
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

1

Correlation-Aware Heuristics for Evaluating the
Distribution of the Longest Path Length of a DAG

with Random Weights
Louis-Claude Canon and Emmanuel Jeannot

Abstract—Coping with uncertainties when scheduling task graphs on parallel machines requires to perform non-trivial evaluations.
When considering that each computation and communication duration is a random variable, evaluating the distribution of the critical
path length of such graphs involves computing maximums and sums of possibly dependent random variables. The discrete version of
this evaluation problem is known to be #P-hard. Here, we propose two heuristics, CorLCA and Cordyn, to compute such lengths.
They approximate the input random variables and the intermediate ones as normal random variables, and they precisely take into
account correlations with two distinct mechanisms: through lowest common ancestor queries for CorLCA and with a dynamic
programming approach for Cordyn. Moreover, we empirically compare some classical methods from the literature and confront them
to our solutions. Simulations on a large set of cases indicate that CorLCA and Cordyn constitute each a new relevant trade-off in
terms of rapidity and precision.

Index Terms—stochastic scheduling, graph heuristic, PERT

F

1 Introduction

Evaluating the execution time (makespan) of a parallel
application modeled by a task graph is an important

problem in scheduling theory. This problem is simple to solve
in a deterministic setting. However, modern parallel systems
are not fully deterministic and may be subject to many
kinds of uncertainties: executions may fail; outcomes can be
corrupted (e.g., network error); and, tasks or communications
durations vary because of imprecise predictions (due to sys-
tem noise, network congestion or input sensitiveness).

This paper focuses on duration uncertainties as it con-
cerns the main inputs of a scheduling problem. Durations
are modeled with random variables instead of deterministic
values to ensure a precise description of the overall system.
Evaluating the performance of a static scheduling procedure–
by performing maximums and sums over durations–becomes
a difficult operation because of the dependencies between ran-
dom variables arising from the graph structure. In particular,
no simple method exists for evaluating the distribution of
the maximum of dependent random variables. The discrete
version of this problem (when all input random variables are
discrete with only rational values) was proved to be #P-
hard1 [1].

In this paper, we propose two new heuristics to address
this evaluation problem. Many methods (either exact or
approximate) exist but none provides the rapidity/precision
trade-off required for heavy use in another procedure such as
a static scheduling algorithm that needs to evaluate numer-

• L.-C. Canon is with FEMTO-ST / CNRS and the Université de
Franche-Comté, Besançon, France.
E-mail: louis-claude.canon@univ-fcomte.fr

• E. Jeannot is with the LaBRI and Inria Bordeaux Sud-Ouest,
Talence, France.
E-mail: emmanuel.jeannot@inria.fr

1. #P is the class of counting problems that correspond to NP
decision problems.

ous partial solutions. Indeed, this work is motivated by the
need to design a building block that efficiently computes the
makespan distribution in the context of stochastic scheduling.
In [2], we have designed Rob-HEFT, a heuristic which assigns
each task greedily to the best processor by testing each pos-
sible allocation (the task is assigned to the machine for which
its completion time is the best). Thus, Rob-HEFT requires to
evaluate many partial solutions precisely and rapidly. But,
other heuristics from the literature could benefit from the
proposed solutions such as SHEFT [3], MCS [4] and SDLS [5].

These proposed methods are evaluated against classical
techniques of the literature that compute operations (sums
and maximums) on random variables when there are depen-
dencies. These techniques are gathered from the scheduling
literature but also from other areas of computer science that
consider variations of this problem (project management [6]
and digital circuit design [7]). Actually, although this paper
is focused on scheduling and parallelism, the proposed results
are applicable in these other fields.

This article is organized as follows. In Section 2, we formal-
ize the general problem and show its relation to the scheduling
problematic. Many contributions have been proposed for this
problem in the literature and we present some significant
approaches in Section 3. We propose the new methods in
Section 4 and they are empirically evaluated in Section 5.

2 Model and Problem Definition

This section defines the problem and we show that some
of its variations are equivalent. We first define the type of
random variables that we use and show the relation with a
specific scheduling problem that can be reduced to the general
problem. Notations are summarized in Table 1.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

2

Table 1
Notation summary.

Symbol Definition

G = (V,E,X) directed acyclic graph
V = {vi : i ∈ [1..n]} set of vertices
E set of edges
n number of vertices (n = |V |)
m number of edges (m = |E|)

Pred(vi)
set of predecessors of vertex vi ∈ V
(Pred(vi) ⊂ V)

Succ(vi)
set of successors of vertex vi ∈ V
(Succ(vi) ⊂ V)

X set of random variables (|X | = n+m)
Xi weight of vertex vi ∈ V (Xi ∈ X)
Xij weight of edge (vi, vj) ∈ E (Xij ∈ X)

Yi
intermediate result of vertex vi ∈ V(
Yi = Xi + maxvj∈Pred(vi) Yji

)
Yij

intermediate result of edge (vi, vj) ∈ E
(Yij = Xij + Yi)

Yn final result

fη
probability density function of random
variable η

Fη
cumulative distribution function of
random variable η (Fη(x) = Pr[η ≤ x])

µη expected value of random variable η
ση standard deviation of random variable η

η ∼ N (µη, ση)
a random variable η follows a normal law
with expected value µη and standard
deviation ση

ρη,ε
correlation coefficient between random
variables η and ε

2.1 Random Variable
Let η be a random variable. Its probability density function
is fη and is defined on R. Its cumulative distribution function
is Fη(x) =

´ x
−∞ fη(x)dx. This function Fη gives the prob-

ability that η takes a value lower than or equal to a given
constant, i.e., Fη(x) = Pr[η ≤ x]. Finally, the expected value
of η is noted µη and its standard deviation is noted ση.

2.2 Longest Path of a Directed Acyclic Graph with Ran-
dom Weights
Let G = (V,E,X) be a DAG (Directed Acyclic Graph). Each
vertex and each edge is weighted by a random variable. The
weight of vertex vi ∈ V is noted Xi ∈ X and the weight of
edge (vi, vj) ∈ E is Xij ∈ X . Graph G contains n vertices
and m edges (i.e., |V | = n, |E| = m and |X | = m + n). The
vertices v1, v2, . . . , vn are ordered in a topological order2.
Without loss of generality, we assume there are a single source
and a single sink. The graph models a parallel application
where vertices are tasks and edges are communications or
synchronizations between tasks.

The graph structure encodes an arithmetic expression on
the weights. To compute this expression we define two types
of intermediate results: Yj , which is the intermediate results
for vertex vj , and Yi,j , which is the intermediate results for
edge (vi, vj). Formally, for each vertex vj ∈ V , we define
the random variable Yj = Xj + maxvi∈Pred(vj) Yij (i.e., a
maximum is performed when several edges target the same
vertex). Similarly, for each edge (vi, vj) ∈ E, Yij = Xij + Yi
(i.e., the weights that are present on a given path are added).

2. In a topological order, vertex indexes are ordered such
that ∀(vi, vj) ∈ V 2, i < j ⇒ (vj , vi) /∈ E.

vj , Xj

Xij
vi, Xi

maxvi∈Pred(vj) YijYij = Xij + Yi

Yi Yj = Xj +maxvi∈Pred(vj) Yij

Figure 1. Intermediate result in a sub-graph of two vertices (vi and vj).
The arithmetic operations that are performed are: a sum to compute Yij
(at the end of edge (vi, vj)), the maximum for Yj (maximum of all
incoming edges to the vertex) and a sum with the weight of vertex Xj .

v1, X1

v2, X2

v3, X3

v4, X4

X12 X24

X34

X23

X13

Figure 2. Graph with four vertices (v1, v2, v3 and v4) and with vertex
and edge weights.

Both operations are represented on Figure 1. The intermedi-
ate result of the sink Yn is the final result of the arithmetic
expression denoted by the graph.

2.3 Problem Definition

The problem we consider consists in determining the proba-
bility law of this last random variable Yn. More precisely, we
want to determine the probability that the longest path length
takes a value lower than or equal to some given constant.

Figure 2 illustrates some arithmetic operations repre-
sented in a graph. The intermediate result that corresponds to
vertex v2 is Y2 = X2 + Y12. As Y12 = X12 + Y1 and Y1 = X1,
then Y2 = X2+X12+X1. A maximum is performed when eval-
uating the intermediate result of vertex v3. Hence, Y3 = X3 +
max(Y23, Y13). We can express Y3 using only weights in X .
We obtain Y3 = X3 + max(X23 +X2 +X12 +X1, X13 +X1).
The encoded expression in this graph is given by the final
result Y4 (i.e., the intermediate result of the sink, v4). It
is Y4 = X4 + max(X24 + X2 + X12, X34 + X3 + max(X23 +
X2+X12, X13))+X1. We have factorizedX1 in the maximums
and the formula cannot be factorized any more. The problem
consists in characterizing the distribution of Y4 given the
random variables in set X .

