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Abstract—In biomedical text mining tasks, distributed word representation has succeeded in capturing semantic regularities, 

but most of them are shallow-window based models, which are not sufficient for expressing the meaning of words. To represent 

words using deeper information, we make explicit the semantic regularity to emerge in word relations, including dependency 

relations and context relations, and propose a novel architecture for computing continuous vector representation by leveraging 

those relations.The performance of our model is measured on word analogy task and Protein-Protein Interaction Extraction 

(PPIE) task. Experimental results show that our method performs overall better than other word representation models on word 

analogy task and have many advantages on biomedical text mining.  

Index Terms—Natural Language Processing, Machine learning, Connectionism and neural nets, Object representation 

———————————————————— 

1 INTRODUCTION

O solve Biomedical Natural Language Processing (Bi-
oNLP) problems, words in the text should be 

represented into real values or real-valued vectors so that 
the power of mathematics can be used. The most com-
monly used representation method for categorical fea-
tures is the one-hot coding, by which each word is 
represented as a vector with only one 1 and many 0s, e.g., 
suppose we have a dataset having only a single categori-
cal feature "type", with values "hormone", "kinase" and 
"receptor", the corresponding one-hot vectors are [1, 0, 0], 
[0, 1, 0] and [0, 0, 1] respectively. 

Experimental results show that the one-hot coding 
works well with learning algorithms such as Logistic Re-
gression and Support Vector Machine. However, the 
pairwise Euclidean distances between them are all equal 
to  2, which lacks the capacity to capture the semantic 
regularities of words. Worse still, one-hot coding is a dis-
aster for Euclidean distance based algorithms such as K-
means.  Therefore, more powerful distributed representa-
tion models are motivated. 

Word representations method is an important step for 
most machine learning based BioNLP tasks, such as 

Name Entity Recognition, Protein-Protein Interaction Ex-
traction, Drug-Drug Interaction Extraction, Event Extrac-
tion, Ontology Curation. It has been proved that reasona-
ble distributed word representations can help improving 
the performance of those BioNLP tasks. Common word 
representation methods are summarized as follows. 

Salton et al. [1] proposed VSM, an algebraic model for 
representing words, phrases and in general any objects as 
vectors of identifiers, and successfully used it in the 
SMART information retrieval system, which represents 
documents as a vector of their most important terms by 
means of TFIDF weighting. VSM treats a document as a 
bag of words (BOW) and ignores the dependence be-
tween terms, and for large corpora, high-dimensional 
vectors may cost a lot memory.  

LSA, a matrix factorization method for generating low-
dimensional word representations, utilizes low-rank ap-
proximations to decompose large matrices [2]. In LSA, the 
matrices are also of ―term-document‖ type, i.e., the rows 
correspond to words or terms, and the columns corres-
pond to different documents in the corpus. 
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VSM and LSA are simple models for computing a con-
tinuous degree of similarity between terms, where a doc-
ument is represented as an unordered collection of words. 
However, a main problem with VSM and LSA is that they 
only consider the statistical information between words 
(terms) and documents, where richer information such as 
context words, dependency links are not considered. Be-
sides, on large training corpus, the size of VSM and LSA 
vectors may be too large for the memory to load, and in 
this case, dimension reduction strategies should be ap-
plied. Although several techniques have been proposed 
to reduce the size of vectors, e.g. using Singular Value 
Decomposition (SVD) based technics, or simply by apply-
ing threshold based on term frequency, and richer infor-
mation, such as paradigmatic information, has been in-
cluded to overcome simple approaches only based on 
syntagmatic relationships, VSM and LSA are limited by 
their models to integrate richer information, such as de-
pendency relations. Furthermore, comparing with neural 
network-based word representation models, VSM and 
LSA do relatively poorly on the word analogy task [3], i.e., 
they are not good enough for measuring the meaning of 
words. Due to these reasons, in this work, we try to im-
prove the word representation method based on neural 
network leveraging richer information, to make the word 
vectors more powerful to express the semantics. 

