
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 1

Mobile Cloud Support for Semantic-enriched
Speech Recognition in Social Care

Antonio Corradi, Member, IEEE, Marco Destro, Luca Foschini, Member, IEEE,
Spyros Kotoulas, Member, IEEE, Vanessa Lopez, Member, IEEE, Rebecca Montanari Member, IEEE

Abstract—Nowadays, most users carry high computing power mobile devices where speech recognition is certainly one of the main
technologies available in every modern smartphone, although battery draining and application performance (resource shortage) have a
big impact on the experienced quality. Shifting applications and services to the cloud may help to improve mobile user satisfaction as
demonstrated by several ongoing efforts in the mobile cloud area. However, the quality of speech recognition is still not sufficient in
many complex cases to replace the common hand written text, especially when prompt reaction to short-term provisioning requests is
required. To address the new scenario, this paper proposes a mobile cloud infrastructure to support the extraction of semantics
information from speech recognition in the Social Care domain, where carers have to speak about their patients conditions in order to
have reliable notes used afterward to plan the best support. We present not only an architecture proposal, but also a real prototype that
we have deployed and thoroughly assessed with different queries, accents, and in presence of load peaks, in our experimental mobile
cloud Platform as a Service (PaaS) testbed based on Cloud Foundry.

Index Terms—Mobile Cloud, Semantic Web, Speech Recognition, Natural Language Processing.

F

1 INTRODUCTION

C LOUD computing architectures have gained more and
more momentum in recent years and most vendors

are looking at them to provide feasible solutions for opti-
mal exploitation of their own infrastructures. At the same
time, the ever-increasing wireless connection bandwidths,
hardware memory, and processing capabilities have boosted
the spreading of new mobile devices, such as smartphones,
tablets, and netbooks. Notwithstanding their great poten-
tial, mobile devices exhibit still strict constraints on local
resources and mobile support design typically focuses on
saving the most precious energy resource; for this reason,
applications that require high amounts of processing power
and resources cannot be easily ported to and deployed atop
of them.

Mobile cloud, by bringing together mobile and cloud
computing areas, can provide a solution to the above issue:
it allows to move resource-demanding tasks that require
high energy computation from the mobile device to the
cloud computing infrastructure, thus enabling the avail-
ability of complex applications within edge-devices with
limited resources [1], [2]. For instance, Content Based Image
Retrieval (CBIR) requires a lot of computing and resources
to compute a set of metrics from an image, and then to
match them against the metrics of the images stored in a
database [3]. By moving the computing and the matching
processes to the Cloud, resources of user devices are saved,
making CBIR feasible, even in resource-limited devices.
Similarly, mobile device antivirus protection can be enabled
by shifting the heavy-load file signature matching process
into the Cloud [4].

Along that direction, mobile speech recognition repre-
sents a very good example of an application area that
can greatly benefit of the new Mobile Cloud Computing
paradigm. Currently, to reduce resource consumption on
mobile devices, mobile speech recognition solutions only

provide syntactic-based speech recognition which is useful
only in specific cases, such as when the aim is finding
out most commonly used keywords or injecting routinely
commands to the user’s mobile device. No support for
text meaning checking is, however, provided, thus ham-
pering the exploitation of mobile speech recognition in a
widespread set of application domains, especially the ones
that require reliable and complex text analysis and search-
ing, such as social- and health- care ones.

Mobile cloud computing can leverage mobile speech
recognition adoption in several application scenarios by
allowing designers of mobile speech recognition systems to
envision not only syntactic but also semantic-based speech
recognition. Semantic Web extends the content of normal
data with additional structured information (metadata) that
provide semantics support so to allow machines to interpret
and deal about data meaning. The Mobile Cloud paradigm
offers the advantage of providing a backend for the ex-
ecution of complex semantic-based text recognition algo-
rithms. There are several factors of complexity stemming
from semantic-based text representation. The process of data
description has become more challenging with the huge
increase and the steady growth of unstructured data from
a data engineering point of view: a particular tough case
is the management applied to data coming from speech
recognition. In fact, if the task consists in giving a limited
number of commands to the machine, existing semantics-
agnostic systems perform pretty well, but if there is a neces-
sity to create and save data referred to a particular domain
or context, checking previously its meaning, the efficiency
is usually not enough and users often still prefer to write
them manually. Moreover, the Speech Recognition provided
to users in these systems usually lists a set of ordered by
confidence possible matches, but once the text is returned
and it does not represent one of the previous described



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 2

keywords, the device is not capable of understanding its
meaning at all. For this reason, a tool able to analyze the dif-
ferent proposed matches, understand their meaning, choose
the most appropriate one, and finally extract the semantics
of what the user really wanted to write down could be very
useful.

This paper tackles the above issues by proposing Mobile
cloud Support for Semantic-enriched speech recognition in
Social Care (MoSSCa), a novel infrastructure that addresses
above semantic-enriched speech recognition and scalability
issues by melding together the advantages of Semantic Web
and mobile cloud computing at the Platform as a Service
(PaaS) level. Our proposal has several core original aspects.
First, to the best of our knowledge, it is one of the first
proposals enabling mobile care workers to exploit semantic-
speech recognition during their care delivery activities. As
we will describe in the following Section, this domain
combines deep technical challenges and very high societal
relevance. In addition, the particular application domain has
been selected based on first-hand industrial experience. Sec-
ond, the MoSSCa support allows fine-grained, efficient, and
fully-distributed cloud infrastructure monitoring and man-
agement of all involved backed components by promptly
and proactively triggering effective elastic scaling actions,
thus guaranteeing prompt replies even during heavy and
peak load conditions. Third, the proposed solution is based
on open speech recognition components and the cloud
support has been realized and integrated within the new
open-source Cloud Foundry PaaS and have been tested in a
real cloud deployment based on the open-source OpenStack
Cloud IaaS platform; as relevant contribution, the proposed
PaaS management platform for dynamic Cloud Foundry
load balancing is available for the cloud community as
an open-source prototype that can be easily integrated in
other different cloud PaaS solutions. Finally, we show the
results of an extensive MoSSCa use campaign in which we
involved a mix of native and non-native English speakers,
and challenged MoSSCa with several different queries for
real patients histories so to assess its effectiveness in realistic
settings; we also assessed system performances in terms of
resource local and distributed resource usage and overall
PaaS-enabled mobile cloud support scalability. Obtained
experimental results show quantitatively and qualitatively
how the exploitation of the PaaS-based MoSSCa infrastruc-
ture improves performance for the Social Care area.

The rest of the paper is structured as follows. Section
2 contextualizes our work and motivates its main goals.
Section 3 introduces needed background material about the
tools and platforms employed for the realization of the
MoSSCa support. Section 4 presents MoSSCa architecture
and its main component and Section 5 presents main in-
tegration and implementation insights. Section 6 reports a
thorough evaluation of functional and system-/resource-
consumption aspects of the proposed approach. Section 7
reports related works and Section 8 we provide conclusions
and future work directions.

2 MOBILE CLOUD FOR SOCIAL CARE

There are several mobile application fields that can ben-
efit from the exploitation of the mobile cloud computing

paradigm for their design, development and deployment.
Mobile commerce, mobile gaming, social care and mobile
healthcare are significant examples along with all other
applications where mobile users require searching services
(e.g., searching information, location, images, voices, or
video clips). This section focuses on the social care appli-
cation domain by motivating the need for a mobile cloud
enabled support system in order to offer advanced services
onboard social caregiver mobile devices, such as semantic-
enriched speech recognition. Then, this section reports a
focused selection of related social care research efforts in
the mobile cloud area.

Care spans domains with tremendous economic impact:
averaged across the members of the Organization for Eco-
nomic Cooperation and Development (OECD), Social Care
and Healthcare account to some 21% and 9.3% of the GDP
respectively1. Public Safety, Justice and Education, domains
that also have a large economic footprint, directly influence
and are influenced by Care. The information relevant to
Care is deeply complex: for healthcare, Nuance reports that
LinkBase R©2 contains more than 1 million concepts. Social
care depends on information from a very broad domain,
from numerous relevant organizations (social service ad-
ministration, educational institutions, homeless shelters and
public safety authorities, etc) and differs across administra-
tive boundaries.