Note that some arithmetic expressions in a max+ algebra
cannot be represented by a graph. For instance, it is not
possible to encode the expression X + X, where X is a given
random variable. The considered arithmetic expressions have
thus a specific structure. For instance, random variables that
are added are all independent.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

3

2.4 Scheduling with Random Durations and Bounded
Resources
We present here an application of this problem in the context
of task scheduling. We consider the general case when tasks
are subject to precedence constraints with bounded resources.
Task durations are specified by random variables. The total
duration of a static schedule is thus also a random variable
and its evaluation can be reduced to the problem studied in
this paper.

This reduction is obtained by remarking that a task allo-
cated to a specific processor cannot start its execution until
all its predecessors have terminated theirs and the considered
processor has finished its previous tasks. We have thus two
kinds of precedences: those that come from the task graph
and those that are related to the order in which tasks are
executed on each processor. The constraints of the second
kind correspond to additional edges in the task graph (the
final graph remains acyclic) and are related to the anteriority
enforced by the schedule. Therefore, we are able to deal
with schedules for bounded resources: once the schedule is
computed, we enforce sequentiality on the resources by adding
such edges of zero weight between tasks on the same resources
(see Figure 3). The maximum of the end dates of all the tasks
of this graph is the makespan of the schedule.

The start date of a task execution is obtained by per-
forming a maximum on a set of execution end dates. Then,
an end date is the result of a sum over a random duration
and a start date. The problem consists finally in evaluating
the distribution of the end date of the last finished task (the
makespan of the schedule). Characterizing the distribution of
the completion time of a set of dependent jobs with random
durations is therefore equivalent to evaluating the distribution
of the length of the longest path of a DAG with random
weights.

An example of four tasks scheduled on two processors is
proposed on Figure 3. Task t1 has no predecessor and is thus
the first to start its execution. Tasks t2 and t3 both depend
on task t1 and cannot start their executions before t1 finishes
its own. Finally, task t4 depends on the two previous tasks.
Tasks t1 and t4 are executed on processor p1 and tasks t2
and t3 are executed on p2. As the execution of t2 is anterior to
the execution of t3, an edge is added between these two tasks
in the corresponding graph. In this example, task durations
(i.e., weights) are not represented. The duration of each task
is associated to the corresponding vertex in the graph.

2.5 Dependency between Intermediate Results
In order to determine the intermediate result of a vertex vj ∈
V , the expression Yj = Xj + maxvi∈Pred(vj) Yij must be
evaluated. Operands of any maximum are always intermediate
results. The main difficulty revealed by related works concerns
the dependency between all the intermediate results. If they
were independent, evaluating the distribution of the longest
path length would indeed be easy using the methods presented
later in Section 3.1.1.

Figure 2 illustrates this phenomenon. The intermediate
result of vertex v3 is formulated X3 + max(Y23, Y13). The
operands of this maximum, Y23 and Y13, are dependent
because they both are expressed using the same random
variable, X1.

t1

t2

t3

t4

t1

t2 t3

t4p1

p2

time

Figure 3. Four tasks (t1, t2, t3 and t4) are scheduled on two processors
(p1 and p2). The corresponding graph contains one additional edge (in
dash line) that is not present in the input task graph.

In the literature, the problem raised by operand dependen-
cies is also called path reconvergence [8], shared activity jias [9]
or topological dependency [7].

2.6 Representation Equivalence

In some contexts, there is either no weight on the vertices
or no weight on the edges. This is the case when managing
projects represented with an activity on arc (AoA) network
or with an activity on node (AoN) network. Transforming
an AoN network into an AoA network while minimizing the
number of additional arcs is NP-Hard [10]. However, this
transformation may be done in polynomial time and space
when the minimization is not required. In particular, we can
transform an instance of our problem into an instance with
no weight on the vertices in polynomial time [11]. Each vertex
must be replaced by a pair of vertices connected by an edge
whose weight is the same as the weight of the initial vertex.
The first (resp., second) vertex of this pair becomes a successor
(resp., predecessor) of all the predecessors (resp., successors)
of the initial vertex. The number of vertices is increased by
a factor of two through this transformation. Moreover, the
transformation complexity is linear in the number of edgesm.
An analogous linear algorithm exists to convert an instance of
our problem into an instance with no weight on the edges.

These representations are thus equivalent and we specify
whenever it is necessary if there is no weight on the vertices or
on the edges.

3 State of the Art and Related Work
We begin by presenting different mechanisms for evaluating
the result of an arithmetic operation on a pair of random
variables. Using these mechanisms, we will then cover some
methods that can estimate the distribution of the longest
path length. We classify existing methods into four categories:
heuristics that provide an approximation3; methods that pro-
vide bounds; exact methods (that are not covered because of
their time complexity); and the Monte Carlo approach. Last
we describe the related application fields of this work.

3. As shown by Hagstrom [1], the problem is #P-hard in the
discrete case.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

4

3.1 Evaluation of Arithmetic Operations
3.1.1 Numerical Evaluation in the Case of Independent Ran-
dom Variables
Characterizing the probability density function of the maxi-
mum or the sum of two independent random variables (also
called operands) can be done using basic results from the
probability theory [12].

3.1.1.1 Maximum of Two Independent Random Vari-
ables: Let η and ε be two independent random variables. We
call ω = max(η, ε) the maximum of η and ε. The value of ω is
lower than a constant z if and only if both operands are lower
than z. Thus, the cumulative density function of the maximum
of two independent random variables is the product of their
cumulative distribution functions:

Fω(z) = Fη(z)× Fε(z) (1)

When operands are discretized, methods from numerical
analysis can be used to estimate the result (resampling, inter-
polation, etc.) [13]. Remark that determining the probability
density function from a cumulative distribution function re-
quires a numerical derivation. As derivations are numerically
challenging, we often prefer to obtain the probability density
function of ω. To this end, we analytically derive Eq. (1):
fω(z) = Fη(z)× fε(z) + fη(z)× Fε(z). This formula requires
the cumulative distribution functions of η and ε, which can
easily be obtained by numerically integrating the probability
density functions.

3.1.1.2 Sum of Two Independent Random Variables:
Consider the same operands in the sum ω = η + ε. For
discrete random variables, we have: Pr[ω = z] =

∑
x Pr[η =

x] × Pr[ε = z − x]. For continuous random variables, the
probability density function of the sum of two independent
random variables is the convolution of their probability den-
sity functions: fω =

´
x
fη(x)fε(z − x)dx = fη ∗ fε.

The complexity of directly computing a convolution
is O(N2) where N is the number of values representing a
probability density function. Numerically, we can use the
Fast Fourier Transform, whose complexity is O(N logN) to
speed up this computation. Indeed, in the frequency domain,
convolution is a product and its time complexity is linear.

3.1.2 Expected Value and Variance in the Case of Normal
Distributions
When an operation is performed on random variables that
are normally distributed, then the expected value and the
variance of the result can be formulated in closed form even
when the operands are dependent.

3.1.2.1 Maximum of Correlated Normal Laws:
Clark [14] proposed a set of formulas to cope with the max-
imum operation. These formulas characterize the first four
moments of the maximum of two normal laws. Let η and ε be
two random variables that follow each a normal law. Their ex-
pected values and variances are noted µη, µε, σ2

η and σ2
ε . The

linear correlation coefficient between η and ε is ρη,ε. We define
two functions: ϕ(x) = 1√

2π e
− x2

2 and Φ(x) =
´ x
−∞ ϕ(t)dt.

Clark characterizes the expected value and the variance
of ω = max(η, ε), namely µω and σ2

ω:

µω = µηΦ(b) + µεΦ(−b) + aϕ(b) (2)

σ2
ω = (µ2

η+σ2
η)Φ(b)+(µ2

ε+σ2
ε)Φ(−b)+(µη+µε)aϕ(b)−µ2

ω (3)

where a =
√
σ2
η + σ2

ε − 2σησερη,ε and b = µη−µε
a .

Moreover, Clark provides a formula to compute the linear
correlation coefficient between the result of a maximum and a
given random variable τ :

ρτ,ω = σηρτ,ηΦ(b) + σερτ,εΦ(−b)
σω

(4)

3.1.2.2 Sum of Correlated Normal Laws: Let us con-
sider the sum ω = η + ε. The following formulas are general
results from probability theory. They are valid for any proba-
bility law that η and ε may follow.

µω = µη + µε (5)

σ2
ω = σ2

η + 2σησερη,ε + σ2
ε (6)

ρτ,ω = σηρτ,η + σερτ,ε
σω

(7)

3.2 Heuristic Approaches
Heuristic methods often approximate the inputs to provide
an estimation of the result. We classify them into three cate-
gories: approaches based on series-parallel reductions; meth-
ods based on the normality assumption; and the canonical
approach.

3.2.1 Series-Parallel Reductions
A method based on a succession of reductions was first pre-
sented by Martin [15], and then by Dodin [16]. It provides an
exact solution when the graph is series-parallel. Moreover, this
method has a polynomial-time complexity.