The idea of distributed representation was first pro-
posed by Hinton [4], and developed by Bengio [5], Collo-
bert [6], Mnih [7], Socher [8], Huang [9], Pennington [3], 
Mikolov[10], [11], [12], Levy [13], etc., which have been 
successfully integrated in many Natural Language Pro-
cessing (NLP) tasks [3], [6] such as Name Entity Recogni-
tion (NER), Semantic Role Labeling (SRL), etc.  

Socher used a semisupervised Recursive Auto Encoder 
(RAE) to jointly learn phrase representations, phrase 
structure and sentiment distributions [8] which achieved 
notable success to predict sentiment distributions. How-
ever, RAE was designed for sentiment prediction task, 
which cannot be immediately adapted to BioNLP tasks 
such as PPIE. Concretely, the input of RAE for the senti-
ment distribution prediction is a piece of text, while the 
input of PPIE classification model is a tuple, (protein1, 
protein2, sentence), which cannot be input to RAE. 

Collobert and Weston’s deep neural network architec-
ture could jointly train the specified NLP task model and 
word representation [6], which contained a lookup table 
layer, a convolution layer, a max over time layer and a 
softmax layer. Their architecture achieved state-of-the-art 
performance on many NLP tasks, including Part-of-
Speech (POS), Chunking (CHUNK), NER and SRL. How-
ever, their word em-beddings have been trained for about 
2 months over Wikipedia, which is time-consuming. 

Mikolov et al. proposed two relatively efficient archi-
tectures, Skip-Gram and Continuous Bag-of-Words 
(CBOW) [10], [11], [12], based a shallow window of con-
text words, i.e., they scanned a context window across the 
entire corpus, and trained target word by words within 
the fix-sized context window. Different from joint learn-
ing, Skip-Gram and CBOW trained word representations 
independently in an efficient way. However, these mod-
els considered only the context words and failed to take 
advantage of the vast amount of different kinds of rela-
tions among words. 

Pennington et al. [3] leveraged statistical information 
by training only on the nonzero elements in a word-word 
co-occurrence matrix, rather than on the entire sparse 
matrix or on individual context windows in a large cor-
pus to train word representations, and proposed the 
GloVe model which combined the advantages of the two 
major model families in the literature: global matrix facto-
rization and local context window methods. 

Levy and Goldberg generalized Mikolov's skip-gram 
model with negative sampling to include arbitrary con- 
texts, and performed experiments with dependency-
based contexts [13]. However, their method focused on 
the the generalization of contexts, while there was no cor-
responding improvement on the learning architecture. 

RAE, C&W, Skip-Gram, CBOW and GloVe all trained 
the target word using a sequence of words (a sequence of 
words in the fix-sized context window or sequence of 
words in the whole sentence). As shown in Fig. 1, we note 
that text is not only an arrangement of words, but also a 
structure of dependency, which should be considered for 
training word representations. Although Levy.’s method 
generalized the contexts with dependency to train word 
vectors and ahieved state-of-the-art performance in their 
evaluation, it did not provide a corresponding improved 
learning architucture. In this work we analyze the rela-
tions between words according to dependency tree and 
neighborhood, and propose a novel three-top-layer archi-
tecture to train word representation based on relation 
graph, which is fast to train and have many advantages. 
Next we show how the new neural network-based word 
representation model overcoming three shortages stated 
above: 1) it leverages dependency and context relations 
rather than only considering context window, and 2) it is 
task irrelevant rather than joint training, which can be 
integrated into any NLP task and 3) it is trained with high 
efficiency, for example, the word representations for PPIE 
can be trained within 15 minutes. 

2 METHODS 

A word would not have any practical meaning but ―an 

 
Fig. 1 An example of relation graph. The upper part is dependency relations, and the lower part is context relations. 
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isolated word‖ if it had no relations with any other words. 
We think the essence of semantic meaning lies in the rela-
tions, and the relations are the key for computers to un-
derstand the meaning of words. For example, the relation 
between ―binding‖ and ―requires‖ as shown in Fig. 1, 
means not only that there is a connection between ―bind-
ing‖ and ―requires‖, but also that ―binding‖ and ―re-
quires‖ confirm to subject-predicate structure. Without 
the relation type ―SUB‖ and ―OBJ‖, the algorithms cannot 
distinguish ―binding‖, ―domains‖ when training ―re-
quires‖. Thus to capture the semantic meaning of a word, 
we focus on how to explain what and how other words 
are linked with it. 