In this paper, we are focusing on care delivery in the sense
of the delivery of services to teams of care workers. Care
workers have multiple and very heterogeneous specialisa-
tions: they can be nurses, medical assistants, care assistants,
social workers or medical doctors. A key business factor
driving this research is that a large proportion of the care work-
ers’ time is spent performing tasks outside their unique skillset.
For instance, in a New York hospital, a survey has shown
that 9.2 minutes out of a 15-minute doctor’s visit were spent
on social needs, crowding out clinical care [5]. Cowden et al.
[6] report that up to 40% of social worker’s time is spent on
administrative tasks, depriving them of valuable time with
their customers. At the same time, a single social worker
may be responsible for thousands of people [5], making the
need for timely and efficient information sharing as pressing
as ever.

The societal and economic relevance of supporting care
workers on the field is not easy. A series of research and
technical challenges need to be addressed before a practical
system can be deployed in a real-world setting. First, the
amount of relevant information for a care worker is large. In
order to support care workers on the field, a system would
need to access large amounts of data, including medical
ontologies, in order to understand medical terms, ontologies
for common sense knowledge to understand commands
and context, ontologies about social care, to understand
various aspects pertaining to the social, psychological and
behavioural condition of the person, among many others.
In addition, processing this information entails compu-
tational challenges. As an example, machine-interpretable
voice capability includes speech-to-text processing, result-

1. OECD Factbook 2012, figures for 2011
2. http://www.nuance.com/for-healthcare/resources/clinical-

language-understanding/ontology/index.htm



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 3

ing in multiple text interpretations of the input. For each
text interpretation, we can have multiple meanings of the
lexical and grammatical structure. In turn, for the different
lexical and grammatical productions, we can have multiple
semantic interpretations, which need to be ranked to get the
most relevant ones. Obviously, this explosion of the number
of interpretations results in a computational explosion that
is difficult to handle on a mobile phone. At the same time,
the mobile phone may store valuable contextual information
that may not be possible to transmit to a server due to leg-
islative restrictions. Indeed, for practical and legal reasons,
care workers would need to have immediate access to the
selected interpretation, so as to verify its correctness.

2.1 Semantic-Enriched Speech Recognition Use Cases

As motivation for our work (and driver for the evaluation
section), we consider the scenario where a care worker visits
a vulnerable individual. We outline two motivating use-
cases: intelligent note-taking and assisted assessments.

Care workers largely rely on case notes. Depending on
the expertise of the care worker, case notes may be generic
observations such as “Michael has a problematic relation-
ship with Mary” or more domain specific, such as “Michael
is complaining about pains in the lower abdomen”. Typi-
cally, these notes are written using pen and paper, and, in
some cases, an information system such as a note-taking
program.

Although these notes can give very important insight
to care workers, usually they are not sharable, because that
would require copying them to a central file. Understanding
and (semantically) indexing these notes would improve col-
laboration and allow care workers to get a complete picture
of an individual since it would allow queries such as “give
me all information regarding the psychological function of
this person”.

A key tool for care workers is standardised assessments
of the strengths, skills, needs and weaknesses of vulnera-
ble individuals. Assessments are essentially questionnaires
and corresponding guidelines pertaining to various factors
of the individuals life, including biological, financial, be-
havioural, psychological and social factors. Assessments can
take anywhere from 10 minutes to multiple days.

Typically, assessments are conducted using pen and
paper. Given recent advances in speech-to-text technology,
mobile and Cloud computing, there is a significant oppor-
tunity for improvement. A system to be used to automate
this process would save care workers much needed time,
by automating input while they conduct the assessment. In
addition, it would enable self-assessment through the use of
standard phones.

As outlined in the previous section, this process is expen-
sive, and necessitates assistance from a Cloud infrastructure
in terms both of computation and data storage.

2.2 Mobile Cloud Solutions for Social/m-Health Care

Mobile cloud computing for social care is a new emerg-
ing area with no assessed solutions specifically tailored
to support the previously described motivating social care
delivery scenario. Instead, more research efforts have been

directed to provide cloud-enabled mobile healthcare which
can be considered a close research field posing similar chal-
lenges. The limited computational power, battery life and
memory capacity of existing mobile devices significantly
reduce their ability to execute resource-intensive health ap-
plications, such as patient data analysis, and patient medical
data storage. In addition, mobile devices used by patients
and physicians can experience loss of connectivity due
to network disconnections that hampers real-time medical
data accessibility and prevent users from synchronizing
medical updates between the mobile device and the back-
end healthcare management system.

The integration of mobile health applications and mobile
cloud computing is expected to facilitate the deployment of
cost-effective, scalable and flexible mobile healthcare sys-
tems, to limit the workload of mobile devices by offloading
heavy computation on health data.

In particular, mobile cloud computing offers several ad-
vantages which include the possibility to offer richer func-
tionalities and services, such as speech recognition, medical
video streaming and medical data mining, to improve ef-
ficiency in terms of computation, storage, communication
and energy and to reinforce reliability. For instance, when
the battery of a mobile device dies, the mobile application
can still continue running in the cloud without interruption.

Different frameworks and solutions have been proposed
to support mobile cloud-enabled healthcare management. In
[7] a cloud-based system is presented that enables collecting
patients vital data via a network of sensors connected to
legacy medical devices, and delivering the data to a med-
ical center cloud for storage, processing, and distribution.
The main benefits of the system are that it can provide
users anytime real-time data collecting, eliminates manual
collection work and the possibility of typing errors, and
eases the deployment process. Another cloud computing
protocol management system has been proposed in [8] that
provides multimedia sensor signal processing and security
as a service to mobile devices to relieve mobile devices from
executing heavier multimedia and security algorithms in
delivering mobile health services. That can also improve the
utilization of the ubiquitous mobile device for societal ser-
vices and promote health service delivery to marginalized
rural communities. An interesting cloud initiative called
Dhatri is described in [9] which leverage the power of cloud
computing and wireless technologies to enable physicians
to access patient health information at anytime from any-
where. Similarly in [10] a cloud-based prototype emergency
medical system for the Greek National Health Service is de-
scribed that integrates the emergency system with personal
health record systems to provide physicians with easy and
immediate access to patient data from anywhere and via
almost any computing device while containing costs. Other
solutions that witness the benefits of mobile cloud com-
puting for mobile health applications include the Mobile
Cloud for Assistive Healthcare infrastructure for assistive
healthcare [11], the cloud-enabled WBAN architecture de-
scribed in [12] that shows the functionality and reliability
of mobile cloud computing services, and the mobile cloud
telemedicine framework in [13] that takes advantage of the
real-time, on-site monitoring capability of Android mobile
device and the abundant computing power of the cloud.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 4

3 BACKGROUND ON SPEECH RECOGNITION
TOOLS AND MOBILE CLOUD PAAS PLATFORM

This section introduces some background knowledge to pro-
vide a better understanding of the MoSSCa infrastructure.
First, we focus on the speech recognition workflow and
available environments and tools to implement it. Then,
we introduce the Cloud Foundry open source PaaS that we
used to realize the mobile cloud support for elastic MoSSCa
semantic-enriched speech recognition service provisioning.

3.1 Semantics-enriched support for Speech Recogni-
tion and Natural Language Processing

Automatic Speech Recognition (ASR) can be defined as
the computer-driven transcription of spoken language into
readable text in real time: it is the technology that allows
a computer to identify the words that a person speaks into
a microphone or telephone and convert it to written text.
The quality of these systems has reached levels adequate
to make them very diffused and common in a variety of
different contexts. Nowadays, these systems are available
on every modern smartphone and they usually produce
multiple matches (caused by problems like noise, accents,
dialects..) ordered by a confidence level. In order to ex-
tract the linguistic and semantic information to identify
the best textual option, it is possible to analyse the inter-
dependencies and meaning between the textual matches
using pipelines performing Natural Language Processing
(NLP), that are commonly used to associate metadata,
typically called annotations, to the text. To perform this
task there are various available tools, and in this work
we decided to employ the General Architecture for Text
Engineering (GATE) framework [14] due to its openness and
ease of use. In fact, GATE Java-based infrastructure offers a
large variety of tools and components able to process human
language: from the most simple tokenisers and sentence
splitters to more advanced parsers or name entity research
tools. There are three particular types of components:

• LanguageResources (LRs): represent entities such as
lexicons, corpora, and ontologies;

• ProcessingResources (PRs): represent entities that are
primarily algorithmic, such as parsers;

• VisualResources (VRs): represent visualization and
editing components that participate in GUIs.

