since a task sleeps. This can be mitigated using

the load balance mechanism in the CPU scheduler. Besides, as

a core in mwait state is less energy-efficient than in a complete

sleeping state like C-state, the decentralized parallel wakeup may

be less energy-efficient when the tasks may need to wait a long

time. In such cases, waking up from a deeper sleeping state

would have higher latency than from the mwait state, which

indicates that the parallel wakeup mechanism can be more quickly

than the serialized wakeup mechanism, though at the cost more

energy consumption during sleeping. Nevertheless, tasks using

read-mostly synchronization in our test usually tend to sleep only

for a short period.

Note that the decentralized parallel wakeup mechanism should

be viewed as an optimization instead of a complete substitution

over existing wakeup mechanisms. Since there are multiple queues

in an OS kernel and the mwait mechanism can only mwait on a

single address range, a set of tasks which want to enjoy the benefit

of parallel wakeup should sleep on the per-core PWake-queue

instead on its own queue. Other tasks can still use the original

global wait queues without the benefit of parallel wakeup.

7 IMPLEMENTATION AND APPLICATIONS

7.1 OS Kernel Incorporation

While section 4 and section 5 use a simplified way to illustrate

how FCP work by assuming only one reader/writer lock per core;

there are several issues in incorporating FCP to an OS kernel,

where there are multiple processes, threads, and locks.

The scope of a FCP-based rwlock or RCU could be either

global or process-wide and there may be multiple FCP-based

locks in each scope. For example, each FCP-based lock could

be shared by multiple tasks. To reduce messages between readers

and writers, FCP uses the lock domain abstraction to group a set of

related FCP-based locks that can do consensus together. A domain

tracks CPU cores that are currently executing tasks related to a

FCP-based locks. Currently, a domain could be process-wide or

global. We now describe how FCP-based locks uses the domain

abstraction:

Domain Online/Offline: It is possible that the scope for a set

of FCP-based locks may be switched off during OS execution.

For example, for a set of locks protecting the address space

structure for a process, the structure may be switched off during

an address space switch. In such cases, FCP uses the domain

abstraction to avoid unnecessary consensus messages. A domain

maintains a mapping from cores to its online/offline status. Only

CPU cores within an active domain will necessitate the sending of

messages. Figure 11 shows how to dynamically adjust the domain.

The algorithm is simple as the consensus protocol can tolerant

inaccurate domains.

1. mwait/monitor are x86 instructions that setup and monitor if an memory
location has been touched by other cores.

When a domain is about to be online on a core, it simply sets

the mapping and then performs a memory barrier (e.g., mfence).

As the writer (or a reclaimer) always sets its status before checking

domains, it is guaranteed that either a writer could see the newly

online core, or incoming readers on that core can see the writer is

acquiring a lock. In either case, the lock semantic is maintained. To

correctly make a domain offline from a core, a memory barrier is

also needed before changing the domain to ensure that all previous

operations are visible to other cores before offline.

Currently, for domains that correspond to processes, FCP

makes domains online/offline before and after context switches.

However, it is possible to make a domain offline at any time if

readers are expected to be infrequent afterward. When outside a

domain, readers must acquire all FCP-based locks in the slower

ACTIVE state. We choose to leave the choice to lock users as they

may have more insight on the workload.

Using domain online/offline also naturally records CPU online

and offline when CPU hotplug is supported. This may notably

reduce the amount of IPIs during consensus.

Function DomainOnline(dom)

1 coreSt← PerCorePtr(dom.cores, CoreID);

2 coreSt.online = TRUE;

3 MemoryBarrier();

Function DomainOffline(dom)

1 coreSt← PerCorePtr(dom.cores, CoreID);

2 MemoryBarrier();

3 coreSt.online = FALSE;

Fig. 11: Domain management algorithms

Task Online/Offline: A task (e.g., a thread) may be context

switched to other tasks and a task may also be migrated from one

core to another core. FCP uses task online/offline to handle such

operations. When a task is about to be switched out while holding

a prwlock in PASSIVE or INFLIGHT mode, it will change its

lock status to be ACTIVE and increase the active reader counter if

it previously holds a FCP in passive read mode. This makes sure

that a writer will wait until this task is scheduled again to leave its

critical section to proceed. A task needs to do nothing when it is

scheduled to be online again.

