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Abstract—The generated speech of hidden Markov model
(HMM)-based statistical parametric speech synthesis still sounds
“muffled.” One cause of this degradation in speech quality may
be the loss of fine spectral structures. In this paper, we propose
to use a deep generative architecture, a deep neural network
(DNN) generatively trained, as a postfilter. The network models
the conditional probability of the spectrum of natural speech
given that of synthetic speech to compensate for such gap between
synthetic and natural speech. The proposed probabilistic postfilter
is generatively trained by cascading two restricted Boltzmann
machines (RBMs) or deep belief networks (DBNs) with one bidi-
rectional associative memory (BAM). We devised two types of
DNN postfilters: one operating in the mel-cepstral domain and
the other in the higher dimensional spectral domain. We compare
these two new data-driven postfilters with other types of postfilters
that are currently used in speech synthesis: a fixed mel-cepstral
based postfilter, the global variance based parameter generation,
and the modulation spectrum-based enhancement. Subjective
evaluations using the synthetic voices of a male and female speaker
confirmed that the proposed DNN-based postfilter in the spectral
domain significantly improved the segmental quality of synthetic
speech compared to that with conventional methods.

Index Terms—Deep generative architecture, hidden Markov
model (HMM), modulation spectrum, postfilter, segmental quality,
speech synthesis.

I. INTRODUCTION

S TATISTICAL parametric speech synthesis is one of the
most popular methods of speech synthesis due to its flex-

ibility and compact footprint [2]. Statistical parametric speech
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synthesizers have also been found to be as intelligible as natural
human speech several times at the annual evaluation events of
corpus-based speech synthesis systems called “Blizzard Chal-
lenge” [3]. It is known, however, that synthesized speech gen-
erated from statistical models still sounds “muffled” compared
to natural speech. This is often attributed to the fact that fine
spectral structures of natural speech are partly lost due to statis-
tical averaging, and thus there is room for improving segmental
quality.
Deep neural networks (DNNs) with many hidden layers

have been actively investigated to improve the quality of syn-
thetic speech and several significant improvements have been
reported. For instance, DNNs have been applied to acoustic
modeling [4]. Zen et al. [5] used DNN to learn the relationship
between input texts and extracted features instead of using
decision tree-based state tying. Restricted Boltzmann machines
(RBMs) or deep belief networks (DBNs) have been used to
model the output probabilities of hiddenMarkov model (HMM)
states instead of Gaussian mixture models (GMMs) [6]. DBNs
have also been used to model the joint distribution of linguistic
and acoustic features [7]. A hybrid model which combines a
DBN with an Gaussian process regression has been used for
F0 modeling [8]. In addition, an auto-encoder neural network
has also been used to extract low dimensional excitation pa-
rameters [9]. Recently, recurrent neural networks (RNNs) with
long-short term memories (LSTMs) have been used for prosody
modeling [10] and acoustic trajectory modeling [11], [12].
In addition to these above improvements to acoustic mod-

eling, there have also been several successful attempts to im-
prove the segmental quality of synthesized speech at synthesis
time (without changing the acoustic models), including postfil-
tering to enhance spectral peaks [13], [14] and a global vari-
ance (GV) parameter generation algorithm that enhances the dy-
namics within a speech utterance [15]. An interesting approach
based on the enhancement of the modulation spectrum (MS)
has recently been proposed [16]. The main aim of this method
is to enhance the natural frequency modulation in the spectral
parameter trajectories. These methods have been demonstrated
to improve the quality of synthetic speech based on empirical
findings of acoustic differences between natural and synthetic
speech, which tend to occur for most speakers.
Another possible way of reducing the gap between the

segmental quality of natural and synthetic speech is to learn
acoustic differences directly from data. If we have a parallel
set of natural and synthetic speech, we can estimate the condi-
tional probability of acoustic differences, i.e., the probability
of natural speech given “muffled” synthetic speech. One could
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then model and reconstruct the spectral fine structures through
data-driven statistical methods. This is conceptually similar to
voice conversion (VC) techniques that take into consideration
the conditional probability of parallel speaker pairs [17].
This paper introduces a deep generative architecture as a post-

filter [1] to model the conditional probability of acoustic dif-
ferences. The proposed architecture is a DNN with layer-wise
generative training1. In voice conversion [18] this is typically
done with a Gaussian mixture model (GMM) but a DNN was
chosen here instead due to its abilities to handle highly corre-
lated and high-dimensional data, allowing us to conduct spectral
shaping directly in the spectral amplitude domain.We compared
the proposed method with the GV and the recently proposedMS
enhancement as well as the normal spectral peak enhancement
filter.
This paper is organized as follows: in Section II we overview

the related techniques, and in Section III we explain the pro-
posed DNN-based approach. The experimental conditions and
evaluation results are shown in Section IV. Analysis and dis-
cussions on the proposed DNN-based postfilter and its relation
to other postfilter methods are given in Section V, and the sum-
mary of our findings is given in Section VI.