We built a pipeline of PRs, where the most advanced
tools rely on the results returned after the sequential execu-
tion of the previous resources, i.e., the annotations which
include information associated to the text analysed (e.g.,
tokens, part-of-speech -POS-, features), to process and cre-
ate further annotations using LRs. In particular, the main
GATE components used in MoSSCa include the Stanford
parser [15] and the gazetteer, introduced in the following
paragraphs.

The Stanford parser is a probabilistic parsing system with
data files available for parsing Arabic, Chinese, English and
German. This PR acts as a wrapper and translates GATE
annotations to and from the data structures managed by
the parser itself. In particular, this PR produces a type of
annotation called Dependency, that represents a grammatical

relation between words in a sentence. Stanford Dependen-
cies (SD) are triplets composed by the name of the relation,
a governor word and a dependent word. For instance, these
type of relations represent which word is, respectively, the
main verb, the subject, and the object in a sentence, or which
noun an adjective is referring to.

As regards the gazetteer, it refers primarily to a LR,
namely, a set of lists containing names of entities such
as cities, organisations, days of the week, etc. These lists
are used to find occurrences of these names in text de-
fined as entity recognition; in addition, the same term (i.e.
“gazetteer”) is also used to refer the PRs that use those lists
to find occurrences of the names in text. When a gazetteer
PR is running on a document, it will enrich it with specific
Lookup annotations for each matching string in the text that
matches with the entities in the gazetteer LR. In particular,
the OntoRoot gazetteer was adopted to create these lists of
entities from two ontologies representing the Social Care
domain.

The first ontology is derived and extended from the
Social Care Taxonomy 3 and it provides a controlled vo-
cabulary and hierarchical arrangement of social care topics
for browsing, searching and indexing material on Social
Care Online. Its extended version consists of 1085 classes,
26 object properties and 3 data properties. In addition the
knowledge bases were extended through the use of Hu-
man Diseases Ontology [16], a standardized ontology with
the purpose of providing the biomedical community with
consistent, reusable and sustainable descriptions of human
disease terms, phenotype characteristics and related medical
vocabulary. The version adopted comprises 8797 classes and
15 object properties.

Finally, in order to glue together the semantic-enriched
output obtained from the GATE toolchain with other dis-
tributed components, mainly MoSSCa mobile client app we
exploit the lightweight Linked data format. Linked data has
emerged as a paradigm for information integration across
domains and systems [17], that typically adopts the RDF4

representation. The basic RDF model stores information as
a set of labeled edges across nodes with unique, global
identifiers. Typically, a standardized triple notation is used,
consisting of RDF terms, typically referred to as Subject-
Predicate-Object triples. Data are usually stored in a data
store (typically referred to as triple store or RDF store) and
queried through the SPARQL Protocol and RDF Query Lan-
guage (SPARQL) query language [18]. Among the several
possible availalbe RDF serialization formats, in our work
we adopt the JavaScript Object Notation for Linked Data
(JSON-LD), a lightweight syntax to serialize Linked Data in
the widely diffused JSON format, so to ease the integration
with Web-based programming environments, such as the
MoSSCa backend exposing Representational State Transfer
(RESTful) APIs.

3.2 Cloud Foundry
Cloud Foundry is an open-source Platform as a Service
infrastructure, initially developed by VMWare with the aim
of promoting data backup and recovery and accelerate

3. http://www.scie.org.uk/publications/misc/taxonomy.asp
4. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 5

the entrance into the Cloud [19]. Cloud Foundry, primary
written in Ruby, a dynamic, general-purpose object-oriented
language, provides a number of frameworks, languages,
and ready to use Services to the end users for implementing
their web applications.

Focusing on its distributed architecture, Cloud Foundry,
to grant the widest possible scalability, reliability, and
elasticity, follows some design guidelines, namely, loose
coupling with event-driven and non-blocking interactions.
Cloud Foundry includes: i) a local database component to
store its internal state; ii) a set of internal core components
realizing all main PaaS management functions; and iii) an
API component acting as a service front-end to export sevice
functionalities via interoperable RESTful APIs. Interactions
between internal service components are facilitated by a
publish/subscribe messaging service based on Not Another
Tibco Server (NATS) and acting as common communication
bus, whenever possible, and by management functions ex-
posed via external RESTful APIs calls or NATS, especially
to limit synchronization costs when frequent interactions are
necessary such as for continuous resource monitoring.

Following these main design guidelines, Cloud Foundry
consists of five main components: the Cloud Controller,
the Health Manager, the GoRouter, the Droplet Execution
Agents (DEAs) and Warden container, and a set of Services.
Other components include the User Account and Authenti-
cation (UAA) server for PaaS costumer authentication, and
Stacks to provide a common set of development tools and
libraries; for additional details about all the Cloud Foundry
components illustrated in Figure 1, we refer interested read-
ers to [19].

The Cloud Controller represents the core PaaS system
component: this component exposes the main REST inter-
face providing a set of APIs for PaaS clients to access the
system. It maintains an internal database with specific tables
to register apps, services, service instances, user roles, and
more configurations.

The Health Manager is a standalone daemon with the
aim of retrieving the current applications status and of
periodically checking and managing the application to re-
cover it in a safe status in case of faults. For instance,

Fig. 1. Cloud Foundry Architecture Overview

when an application crash happens while it is running, the
Health Manager will ask the Cloud Controller to re-start the
application instance.

The GoRouter is the daemon that routes incoming traffic
to the appropriate component, usually the Cloud Controller
or a running application on a DEA node such as in the case
of the MoSSCa backend.

Another essential component is the DEA that acts as
local agent deployed at each computing node to manage the
whole application lifecycle. In Cloud Foundry, applications
are wrapped up and deployed as self-contained execution
entities called droplets. Each droplet contains all needed con-
figuration/binding parameters as well as stop/start script-
ing logic to de-/activate them. Cloud Foundry support
droplet execution isolation via Warden containers whose
primary goal is to provide isolated environments that can
be limited in terms of CPU usage, memory usage, disk
usage, and network access by using different kernel resource
namespaces [19]. DEA acts as coordinator for all Warden
containers running on the same node and realizes several
main key functionalities, such as staging and running ap-
plications (i.e., droplets), managing their lifecycle of each
application instance running it in a separate Warden con-
tainer, and starting and stopping containers/applications
upon requests from the Cloud Controller.

Every component communicates with each other with
NATS, a lightweight publish-subscribe and distributed
queuing messaging system [20]. The NATS client pro-
vides asynchronous communication, in order to grant non-
blocking behavior when publishing messages through the
service. When a component of Cloud Foundry first boots, it
subscribes to the NATS server using the IP of the machine
in which the messaging server is running and the port on
which is listening using specific credentials (a username
and a password). It then subscribes to all the subjects its
interested in, and publishes messages such as heartbeats and
advertising communications.

Cloud Foundry provides a set of third-party compo-
nents, such as an external DB service, called Services. Ser-
vices are any type of add-on which can be provisioned
alongside web applications, such as SQL and no-SQL
databases, messaging system, etc. Each Service has a com-
mon architecture consisting on two components: a Service
Broker that communicates with the Cloud Controller via a
set of API for the provision and binding of a service instance;
and a Service Node, where the real service processes are
running.

Let us conclude this section noting that Cloud Foundry,
notwithstanding the management facilities, still lacks a thor-
ough support for elastic scaling of applications at run-time.
At the current stage, Cloud Foundry already offers some
APIs to scale, either horizontally by adding new application
instances or vertically by requiring more resources (e.g.,
memory and disk space), but those APIs have to be invoked
directly by application providers; at the same time, some
companies are offering their own autoscale support prod-
ucts for Cloud Foundry. However, an internal Cloud Floun-
dry core component in charge of taking over all needed
monitoring and dynamic reconfiguration operations needed
to elastically scale applications and making them available
to the final users automatically is still missing.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 6

4 MOSSCA ARCHITECTURE

The design and deployment of a semantic-enriched speech
recognition service for social care delivery pose several
sociological and technological challenges stemming from
the need to cope with different requirements.

From the sociological point of view, social workers
should be able to have a more convenient, real-time and
reliable experience when using an automated speech recog-
nition service rather then when taking notes or writing
assessments by hand in order to convince them to change
their habits. In addition, by operating from mobile devices
caregivers should rely on efficient speech recognition ser-
vices that do not drain mobile device’s energy impeding
them to use their mobile devices for other tasks.