It uses two kinds of reductions. We describe them by
considering that all vertex weights are zero:

Series reduction If a vertex has exactly one incoming
edge and one outgoing edge, then a series reduc-
tion is performed. It consists in eliminating the
vertex and in replacing both edges by a single
one whose weight is the sum of the weights of the
initial edges. As the added weights are indepen-
dent random variables, all techniques presented in
Section 3.1 can be applied.

Parallel reduction A parallel reduction is performed if
there exist two edges that share the same source
and the same target. They are thus replaced by
a single edge whose weight is the maximum of
the weights of the initial edges. Again, operands
are independent and we can use the techniques
presented above.

For a given instance, all the possible reductions are performed.
As one reduction may enable new reductions, they are per-
formed iteratively until no more reduction is possible. The
process ends up with a single edge between the source vertex
and the sink if and only if the initial graph is series-parallel.
The exact distribution of the longest path length is then given
by the weight of the final edge.

If the graph is not series-parallel, then the process gives an
irreducible graph containing several edges. It is still possible
to continue the reductions by adapting the graph. A vertex is
thus selected randomly among the ones that contain only one
incoming edge. This vertex and its incoming edge are then
duplicated multiple times in such a way that each new vertex

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

5

is connected to exactly one of the outgoing edges of the initial
vertex. If there is no vertex with only one incoming edge, then
a symmetrical mechanism is performed for a vertex with only
one outgoing edge. After this duplication step, all the enabled
reductions are thus performed until a new irreducible graph
is obtained. These two steps (reduction and duplication) are
repeated until a single edge remains.

As some edges are duplicated when the graph is not series-
parallel, the corresponding weights are also duplicated. This
means that at each given step, the graph may contain weights
that are not independent. Maximums and sums on dependent
random variables raise issues (except if both operands follow
normal laws). Thus, the result is generally not exact.

Bein et al. [17] improved this method by minimizing the
number of duplicated vertices. Moreover, Ludwig et al. [18]
perfected the approach by decreasing the algorithmic time
complexity necessary to find new enabled series-parallel re-
ductions.

3.2.2 Normality Assumption
Assuming that all the weights in a graph follow normal laws is
common in the literature. The normality assumption concerns
both intermediate results and the final distribution. This is
a perfect use-case for Clark’s formulas [14] that estimate
the first four moments of the maximum of two normals (see
Section 3.1.2).

This assumption is supported by the central-limit theorem
that states that the sum of independent random variables
tends to be normally distributed as the number of variables
increases. As a graph encodes an arithmetic expression that
may contain many additions, the result tends to approach a
normal law if maximum operations do not significantly impact
the resulting distribution.

The method proposed by Sculli [19] is a direct application
of Clark’s approach. Each random variable is reduced to its
expected value and variance. Maximums are computed by
considering that operands follow independent normal laws.
The obtained result is again approximated as a normal law
and its first two moments are computed with Clark’s formulas.

Sculli’s approach has, however, some limits. First, correla-
tion coefficients between operands are always considered to be
zero. This is false when operands relate to edges that have a
common ancestor (see Section 2.5). Ignoring the effect coming
from path reconvergence leads to an accumulation of errors
that can be significant when the graph is large. In this paper,
we propose two methods that are based on the same principle,
but with techniques that estimate correlation coefficients.

The second limit is related to the normality assumption.
Although input random variables are not normal in the
general case, the assumption does not hold either when all
weights are normal because the result of each maximum is
approximated by a normal law.

Nevertheless, the normality assumption offers several ad-
vantages: we can use formal probabilistic results (Clark’s for-
mulas); the error is low as we will show in our experiments in
Section 5; and, the algorithmic time complexities of methods
based on this assumption are generally low.

To conclude, the relevance of this assumption depends
on several criteria: the normality of input random variables;
the depth of the graph, which determines the number of
sums; and, the dependence and the similarity between the

operands of each maximum, which determines the normality
of intermediate results.

3.2.3 Canonical Representation
Evaluating the distribution of the longest path length is also
required when designing digital circuit. Although we consider
that all random variables in X are independent, proposed
methods in this field are specifically designed to tackle spa-
tial correlations, namely dependencies between the weights.
For instance, Sapatnekar et al. [20] described how to apply
principal component analysis to deal with these correlations.
Spatial correlations make the problem more difficult.

With the canonical representation [21] that appeared in
this context, dependencies between maximum operands (and
spatial correlations) are efficiently taken into account. An
extension, proposed by Zhang [8], improves the method and
reduces its algorithmic time complexity.

In the canonical approach, each random variable (weights
and intermediate results) are expressed using an expected
value and a weighted sum of standard normal laws:

η = µ+
∑
i

αiΥi

where µ is the expected value of η. Each random vari-
able Υi ∼ N (0, 1) follows a standard normal law (with mean
µ = 0 and variance σ = 1). Parameters αi determine thus the
variance of η. In this representation, all the normal laws Υi

are independent. This is used for the dependencies between
the weights.

Evaluating arithmetic operations on random variables in
canonical representation makes partial use of the formulas
proposed by Clark (see Section 3.1.2). Let η = µη +

∑
i αη,iΥi

and ε = µε +
∑

i αε,iΥi be two random variables in canonical
representation. The sum ω = η+ε can be evaluated as follows:

ω = (µη + µε) +
∑
i

(αη,i + αε,i)Υi

The maximum is defined as ω = max(η, ε). Re-
call from Section 3.1.2 that Φ(x) =

´ x
−∞ ϕ(t)dt, a =√

σ2
η + σ2

ε − 2σησερη,ε and b = µη−µε
a .

The probability that η takes a value greater than ε,
i.e. Pr[η > ε], is Φ(b). The maximum is approximated by:
ω̂ = Φ(b)η + Φ(−b)ε

= (Φ(b)µη + Φ(−b)µε) +
∑
i

(Φ(b)αη,i + Φ(−b)αε,i)Υi

This evaluation of the maximum requires the correlation
coefficient between the operands (i.e., ρη,ε):

ρη,ε =
∑

i αη,iαε,i√∑
i α

2
η,i

√∑
i α

2
ε,i

The canonical approach relies on the normality assump-
tion that is described above. Representing each random vari-
able using a linear combination of standard normal laws
provides an elegant and efficient method for characterizing the
dependencies between each intermediate result. However, this
is done to the detriment of the maximum operation whose pre-
cision is worse than with Clark’s approach. Indeed, whereas
Clark’s approach provides the exact first four moments of the
maximum of two normals, the canonical approach approxi-
mates the maximum as a linear combination of normals, which
is inexact even when operands actually follow normal laws.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

6

3.3 Bounds
Several methods provide bounds on the distribution of the
longest path length. We first define the first-order stochastic
dominance [22, Definition 1.2.1] that we use to determine if
two random variables are comparable and, if possible, to know
which one is greater. Let η and ε be two random variables. We
say that η dominates stochastically ε if Pr[η ≤ x] ≤ Pr[ε ≤ x]
for all x.

Kleindorfer [23] has proved a lower and an upper bound
on the distribution of the longest path length. The upper
bound is given by assuming that all maximum operands are
independent and, hence, by directly applying the mechanism
of Section 3.1.1. For the lower bound, maximum operations
are not executed. Instead, the distribution of one of the
operands is selected as the result.

The approach using series-parallel reduction described in
Section 3.2.1 also gives an upper bound by transforming any
given graph into a series-parallel one. This result improves
Kleindorfer’s upper bound.

Yazici-Pekergin et al. [24] have proposed to replace NBUE
(New Better Than Used in Expectation 4) distributions in a
graph by an upper bound. This technique is useful when we
know only the expected value of the random variables and
when they all verify the NBUE property.

Finally, some methods only propose a bound on the ex-
pected value of the result. Fulkerson [25] has proposed one of
the first lower bound of the literature. It has been improved
by Robillard [26] using Jensen’s inequality. Kamburowski [27]
proposed to bound the expected value and the variance us-
ing the normality assumption and Clark’s formulas. Finally,
Weiss [28] also gave bounds on related quantities such as the
shortest path.

3.4 Monte Carlo Method
The Monte Carlo method proposed in this context [29], [30]
consists in repeatedly transforming the random weights into
deterministic ones.

For each random variable of the graph, a value is drawn
according to its law. When this is done, we obtain a unique
value for the graph. This step is repeated several times gener-
ating a new value at each iteration. The set of resulting values
defines an empirical distribution function that approaches the
resulting distribution as the number of iterations increases.

We need to define the number of trials (noted T) re-
quired to achieve a given precision. If we assume that the
distribution of the longest path length follows a normal law,
then Cochran’s theorem states that the variance follows a
χ2 law with T − 1 degree of freedom. Hence, the number
of degrees of freedom needed to obtain a required confidence
interval directly gives the number of iterations to perform.
For instance, with 20,000 iterations, the relative error of the
standard deviation is lower than 5% with a confidence level of
99%. With one million iterations, the error is lower than 1%.

Another way of quantifying the error is given by the
Kolmogorov-Smirnov statistic: it measures the distance be-
tween the empirical cumulative distribution function and the
true distribution. According to the Kolmogorov distribution,

4. Intuitively, NBUE distributions are distributions that describe
the remaining lifetime of objects and such that new objects have a
better expected lifetime than used objects.

this difference is lower than 1.629/
√
T with a confidence level

of 99% when the number of iterations exceeds 100 [31]. For
20,000 iterations, the difference is lower than 1.2%. For one
million iterations, it is lower than 1.629h.