Downgrade/Upgrade of Rwlocks: Typical operating systems

usually support downgrading an rwlock from write mode to read

mode and upgrading from read mode to write mode. Prwlock

similarly supports lock downgrading by setting the current task to

be in read mode and then releasing the lock in write mode. Unlike

traditional rwlocks, upgrading a prwlock from read mode to write

mode may be more costly in a rare case when the upgrading

reader is the only reader, due to the lack of exact information

regarding the number of readers. To upgrade a lock from read to

write mode, prwlock tries to acquire the lock in write mode in the

read-side critical section, but counts one less readers (excluding

the upgrading reader itself) when acquiring the lock.

7.2 Applications

Scaling address space management in Linux: Many operating

systems such as Linux, FreeBSD, Solaris use a tree-like data

structure to organize an address space, where page fault handlers

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

11

lookup the tree to fill page tables and the mmap/munmap calls

update the tree. An rwlock (e.g., mmap sem) is used to allow

concurrent page faults but serialize updates to updates (e.g., mmap,

munmap) to an address space.

Prior research [6], [33], [10] has shown that there is a serious

contention over this per-process rwlock in Linux. Unfortunately,

it requires non-trivial efforts to remove or replace this contending

rwlock as it is widely used in address space related operations

in address space management, device drivers, file systems and

process management, resulting in more than 600 references to

this rwlock. Though Clements et al. [10] has attempted to scale up

page fault handling by integrating a variant of sleepable RCU, they

only replace mmap sem for page fault handling on anonymous

memory mapping and leave other parts such as memory-mapped

files, copy-on-write faults, and device drivers still holding the

mmap sem.

As prwlock is essentially an rwlock, it can be used to replace

the original rwlock straightforwardly. We write a script to replace

more than 600 calls to mmap sem. We add several hooks to

process fork, exec, exit, wakeup and context switch. The FCP

library comprises of less than 300 LoC and requires manually

changing less than 30 LoC other than the automatically replaced

calls to mmap sem. This is significantly less than the prior effort

(around 2,600 LoC for page fault handling only).

User-level prwlock and Kyoto Cabinet: We have also im-

plemented FCP into user space, as a large number of parallel

applications make use of rwlocks for synchronization. We imple-

mented the kernel support for FCP into Linux kernel by adding

a new syscall and around 500 LOCs. User applications may

create/destroy or operate on FCP through the added syscall.

To show the performance advantage of user-level FCP. We

modified a famous database system named Kyoto Cabinet [18],

which use an rwlock to protect its data tables. We modified Kyoto

Cabinet to use prwlock by replacing the rwlock. Our evaluation

shows that prwlock boosts performance significantly due to the

reduced contention on the reader-side critical section.

User-level FCP-RCU: The kernel support of FCP can be

easily retargeted to implement our user-level RCU mechanism.

It is traditionally considered non-trivial to implement RCU in user

space [14]. Traditional user-level RCU either provides inefficient

read-side primitives or restrict application architecture. By using

the version-based consensus protocol of FCP to implement quies-

cence detection, our user-level RCU implementation shows better

read-side throughput and faster quiescence state detection than

previous algorithms (section 8.3).

8 EVALUATION

We have implemented FCP on several versions of Linux. Prwlock

was initially implemented in Linux 3.2.6 and has been integrated

with the Linux virtual memory system by replacing the default

rwlock. Prwlock was also ported to Linux 2.6.37 to compare its

performance with an RCU-based virtual memory system [10], and

a recent version Linux 3.8 to compare its performance with percpu

reader-writer lock [5]. The porting effort among different versions

of Linux is trivial and one student can usually finish it in less than

one hour. To study the kernel-level FCP-RCU performance, we

port a hashtable into the kernel and compare it with the default

RCU implementation as well as a special RCU implementation

called (RCU Expedited) which allows extremely fast quiescence

detection.