In our view, the semantic information of a word can be 
formalized as what and how other words are related with 
it. Previous methods such as NNLM and CBOW trained a 
word by context words, whereas in this paper, we train 
each target word by relations according to graph. 

2.1 Neural Network Graph Model 

Fig. 2 shows the neural network-based architecture. First 
we establish some notation. Let X be the matrix of word 
representation, which is randomly initialized and Xt is the 
corresponding vector of the tth word. Let all links in the 
corpus be denoted by L, Let Pj,t=P(y=Lj|Xt) be the proba-
bility that the jth link appears in the context of the tth 
word. and finally let the jth link Ljfrom a target word t to 
the wth be denoted by Lt,w which can be formalized as a 
tuple (vocabw, functiont,w, directiont,w), or (Vw, Ft,w, Dt,w) for 
short. For example, the word ―binding‖ can be denoted as 
Table 1 shows (tuples for NNGM) according to Fig. 1.We 
begin with a simple example that showcases how certain 
aspects of meaning can be extracted directly from links. 
Consider a biomedical termVt, suppose we are interested 
in whether it is a protein or not, for which we might take 
Vt = cofilin. The meaning of cofilin can be recognized by 
studying the probabilities with its relations. For link Lj 

related to cofilin, Lj= (cofilin, phosphorylate, OBJ, ), we 
expect the conditional probabilityP(y=Lj|Xt) will be large, 
because phosphorylation of proteins is an important 
regulatory mechanism, and large conditional probability 

of Lj given Xt proves that Vt is a protein that can be phos-
phorylated. 
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The above argument suggests that the appropriate 
starting point for word vector learning should be with the 
conditional probabilities. Links implicate the meaning of 
words byVw (the word Vw thatVtlinks to), Ft,w (the gram-
matical function of the link) and Dt,w (the direction of the 
link). Given a target word vector Xt, we want our hypo-
thesis to estimate the probability Pj,t for each link by the 
three parts. Thus, our hypothesis will output a 
|V|+|F|+|D| dimensional vector whose elements sum 
to 3. Concretely, the conditional distribution takes the 
form 

where λV, λF, λD are the weight matrices of softmax 
layer for vocab, function and direction (refer to Fig. 2) 
respectively, and XT is the transpose of the input matrix X. 
Parameters λV, λF, λD and word vector Xt are trained to 
minimize the cost function 

𝐽 = −  1 𝑦𝐶 = 𝐶𝑘 log P𝑘,𝑡
𝐶

𝑘∈𝐶𝐶∈{𝑉,𝐹,𝐷}              (2) 

where 1{∙} is the indicator function, 1{a true state-
ment}=1, and 1{a false statement}=0.To solve for the min-
imum of J and train the word vectors Xt, we resort to gra-
dient descent, the widely used iterative optimization al-
gorithm 

𝜆𝐿𝑘
𝐶 ← 𝜆𝐿𝑘

𝐶 − 𝛼∇𝜆𝐿𝑘
𝐶 𝐽          (3) 

𝑋𝑡 ← 𝑋𝑡 − 𝛼∇𝑋𝑡 𝐽             (4) 

Where α is the learning rate. Taking derivatives, the 
gradients are 

∇𝜆𝐿𝑘
𝐶 𝐽 = −𝑋𝑡(1 𝑦𝐶 = 𝐶𝑘 − P𝑘,𝑡

𝐶 )         (5) 

∇𝑋𝑡 𝐽 = −  1 𝑦𝐶 = 𝐶𝑘  
  𝜆𝐿𝑘
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Fig. 2. The two-layer Neural Network Graph Model and the detailed learning architecture. three-top-layer.  
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2.2 Hierarchical Softmax 

Although two-layer architecture seems to be shallow, to 
deal with millions of sentences, it is not efficient enough 
because of the tremendous computing and updating 
workload of forward-propagation and back-propagation. 
Morin and Bengio introduced a hierarchical decomposi-
tion of the conditional probabilities that yielded a speed-
up of about 200 built by using WordNet [5]. Mikolov used 
a similar strategy where the vocabulary was represented 
as a Huffman binary tree, based on the observations that 
the frequency of words worked well for obtaining classes 
in neural net language models [14]. 