The Monte Carlo method has two advantages. First, the
empirical distribution function converges towards the result-
ing distribution as T →∞ according to the Glivenko-Cantelli
theorem. Second, this method is not sensible to operand
dependencies when performing a maximum operation.

3.5 Related Research Fields
Evaluating the distribution of the longest path length of a
DAG (Directed Acyclic Graph) with random weights arises in
several fields:

• the problem was first defined by Malcolm et al. [6]
in the context of project management. A project is
assumed to be divided into a set of activities that are
structured through a set of events. Each activity has
to be performed by a resource and an event can be
reached upon its completion. As activity durations can
be modeled by random variables, the overall project
consists of a graph where each edge corresponds to an
activities and each vertex to an event;

• task graph scheduling on parallel machines with ran-
dom durations (see Section 2.4) has then been intro-
duced [32], [33], [34]. Several references are provided
in [35];

• last, the problem appears when designing digital cir-
cuits. A digital circuit is a network of gates that
are connected through wires. In order to predict the
performance of such circuits, static timing analysis is
performed to estimate the propagation delay of a signal
from the input to the output gates. As variations may
occur when manufacturing digital circuits, the prop-
agation delay of each wire and each gate is uncertain.
Analyzing a digital circuit requires thus to evaluate the
distribution of the longest path length of a DAG where
each edge corresponds to a wire and each vertex to a
gate. We report the reader to the survey proposed by
Blaauw et al. [7] for more details on this field.

3.6 On the Complexity of the Studied Problem
Although the problem is frequently mentioned to be #P-hard
in the literature, there is sometimes a slight confusion on the
precise problem that is considered.

In this paper, we consider the numerical problem of deter-
mining the distribution of the longest path length of a DAG
with random weights. The random variables are assumed to
follow continuous distributions (such as the uniform distribu-
tion) and the output of the problem is the probability that
the longest path length takes a value lower than or equal to
some given constant. The problem consists in approximating
this probability to some given number of correct digits.

On the other hand, the problem that is known to be
#P-hard [1] is when random variables are discrete with only
rational values. In this case, the objective is to find the exact
probability, which is rational, that the longest path length
takes a value lower than or equal to some given constant.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

7

Although we may infer that the problem with discrete
random variables (possibly with irrational values) is also diffi-
cult, we cannot conclude on the complexity of the continuous
version of the problem. However, we suspect that this version
is also difficult as the challenge when directly evaluating the
solution is similar in both versions: the number of longest
paths may be exponential.

4 Proposed Methods
Although many bounds have been proposed, either they do
not provide estimations that are precise enough in practice or
their time complexity is prohibitive. We propose two practical
heuristics that are based on the normality assumption pre-
sented in Section 3.2.2 and on Clark’s formulas described in
Section 3.1.2. Namely, we approximate each random variable
and each result of a maximum as a random variable that
follows a normal law. Both our methods improve Sculli’s
approach [19] because they use a mechanism to estimate corre-
lations between maximum operands whereas Sculli’s approach
does not.

4.1 CorLCA
The first described heuristic is called CorLCA (Correlation
based on Lowest Common Ancestor). This method visits each
vertex of a graph only once. For each vertex, correlations
between the operands of a maximum operation are estimated
using an efficient method. The objective of this method is
to offer precise results without significantly increasing the
algorithmic time complexity compared to Sculli’s approach
(presented in Section 3.2.2). To this end, the correlation
between each pair of maximum operands is estimated by de-
termining their lowest common ancestor. Algorithm 1 presents
the steps of CorLCA.

First, we describe the general behavior of the algorithm
and we detail the construction of a tree (called correlation tree
below) that allows efficient searches for the lowest common
ancestor of any pair of vertices. Then, we show how to
compute a correlation coefficient using this ancestor. Finally,
we analyze the complexity of CorLCA.

CorLCA relies on a main loop that visits vertices of a
graph G(V,E,X) in a topological order.

For each iteration, two types of operations are performed:

• intermediate result evaluations (Lines 4, 9, 10, 14
and 20)

• incremental construction of the correlation tree
(Lines 11 to 13)

This last tree is rooted and is used only for computing cor-
relations between maximum operands. It contains the same
vertices as graph G and a subset of its edges. In particular,
each vertex in the correlation tree has only one incoming
edge with the exception of the root, which has none. At each
iteration of CorLCA, the predecessor v̇i of the visited vertex vi
is retained as the unique parent of vi in the correlation tree.

4.1.1 Correlation Tree Construction
Selecting a unique parent for a given vertex in the correlation
tree is done by determining which predecessor has the most
significant impact on the maximum operation. This means
that we want to select the edge that influences the most the

ALGORITHM 1: Heuristic CorLCA based on lowest
common ancestor queries to estimate the correlation
between two operands

Require: G = (V,E,X) {Directed acyclic graph with
random weights}

Ensure: (µ, σ2) {Estimation of the expected value and
variance of the distribution of the longest path length
of G}

1: for i = 1 to n do {Visit all the vertices in a topological
order}

2: v̇i = 0 {Initialization of vi parent in the correlation
tree}

3: for all vj ∈ Pred(vi) do {Visit all the predecessors
of vi}

4: Yji = Xji + Yj {Equations 5 and 6}
5: if v̇i = 0 then {First iteration of the loop}
6: v̇i = vj
7: η = Yji
8: else
9: vk = LCA(v̇i, vj) {Determine the Lowest

Common Ancestor of v̇i and vj}
10: ρη,Yji =

σ2
Yk

σησYji
{Estimate the correlation

between η and Yji}
11: if Pr[η < Yji] > 0.5 then {If vertex vj is

preponderant in the maximum}
12: v̇i = vj {Change the predecessor of vi in the

correlation tree}
13: end if
14: η = max(η, Yji) {Equations 2 and 3, and Line 10}
15: end if
16: end for
17: if v̇i = 0 then {Vertex vi has no predecessor}
18: Yi = Xi

19: else
20: Yi = Xi + η {Equations 5 and 6}
21: end if
22: end for
23: return (µYn , σ2

Yn
)

intermediate result of a maximum. Thus, the correlation tree
approximates the structure of the correlations between each
pair of intermediate results.

When a vertex contains several incoming edges, the se-
lected edge is the one whose intermediate result is greater
than the intermediate results of the other incoming edges with
the highest probability. Let Yji ∼ N (µYji , σYji) and Yj′i ∼
N (µYj′i , σYj′i) be two normal random variables representing
the intermediate results of two edges targeting the same
vertex vi. In Section 3.1.2, we defined function Φ(x) =´ x
−∞ ϕ(t)dt and symbol b. Section 3.2.3 mentions that the
probability of Yji being greater than Yj′i is Pr[Yji > Yj′i] =
Φ(b). This mechanism is used to select each predecessor
(Lines 11 to 13). In the case of normal distributions, it
is actually sufficient to compare only the expected values
of Yji and Yj′i to determine which one is greater with the
highest probability (the one with the highest expected value
is selected).

A complete correlation tree that could correspond to the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

8

v1

v2

v3

v4

Figure 4. Possible correlation tree corresponding to the graph of Figure 2.

graph of Figure 2 is represented on Figure 4. For each vertex
that has several incoming edges, a single edge is selected.

4.1.2 Estimation of Correlation Coefficients
Equations 2 and 3 of Section 3.1.2 are used at Line 14 to
compute the maximum of two random variables and they
require the correlation of the operands beforehand (which is
done on Line 10).

The correlation tree enables an efficient estimation of the
correlation of any pair of intermediate results. By finding the
lowest common ancestor of two vertices, it is possible to com-
pute directly the correlation between the intermediate results
of these two vertices. Let Yji and Yj′i be two intermediate
results of two edges targeting the same vertex vi. Let vk
be the lowest common ancestor between vertices vj and vj′

in the correlation tree. Its intermediate result is noted Yk.
Our approximation consists in considering that Yji = η + Yk
and Yj′i = ε + Yk where η and ε are two random variables
independent of Yk. Random variables η and ε are independent
because they represent the sums of the weights on the paths
between vertex vk and vertices vj and vj′ , respectively (these
paths do not share any vertex by definition of the lowest com-
mon ancestor). Hence, the correlation between Yji and Yj′i

is:
ρYji,Yj′i =

σ2
Yk

σYjiσYj′i

It is, however, an approximation because vertices vj
and vj′ can have several lowest common ancestors in the
complete directed acyclic graph.

This mechanism is similar to the second optimization of
the method proposed by Yao et al. [9]. However, our method
is finer in case of multiple lowest common ancestors.

4.1.3 Complexity
The time complexity of CorLCA depends on the cost of the
method used to find the lowest common ancestor of two
vertices in a tree in which vertices are inserted incrementally.
Let λ (resp., ν) be the time (resp., space) complexity necessary
to insert the vertices and to perform LCA (Lowest Common
Ancestor) queries. Then, the time complexity of CorLCA
is O(mλ) and its space complexity is O(n+ ν).