8.1 Evaluation Setup

Kernel-level prwlock: We use three workloads that place in-

tensive uses of virtual memory: Histogram [32], which is a

MapReduce application that counts colors from a 16GB bitmap

file; Metis [24] from MOSBENCH [6], which computes a reverse

index for a word from a 2GB Text file residing in memory; and

Psearchy [6], a parallel version of searchy that does text indexing.

They represent different intensive usages of the VM system, whose

ratio between write (memory mapping) and read (page fault) are

small, medium and large.

Kernel-level FCP-RCU: We also implemented a concurrent

hashtable [34] in kernel as a micro-benchmark to characterize FCP

and its alternatives.

User-space prwlock and FCP-RCU: We use several micro-

benchmarks to compare FCP with several alternatives like brlock

and user-level RCU. As FCP has a user-level RCU library, we

also compare its performance to traditional signal-based user space

RCU [14]. To show that FCP can scale up user-space applications,

we also evaluated the Kyoto Cabinet database using FCP and the

original rwlock.

As the performance characteristic that FCP relies on are

similar for Intel and AMD machines, we mainly run our tests on

a 64-core AMD machine, which has four 2.4 GHZ 16-core chips

and 128 GB memory. We use Linux kernel version 3.8 as the

default kernel. For each benchmark, we evaluate the throughput in

a fixed time and collect the arithmetic mean of five runs.

8.2 Kernel-level FCP

8.2.1 Application Benchmarks for Prwlock

We compare the performance of prwlock with several alterna-

tives, including the default rwlock in Linux for virtual memory,

percpu read-write lock [5], and an RCU-based VM design [10]

(RCUVM). We are not able to directly compare prwlock with

brlock as it has no sleeping support. As RCUVM is implemented

in Linux 2.6.37, we also ported prwlock to Linux 2.6.37. We were

not able to use the same version to do the experiments as porting

the RCU-based VM design is difficult and resource-intensive, as

acknowledged by the authors [11].

As different kernel versions have disparate mmap and page

fault latency, we use the Linux 2.6.37 kernel as the baseline for

comparison. For the three benchmarks, we present the perfor-

mance scalability for Linux-3.8 (L38), percpu-rwlock (pcpu-38)

and prwlock on Linux 3.8 (prw-38), as well Linux 2.6.37 (L237),

RCUVM (rcu) and FCP on Linux 2.6.37 (prw-237) accordingly.

Histogram: As histogram is a page-fault intensive workload

and the computation is very simple, it eventually hits the memory

wall after 36 cores on Linux 3.8 for both percpu-rwlock and FCP,

as shown in Figure 12. Afterwards, both prwlock and percpu-

rwlock show similar performance thrashing, probably due to

memory bus contention. Percpu-rwlock scales similarly well and

is with only a small performance gap with prwlock; this is because

both have very good read-side performance. In contrast, the

original Linux cannot scale beyond 12 cores due to contention on

mmap sem. As a result, prwlock outperforms Linux and percpu-

rwlock by 2.85X and 9% respectively on 64 cores.

It was quite surprising that FCP significantly outperforms

RCUVM. This is because currently RCUVM only applies RCU to

page fault on anonymous pages, while histogram mainly faults on

a memory-mapped files. In such cases, RCUVM retries page fault

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

12

with the original mmap sem and thus experiences poor perfor-

mance scalability. Though RCUVM can address this problem by

adding RCU support for memory-mapped files, prwlock provides

a much easier way to implement and reason about correctness due

to its clear semantic.

Metis: Metis has relatively more mmap operations (mainly to

allocate memory to store intermediate data), but is still mainly

bounded by page fault handling on anonymous memory mapping.

As shown in Figure 13, prwlock performs near linearly to 64 cores

with a speedup over percpu-rwlock and original Linux by 27% and

55% in 64 cores accordingly. This is mainly due to scalable read-

side performance and small write-side latency. There is a little

bit performance gap with RCUVM, as RCUVM further allows a

writer to proceed in parallel with readers.

Psearchy: Psearchy has many parallel mmap operations from

multiple user-level threads (with a writer/reader ratio around 1/15),

which not only taxes page fault handler, but also mmap operations.