WordNet does not contain complete vocabulary of 
training corpus, therefore we choose Mikolov’s version. 
With binary tree representations of the vocabulary, the 
number of prediction units that need to be evaluated can 
go down to around log2|V|. 

To adopt hierarchical softmax, we first build a Huff-
man binary tree according to the frequency of words. 
Concretely, sort the word list by frequency and make the 
twolowest elements into leaves, creating a parent node 
with a frequency that is the sum of the two words’ fre-
quencies, repeat this step until all words are included in 
the tree. All words are leaf nodes, and words with low 
frequency have high depths and long binary codes. 

Actually, hierarchical softmax is a special multiclass 
logistic regression. Concretely, Let N be the nodes on the 
path from the root to target word t, during the training of 
Xt, only a submatrix of weight matrix λ is needed for for-
ward-propagation and back-propagation, denoted by λN. 
The probability takes the form 

P𝑖(𝑋𝑡) =
1

1+𝑒−𝑋𝑡𝜆𝑖
,   𝑖 ∈ 𝑁        (7) 

In the same way as softmax regression, the cost func-
tion of hierarchical softmax 

𝐽 = − (𝑦𝑖 log𝑃𝑖(𝑋𝑡) + (1 − 𝑦𝑖)log(1 − 𝑃𝑖(𝑋𝑡)))𝑖∈𝑁       (8) 
is minimized by means of gradient descent:  
λ𝑖 ← λ𝑖 − 𝛼 𝑋𝑡(𝑦𝑖 − 𝑃𝑖(𝑋𝑡))𝑖∈𝑁         (9) 
𝑋𝑡 ← 𝑋𝑡 − 𝛼 λ𝑖(𝑦𝑖 − 𝑃𝑖(𝑋𝑡))𝑖∈𝑁         (10) 

3 EXPERIMENT 

The objective of this paper is to train word vectors that 
represent more semantic regularities and improve the 
performance on biomedical text mining. Although those 
word vectors can be integrated into any NLP application 
and might further improve its performance, we cannot 
evaluate them on each NLP task in this paper. Therefore, 
to evaluate the performance of NNGM and compare it 
with other word representation models, first, we use an 
evaluation scheme proposed by Mikolv et al. [12], i.e., the 
word analogy task, to examine how much semantic regu-

larity are learned, and second, we integrate the word re-
presentations into PPIE, to examine how much the extrac-
tion of PPIs can be improved by using word vectors. In 
this section, we describe the details of evaluation. 

3.1 Evaluation Methods 

Word analogy. The word analogy task consists of ques-
tions like, ―a is to b as c is to __?‖. The dataset contains 
19544 such questions, divided into 14 categories, and each 
category contains a semantic subset and a syntactic subset. 
The semantic questions are typically analogies about 
people or places, like ―Athens is to Greece as Berlin is to 
__?‖. The syntactic questions are typically analogies about 
verb tenses or forms of adjectives, for example ―dance is 
to dancing as fly is to __?‖. To correctly answer the ques-
tion, the model should uniquely identify the missing term, 
with only an exact correspondence counted as a correct 
match. We answer the question ―a is to b as c is to __?‖ by 
finding the word d whose representation vd is closest to 
vb−va+vc according to the cosine similarity. 

PPIE. PPIE aims to find a criteria to judge whether a 
pair of proteins actually implies interaction or not accord-
ing to the biomedical text that mentions them. Five pub-
licly available PPI corpora extracted from MedLine con-
tain interaction annotation: AIMed [15], BioInfer [16], 
HPRD50 [17], IEPA [18], LLL [19]. For example, according 
to a description from AIMed, ―The binding of hTAFII28 
and hTAFII30 requires distinct domains of hTAFII18‖, 
one can infer that hTAFII28 interacts with hTAFII30. To 
automatically extract protein interactions, the model 
should classify the PPI candidates into two groups, posi-
tive ones and negative ones. In order to evaluate the per-
formance of word representation, reducing the influence 
by crafted features and tricks like kernel methods, we 
extract shallowword features and use a L1 regularized 
logistic regression (L1-LR) based binary classification 
model to address the problem. 