From the technological point of view, since the social
caregiver’s professional life can be very hectic, they often
take crucial information about their patients during their
sessions quickly and often using a lot of abbreviations.
These confused notes are then usually clear just to the
author and not very helpful to the team to plan coordinate
actions or therapies. A quick way to gather this type of
information in an understandable way is crucial to improve
social care delivery results and effectiveness. To speed up
interactions with the patient, the most convenient way to
insert the information would be to speak directly to the
mobile phone summarizing the patient information. This
method anyway faces the technical challenge to transform
the speech into a reliable and machine-understandable in-
formation. Information misunderstanding could produce
several health risks for the patient and legally risks for
the social worker, thus requiring reliable speech recognition
techniques. In addition, without properly designed func-
tionalities, it is impossible for a machine to understand
information semantics or contextualizing the information
gathered.

To address these requirements, MoSSCa adopts two
main guidelines, a semantic-enriched approach to speech
recognition and a mobile cloud support. In particular, the
MoSSCa mobile cloud-based architecture is composed of
two modules: a client and a server application on the cloud,
as represented in Figure 2. The client application must cope
with the need for mobility of social carers. For this reason
the speech recognition is performed through mobile devices,
while the results are analysed first on a server application,
where the domain of the speech is represented through
ontologies, and, depending on the operation chosen, they
are then compared on the mobile device with the context,
which consists in the data previously known about the pa-
tients. This double check on the data enhances the reliability
of both the machine understandable information produced
and the text selected as best option. Moreover, let us note
that storing the context at the mobile side allows to keep
the server side very simple and stateless and to always
have local access to patient information even in presence
of possible intermittent disconnections.

Splitting the whole process was even almost necessary
under many different resource perspectives. First, since
ontologies and models (representing the components of the
language to be analysed) to perform the NLP tasks may
be demanding in terms of storage available at the mo-

Fig. 2. Cloud infrastructure workflow

bile device. Second, and most important, notwithstanding
ever-increasing computing power available on mobile de-
vices nowadays, NLP tasks require processing large models
and knowledge bases (such as the two ontologies used in
MoSSCa, that could increase for other different applicative
domains) and that forced us to exclude the possibility to
run at the mobile device (see also experimental results
shown in Figure 7). Hence, moving the semantic enrichment
workflow execution at a powerful cloud backend, with more
resources and tools dedicated, is indeed a strict requirement
in these mobile cloud scenarios.

4.1 MoSSCa Mobile Client
We designed the mobile application to locally implement
several important parts of the speech recognition process,
with the design goal of making it resilient to possible in-
termittent disconnection and idiosyncrasies of the wireless
medium. It locally translates the speech into text, then it
exploits the powerful cloud backend to remotely execute
the semantic enrichment step, but finally the mobile client
also locally stores the context of all patients cared by the
social worker, by iteratively extending this context with
the new semantic-enriched information input by the social
carer. In particular, existing context is used to evaluate the
semantic data extracted (by the server) from the text, to
check if the concepts recognized in the text match with the
clinic data already collected in the past about the client.
When that match occurs, we define the semantic-enriched
speech recognition as valid and we update the local context
knowledge base accordingly, otherwise we discard it. For
instance, if the user speaks of a disease that she has already
suffered, it is considered valid only if there is a match with
a RDF triple already present in her context.

Focusing on the internal architecture, with the goal to
grant the widest portability the realized mobile application
it is mostly based on pure HTML5 and Javascript tech-
nologies, but we also had to access some native device
functionalities. The design and development of the app,
that runs on Android, was heavily influenced by the the
Industry Solutions Mobile Core Framework developed by
IBM, namely, the IBM Worklight framework. Worklight
supports HTML5 and is compatible with all most diffused
Javascript frameworks such as jQuery, DOJO, and PouchDB



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 7

Fig. 3. Mobile architecture

to store JSON tuples; through Apache Cordova it also allows
to access native device functions via a native-to-Javascript
plugin.

Figure 3 shows Mobile Client architecture and all its
main components that work in a pipeline. First, we exploit
native speech recognition Android API to extract text re-
sults, ordered by confidence score, from voice samples; then,
according to this order we build the requests to direct to the
cloud backend. To perform server invocations we employ
the chain of responsibility pattern: the first match is sent to
the server application and the results obtained are evaluated
on the context data already known about the patient; if the
results are valid the invocation ends, otherwise the next
match in the confidence level order is sent until a valid result
is retrieved or all possible matches are evaluated.

Finally, focusing on context knowledge base storage,
semantic-enriched data returned by the server are returned
as a JSON-LD document. This RDF format is very handy
and can be directly stored in a JSON store; in MoSSCa
we opted for PouchDB, a local JSON store that runs inside
mobile web browser. Moreover, via Cordova and the SQLite
API we integrated PouchDB with the local SQL Lite server
so to persist JSON-LD triples for future interactions with the
same patient.

4.2 MoSSCa Server and Backend Components

MoSSCa server side is in charge of parsing incoming text
and to extract semantic information from it. To foster wide
scalability we decided to realize the service as a stateless
REST server, by including in it also all needed ontologies

Fig. 4. Backend architecture

and lexical databases, to make it easily replicable and
portable. Moreover, in order to obtain effective results we
had to integrate at the server side several different tools
and several different LRs and PRs by composing them in a
complex toolchain as better explained in the following (see
Figure 4).

For the development of the REST service we used the
Apache Wink framework; in addition, because the mobile
application uses IBM Worklight and its optimized Work-
light communication format, the backend includes also the
Worklight Adapter component (see Figure 4). The REST
service receives the text and process it through a NLP
pipeline based on GATE; unfortunately, GATE does not
natively support pipeline distribution across different hosts,
but it supports concurrent execution of thread-safe GATE
pipelines by multiple threads. Hence, we designed and
configured the REST server with a pool of thread resources
to obtain local server scalability, and then we support au-
tomatic and elastic vertical scalability through application
replication across different DEA as better explained in the
next section.

Focusing on the whole request processing workflow,
when incoming requests arrive, the service feeds them into
the GATE pipeline that performs different concurrent tasks,
namely, sentence splitting, tokenisation, POS tagging, mor-
phological analysis, parsing, and name entity recognition
through the knowledge bases described in Section 3.1. Then,
the Stanford parser recognizes which words represent sub-
jects, predicates, and objects, and gazetteers annotate text
with name entities; through the combination of these two
types of information it is possible to create triples <subject,
predicate, object>with the URIs of the entities recognized



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 8

from the ontologies, in the RDF format then sent back to the
Mobile Client as JSON-LD.

Delving into finer details, apart these major steps, the
text processing includes also other steps aimed to further
increase the effectiveness of the semantic-based recognition.
An important one is evaluating semantic matches against
the knowledge bases, not only for the received text, but also
for synonyms of those incoming words. This is particularly
important because while for the classes and entities there
are already synonyms described in the knowledge bases
adopted for the Social Care domain, the same does not apply
for the object properties (the predicates). For this reason,
a lexical database was used to retrieve more synonyms
for these predicates to increase the possibilities of matches
in the knowledge bases. Since the language tested was
English, we employed the widely accepted WordNet5: when
a predicate is found by the Stanford Parser, but the Gazeteer
does not produce any result, we retrieve a list of synonyms
and use them to replace the predicates until they are all
analysed or a valid match for the synonym is retrieved from
the ontologies.

4.3 Cloud Foundry PaaS Support for MoSSCa
Semantic-enriched speech recognition asks for an elastic
support able to dynamically adapt to the current incoming
requests, by replicating the application on unloaded nodes
and, eventually, grow and shrink the cluster by need. As
anticipated in Subsection 3.2, Cloud Foundry does not com-
pletely support all the features required in a dynamic Cloud
environment. In fact, Cloud Foundry neither elastically
scales up/down, nor is able to execute resource rebalancing
in order to exploit more computational power provided by
nodes temporarily added to the backend.

To solve the above issues, we have designed our origi-
nal Cloud Foundry PaaS autoscaling support for MoSSCa
shown in Figure 5. The distributed architecture relies on
two main components: the Provisioning Engine and the
Monitoring Aggregator.

The Provisioning Engine is the core component that acts
autoscaling manager; it listens for scaling requests from
DEA and, interacting with the Monitoring Aggregator, takes
informed scheduling decisions about the DEA to choose for
the deployment of the new application instance taking care
of performing the up(down) scaling procedure by interact-
ing with the Cloud Controller.