Due to extended mmap latency, percpu-rwlock cannot scale be-

yond 4 cores, as shown in Figure 14. In contrast, prwlock performs

similarly with Linux before 32 cores and eventually outperforms

Linux after 48 cores, with a speedup of 20% and 5.63X over Linux

and percpu-rwlock for Linux 3.8. There is a performance churn

between 32 and 48 cores for Linux, probably due to the contention

pattern changes during this region. For Linux 2.6.37 with smaller

mmap latency, prwlock performs similarly with Linux under 48

cores and begins to outperform Linux afterwards. This is due to

the contention over rwlock in Linux, while prwlock’s excellent

read-side scalability makes it still scale up.

As psearchy is a relatively mmap-intensive workload, FCP

performs worse than RCUVM as RCUVM allows readers to

proceed in parallel with writers. Under 64 cores, prwlock is around

6% slower than RCUVM. Psearchy can be view as a worst case for

prwlock and we believe this small performance gap is worthwhile

for much less development effort.

Summary: It can be seen that prwlock almost consistently

outperforms other rwlock designs for Linux for different ratio

between write and read. It also has only a very small performance

loss than RCUVM. This confirms that prwlock performs stably for

different contention patterns.

8.2.2 Microscopic Analysis

Benefits of Parallel Wakeup We show how the parallel wakeup

mechanism could benefit both kernel operations and user code.

Figure 15 using the histogram benchmark to show how parallel

wakeup can improve the performance of both RCUVM and

original Linux. Parallel wakeup boosts RCUVM by 34.7% when

there are multiple readers waiting. FCP improves the performance

of original Linux by 47.6%. This shows that parallel wakeup can

also be separately applied to Linux to improve performance. We

also collected the mmap and munmap cost for both Linux and

FCP, which are 934us, 1014us and 567us, 344us. With the fast

wakeup mechanism, the cost for Linux has decreased to 697us

and 354us.

To further understand the benefit from the parallel wakeup, we

compared the parallel wakeup mechanism with the serial wakeup

using the wait queue in Linux 3.8 by measuring the latency

of waking up threads. In this evaluation, 63 threads sleep on a

variable and 1 thread wakes them up. As Figure 19 demonstrates,

90% threads can be woken up within 30000 cycles with the help

of the parallel wakeup mechanism, which are 30x faster than using

wait queue.

Critical section efficiency: To better characterize different

rwlocks, we also evaluate their raw critical section overhead

(lock/unlock pair latency), which is shown in Table 3. FCP shows

best reader performance as its common path is simple and has no

memory barriers. Thanks to the domain abstract, threads with few

readers can acquire locks in active mode to reduce unnecessary

IPIs. In this way, prwlock can achieve short write latency even

there are no readers on other threads. Though rmlock (Read-

Mostly Lock in FreeBSD) also eliminates memory barriers in

reader common paths, its reader algorithm is more complex than

prwlock, and thus results in higher reader latency. Writer of rwsem

(Linux’s rwlock) performs well for few readers, but suffers from

contention with excessive readers.

Impact from Sleepers: To measure the performance of

prwlock with sleep readers. We distribute 64 reader threads among

64 cores and force some readers to invoke schedule functions in

critical sections. To make them suffer from context switches, we

also distribute 64 idle threads among the 64 cores, each of which

invokes the schedule function in a loop. Fig 20 shows that prwlock

can benefit a lot from our scalable design even there are 32 sleep

reader threads. When all reader threads become sleepy readers,

FCP still only performs similarly with rwsem.

TABLE 3: Critical section efficiency (average of 10 millions runs)

brlock rmlock rwsem prwlock

Reader latency (1 reader) 58 46 107 12

Reader latency (64 readers) 58 46 20730 12

Writer latency (0 reader) 17709 136 100 1389

Writer latency (63 readers) 89403 622341 3235736 23236

8.2.3 Concurrent Hash Table for RCU

We use a concurrent hashtable [34] to compare FCP with tradi-

tional RCU. Figure 16 illustrates the performance. Both FCP-RCU

and traditional RCU have a nearly zero reader overhead.