All evaluation results will be reported using the F-
score. For PPIE, we perform pair-wise 10-folds cross-
validation (randomly partitioned) on each corpus and 
report the macro-average F-score. Precision (P) is the ratio 
between the number of PPIs correctly detected and the 
total number of PPIs that were found by the system. Re-
call (R) is the ratio between the number of PPIs correctly 
detected and the total number of PPIs in the gold stan-
dard. F-score is the harmonic mean of precision and recall. 

F =
2×P×R

P+R
     (11) 

3.2 Corpora and Training Details 

We train word representations on 20 corpora of varying 
sizes: 19 corpora with sentences ranging from 10 thou-
sands 1,000 thousands, extracted from MedLine on the 
theme of protein; and the text8 corpus, which is the first 
108 bytes of the English Wikipedia dump on Mar. 3, 2006. 
We tokenize each corpus by making every special charac-
ter ([ ] ( ) { } ' " . , + - _ * \ | / ; : ! ? = >< ~ ` # $ % ^ &) be a 
single token, and then we parse the text by GDEP [20] to 
construct the graphs for the training of NNGM. 

For the training of word representation models, includ-
ing Skip-gram, CBOW, GloVe, Levy's method and 

 

Table 1. Numbers of positive instances of five PPI corpora, 

AIMed (A), BioInfer (B), HPRD50 (H), IEPA (I) and LLL (L). 

 A B H I L 

#Pos 1000 2531 163 335 164 

#Neg 4834 7129 270 482 166 

#Total 5834 9660 433 817 330 
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NNGM, to keep consistent with Mikolov’s word2vec, we 
initialize X with same randomization method, and coeffi-
cient λ with zeros, initial learning rate of 0.025, context 
window of 5 and min-count of 0.  

For the evaluation on PPIE, our goal is not to get high-
er F-scores than previous works by tweaking the feature 
set or choosing advanced classification algorithms. We 
concern about the performance of word vectors, and 

whether the classification of PPIs can be improved by 
leveraging word representation or not. Therefore, we only 
use surface word features for PPIE: 

1. Entity Name. Words in the target protein pair. 
2. Surrounding Words. Words that surrounds the 

target proteins. 
3. Inner Words. Words between the target proteins . 
4. Sentence. All words in the sentence. 
We first obtain the word vectors by different models, 

and then transform the PPIE feature vectors to numerical 
input vectors, and finally classify them with the L1-LR 
based model.  

4 RESULT 

In this section, we present the results on word analogy 
and PPIE, comparing with Skip-Gram, CBOW, GloVe, 
Levy's method and NNGM.  

4.1 Word Analogy Evaluation 

 

Table 2. Evaluation of 5 word representation models on Word 

Analogy task. The evaluation corpus is from English Wikipedia 

dump on Mar. 3, 2006, which can be downloaded at 

http://mattmahoney.net/dc/textdata 

 Total Semantic Syntactic 

GloVe 2.27 2.19 2.3 

SG 25.91 26.05 25.84 

CBOW 16.13 9.41 19.51 

Levy 6.22 2.76 9.01 

NNGM 26.41 33.17 23.32 

 

Fig. 3 A comparison of Skip-Gram, CBOW, GloVe, Levy's method and NNGM, trained on corpora from 10 thousand sentences to 1000 thou-
sand sentences evaluated on AIMed, Bionfer, HPRD50, IEPA and LLL. 
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To get better performance on word analogy task, previous 
works trained different word vectors on different corpora. 
For example, Pennington et al. [3] trained GloVe on five 
corpora varying sizes: a 2010 Wikipedia dump with 1 
billion tokens; a 2014 Wikipedia dump with 1.6 billion 
tokens; Gigaword 5 which has 4.3 billion tokens; the com-
bination Gigaword5 + Wikipedia2014, which has 6 billion 
tokens; and on 42 billion tokens of web data, from Com-
mon Crawl5, while Mikolov [12] and Levy [13] used other 
training corpus. Larger training corpus provides better 
statistics, however, we think it is not fair for the compari-
sons with the word representation models, and it is better 
to evaluate different models by training word vectors 
using same corpus. Therefore, we use the test data for the 
Large Text Compression Benchmark for evaluation, 
which was also used by Mikolov et al [12]. 