Cole et al. [36] have presented a method that performs ver-
tex insertions and LCA queries in constant time if insertions
do not double the size of the tree. As this assumption does
not hold in our case, data structures would require to be re-
built periodically with this method. Moreover, their approach
tackles vertex insertions inside the tree and vertex removals,
which CorLCA does not need. Gabow [37] has described an
algorithm that performs leaf insertion in amortized constant
time.

The problem consists in alternating LCA queries and leaf
insertions in the same tree. To the best of our knowledge,
the literature does not provide an optimal algorithm for this
specific problem. Given the related works presented above, we
conjecture that λ = O(1) and ν = O(n), which would lead to
a time complexity of O(m) and a space complexity of O(n)
for CorLCA.

4.2 Cordyn
This second heuristic, called Cordyn (Correlation based on a
dynamic programming approach), takes into account depen-
dencies caused by reconvergent paths. A dynamic program-
ming approach is used to determine the correlation coefficients
that are required when applying Clark’s formulas. Despite a
higher time complexity than with CorLCA, estimated corre-
lation coefficients are more precise. Indeed, no approximation
other than the normality assumption is done.

4.2.1 Algorithm
The algorithmic principle lies in continuously characterizing
the set of correlation coefficients that could be required when
a maximum is performed with Equations 2 and 3. Although
it is always possible to determine recursively any correlation
coefficient (with a recursive method using Equation 4), some
of the computed coefficients are used multiple times and it
is sub-optimal to recompute them. As the problem raised by
the determination of these coefficients exhibits sub-problems
that overlap, we propose a dynamic programming strategy.
Then, for each newly visited vertex vi, all the correlation
coefficients ρYi,Yj are computed and kept in a symmetric
square matrix P = (ρYi,Yj)1≤i≤n,1≤j≤n of size n× n.

Algorithm 2 describes the main loop of Cordyn, which
visits vertices in a topological order. Intermediate result eval-
uation is done on Lines 3, 7 and 8 by reusing newly computed
correlation coefficients (Line 10). Lines 4, 9 and 10 are used
to compute correlation coefficients between a given random
variable and each intermediate result that corresponds to any
already visited vertex (i.e., any of the random variables in the
set {Yk : 1 ≤ k < i} where vi is the visited vertex in the
current loop iteration). Coefficients computed on Line 4 are
only required for the computations on Lines 5 and 9 that are
only used themselves on Lines 7 and 10, respectively. However,
correlations determined on Line 10 can be used during future
iterations of the main loop on Line 4 and this is why matrix P
is updated with the obtained values.

We finish the description of Cordyn with two remarks.
When the number of incoming edges of vi is strictly greater
than two, the operands on Line 7 are grouped pairwise and
Clark’s formulas are used successively (coefficient computa-
tions must then be adapted on Line 9). The second remark is
related to the fact that an intermediate result can be discarded
when computing correlations as soon as every successors
of the corresponding vertex have been visited. Indeed, on
Lines 4, 9 and 10, we can reduce the set of considered inter-
mediate results to those corresponding to the vertices ϕ(vi),
where ϕ(vi) is the set of vertices vj such that j < i and such
that ∃(vj , vk) ∈ E, i < k. Thus, the topological order in which
vertices are visited has an impact on the efficiency (temporal
and spatial) of the method, but no influence on the result
quality (except for round-off errors).

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

9

ALGORITHM 2: Heuristic Cordyn based on a dy-
namic programming approach to determine the corre-
lation between two operands

Require: G = (V,E,X) {Directed acyclic graph with
random weights}

Ensure: (µ, σ2) {Estimation of the expected value and
variance of the distribution of the longest path length
of G}

1: for i = 1 to n do {Visit all the vertices in a topological
order}

2: for all vj ∈ Pred(vi) do {Visit all the predecessors
of vi by increasing indices}

3: Yji = Xji + Yj {Equation 5 and 6}
4: compute (ρYji,Yk)1≤k<i {Equation 7 and matrix P}
5: compute (ρYji,Yj′i)vj′∈Pred(vi),j′<j {Equation 7,

matrix P and Line 4}
6: end for
7: η = maxvj∈Pred(vi)(Yji) {Equations 2 and 3, and

Line 5}
8: Yi = Xi + η {Equations 5 and 6}
9: compute (ρη,Yk)1≤k<i {Equation 4 and Line 4}

10: compute (ρYi,Yk)1≤k<i and complete P {Equation 7
and Line 9}

11: end for
12: return (µYn , σ2

Yn
)

4.2.2 Complexity

To determine the complexity of Cordyn, we introduce and
remind some notations: let deg−(v) be the number of in-
coming edges of vertex v, n = |V | the number of vertices
and m = |E| the number of edges. The most costly step con-
sists in characterizing correlations between each new vertex
intermediate result and all the obtained intermediate results
(Line 4). Remember that the vertices are visited by increasing
indices. At step i, determining correlation coefficients be-
tween each obtained intermediate result (Yk)1≤k<i and Yji
costs O(i) operations and is repeated deg−(vi) times for
each predecessor of vi. The time complexity of the approach
is thus O(

∑n
i=1(i × deg−(vi))) = O(nm). Moreover, O(n2)

elements must be stored in matrix P .

4.3 Canonical Representation Adaptation

We also adapted the canonical method (see Section 3.2.3) to
our problem. In the scheduling problem, weights are indepen-
dent, which means that each weight corresponds to a single
random variable Υ with the canonical representation. We note
each weight X̂i because the canonical representation is an
approximation of the true random variableXi. By considering
that all edges have zero weights, then X̂i = µi + αiΥi

and Ŷj = µj +
∑

i αjiΥi. This last equation means that each
intermediate result can be expressed as a linear combination
of all standard normal distributions that correspond to the
weights of the graph. As an intermediate result Yj can be
the result of a maximum (which does not produce a linear
combination of normal laws), it is clear that the last equation
is an approximation.

4.4 Unfavorable Example
Figure 5 illustrates all the steps when considering a graph
with four vertices. Edge weights are zero and each vertex
weight follows an exponential law with an expected value
of one. As exponential laws differ significantly from normal
laws, this example is not favorable to approaches based on the
normality assumption. However, CorLCA improves Sculli’s
approach, which ignores dependencies between intermediate
results Y2 and Y3. Both these random variables are operands
of the maximum performed to compute the final result Y4.
For this graph, CorLCA and Cordyn produce the same result
because the graph structure is simple and no pair of vertices
contains more than one lowest common ancestor.

5 Empirical Validation
5.1 Instances
To empirically validate our methods, we use a set of instances
based on existing testbeds that define the graph structure but
have either deterministic weights or no weight. Each weight is
replaced by a random variable whose expected value is equal
to the deterministic weight. We will describe how to determine
the distribution of each random variable.

The graph structures come from the following three sets of
instances:

• RCPSP instances of the PSPLIB Library [38] in the
case of project management. Graphs are classified
according to 4 sizes: 30, 60, 90 and 120 vertices. There
are 48 instances in each of the first three classes and 60
in the last one (we use the first variant of each of these
instances).

• The STG [39] set for task graphs. For each distinct size
(from 50 to 1500 vertices), we select 24 instances, each
using a distinct generation method. Each generator
results from a combination of one of the four graph
generators and one of the six cost generators (we also
use the first variant of each combination).

• ISCAS-85 [40] and ISCAS’89 [41] for digital circuits
(45 instances).

The expected value of each weight is not fully determined in
the case of digital circuits because they do not have weight.
The expected value is arbitrarily set to 1.

The structure of the graph and the expected value of each
weight is specified as shown above. We need to transform this
into a probabilistic instance by determining the variance and
the law of each weight.

First, we need to specify the variance of each weight.
Instead of managing variances, we use the coefficient of varia-
tion (CV), which measures the relative dispersion of the law.
Formally, it is the ratio between the standard deviation and
the mean of a set of values. For each weight, we draw the CV
according to a gamma law such that the standard deviation
of all CV is 10% of their expected value. This introduces some
heterogeneity in the weight CV (otherwise, expected values
would be proportional to standard deviations and this could
bias the evaluation). However, when the standard deviation
of a CV is too high, then some CV have a high value. As
a compensation, most other CV have to be close to zero
(as CV must be non-negative) and can thus be considered
deterministic (which could again bias the evaluation). The

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

10

v1

v2

v3

v4

Intermediate
results

Sculli [19] CorLCA Formal analysis

µ σ2 µ σ2 µ σ2

Y1 1 1 1 1 1 1
Y2 2 2 2 2 2 2
Y3 2 2 2 2 2 2
Y4 3.80 2.36 3.56 2.68 7/2 13/4

Figure 5. Intermediate results in a graph with four vertices whose weights follow exponential laws with expected value one. CorLCA and Cordyn
give the same result for this graph. In this simple example, the density function of the result can be formally derived and is (x2−2x+2−2e−x)e−x.