The Monitoring Aggregator is the module responsible
of collecting monitoring information about both physical
and PaaS resources. A traditional Cloud Foundry PaaS can
collect monitoring information about the resources used by
all application instances managed by each DEA, and use
them to take scheduling decisions. However, the PaaS level
typically has no (cross-layer) visibility of the underlying
physical host performances, this is true especially when the
PaaS runs atop a virtualized IaaS layer as in the case of
Cloud Foundry over OpenStack deployments. In this way,
if the new application instances are instantiated on a host
with limited (physical/virtual) resources, this can lead to
performance degradation without the DEA and PaaS being
able to react to it. This calls for an external monitoring

5. http://wordnet.princeton.edu

Fig. 5. Cloud Foundry MoSSCa support

facility that periodically collects and tracks metrics also from
physical hosts, such as memory or CPU consumption and
disk I/O rates.

In addition, we extended the DEA, deployed at each
physical node, to collect performance indicators at the appli-
cation layer, such as request processing delays and number
of correctly served incoming requests. Starting from those
applicative information, the DEA periodically monitors the
situation locally and if detects that the load is over (below)
an upper (lower) threshold, it sends a scaling request to
the Provisioning Engine. Monitoring operations on physical
hosts allow the Provisioning Engine detect load conditions
effectively, even those caused by other VMs potentially
running on the same physical host.

5 MOSSCA IMPLEMENTATION

5.1 Context-Aware Speech Recognition
In order to disambiguate the text from the speech recogni-
tion, the text was analysed first on the backend application
through the knowledge bases that represent the domain
and then on the mobile application through the retrieved
JSON-LD document that represent the context (the patient
history). Nevertheless it is not always so straightforward to
bridge the gap between the user vocabulary and the entities
that need to be retrieved from the knowledge bases. In fact,
many times in common language we use unclear subjects
as pronouns or more complex cases as anaphoras, words
whose meaning depends on previous ones. For instance for
a machine it is very difficult to understand the sentence ”He
has diabetes which is caused by malnutrition”.

To resolve the ambiguity about the generic subjects on
the backend application there is a default value that tries to
guess who the user is referring to when personal pronouns
are used. Since the use case tested was the one related to
Social Care this value was setted to the generic class that
describes patients in the knowledge bases. In particular
the subject of the previous sentence ”He” will produce
the generic ibm:scv#patients class. This guess was possible
thanks to some checks on the candidates triples before cre-
ating them that are going to be explained in the next section.
If the triple make sense and it is really returned to the mobile
application, the subject of the triple is then replaced with the
patient that was chosen by the user such as ibm:scv#Vincent
during the tests with the previous example.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 9

To cope with anaphoras instead a large variety of De-
pendencies types were analysed to understand which one
is the entity referred by subjects like ”that” or ”which” that
are used as relative pronouns or conjunctions. This is useful
to understand in the previous sentence that the real subject
that ”which” is referring to is ”diabetes”.

5.2 Semantic Text Disambiguation
To create the semantic triples we have to analyze the an-
notations produced by the Stanford parser and the Onto-
Root gazetteer. First, we consider the grammatical relations
represented as Dependencies: in fact, the Stanford parser
produces some relations such as nsubj(has, he) that indicates
that ”he” is the subject of the verb ”has” or dobj(has, diabetes)
that selects ”diabetes” as the object of the verb ”has”. These
relations are useful to retrieve the subject and the predicate
of the triples, but the concept of object in RDF is ambiguous
due to the huge number of possible types represented as
dependencies. To cope with that, after retrieving the subject
and predicate of a candidate triple, all the words connected
to the predicate are analyzed to verify if a Lookup anno-
tation; we search for an annotation derived from the on-
tologies such as (sentence=”diabetes”, URI: ”ibm:scv#diabetes”,
type: ”class”) that indicates which class corresponds to a
specific piece of text. If one is found, the candidate triple
is ready for further checks to verify its meaning.

Indeed before creating the final triple, the infrastructure
verifies, through the properties domain and range of each
predicate described in the ontologies, if the subjects and
objects are admissible for the predicate recognized in each
candidate triple. These two properties describe which (type
of) values are admissible as subject and object, considering
the inferences over subsumption-based type hierarchy. If
the entities retrieved are valid, the triple is not discarded.
This check is fundamental to resolve the guess on generic
subjects previously described and to evaluate synonyms of
the predicate through WordNet as described in Subsection
4.2.

As a final consideration, let us outline that MoSSCa
support for semantic-based speech recognition allows to
manage specific diseases. The system depends on the on-
tology coverage to annotate the relevant terms in the text,
giving a semantic meaning to the triples that are extracted
from it. If the object (or subject) of a triple is not annotated
as a known type (e.g., a disease) the triple cannot be se-
mantically disambiguated or verified. This, however, does
not exclude to consider additional diseases. The coverage
of new diseases can be extended by adding new ontologies
and extending the existent ones. For instance, Life Science6

is a well-represented domain on the Linked Open Data and
our system can benefit from reusing these Web-wide wealth
of resources, rich in meaning and structure.

5.3 Autoscaling Components and Integration with
Cloud Foundry
We implemented the Monitoring Aggregator with the goal
of granting the widest possible visibility about all used
and available resources at the different cloud protocol stack

6. http://lod-cloud.net/state/

levels. The Monitoring Aggregator is heavily based on our
previous work on scalable and semantic-enabled Dargos
and SMACS monitoring frameworks [21], [22], and inte-
grates also with the widely adopted opensource Zabbix
monitoring tool [23]. Through the RESTful APIs exposed by
Dargos, SMACS, and Zabbix server, the Monitoring Aggre-
gator retrieves and makes available monitoring information,
such as memory and CPU utilization at physical and IaaS
levels as well as application performance parameters. In
particular, the Monitoring Aggregator maintains the corre-
spondence between DEAs and the physical host; every time
the Provisioning Engine requests monitoring information
about DEAs, it can also obtain monitoring data of all VMs
and physical hosts.

For the implementation of the Provisioning Engine, we
took advantage of the features of the highly flexible, plug-
gable and open-source Cloud Foundry. All communications
are based on NATS by subscribing to existing topics, such
as for interactions with the Cloud Controller and GoRouter,
but also introducing new topics as needed, such as for
monitoring data exchange with the Monitoring Aggregator
and autoscale control messages with the DEA and the Cloud
Controller. Focusing on application instance activation func-
tion, we created a new control topic called instance.scale.
Whenever the CPU or memory load of a certain application
instance is over/under a threshold, configurable by the user,
the DEA interacts with the Provisioning Engine to init the
up/down-scaling process by publishing a scaling request
on the instance.scale topic. Then, the Provisioning Engine
obtains monitoring data from the Monitoring Aggregator,
decides the DEA where the new application instance will
be instantiated by choosing the least loaded one from the
perspective of PaaS, IaaS, and physical indicators (it uses a
simple linear combination of collected performance moni-
toring indicators), and sends the scale up/down command
to the Cloud Controller, that has been extended to listen on
our new instance.scale topic.

Of course, up/down-scaling processes can take some
time to be completed. Cloud Controller coordinates with
the target DEA to push (i.e., download) the droplet, only if
needed because not already present there, and to start the
application instance in a separate Warden container; then,
target DEA notifies other components, especially the GoR-
outer through the router.register topic about the availability
of a new up-and-running application instance. Thereafter,
new incoming MoSSCa requests will be forwarded by the
GoRouter to all MoSSCa application instances, including the
new one, by using the default round robin strategy. Let us
note that more complex load balancing strategies are possi-
ble, but we preferred to use the default round robin policy,
without implementing also active load balancing at runtime,
because it was sufficient to scale our semantic-enriched
speech recognition application due to the stateless nature of
the MoSSCa backed. In addition, we made minimal changes
on purpose to maintain the widest possible portability and
interoperability of our autoscale support with the vanilla
Cloud Foundry distribution.