As Table 2 shows that, NNGM model performs the 
best (26.41), especially on semantic task (33.17), which 
proves that our three-top-layer architecture which leva-
rages dependency relations and context relations is good 
for learning semantic regularites.  

On syntactic task, NNGM is 2.52 lower than Skip-gram 
model, and higher than other models. Note that the syn-
tactic questions are typically analogies about verb tenses 
or forms of adjectives, for example ―dance is to dancing as 
fly is to __?‖, which has nothing to do with syntactic pars-
ing or syntactic information. The incorporation of depen-
dency relations of NNGM helps to learn the role of words, 
while weakens their form, i.e., for NNGM, the training of 
a word considers less about whether it is singular or plur-
al, while considers more about its dependency role.  
Therefore, it is understandable that NNGM performs bet-
ter on semantic task than on syntactic task. 

GloVe model does poor in our experiment, which may 
due to that the training on text8 does not make full use of 
GloVe model, since one of the advantage of GloVe model 
is leverageing statistical information. GloVe could be 
more advantagous on larger corpus, e.g., Gigaword5 + 
Wikipedia2014 with 6 billion tokens, which provides bet-
ter statistics while taking much more training time. 

Levy's method also leverages dependency information, 
however the result also poor, which we think mainly due 

Fig. 4 Comparison of different vector dimensions, trained using 
NNGM, evaluated on AIMed, Bionfer, HPRD50, IEPA and LLL. 

Fig. 5 Comparison of training iterations, trained using NNGM, eva-
luated on AIMed, Bionfer, HPRD50, IEPA and LLL. 
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to two reasons: First, Levy's method increases the sparsity 
of context, for example, suppose that there are M words 
in vocabulary, N types of relation, O directions, there will 
be M*N*O nodes in the hierarcchical softmax tree for 
Levy's method, which weakens the power of hierarchical 
softmax, while for NNGM, the number of nodes is only 
M+N+O. Second, Levy's method used Mikolov's two-
layer architecture without any corresponding improve-
ment for dependency which seems not very reasonable. 
For example, suppose to train the word "australian" using 
context relations (scientist, AMOD, ->) and (scientist, 
AMOD, <-), for Levy's method, they correspond to totally 
different nodes in the binary tree, ignoring the fact that 
the word (scientist) and relation type  (AMOD) are the 
same, while NNGM overcomes this shortage by using 
three corresponding top layers. 

4.2 PPIE Evaluation: Corpus Size 

In Fig. 3, we show the performance on PPIE task for word 
vectors trained on the 19 corpora using GloVe, Skip-gram, 
CBOW, Levy's method and NNGM respectively. 

First, we observe that for GloVe, Skip-gram, CBOW 
and Levy's method, they all have clear ascending periods 
on AIMed and BioInfer, from 10 thousands to 100 thou-
sands, while NNGM has as good performance as on large 
corpora constantly. The experimental results on AIMed 
and BioInfer from 10 thousands to 100 thousands sen-
tences show that NNGM has absolute advantages when 
using small corpus. This is very useful for applications 
with scarce resource, especially for non-English languag-
es, for example, electronic medical record, traditional 
Chinese medicine side effect dataset, English-Oromo bi-
lingual corpus, and a certain Kaggle competition, the data 
of which includes a text field of description of projects, 
because one does not need to collect too much back-
ground text to train word vectors since NNGM can per-
form well when using small training corpus. 