By using FCP-based quiescence detection instead of

scheduler-based RCU, resizing the hashtable is much simpler and

faster as all readers are blocked during resizing and FCP can

detect a quiescent state quickly. Figure 17 presents average latency

of synchronizeRCU used to shrink and grow the hash table on

different concurrency levels. FCP shows up to three orders of

magnitude shorter resizing latency compared to RCU and three

times faster than the expedited one on AMD platform. Figure 18

presents the same evaluation on Intel platform. FCP also shows

the best performance among three RCU Implementations.

8.3 User-level FCP

We use several micro-benchmarks to evaluate FCP’s performance,

as well as the Kyoto Cabinet database to demonstrate user-level

prwlock’s performance advantages.

Figure 21 shows the impact of writer frequency on reader

throughput for several locking primitives, by running 63 reader

threads and 1 writer thread. Writer frequency is controlled by

varying the delay between two writes, which is similar done as

Desnoyers et al. [14]. Note that 1 writer is the worst case of

prwlock since if there is more than 1 writer, the writer lock could

be passed among writers without redoing consensus. To compare

the time for a consensus, we fixed the batch size of both RCU

algorithms to 1. That means they must wait a grace period for

every update.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

13

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0 1
00

00
 1

20
00

 1
40

00
 1

60
00

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Thread Number

L237
rcu

prw-237
L38

pcpu-38
prw-38

Fig. 12: Histogram throughput scalability for original Linux,

percpu-rwlock, FCP on Linux 3.8

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
h

ro
u

g
h

p
u

t
(J

o
b

s
/h

)

Thread Number

L237
rcu

prw237
L38

pcpu-38
prw-38

Fig. 13: Metis throughput scalability for original Linux,

percpu-rwlock, FCP on Linux 3.8

 0
 5

0
 1

00
 1

50
 2

00
 2

50
 3

00
 3

50
 4

00
 4

50
 5

00

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
h

ro
u

g
h

p
u

t
(J

o
b

s
/h

)

Thread Number

L237
rcu

prw-237
L38

pcpu-38
prw-38

Fig. 14: Psearchy throughput scalability for original Linux,

percpu-rwlock, FCP on Linux 3.8

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0 1
00

00
 1

20
00

 1
40

00
 1

60
00

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Thread Number

L237
L237-pwake

rcu
rcu-pwake

prw

Fig. 15: Benefit of parallel wakeup for Histogram.

 0

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

 3x10
8

 3.5x10
8

 4x10
8

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63

T
h

ro
u

g
h

p
u

t
(r

e
a

d
s
/s

)

#Readers

RCU
FCP-RCU

Fig. 16: Lookup performance of hashtable

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1 4 8 16 32

S
y
n

c
h

ro
n

iz
e

 l
a

te
n

c
y
 (

c
y
c
le

)

#Readers

RCU
FCP-RCU

RCU-expedited

Fig. 17: SynchronizeRCU latency of hashtable (AMD)

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1 4 8 16 32

S
y
n

c
h

ro
n

iz
e

 l
a

te
n

c
y
 (

c
y
c
le

)

#Readers

RCU
FCP-RCU

RCU-expedited

Fig. 18: SynchronizeRCU latency of hashtable (Intel)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1 5 10 20 50 80 90 95 99

L
a

te
n

c
y
 (

c
y
c
le

s
)

Woken Tasks (%)

wait queue
parallel wakeup

Fig. 19: Woken latency

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

)

#Sleep Readers

prwlock
rwsem

Fig. 20: Throughput with sleep readers

1e
+0

5

1e
+0

6

1e
+0

7

1e
+0

8

1e
+0

9

1e
+1

0

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

R
e

a
d

s
/s

Updates/s

prw-no-pwake
prw

prw-rcu
brlock
rwlock

signal-rcu

Fig. 21: Relation between reader/writer throughput

1e
+0

3

1e
+0

4

1e
+0

5

 1 10 100 1000 10000 100000 1x10
6

U
p

d
a

te
s
/s

Batch size

signal-rcu
prw-rcu

Fig. 22: Update performance with batch size

 0

 5
0

 1
00

 1
50

 2
00

1 2 4 8 16 32 64

920.82

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

#core

pthread-rwlock
prwlock

Fig. 23: Benefit of FCP for an in-memory DB

FCP achieves the highest writer rate. This confirms that our

version-based consensus protocol is more efficient than prior

approaches. FCP’s read side performance is similar to RCU, and

notably outperforms brlock, mainly because prwlock requires no

memory barriers in reader side. Parallel wakeup also contributes

to prwlock’s superior performance. Since it improves reader

concurrency, prwlock is able to achieve higher reader throughput

when there are many writers. Writer performance is also greatly

improved since wakeup is offloaded to each core.