10% value used for the heterogeneity in the weight CV is
therefore a compromise.

Second, we decided that, for a given graph, all weights
would follow the same law (among the five given in Table 2)
but with different parameters. These parameters may be
inferred from the expected value and chosen variance of the
weight. This is direct for the uniform and normal laws. The
exponential law has only one parameter that is determined by
the expected value (the variance is thus discarded). If weights
follow a beta law, then the maximum and minimum values are
determined by the expected value and the variance while the
shape parameters are α = 2 and β = 5. For the Weibull law,
we used a simple dichotomic iterative method to set the scale
and shape parameters.

The 48×3+60 = 204 PSPLIB instances, the 24×8 = 192
STG instances and the 45 ISCAS instances are generated with
the default values given in Table 2. Moreover, a subset of these
instances (48 PSPLIB, 24 STG and all ISCAS) are used with
the tested values. For each tested value, the other parameter
takes its default value. This leads to a total of (204 + 192 +
45) + (48 + 24 + 45)× 7 = 1260 graphs.

Table 2
Parameters and values for the instance generation.

Parameter Default value Tested values

Law uniform normal, exponential,
beta, Weibull

Expected value of the
coefficient of variation 0.1 0.01, 0.03, 0.3

5.2 Method Qualities
To evaluate the quality of CorLCA and Cordyn, we com-
pare them to three other methods: Sculli’s approach (Sec-
tion 3.2.2), a series-parallel reduction approach using nu-
merical methods (Section 3.2.1) and the canonical approach
(Section 3.2.3).

All the comparisons are done using Emapse (Evaluation
of MAx-Plus Stochastic Expression), a tool described in Ap-
pendix A.

In the following, the results obtained with the Monte
Carlo method with at least one million iterations serve as the
reference. Among the possible error metrics for assessing the
solutions, we have chosen the Kolmogorov-Smirnov statistic
as explained in Appendix B.

5.2.1 General Comparison
Figure 6 presents a summary of the efficiencies of the five
compared methods. For each generated instance and for each

xlim

Sculli

xlim

0:
1

51.83 % (<)
8.41 % (=)

1.000

xlim

0:
1

75.56 % (<)
5.24 % (=)

0.344

xlim

0:
1

87.30 % (<)
6.11 % (=)

0.134

xlim

0:
1

89.60 % (<)
5.71 % (=)

0.115

log(F[i, j,])x xlim

0:
1 Series−

Parallel

xlim

0:
1

76.11 % (<)
5.24 % (=)

0.358

xlim

0:
1

88.41 % (<)
6.27 % (=)

0.150

xlim

0:
1

89.92 % (<)
5.87 % (=)

0.129

log(F[i, j,])x log(F[i, j,])

F
re

qu
en

cy

x

F
n(

x)

xlim

0:
1 Canonical

xlim

0:
1

75.08 % (<)
7.78 % (=)

0.761

xlim

0:
1

81.11 % (<)
7.86 % (=)

0.605

log(F[i, j,])x log(F[i, j,])

F
re

qu
en

cy

x

F
n(

x)

log(F[i, j,])

F
re

qu
en

cy

x

F
n(

x)

xlim

0:
1 CorLCA

xlim

0:
1

52.86 % (<)
16.27 % (=)

1.000

1e−02 1e+00 1e+02

F
re

qu
en

cy
F

n(
x)

1e−02 1e+00 1e+02

F
re

qu
en

cy
F

n(
x)

1e−02 1e+00 1e+02

F
re

qu
en

cy
F

n(
x)

1e−02 1e+00 1e+02

0:
1 Cordyn

Figure 6. Pairwise comparison of five methods on 1 260 graphs using
the Kolmogorov-Smirnov statistic as the error metric. Lower-left part:
histograms and ECDF of the ratios between error measures of each pair
of methods (ratio of the row to the column). Upper-right part: fraction
of the ratios that are greater or equal to 1 and median ratio.

pair of methods (characterized by a line and a column), we
compute the ratio between the Kolmogorov-Smirnov statistics
for both methods (ratio of the line over the column). If this
ratio is equal to one, then both methods produce an identical
result in terms of precision. If this ratio is lower than 1, then
the result of the method on the line is better than the method
on the column. Each plot in the lower-left part shows the
histogram and the ECDF of these ratios. The upper-right
part summaries these data (each summary corresponds to the
ratios shown in the symmetric cell). For instance, we remark
that the results produced by the canonical approach are less
precise than those produced by CorLCA in 75.08% of the cases
and that they have the same precision in 7.78% of the cases.
Finally, the median ratio is 0.761 in this example.

We can conclude that both the proposed methods behave
favorably relatively to the other three methods. We also
remark that Sculli’s approach is the worst and that the
method based on series-parallel reductions is not far. Cordyn
is the best heuristic and is slightly better than CorLCA. The
canonical approach is at the middle: it is significantly better

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

11

that the worst two approaches and significantly less precise
than the proposed heuristics.

5.2.2 Comparison to An Upper Bound
We recall that the series-parallel reduction approach produces
an upper bound on the distribution of the longest path length
(see Section 3.3). We observe that our approaches (CorLCA
and Cordyn) are more precise than this upper bound in more
than 88% of the cases. This supports our motivation for
precise heuristics even if no guarantee is provided. Indeed,
in this case, an approximated algorithm (that gives an upper
bound) can be much farther from the correct value than a
heuristic.

5.2.3 Parameter Effects
We show the effect of each parameter on the precision of each
method on Figure 7 to Figure 9. We focus on three parameters:
the number of weights in a graph, the laws followed by these
weights and the expected value of the coefficients of variation
of these weights.

The precision of the five considered methods are assessed
with the Kolmogorov-Smirnov statistic (as in the previous
section) and are represented through boxplots. A boxplot
consists of a five number summary of a set of values: the
median is the thick horizontal segment, the box extends
from the first quartile to the third one, and the length of
the whiskers is 1.5 times the interquartile range. Note that
with one million iterations, we are 99% confident that the
difference of the reference (given by the Monte Carlo method)
with the exact distribution is below 1.629h (see Section 3.4).
Therefore, any statistic that is below this threshold (depicted
by a horizontal line on the figures) means that the true error
lies between 0 and 2 × 1.629h. On this opposite, values are
upper bounded by 1.

On Figure 7, we see how varies the precision of each
method when the number of random variables increases.
The precision of Sculli’s and the series-parallel reduction
approaches decrease when the size of the graph increases. The
median of the Kolmogorov-Smirnov is always greater than 0.2
when the size is greater than or equal to 500, whereas this
value is lower for smaller graphs. There is indeed a signifi-
cant change when the size reaches this value. The canonical
approach has a similar behavior, though the precision of
this method is globally better. In contrast, the precision of
CorLCA and Cordyn are relatively stable when the size of the
graph increases.

All approaches against which we confront our methods
are considerably imprecise for graphs containing more than
a thousand random variables: for the three approaches, the
medians of the Kolmogorov-Smirnov statistics are close to one
with 1 000 random variables.

The effect of the probability law that is selected for the
entire graph is shown on Figure 8. The exponential law poses
the greatest difficulty (even for approaches relying on numer-
ical methods). This is indeed the law that differs the most
from the normal law among those that are tested. In addition,
its discretization is difficult due to its steep slope at the origin
and its long tail. This imposes to perform an antagonist choice
between a short discretization interval and a large definition
support. On the contrary, normal and uniform laws are the
most favorable to our heuristics and to the canonical approach

●

●

●

●

●●
●

●
●●

●

●
●

●

●
●
●
●

●

●

●
●

●

●●

●

●●●
●
●

●

●●

●

● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●●

0.001

0.010

0.100

1.000

30 60 100 500 1000 1500
Size of the graph

K
ol

m
og

or
ov

−
S

m
ir

no
v

st
at

is
tic

Method Sculli Series−Parallel Canonical CorLCA Cordyn

Figure 7. Effect of the number of random variables on the precision.

●●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●●

●●●

●

●
●
●●●●●●●●●●●●●●●●●●

●

●
●
●●

●

●●

●

●

●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

0.001

0.010

0.100

1.000

beta exponential normal uniform Weibull
Random variable law

K
ol

m
og

or
ov

−
S

m
ir

no
v

st
at

is
tic

Method Sculli Series−Parallel Canonical CorLCA Cordyn

Figure 8. Effect of the law on the precision.

(the other two methods behave similarly for all laws distinct
from the exponential one).

Last, Figure 9 depicts the effect of the coefficient of vari-
ation (ratio of the standard deviation to the expected value
of each weight) on the precision. We remark a general trend
for each method that consists in a loss of precision when this
coefficient increases. We explain this by the simplicity with
which a maximum is evaluated when operand supports do
not overlap. In this case, the result of the operation is the
operand with the highest expected value. The greater the
coefficient of variations, the lower the number of situations for
which this direct method can be applied. Thus, increasing the
uncertainty in a directed acyclic graph with random weights
accentuates the errors related to the maximums.