6 EXPERIMENTAL EVALUATION

MoSSCa research, development and deployment have been



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 10

driven by an industry scenario within the context of the
IBM Curam solution7. To test the performance of MoSSCa,
we ran an extensive set of both functional and performance
tests. From a technical perspective, our mobile cloud testbed
environment consists of a various Samsung I8190 smart-
phones featuring a dual core ARM Cortex-A9 processor
running at 1 GHz and 1 GB RAM running Android 4.1,
and an OpenStack platform deployed on 3 physical Linux
servers, each equipped with 2 16-cores AMD Opteron 6376
processor at 2.3 GHz and 32 GB RAM, connected through
three 1 Gbps LANs, and running Linux Ubuntu 12.04.
Focusing on the Cloud Foundry infrastructure, it has been
deployed atop OpenStack and consists of 8 VMs, each run-
ning a separate CloudFoundry component: GoRouter, UAA,
CloudController, HealthMonitor, NATS, Syslog Aggregator,
and 2 DEAs. Moreover, other 3 VMs were deployed to pro-
vide services used by Cloud Foundry components, namely
a Postgres database, a NFS server, and etcd. Each VM is
equipped with 1 VCPU, 2GB RAM and 20 GB HDD. From a
social perspective, we first executed some seminal tests that
involved a wide set of colleagues. Those tests demonstrated
a high correlation between the nationality (and especially,
English v.s. non-English native speakers) and speech recog-
nition performances obtainable with MoSSCa, while there
was a small variance between performances obtained for the
different people with the same nationality. Consequently, we
decided to restrict our study to a smaller set of 11 volunteers
who were subjected to a series of longer tests; 5 of them are
native English speakers and 6 are not: we asked them to
speak to the support system 19 queries extracted from two
patients histories. In particular, the 19 proposed queries are
different: there are 6 queries composed only by subject, 9 by
predicate and object, and 4 more complex ones with more
complements and passive queries. An example of a query
of the first group is ”he has committed vandalism”, one of
the second group is ”john suffer from dementia that was
complicated by alcohol misuse” and one of the third group
is ”the patient is supported by job”.

Delving into finer details, we analyzed several different
aspects; in particular, we first focused on functional aspect
of MoSSCa semantic-enriched speech recognition and tested
that:

• it enhances the performances of the speech recogni-
tion system,

• it is quick enough to justify its use instead of normal
handwritten notes,

• it retrieves the correct semantic information associ-
ated to what the user said,

• it is able to check on domain and range properties to
improves overall performances.

Then, we focused on MoSSCa mobile cloud support perfor-
mances and assessed that:

• it performs well in a single node settings deployment
in the case of both single users and larger groups,

• it is able to elastically autoscale and absorb load
peaks by requiring reasonably short times for PaaS
dynamic reconfiguration.

7. http://www-03.ibm.com/software/products/en/social-
programs

Fig. 6. Word Accuracy Improvements with Context Update

Starting from the functional tests, to evaluate speech
recognition we adopted the most diffused metric in
this area: the word accuracy. Given a reference sen-
tence, word accuracy is defined as 1-WER, where
WER stands for Word Error Rate and is expressed
as wrong word guesses/all words in reference sentence, where
wrong word guesses includes errors due to wrong substitu-
tions, insertions, and deletions. To highlight the improve-
ments caused by the support system, the matrix in Figure
6 shows the values representing the word accuracy of the
matches obtained with and without the semantic-enriched
support. In the first column, we present the nationalities of
the volunteers, while the first row is used to distinguish
the 19 queries chosen to test the system. For each user, the
first row represents the values of the match that the system
would have chosen without the support, relying just on the
confidence scores. Usually the semantic support agrees with
these scores, but when a disagreement occurs, the second
row represents the word accuracy changes obtained with the
matches chosen by the support system. The scores are then
decorated with a colored scale from red (low word accuracy)
to green (high word accuracy) to highlight the differences
between the recognized speech and the reference; light
blue colors, instead, refer to improvements (the darker the
better) due to our semantic-enriched support. As it is visible
from this test, when the support system chose different
matches it caused almost always an improvement in the
word accuracy. In particular, the average values calculated
for each user in the last columns highlights how much
the not natives English speakers benefit more than natives
mother tongue ones from the use of this semantic support.
In fact, the first ones obtained an average improvement of
0.58 compared to the 0.28 obtained by the latter ones.

Figure 7 represents in logarithmic scale the time (ms)
necessary to parse the triples. The goal of this analysis
is to confirm the need of our mobile cloud approach; we
quantified the performance gap between our mobile cloud
implementation and a mobile only implementation. The mo-
bile only implementation, based on the same libraries used
at the server side, is specifically implemented to execute
only locally at the Android smartphone. In Figure 7, we
compared it with the mobile cloud implementation for the
time necessary to perform about 500 invocations, which are
produced by the multiple tries necessary to parse the 209
queries (19 for each one of the 11 users). There is a signif-



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 11

Fig. 7. Time to parse triples on server

Fig. 8. Average precision and recall per user

icant difference between the mobile only implementation,
with times that go from 60ms to 1s, and the mobile cloud
implementation, that typically presents times from 5ms to
200ms. About the outliers, the mobile cloud implementation
ones are always below 2s, while in the case of the mobile
only implementation there are cases over 2s up to 10s, thus
making worst cases intolerable. Hence, following results are
all based on the mobile cloud implementation.

About semantic correctness, we adopt precision and recall
metrics, as usually defined in Information Retrieval, and
shown in Figure 8. Focusing on the different performances
between precision and recall, they are mainly due to the
fact that recall depends mostly from the speech recognition
performance that is highly affected by different accents and
by the performance of the third-party libraries used for
speech recognition. Precision, instead, is more influenced by
the ability of effectively using semantics to process recog-
nized speech, and depends on original MoSSCa components
and on the usage of good knowledge bases from which the
triples are created. Overall, obtained results are good, in
particular for precision.

Since the system is highly configurable, it is possible to
turn off the check on domain and range. That characteristic
makes it possible an easy measurement of the improvement
of the quality of the semantic information produced, as
in Figure 9. The bar chart visualizes for each user the
averages values of precision and recall. In particular, the first
two bars represent the case without our validation, while

Fig. 9. Semantics improvement with domain and range check

Fig. 10. Time to parse triples with 50 concurrent queries

the following two the performances previously described:
precision improvement is more than 10% in most cases.

Focusing on system performances, instead, we first
tested scalability of a single application instance, by loading
it with 50 multiple concurrent invocations and for different
pipeline (thread) pool sizes, respectively, 1, 5, and 10. Figure
10 shows that when the number of concurrent queries
becomes significant, it is fundamental to increase the pool
size to lower response times. In particular, we use different
colors to show different times: the average time necessary
to obtain a pipeline from the pool and use it to process the
text in blue, the one to analyze the annotations produced
and build the triples in red, and the time necessary for the
communication between the client and the server in green.
As one can see, the times that improved are the red and
blue, while the communication time that depends on the
length of the sentence and the quality of the wireless cellular
link introduces a (typically long) constant threshold. Even
with a limited pool size of 10, the backend is always able
to complete the semantic-enrichment process within 300ms
and to reply within 2s, thus confirming the usability of the
proposed solution for social workers.

Finally, we assessed the performance of our autoscaling
support by overloading it with 500 concurrent requests per
second. During these tests, we monitored CPU usage for
different application instances for the upscale situation as in
Figure 11; we obtained similar results, not shown here due
to space limitation, for downscale. We set the CPU threshold
to 50% on the DEA. At the beginning there is one only active
application instance, then, at second 43s, after sampling
an overload situation for some times (to avoid triggering



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 12

Fig. 11. MoSSCa support and CPU load redistribution with autoscaling.

autoscaling actions too aggressively, especially in presence
of short load peaks, DEA waits for 3 multiple consecutive
alarms for 3 consecutive periodic samples, every 10 sec-
onds), the DEA triggers the autoscaling process and a sec-
ond instance is activated and incoming load is redistributed;
the same situation occurs, respectively, at seconds 183s and
373s. As regards the duration of the upscale operation, it
depends on the actions the Cloud Controller has to take.
When the droplet is already present at the DEA node, the
application instance starting process is typically very fast
and requiring always less than 5 seconds (this is the case
in the experimental results shown in Figure 11). When the
droplet has to be downloaded through the standard Cloud
Foundry push operation, instead, more time is needed,
typically up to 50 seconds for the download of all the code
and related ontologies and all related LRs. Finally, some
time is also required by the GoRouter to configure and apply
the routing rule to direct traffic in a round robin fashion
also to the new application instance; that is the reason why,
after the startup, the application instance CPU load remains
low for a certain time span. In any case, our support is
able to automatically scale the backend by granting correct
and prompt processing times, always below 300ms, and
obtained autoscale provisioning times are compatible with
the semantic-enriched speech recognition requirements.