Performance of User-level FCP-RCU: We can also notice

that FCP-based RCU performs consistently better than the signal-

based user-level RCU. Thanks to FCP’s kernel support, the reader-

side algorithm of FCP-RCU is simpler, which results in a higher

reader throughput. Besides, FCP-RCU has orders of magnitude

higher writer rate than signal-based RCU, due to its fast consensus

protocol.

We further vary the batch size to study RCU performance,

as shown in Figure 22. FCP-RCU reaches its peak performance

before the batch size reaches 100 and performs much better when

the batch size is less than 1000. While typical batch size would be

1,000 to 10,000 or even larger, we believe the faster consensus of

FCP allows achieving a good performance even at a small batch

size. A small batch size helps control the memory footprint since it

allows faster reclamation of unused objects. Hence, it can improve

memory locality of those application using RCU.

Kyoto Cabinet: Figure 23 shows the improvement of FCP

over using the original pthread-rwlock. As the workload for

different number of cores is different, the increasing execution

time with core does not mean poor scalability. For all cases, FCP

outperforms original rwlock and the improvement increases with

core count. Under 64 cores, FCP outperforms pthread-rwlock by

7.37X (124.8s vs. 920.8s). The reason is that the workload has

hundreds of millions read accesses and pthread-rwlock incurs high

contention on the shared counter, while FCP places no contention

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2539953, IEEE
Transactions on Parallel and Distributed Systems

14

in the reader-side.

8.4 Impact on Single-Threaded Applications

We compared the performance of prwlock and original Linux of

building a Linux kernel 3.8 to see the performance impact of

prwlock on single-threaded applications. Under a 64-core setting,

prwlock and the original Linux take 64.5s and 64.4s to finish build-

ing the kernel, which is nearly not measurable in practice. This

shows that prwlock has no impact on single-threaded application

performance.

9 CONCLUSIONS

This paper described FCP, a fast consensus protocol that leverages

the bounded staleness of TSO architectures for read-mostly syn-

chronization constructs. FCP provides fence-free read-side critical

sections to achieve high critical section efficiency for readers, and

leverages bounded staleness to check if all readers have seen the

writer’s (or the reclaimer’s) new version. We show that FCP can be

used to construct a scalable reader-writer lock as well as an RCU

implementation with fast quiescence detection. Measurements on

a 64-core machine confirmed its performance and scalability using

a set of application benchmarks that contend kernel components

as well as a database.

REFERENCES

[1] Linux test project. http://ltp.sourceforge.net/.
[2] Version-based brlock. https://www.kernel.org/pub/linux/kernel/

people/marcelo/linux-2.4/include/linux/brlock.h.
[3] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and

M. Vechev. Laws of order: Expensive synchronization in concurrent
algorithms cannot be eliminated. In PPoPP, 2011.

[4] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new
OS architecture for scalable multicore systems. In SOSP, 2009.

[5] S. S. Bhat. https://patchwork.kernel.org/patch/2157401/, 2013.
[6] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. Kaashoek,

R. Morris, and N. Zeldovich. An analysis of Linux scalability to many
cores. In OSDI, 2010.

[7] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-
scalable locks are dangerous. In Linux Symposium, pages 119–130, 2012.

[8] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware reader-writer locks. In PPoPP, 2013.

[9] B. Cantrill and J. Bonwick. Real-world concurrency. Queue, 6(5):16–25,
2008.

[10] A. Clements, M. Kaashoek, and N. Zeldovich. Scalable address spaces
using RCU balanced trees. In ASPLOS, 2012.

[11] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM: Scalable
address spaces for multithreaded applications. In EuroSys, 2013.