5.3 Computation Time
We study the computation times of several methods on the
previous subset of 117 instances. The Monte Carlo method
was also included with 10 to one hundred thousand iterations.
To avoid unrelated initialization time, each method was run
twice in the same program and only the second run was
measured. A single core of an Intel(R) Xeon(R) CPU E5-
2660 at 2.20GHz (SandyBridge) was used. More than 88%
of the execution times are below 1 second with a median
time of 67 ms. The average execution times are depicted

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

12

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●●

●●●

●

●
●
●●●●●●●●●●●●●●●●●●

●

●
●
●●

●

●●

●

●

●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

0.001

0.010

0.100

1.000

0.01 0.03 0.1 0.3
Coefficient of variation

K
ol

m
og

or
ov

−
S

m
ir

no
v

st
at

is
tic

Method Sculli Series−Parallel Canonical CorLCA Cordyn

Figure 9. Effect of the expected value of the coefficient of variation of
all weights on the precision.

●
●

● ● ●

●

●

●
●

●
●●●
●●●●●●●●

●

●● ●
●
●●

●

●●●●●●●

●

●

●

●

●●
●

●
●

●

●
●

●

●
● ●

●

0.01

1.00

100 10000
Size of the graph

T
im

e
(s

ec
on

d)

Method
● Sculli

Series−Parallel

Canonical

CorLCA

Cordyn

MC 10000

Figure 10. Computation times of each method in function of the number
of random variables in the graph.

on Figure 10. For clarity, only the execution time for the
Monte Carlo method with ten thousand iterations is shown.
With this number of iterations, we are 99% confident that
the difference with the exact distribution is below 1.629%
(see Section 3.4). Increasing the size of the instance has a
clear effect on the performance of all methods. However, the
execution time depends on other parameters than the number
of random variables such as the structure of the graph, this
is why the execution time is not strictly increasing with the
size. For instance, there is no maximum in the case of chains,
whereas there is as much maximums as sums in the case of
in-trees.

Figure 11 presents ratios of computation times. For each
instance, the computation time of each method is divided by
the minimum computation time among all the methods. A
ratio close to one indicates that the achieved performance is
close to the best one. Note that the Monte Carlo method has
execution ratios greater than 100 (in particular for the largest
two number of iterations), which are not shown in this figure.
Also, the computation times are summarized independently
of the number of weights in the graphs because the impact of
this parameter was found to be low.

Sculli’s and the canonical approaches are the fastest meth-

●

●●

●

●

●●

●
●

●

●●

●

●
●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

1

10

100

Sculli

Series−Parallel

Canonical

CorLCA
Cordyn

MC 10

MC 100

MC 1000

MC 10000

MC 100000

Method

T
im

e
ra

tio

Figure 11. Ratios of the computation times of each method over the
best computation times among all five methods and five Monte Carlo
methods with varying number of iterations.

ods. The canonical approach constitutes thus an interesting
trade-off between the speed and the precision. CorLCA is
the third fastest method (excluding Monte Carlo simulations).
This figure indicates that Cordyn and the approach based on
series-parallel reductions are comparable.

The ratios for the Monte Carlo simulations depend par-
ticularly on the implementation of the pseudo-random gener-
ator5 and should be interpreted with caution. The previous
analysis shows that the precision of Canonical, CorLCA and
Cordyn are mostly comparable to or lower than 1.629%, which
is the precision achieved by the Monte Carlo method when
the number of iterations is ten thousand iterations. Thus,
our experiments suggest that these three methods outperform
the Monte Carlo method given our hardware and software
environment.

The complexity of CorLCA is conjectured to be the same
as Sculli’s approach. However, the implemented method per-
forming LCA requests does not have a constant time complex-
ity, which penalizes CorLCA.

In most cases, the series-parallel reduction approach is
dominated by the canonical approach both in terms of speed
and in terms of precision. This dominance is sufficiently im-
portant to conclude that series-parallel reductions are not an
efficient mechanism in our context. The four other approaches
(excluding Monte Carlo simulations) represent each a distinct
compromise in terms of speed and precision.

6 Conclusion
In this paper, we study the problem of evaluating the dis-
tribution of the completion time of a set of dependent jobs
with random durations. More precisely, the evaluation con-
sists in characterizing the law that follows a random variable
that is defined by a succession of maximums and sums of
random variables. In practice, this problem difficulty comes
from dependencies between the intermediate results, which
is due to path reconvergences. In contrast, when sums and
maximums are applied on independent random variables, then
the evaluation is direct.

5. A specialized coprocessor for generating pseudo-random values
could significantly impact these results.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

13

Two heuristics, CorLCA and Cordyn, are proposed. They
represent each a new compromise in term of speed and preci-
sion relatively to the approaches against which our heuris-
tics are confronted to. Moreover, we empirically compare
approaches from the literature. Last, all these approaches have
been implemented in a software, Emapse, which allows a fair
comparison of several approaches in a unified way.

We show that series-parallel reductions do not constitute
an interesting method for the considered instances as it is
often less precise and slower than the canonical approach.
CorLCA is the fastest heuristic among the ones for which the
precision remains stable when the size of the graph increases.
It is therefore a relevant choice when designing a scheduling
heuristic that requires an efficient evaluation mechanism.

This paper focuses mainly on the scheduling problem, but
our solutions can be applied to other related fields (project
management and circuit design) as the models are similar.
For instance, in the digital circuit case, there are dependencies
between the random variables of the set X . Although CorLCA
ignores these dependencies, Cordyn can be generalized by
considering correlations between weights in the graph. In
this case, correlation computations must be extended to the
correlation coefficients between the intermediate results (Yi
and Yij) and each weight X ∈ X (with the same asymptotic
complexity).

One future work direction concerns the analytical study
of the problem. There exist exact approaches when the graph
structure verifies some specific properties and when all ran-
dom variables follow the same type of laws. Using a law that
is closed both under the maximum and the sum would provide
an exact method for series-parallel graphs.

Another direction is about the empirical validation of the
approaches. This could easily be extended to compare other
approaches from the literature. Moreover, the factors that
degrade the estimation of each approach (in particular for the
canonical approach) remain to be determined.

Finally, yet another direction is to investigate the analysis
of the algorithmic time complexity of both proposed. On
one hand, characterizing the time complexity of CorLCA
requires to study a problematic related to searching for the
lowest common ancestor in a rooted tree. On the other hand,
minimizing the time complexity of Cordyn using an optimal
topological order is related to the vertex separation problem
and the sum cut problem [42]. These problems, however, are
beyond the scope of this paper.

Acknowledgments
We would like to thank Ihab El Alami for his participation to
the development of the platform Emapse, in particular for his
implementation of the series-parallel reduction approaches.

Computations have been performed on the supercomputer
facilities of the Mésocentre de calcul de Franche-Comté.

References
[1] J. N. Hagstrom, “Computational complexity of PERT prob-

lems,” Networks, vol. 18, no. 2, pp. 139–147, 1988.
[2] L.-C. Canon and E. Jeannot, “Evaluation and Optimization of

the Robustness of DAG Schedules in Heterogeneous Environ-
ments,” IEEETransactions on Parallel and Distributed Systems,
vol. 21, no. 4, pp. 532–546, Apr. 2010.

[3] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu, “A stochastic
scheduling algorithm for precedence constrained tasks on grid,”
Future Generation Computer Systems, vol. 27, no. 8, pp. 1083–
1091, 2011.

[4] W. Zheng and R. Sakellariou, “Stochastic dag scheduling using
a monte carlo approach,” Journal of Parallel and Distributed
Computing, vol. 73, no. 12, pp. 1673–1689, 2013.

[5] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems,”
Computers, IEEE Transactions on, vol. 64, no. 1, pp. 191–204,
Jan 2015.

[6] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar,
“Application of a Technique for Research and Development
Program Evaluation,” Operations Research, vol. 7, no. 5, pp.
646–669, Sep. 1959.

[7] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statisti-
cal timing analysis: From basic principles to state of the art,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 4, pp. 589–607, Apr. 2008.

[8] L. Zhang, W. Chen, Y. Hu, and C. Chen, “Statistical static
timing analysis with conditional linear max/min approximation
and extended canonical timing model,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 6, pp. 1183–1191, Jun. 2006.

[9] M.-J. Yao and W.-M. Chu, “A new approximation algorithm
for obtaining the probability distribution function for project
completion time,” Computers & Mathematics with Applications,
vol. 54, no. 2, pp. 282–295, 2007.

[10] M. S. Krishnamoorthy and N. Deo, “Complexity of the
minimum-dummy-activities problem in a pert network,” Net-
works, vol. 9, no. 3, pp. 189–194, 1979.

[11] R. H. Möhring, “Scheduling under uncertainty: Bounding the
makespan distribution,” in Computational Discrete Mathemat-
ics. Springer, 2001, pp. 79–97.

[12] D. C. Montgomery and G. C. Runger, Applied Statistics and
Probability for Engineers, 5th ed. Wiley, 2010.

[13] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed.
Dover Publications, 1987.

[14] C. E. Clark, “The greatest of a finite set of random variables,”
Operations Research, vol. 9, no. 2, pp. 145–162, Mar./Apr. 1961.