Second, all the word representation models except 
GloVe all have clear upper bounds. We can see from Fig.3 
that on AIMed, BioInfer, HPRD50, IEPA and LLL, the F-
scores slightly change after 100 thousands. Therefore, it is 
very important for a word representation model to reach 
the upper bound as quick as possible. 

Third, for large training corpora, NNGM performs 
generally comparable with other word representation 
models, while on small corpora, NNGM is overall better. 

4.3 PPIE Evaluation: Vector Length 

Both Mikolov et al. and Pennington et al. claimed that 
higher dimensional word vectors will improve the accu-
racy [3], [12]. In another word, for Skip-gram, CBOW and 
GloVe, low dimensional word vectors cannot fully learn 
the semantic regularities. For example, the dimensions 
larger than 300 are significantly better than 100 for GloVe 
model, and Skip-gram and CBOW also perform well on 
PPIE when dimension larger than 400. Therefore, all ex-
periments in this paper on PPIE use 400 as the vector di-
mension for all Skip-gram, CBOW, GloVe, Levy's method 
and NNGM to make sure that the experimental results 
are fair. 

Actually, unlike the other four models, NNGM does 
good even using small vector dimension. As shown in Fig. 
4, on AIMed, BioInfer, HPRD50, IEPA and LLL, the F-
scores are hardly influenced by the dimension of word 
vectors trained using NNGM. The performance of at 100 
dimension is almost the same as 1,000 dimension (AIMed, 
BioInfer, IEPA), and sometimes even better (HRPD50, 
LLL).   

Based on these findings, we conclude that, first, unlike 
the other four models, NNGM learns semantic regularites 
well even when word vector dimension is small, which 
can save training time. Second, using NNGM, one does 
not need to try so many dimensions to find an optimized 
one. This is very important for practical NLP applications, 
for example, when we integrate Skip-gram into PPIE, we 
tried vector dimensions from 100 to 1,000 and conducted 
a large number of experiments to find the best one, which 
took a lot of time, while for NNGM, we can simply use 
100. Third, low dimensional word vectors make the NLP 
program occupy less memory, this is important especially 
for learning algorithms such as Deep Learning since these 
algorithms often need a lot of memory. 

4.4 PPIE Evaluation: Iteration 

Besides corpus size and vector length, another important 
factor that influences the word vector is iteration. Increas-
ing training iterations can also improve the performance 
of word vectors. This is very useful for applications with 
scarce resource like electronic medical record, traditional 
Chinese medicine side effect dataset, and for improving 
the performance of NLP applications.  

As shown in Fig. 5, generally speaking, the perfor-
mance of word vector is better when the number of itera-
tion increases. For example, trained using 10 thousands 
sentences and evaluated on AIMed, the F-score of NNGM 
is 60.6 when iteration is 8, which is 9.1 higher than when 
iteration is 1, and also higher than Skip-gram (59.0) and 
CBOW (57.6) trained using 1,000 thousands sentences 
with 1 iteration. Based on these observations, we recom-
mend increasing interations to train better word represen-
tations for NLP applications such as PPIE when using 
NNGM. 

4.5 Efficiency 

The total run-time is split between constructing graphs 
and training the models. The former is decided by the 
size of training text and also influenced by the efficiency 
of GDEP. The training speed depends mostly on the size 
of training text, the number of epochs and the vector size, 
and we explore the effect of these choices in following 
sections in detail. The training complexity of NNGM are 
VectorSize×(3+|D|+|F|+log2|V|).  

5 DISCUSSION 

5.1 PPIE Corpora Differences  

Although NNGM performs well on PPIE tasks, we ob-
serve that its performance varies on different corpora. 
Concretely, the learning curves are ideal on AIMed and 
BioInfer, which contain more than 5,000 instances, and 
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while the learning curves are sometimes unusual on 
HPRD50, IEPA and LLL, which contain less than 1,000 
instances. The differences of corpora mainly include: 

1. Corpus size. As Table 1 shows, AIMed and BioIn-
fer are much larger than the other three corpora, 
therefore, we consider more about the experi-
mental results on AIMed and BioInfer, since the 
other three corpora suffer more from sparsity. 
Generally, the results on large corpora are more 
convincing.  