[12] J. Corbet. Big reader locks. http://lwn.net/Articles/378911/.
[13] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with readers

and writers. Comm. ACM, 14(10), 1971.
[14] M. Desnoyers, P. McKenney, A. Stern, M. Dagenais, and J. Walpole.

User-level implementations of read-copy update. TPDS, 23(2):375–382,
2012.

[15] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: a general
technique for designing NUMA locks. In PPoPP, 2012.

[16] Y. Duan, A. Muzahid, and J. Torrellas. Weefence: toward making fences
free in tso. In ISCA, pages 213–224. ACM, 2013.

[17] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable nonzero
indicators. In PODC, pages 13–22, 2007.

[18] FAL Labs. Kyoto Cabinet. http://fallabs.com/kyotocabinet/.
[19] K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge,

2004.
[20] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance

of memory reclamation for lockless synchronization. Journal of Parallel

and Distributed Computing, 67(12):1270–1285, 2007.

[21] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem:
A mechanism for supporting dynamic-sized lock-free data structures.
Technical report, 2002.

[22] Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks.
In SPAA, 2009.

[23] R. Liu, H. Zhang, and H. Chen. Scalable read-mostly synchronization
using passive reader-writer locks. In USENIX ATC, 2014.

[24] Y. Mao, R. Morris, and M. F. Kaashoek. Optimizing MapReduce for
multicore architectures. In MIT Tech. Rep, 2010.

[25] P. Mckenney. RCU usage in the Linux ker-
nel: One decade later. http://www2.rdrop.com/users/
paulmck/techreports/survey.2012.09.17a.pdf.

[26] P. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma,
and M. Soni. Read-copy update. In Ottawa Linux Symposium, 2001.

[27] P. McKenney and J. Slingwine. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed

Computing and Systems, pages 509–518, 1998.
[28] J. Mellor-Crummey and M. Scott. Synchronization without contention.

In ASPLOS, pages 269–278. ACM, 1991.
[29] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free

objects. TPDS, 15(6):491–504, 2004.
[30] M. M. Michael and M. L. Scott. Correction of a memory management

method for lock-free data structures. Technical report, DTIC Document,
1995.

[31] D. Petrović, O. Shahmirzadi, T. Ropars, A. Schiper, et al. Asynchronous
broadcast on the Intel SCC using interrupts. In Many-core Applications

Research Community Symposium, 2012.
[32] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.

Evaluating MapReduce for multi-core and multiprocessor systems. In
HPCA, pages 13–24, 2007.

[33] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case for scaling
applications to many-core with os clustering. EuroSys, 2011.

[34] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, scalable,
concurrent hash tables via relativistic programming. In USENIX ATC,
2011.

[35] J. D. Valois. Lock-free linked lists using compare-and-swap. In PODC,
pages 214–222. ACM, 1995.

Haibo Chen Haibo Chen received a Ph.D de-
gree in computer science from Fudan University
in 2009. He is currently a Professor at School
of Software, Shanghai Jiao Tong University. He
is a senior member of IEEE. His research inter-
ests are in operating systems and parallel and
distributed systems.

Heng Zhang Heng Zhang is a Master candidate
in the School of Software at Shanghai Jiao Tong
University. His research interests are in operat-
ing systems and synchronization constructs.

Ran Liu Ran Liu got his Master Degree from
Software School of Fudan University, and was
a visiting student at Institute of Parallel and Dis-
tributed Systems, School of Software, Shanghai
Jiao Tong University. He is now an engineer at
NetEase Inc. His research interests are in oper-
ating systems and synchronization constructs.

Binyu Zang Binyu Zang received a Ph.D de-
gree in computer science from Fudan University
in 2000. He is currently a Professor at School
of Software, Shanghai Jiao Tong University. His
research interests are in systems software, com-
piler design and implementation.

Haibing Guan Haibing Guan received Ph.D. de-
gree from Tongji University in 1999. He is a Pro-
fessor of School of Electronic, Information and
Electronic Engineering, Shanghai Jiao Tong Uni-
versity. His research interests include distributed
computing, network security, network storage,
green IT and cloud computing.