7 RELATED WORK

In the last years several projects have been carried out that
address the different issues involved by automatic speech
recognition, such as speech-into-text translation, text anno-
tation, text comparison, storage, and searching. However,
to the best of our knowledge, no comprehensive infrastruc-
tures supporting all the functionalities of MoSSCa and tar-
geted at mobile devices have been proposed. The majority of
solutions differ mainly on the annotation technique adopted
and on the source of the text that can be either multimedia
files, simple text files or text obtained from speech recog-
nition. For that reason and because text annotation is also
a fundamental management aspect for an automatic speech
recognition system, we focus the state of art on available
annotation solutions. In particular, we restrict the focus to

semantic-based text annotation solutions that have proved
their effectiveness for texts coming from various sources,
while for an extensive survey on approaches and tools for
ontology-based information extraction, we refer interested
readers to [24].

In particular, we will first discuss the very few projects
exploiting ontology-based annotation techniques for texts
obtained from speech recognition and then the annotation
solutions for multimedia files. We will also present, at the
end of the section, solutions for textual files that, in our
opinion, provide useful insights for research in the speech
recognition field.

One interesting use of an ontology-based annotator that
works on speech recognition is proposed in [25]. This project
focuses on the problem of choosing the best hypothesis
generated by a tool performing speech recognition. For that
purpose they present an algorithm that uses an annotator
to calculate a score representing the semantic coherence of
text recognized from speech. The algorithm uses a graph
representation of an ontology to annotate concepts identi-
fied in the text and analyse their dependencies. This is done
through the is-a hierarchy representation of the ontology
and it is enhanced by parent relationships, so scores evaluate
distances between concepts recognized in the graph, and
these scores can weight the different matches produced
by the speech recognition tool and to choose the most
appropriate one.

An annotator whose scope is to provide high level in-
formation for audio files analysing the speech recognized in
them is proposed in [26]. Keywords are recognized from a
vocal source and returned as a list with the related confi-
dence. These entities are then associated to the files to allow
information retrieval based on content. In particular, they
develop an automatic content annotation system that works
on the assumptions that the Knowledge Base (KB) of several
domains is described by ontologies. In addition, there is a
keyword spotting system trained with some pre-annotated
files through phonetic decoding and proper keyword spot-
ting.

An annotator for multimedia files (audio/video) is pro-
posed in [27] where annotations are organized in multiple
and sequential tiers, and the final one encloses the annota-
tions derived from an ontology called General Multimedia
Ontology. Differently from previous one, it does not provide
a automatic annotation system but it is up to the user to
annotate manually the content of the files choosing the
opportune entities from the ontology.

Interesting annotation solutions for textual files include
the proposals described in [28] and [29]. In [28] authors
considered NLP process, like the POS annotation, as the
task of choosing the appropriate tag word from an ontology
of categories. Their framework focuses on the annotation
of anaphoric relations, words whose meaning depends on
previous one in the text. In particular, the solution analysed
permits users to choose a document, load an ontology and
then selecting manually part of the text annotate the corpus
with its entities. Therefore instance of a certain concept can
be annotated with grammatical information. When users
annotates an entity, they can specify whether it refers to
a set of concepts previously annotated proposed by the
framework. In this way, erroneous annotations of relations



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 13

TABLE 1
Comparison of semantic-enriched text analysis solutions

Reference Type Relation-
Aware AnnotationsCorpus

[25] Automatic No No TASR
[26] Automatic No No A
[27] Manual No Yes A/V
[28] Manual No No T
[29] Automatic No Yes T
[30] Automatic Yes No T

are excluded.
On the other hand, [29] provides an automatic solution

for annotating text corpus with ontologies: it developed a
plugin for the framework GATE, that will be described for
its influence on our work. This plugin called OWLExporter
allows to analyse text corpus and generate entities based
on an ontology that are used to populate the ontology
itself. That is done through the use of two ontologies: one
representing the domain and one that is used for NLP
analysis.

This type of process is usually called Ontology Learning
and Population (OL&P) and an approach is in [30], where
the problem of Knowledge Extraction from text is faced
by adaptation and reusing Boxer, a linguistic tool based
on Discourse Representation Theory (DRT) that generates
formal semantic representation of text based on event se-
mantics. Since this tool produces a logical form from natural
language that is not compliant with the usual formats of
Semantic Web Data, a set of rules for transforming Boxer
output to OWL/RDF ontologies is designed.

The remainder of this section summaries the main com-
mon characteristics observed in the previously analysed
ontology-based annotators as shown in Table 1.

The first fundamental characteristic (Type in Table 1)
is the capability of providing annotations automatically or
relying on manual ones inserted by the user. Beyond the
difference of quickness of the two different methods, its im-
portance is stressed in [31] that reports the experience with
a manual annotator ontology based for web pages. During
the experiment among 30 users initially willing to provide
information about their web pages just 15 succeeded and a
lot of annotations inserted were syntactically incorrect. The
second characteristic (Relation-Aware) is represented by the
capability of recognizing just single concepts in the corpus or
discovering even relations connecting them. The third charac-
teristic (Annotations) is the capability to support the building
of ontology annotations based on previous annotations of
other nature (typically NLP annotations). The fourth and last
characteristic (Corpus) report the type of the corpus annotated,
such as (T)ext, Text from ASR (TASN), (A)udio, and (V)ideo.

8 CONCLUSIONS AND FUTURE WORK

The exploitation of the Mobile Cloud Computing paradigm
can leverage the design and deployment of several mobile
applications whose potential is currently limited by the strict
constraints on mobile devices. Mobile speech recognition
represents a significant mobile application example that can
take advantage of the Mobile Cloud to extend its functional-
ities by offloading intensive memory and computation tasks

to the cloud. This paper proposes MoSSCa as a novel mobile
cloud-enabled speech recognition framework for social care
delivery that can provide semantic-enriched text recogni-
tion, hardly feasible on mobile devices without a mobile
cloud support architecture. In particular, MoSSCa exploits
the mobile cloud infrastructure to enrich text obtained from
the speech with semantic content and on the basis of se-
mantic annotations to allow mobile devices to interpret and
reason about the meaning of the text and the context the text
relates to. Social workers can obtain with MoSSCa a more re-
liable, effective, and device’s battery-saving experience that
can reduce their diffidence in relying on speech recognition
instead of taking notes. An extensive set of experiments
have been conducted that prove the semantic correctness,
performance, and scalability of MoSSCa.

This work paves the way to a new generation of mobile
speech recognition systems able to provide not only syntac-
tic but also semantic-based text recognition in several ap-
plication domains. We have demonstrated the effectiveness
of MoSCCa for the Health and Social Care domain, but our
proposed framework can be considered a general purpose
mobile cloud-enabled speech recognition system. In fact, the
knowledge bases and the main settings are easily suitable
for different use cases and MoSSCa adoption could then
be very useful in a large variety of different situations not
related to the Social Care specific field.

Encouraged by initial results, we are currently working
along some principal directions. In order to use the support
in real Social Care situations it is necessary to ascertain the
security of patient data now contained in the JSON store,
and possibly replicated on the network. Depending on the
country where the application will be used, there are very
different severe rules to protect personal health data. More-
over, other improvements can derive from increasing the
coverage of the knowledge bases adopted. That is possible,
by extending the ontologies, to search synonyms for both
the subjects and objects especially with different knowledge
bases. Last but not least, the system now works for English,
but it could be extended to other languages.

9 ACKNOWLEDGMENTS

We want to thank the European Commission for co-
founding the FP7 Large-scale Integrating Project (IP) Mobile
Cloud Networking (MCN) project (grant agreement no.
318109), the CIRI ICT, Center for ICT technology transfer
of the University of Bologna (grant POR FESR Emilia-
Romagna 2007-2013), and the M.Sc. student Leo Gioia for his
help in the implementation of the mobile-only prototype.

REFERENCES

[1] X. Jin and Y.-K. Kwo, “Cloud assisted p2p media streaming
for bandwidth constrained mobile subscribers,” 16th International
Conference on Parallel and Distributed Systems, pp. 800–806, 2010.

[2] L. Li, X. Li, S. Youxia, and L. Wen, “Research on mobile multime-
dia broadcasting service integration based on cloud computing,”
International Conference on Multimedia Technology (ICMT), 2010.