2. Annotation style. AIMed, BioInfer, HPRD50, IE-
PA and LLL are annotated by different annota-
tors, which may lead to the different input distri-
bution and performance for different corpora.  

3. Label-bias. As we know that the ratio of postive 
instances to negative instances influences the per-
formance of machine learning algorithms. As 
shown in Table 1, the ratios are variant on the 
five corpora. 

The above factors potentially affect the distribution of 
input and further influence the results. Generally speak-
ing, larger corpora suffer from less sparsity, therefore, the 
results on AIMed and BioInfer are more convincible. 

5.2 Major Findings  

In this work, we propose a two-layer neural network 
which has three top layers to leverage dependency rela-
tions and context relations between words to unsuper-
visely train word representation for BioNLP. NNGM le-
verages dependency relations and context relations rather 
than fix-sized context window of words. Given word t, 
the architecture calculates the likelihood of relations that 
involves t, considering three parts: vocabulary (V), func-
tion (F) and direction (D), and word vectors are updated 
during the estimation of parameters. Major findings are 
summarized as follows： 

First, from Table 2 we can see that NNGM performs 
well on word analogy task, especially on semantic task. 
The incorporation of dependency relations by using three 
top layers helps the learning of the role of words. Trained 
on same unlabeled text, the NNGM performs overall bet-
ter than Skip-Gram and CBOW as shown in Table 2, 
which proves that dependency relations and context rela-
tions are richer than context words for training word re-
presentations. Therefore, NNGM is recommended for 
word analogy related NLP applications. 

Second, it is almost impossible to judge which one of 
the five word representation models, Skip-gram, CBOW, 
GloVe, Levy's method and NNGM, is the best one under 
all circumstances. Choosing word representaton model 
for specific NLP applications is like choosing machine 
learning algorithm for specific data. Therefore, we con-
duct a set of experiments to give suggestions on how to 
choose appropriate word representation models for your 
applications. According to Fig. 3, it is better to use NNGM 
for NLP applications when the word representaiton cor-
pus has than 200 thousands sentences, and GloVe model 
is recommended if more than 500 thousands sentences are 
available. For other situations, all the five models are 
worth trying. 

Third, in Fig. 4, we compare the influence of word vec-
tor dimension. Unlike previous models such as Skip-gram 
and GloVe, the NNGM does not need high dimensions 
(e.g., 400) to fully learn the semantic regularites. One can 
simply choose 100 as the size of word vector and save 
computational cost for NLP applications by using NNGM. 

Fourth, generally speaking, to increase iteration times 
can improve the performance of NNGM, for example, 8 
iterations using 10 thousands sentences can achieve high-
er F-scores on PPIE than 1 iterations using 1000 thousands 
sentences. Therefore, we recommend  training NNGM 
using more iterations if possible. 

Last, NNGM uses an independent architecture to train 
the distributed word representation. Unlike joint learning 
models, one can first train word vectors using any unla-
beled text by NNGM, and then embed these vectors into 
any NLP tasks. 

6 CONCLUSION 

We introduce a new unsupervised neural network 

graph model to learn distributed word representations. 

Our model leverages the relations between words, in-

cluding dependency relations and context relations. 

We demonstrate that our word representation achieves 

state-of-the-art performance on word analogy task and 

PPIE. Major contributions can be summarized as fol-

lows: 

1. We present a novel unsupervised word repre-

sentation training model, NNGM, which is 

task-irrelevant and can be embedded into any 

biomedical text mining tasks. 

2. NNGM considers richer information, i.e., de-

pendency relations and context relations 

among words, and it outperforms other repre-

sentation methods on word analogy task, espe-

cially on semantic subtask. 

3. The word vectors trained by NNGM can be 

used in many biomedical text mining applica-

tions. The evaluation results on PPIE shows 

that NNGM has comparable performance with 

other word representation models when 

trained on large corpora, while outperforms 

other models when trained on small corpus. 

4. Experimental results on PPIE also suggests that  

NNGM is not senstive to vector dimension, 

which makes it a good choice for saving com-

putational cost, and more training iterations 

can improve the performance of NNGM.  
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