[15] J. J. Martin, “Distribution of the Time through a Directed,
Acyclic Network,” Operations Research, vol. 13, no. 1, pp. 46–
66, Jan. 1965.

[16] B. Dodin, “Bounding the project completion time distribution in
PERT networks,” Operations Research, vol. 33, no. 4, pp. 862–
881, Jul. 1985.

[17] W. W. Bein, J. Kamburowski, and M. F. M. Stallmann, “Op-
timal reduction of two-terminal directed acyclic graphs,” SIAM
Journal on Computing, vol. 21, no. 6, pp. 1112–1129, 1992.

[18] A. Ludwig, R. H. Möhring, and F. Stork, “A Computational
Study on Bounding the Makespan Distribution in Stochastic
Project Networks,” Annals of Operations Research, vol. 102, no.
1–4, pp. 49–64, Feb. 2001.

[19] D. Sculli, “The Completion Time of PERT Networks,” The
Journal of the Operational Research Society, vol. 34, no. 2, pp.
155–158, Feb. 1983.

[20] S. S. Sapatnekar and H. Chang, “Statistical Timing Analysis
Under Spatial Correlations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 9,
pp. 1467–1482, Sep. 2005.

[21] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
S. Narayan, D. K. Beece, J. Piaget, N. Venkateswaran, and
J. G. Hemmett, “First-order incremental block-based statistical
timing analysis,” IEEETransactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 10, pp. 2170–
2180, Oct. 2006.

[22] A. Müller and D. Stoyan, Comparison Methods for Stochastic
Models and Risks. Wiley, 2002.

[23] G. B. Kleindorfer, “Bounding Distributions for a Stochastic
Acyclic Network,” Operations Research, vol. 19, no. 7, pp. 1586–
1601, Nov. 1971.

[24] N. Yazici-Pekergin and J.-M. Vincent, “Stochastic Bounds on
Execution Times of Parallel Programs,” IEEE Transactions on
Software Engineering, vol. 17, no. 10, pp. 1005–1012, Oct. 1991.

[25] D. R. Fulkerson, “Expected Critical Path Lengths in PERT
Networks,” Operations Research, vol. 10, no. 6, pp. 808–817,
Nov. 1962.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2528983, IEEE
Transactions on Parallel and Distributed Systems

14

[26] P. Robillard and M. Trahan, “Expected Completion Time in
PERT Networks,” Operations Research, vol. 24, no. 1, pp. 177–
182, Jan. 1976.

[27] J. Kamburowski, “Normally Distributed Activity Durations in
PERT Networks,” The Journal of the Operational Research
Society, vol. 36, no. 11, pp. 1051–11 057, Nov. 1985.

[28] G. Weiss, “Stochastic bounds on distributions of optimal value
functions with applications to pert, network flows and reliabil-
ity,” Annals of Operations Research, vol. 1, no. 1, pp. 59–65,
1984.

[29] R. M. van Slyke, “Monte Carlo Methods and the PERT Prob-
lem,”Operations Research, vol. 11, no. 5, pp. 839–860, Sep./Oct.
1963.

[30] J. M. Burt and M. B. Garman, “Conditional Monte Carlo: A
Simulation Technique for Stochastic Network Analysis,” Man-
agement Science, vol. 18, no. 3, pp. 207–217, Nov. 1971.

[31] G. Saporta, Probabilités, analyse des données et statistiques.
Editions Technip, 2006.

[32] K. M. Chandy and P. F. Reynolds, “Scheduling partially or-
dered tasks with probabilistic execution times,” in SOSP ’75:
Proceedings of the fifth ACM symposium on Operating systems
principles, New York, NY, USA, 1975, pp. 169–177.

[33] R. R. Weber, “Scheduling jobs with stochastic processing re-
quirements on parallel machines to minimize makespan or flow-
time,” Journal of Applied Probability, vol. 19, no. 1, pp. 167–182,
1982.

[34] M. L. Pinedo, “Stochastic Scheduling with Release Dates and
Due Dates,” Operations Research, vol. 31, no. 3, pp. 559–572,
1983.

[35] ——, Scheduling: Theory, Algorithms, and Systems. Springer
Publishing Company, Incorporated, 2008.

[36] R. Cole and R. Hariharan, “Dynamic LCA Queries on Trees,”
in Proceedings of the tenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Math-
ematics Philadelphia, PA, USA, 1999, pp. 235–244.

[37] H. N. Gabow, “Data Structures for Weighted Matching and
Nearest Common Ancestors with Linking,” in Proceedings of
the first annual ACM-SIAM symposium on Discrete algorithms,
1990, pp. 434–443.

[38] R. Kolisch and A. Sprecher, “Psplib - a project scheduling
library,” European Journal of Operational Research, vol. 96, pp.
205–216, 1996.

[39] T. Tobita and H. Kasahara, “A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms,” Journal of
Scheduling, vol. 5, no. 5, pp. 379–394, 2002.

[40] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: A case study in reverse engineering,” IEEE Design
& Test, vol. 16, no. 3, pp. 72–80, 1999.

[41] F. Brglez, D. Bryan, and K. Koźmiński, “Combinational profiles
of sequential benchmark circuits,” in IEEE International Sym-
posium on Circuits and Systems, 1989, pp. 1929–1934.

[42] J. Díaz, J. Petit, and M. J. Serna, “A Survey of Graph
Layout Problems,” ACM Computing Surveys, vol. 34, no. 3, pp.
313–356, 2002. [Online]. Available: http://dblp.uni-trier.de/db/
journals/csur/csur34.html#DiazPS02

[43] L.-C. Canon, “Emapse: code and scripts,” May 2015. [Online].
Available: http://dx.doi.org/10.6084/m9.figshare.1409399

[44] T. G. Stockham, “High-speed convolution and correlation,” in
Proceedings of the AFIPS Sprinp Joint Computer Conference,
1966, pp. 229–233.

[45] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer Sim-
ulation, vol. 8, no. 1, pp. 3–30, 1998.

[46] M. A. Stephens, “Tests based on edf statistics,” in Goodness-
of-Fit Techniques, R. B. D’Agostino and M. A. Stephens, Eds.
Marcel Dekker, New York, 1986, pp. 97–193.

[47] A. H.-S. Ang and W. H. Tang, Probability Concepts in Engi-
neering: Emphasis on Applications to Civil and Environmental
Engineering, 2nd ed. Wiley, 2006.

[48] T. W. Anderson, “On the distribution of the two-sample cramér-
von mises criterion,” The Annals of Mathematical Statistics,
vol. 33, no. 3, pp. 1148–1159, Sep. 1962.

[49] A. Bhattacharyya, “On a measure of divergence between two sta-
tistical populations defined by their probability distributions,”
Bulletin of the Calcutta Mathematical Society, vol. 35, no. 4, pp.
99–109, 1943.

Louis-Claude Canon Louis-Claude Canon is an
assistant professor at the University of Franche-
Comté. He received his Master degree in com-
puter science in 2007 from both the ESEO (Ecole
Supérieure d’Electronique de l’Ouest) and the
University of Angers. He started his Ph.D. on un-
certainty management in parallel systems at the
Loria (Laboratoire Lorrain de Recherche en Infor-
matique et ses Applications) and finalized it at
the LaBRI (Laboratoire Bordelais de Recherche
en Informatique). He received its Ph.D. degree in

computer science from the University of Nancy in 2010. After his Ph.D.,
he spent two years as a postdoc: one year at the University of Grenoble
and one year at the Irisa laboratory in Rennes. He is now teaching
computer science at the University of Franche-Comté and conducting
research at FEMTO-ST. His main research interests include scheduling,
stochastic optimization and reproducible research.

Emmanuel Jeannot Emmanuel Jeannot is a re-
search scientist at Inria. (Institut National de
Recherche en Informatique et en Automatique).
He is conducting his research at INRIA Bordeaux
Sud-Ouest and at the LaBRI laboratory since
2009.

Emmanuel Jeannot got his his Master and
PhD degrees in computer science both from
Ecole Normale Supérieure de Lyon, at the LIP
laboratory, respectively in 1996 and 1999. After
his PhD, he spent one year as a postdoc at the

LaBRI laboratory in Bordeaux.
From 1999 to 2009 he did his research at the Loria Laboratory in

Nancy. From 1999 to 2005, he was assistant professor at the Université
Henry Poincaré, Nancy 1. From 2005 to 2009 he worked for the Nancy
Grand-Est Inria research center. Additionally, in 2006 he he was a visiting
researcher at the University of Tennessee, ICL laboratory.

His main research interests spans the vast domain of parallel and
high-performance computing and more precisely: processes placement,
topology-aware algorithms, scheduling for heterogeneous environments,
data redistribution, algorithms and models for parallel machines, adap-
tive online compression, and programming models.

http://dblp.uni-trier.de/db/journals/csur/csur34.html#DiazPS02
http://dblp.uni-trier.de/db/journals/csur/csur34.html#DiazPS02
http://dx.doi.org/10.6084/m9.figshare.1409399