[3] Z. Yang, I. S. Kamata, and A. A., “Nir: Content based image
retrieval on cloud computing,” Intelligent Computing and Intelligent
Systems, pp. 556–559, 2009.

[4] J. Oberheide, K. Veeraghavan, E. Cooke, J. Flinn, and J. F., “Virtual-
ized in-cloud security services for mobile devices,” Proc. Workshop
on Virtualization in Mobile Computing, 2008.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570757, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99 14

[5] R. Onie, P. Farmer, and H. Behforouz, “Realigning health with
care,” Stanford Social Innovation Review, vol. 10, pp. 28–35, 2012.

[6] S. Cowden and A. Pullen-Sansfacon, The ethical foundations of social
work. Routledge, 2014.

[7] C. Rolim, F. Koch, C. Westphall, J. Werner, A. Fracalossi, and
G. Salvador, “A cloud computing solution for patient’s data collec-
tion in health care institutions,” Proceedings of the 2nd International
Conference on eHealth, Telemedicine, and Social Medicine, February
2010.

[8] M. Nkosi and F. Mekuria, “Cloud computing for enhanced mobile
health applications,” Proceedings of the 2010 IEEE 2nd International
Conference on Cloud Computing Technology and Science, November
2010.

[9] G. Subrahmanya, V. Rao, K. Sundararaman, and J. Parthasarathi,
“Dhatri – a pervasive cloud initiative for primary healthcare
services,” Proceedings of the 2010 14th International Conference on
Intelligence in Next Generation Networks (ICIN), October 2014.

[10] V. Koufi, F. Malamateniou, and G. Vassilacopoulos, “Ubiquitous
access to cloud emergency medical services.” Proceedings of the
2010 10th IEEE International Conference on Information Technology
and Applications in Biomedicine (ITAB), November 2010.

[11] D. B. Hoang and L. Chen, “Mobile cloud for assistive healthcare
(mocash),” inServices Computing Conference (APSCC), pp. 325–332,
2010.

[12] J. Wan, C. Zou, S. Ullah, C.-F. Lai, M. Zhou, and X. Wang, “Cloud-
enabled wireless body area networks for pervasive healthcare,”
IEEE Network, vol. 5, pp. 56–61, September 2013.

[13] W. Xiaoliang, G. Qiong, B. Liu, Z. Jin, and Y. Chen, “Enabling
smart personalized healthcare: A hybrid mobile-cloud approach
for ecg telemonitoring,” Biomedical and Health Informatics, IEEE
Journal, vol. 18, pp. 739–745, May 2014.

[14] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva, “Getting
more out of biomedical documents with gate’s full lifecycle open
source text analytics,” PLOS Computational Biology, 2013.

[15] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Gener-
ating typed dependency parses from phrase structure trees,” in
LREC, 2006.

[16] W. A. Kibbe, C. Arze, V. Felix, E. Mitraka, E. Bolton, G. Fu,
C. J. Mungall, J. X. Binder, J. Malone, D. Vasant, H. E. Parkinson,
and L. M. Schriml, “Disease ontology 2015 update: an expanded
and updated database of human diseases for linking biomedical
knowledge through disease data.” Nucleic Acids Research, vol. 43,
pp. 1071–1078, 2015.

[17] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so
far,” International Journal IJSWIS, vol. 5, no. 3, pp. 1–22, 2009.

[18] E. Prud’hommeaux and A. Seaborne, “Sparql query language for
rdf,” http://www.w3.org/TR/rdf-sparql-query/, Jan. 2008.

[19] “Cloud foundry,” http://www.cloudfoundry.org/about/index.html.
[20] “Nats messaging (nats),” http://docs.cloudfoundry.org/

concepts/architecture/messaging-nats.html.
[21] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Cor-

radi, and L. Foschini, “Dargos: A highly adaptable and scalable
monitoring architecture for multi-tenant clouds,” Future Generation
Computer Systems, vol. 29, no. 8, pp. 2041–2056, 2013.

[22] A. Portosa, M. M. Rafique, S. Kotoulas, L. Foschini, and A. Cor-
radi, “Heterogeneous cloud systems monitoring using semantic
and linked data technologies,” Proceedings of the 14th IEEE/IFIP
International Symposium on Integrated Network Managementon, May
2015.

[23] “Zabbix: An enterprise-class open source distributed monitoring
solution,” http://www.zabbix.com/.

[24] D. C. Wimalasuriya and D. Dou, “Ontology-based information
extraction: An introduction and a survey of current approaches,”
Journal of Information Science, vol. 36, no. 6, pp. 306–323, 2010.

[25] I. Gurevych, R. Malaka, R. Porzel, and H.-P. Zorn, “Semantic
coherence scoring using an ontology,” NAACL ’03 Proceedings of
the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, vol. 1,
pp. 9–16, 2003.

[26] J. Tejedor, R. Garcia, M. Fernandez, F. J. Lopez-Colino, F. Perdrix,
J. A. Macias, R. M. Gil, M. Oliva, D. Moya, J. Colas, and P. Castells,
“Ontology-based retrieval of human speech,” Database and Expert
Systems Applications, 2007. DEXA ’07. 18th International Workshop
on, pp. 485–489, September 2007.

[27] Y. D. Artem Chebotko, “An ontology-based multimedia annota-
tor for the semantic web of language engineering,” International

Journal on Semantic Web and Information Systems (IJSWIS), vol. 1,
2005.

[28] S. H. Philipp Cimiano, “Ontology based linguistic annotation,” 3
Proceedings of the ACL 2003 workshop on Linguistic annotation: getting
the model right, vol. 19, pp. 14–21, 2003.

[29] R. Witte, N. Khamis, and J. Rilling, “Flexible ontology population
from text: The owlexporter,” International Conference on Language
Resources and Evaluation (LREC), pp. 3845–3850, May 2010.

[30] F. Draicchio, A. Gangemi, V. Presutti, and A. G. Nuzzolese, “Fred:
From natural language text to rdf and owl in one click,” The
Semantic Web: ESWC 2013 Satellite Events, vol. 7955, pp. 263–267,
2013.

[31] M. Erdmann, A. Maedche, H. P. Schnurr, and S. Staab, “From
manual to semi-automatic semantic annotation: About ontology-
based text annotation tools,” Proceedings of the Coling 2000 workshop
on semantic annotation and intelligent content, August 2000.

Antonio Corradi (M) graduated from University
of Bologna, Italy, and received MS in electrical
engineering from Cornell University, USA. He
is a full professor of computer engineering at
the University of Bologna. His research interests
include distributed systems, pervasive and het-
erogeneous computing, context-aware services,
network management, mobile agent platforms.
He is member of IEEE, ACM, and Italian Associ-
ation for Computing (AICA).

Marco Destro graduated with honors in Com-
puter Engineering at the University of Bologna,
Italy. He spent 6 months in the IBM Smarter
Cities Research Laboratory developing his mas-
ter thesis. His main interests include Semantic
Web, Mobile Development, Distributed comput-
ing and Data Mining.

Luca Foschini (M) graduated from University of
Bologna, Italy, where he received PhD degree
in computer science engineering in 2007. He is
now an assistant professor of computer engi-
neering at the University of Bologna. His inter-
ests include pervasive computing environments,
system and service management, context-aware
services, and management of Cloud computing
systems. He is member of IEEE and ACM.

Spyros Kotoulas (M) is a Research Scien-
tist at the Smarter Cities Technology Center
(SCTC) working on large-scale cataloguing, pro-
cessing and integration of semi-structured data.
His research interests lie in data management
for semi-structured data, Semantic Web, Linked
Data, reasoning with Web data, flexible data in-
tegration methods, stream processing, peer-to-
peer and other distributed systems.

Vanessa Lopez (M) graduated with a degree
in computer engineer from the Technical Uni-
versity of Madrid (UPM) and received a PhD
degree from KMi (Open University) where she
was a researcher at KMi (Open University) from
2003. Since 2012, she is a researcher at IBM
Research Ireland. Her research interests include
Linked Data technologies to support data inte-
gration and solutions for harnessing urban and
web data as city knowledge.

Rebecca Montanari (M) graduated from the
University of Bologna, Italy, where he received
a Ph.D. degree in computer science engineering
in 2001. She is now an associate professor at
the University of Bologna. Her research inter-
ests include policy-based networking and sys-
tems/service management, context-aware ser-
vice management, security management mech-
anisms, and tools in both traditional and mobile
systems.