II. RELATED TECHNIQUES

A. Mel-cepstral Postfilter
Statistical averaging of parameters creates trajectories that

are overly smooth across frames in the time domain but also
within a frame in the spectrum domain. One of the first post-
filter techniques applied to statistically generated speech trajec-
tories appeared in [14]. The method was originally presented in
[19] to enhance the formant structure in speech coding, but it
can also be used to compensate for the overly smooth spectrum
in speech synthesis. The method works by modifying the gen-
erated mel-cepstral coefficients so that spectrum peaks and val-
leys are enhanced. The postfilter is controlled by a single param-
eter, referred to as . When , no postfilter is applied and
the degree of formant enhancement increases with increasing
. A similar postfilter for line spectral pairs was also proposed

in [13].

B. Global Variance
Another method frequently used for improving the quality of

synthetic speech is a parameter generation algorithm that con-
siders GV [15]. In the GV parameter generation algorithm, we
define an objective function including HMM’s likelihood and a
penalty term that reflects the dynamic range of each dimension
of the parameter sequence at the utterance level. This penalty
term is intended to keep the variance of the generated trajec-
tory as wide as that of the natural speech, while maintaining an
appropriate parameter sequence in the sense of maximum like-
lihood [15]. An extended algorithm that calculates GV in the
spectral domain has also been investigated [20].

C. Modulation Spectrum
Short-term spectral analysis is one of the most widely used

methods in speech processing. Parameters that characterise the

1In the rest of this paper, the proposed deep generative architecture is called
DNN for simplification.

spectral envelopes can be derived in a number of ways, e.g.,
using fast Fourier transform (FFT), linear prediction, or cepstral
analysis, and the changes in the vocal tract shape and also the
glottal excitation are reflected in the temporal patterns of such
parameters.
In the analysis of natural speech, the parameter trajectories

of spectral coefficients exhibit rich modulation characteristics,
whereas in statistical speech synthesis, the generated speech
parameter trajectories are temporally over-smoothed due to the
state-based statistical modeling and averaging thereof [2], [21].
The over-smoothing can be partly alleviated, for example, by
using the aforementioned mel-cepstral postfilter [19] or GV
[15]. The latter forces the variance of the generated parameter
trajectories closer to the variance observed in parameter tra-
jectories of natural speech, but it does not explicitly modify
the frequency-dependent modulation characteristics (i.e., the
spectral content) of the trajectories. On the contrary, processing
in the modulation spectrum (MS) domain, the frequency-de-
pendent temporal modulations of the parameter trajectories can
be explicitly enhanced [1], [16].
Enhancement in the modulation spectrum domain was first

proposed in [16], and it was also studied in our earlier work
[1], which confirmed the results in [16] that the MS enhance-
ment has approximately an equal effect to the quality as GV
enhancement.
In this work, we apply the MS enhancement in the mel-cep-

stral domain (although MS enhancement can be also performed
in the high-dimensional spectrum domain). The spectrum
of a speech frame is parametrized by the mel-cepstrum
[22], resulting in a vector of length
, which is the order of the cepstral analysis. Short-term

spectral analysis of a speech utterance thus yields a matrix
of size , where is the number of

frames. The time trajectory of the th mel-cepstrum is defined
as . Finally, the MS of trajectory

is defined as:

(1)

where is the modulation frequency bin, defined by the number
of points in the Fourier analysis used in Eq. (1). The number of
points in the Fourier analysis in Eq. (1) must be greater than the
number of frames of an utterance. In order to evaluate the
MS over a database, the MS of each utterance is evaluated for
each coefficient. The MS statistics are assumed to be normally
distributed:

(2)

Fig. 1 illustrates the MS statistics of natural and synthetic
speech over a large speech database. We can see that synthetic
speech has less modulated trajectories than natural speech. By
modifying the MS of synthetic speech trajectories to be closer
to the modulation characteristics of natural speech, the speech
quality can be improved [1], [16]. This can be done by the for-
mula [16]:

(3)
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Fig. 1. Modulation spectra of the 16th mel-cepstral coefficient estimated from
natural speech and generated from a statistical model.

Fig. 2. Illustration of enhancing the 36th mel-cepstral coefficient trajectory by
variance scaling (equal scaling across different modulation frequencies) andMS
enhancement that can modify the frequency-dependent modulation character-
istic of speech.

where indices and indicate the parameters evaluated
from natural and synthetic speech, respectively, and defines
the amount of shift from synthetic to natural MS. The enhanced
trajectory is recovered by the inverse operation of Eq. (1) and
preserving the original phase:

(4)

where is the phase of the original parameter trajectory.
Fig. 2 illustrates MS enhancement of a mel-cepstrum trajectory.

III. DNN-BASED PROBABILISTIC POSTFILTER

In Section II, we introduced several frequently used postfil-
tering techniques for enhancing the segmental quality of syn-
thetic speech. However, these techniques were proposed based
on empirical findings on the acoustic differences between the
spectral features of synthetic and natural speech. There are var-
ious acoustic differences between natural and synthetic speech,
but each of these techniques mostly deals with only one specific
aspect.
In this paper, we proposed a probabilistic postfilter to auto-

matically discover and compensate the acoustic differences ob-
served in the spectral domain. The postfilter is similar to VC in
the sense that it converts synthetic spectral features into nat-
ural spectral features. However, the conventional approaches
for VC, such as the ones based on GMMs and conventional
neural networks (NN) [23], still suffer from the over-smoothing
problem caused by the statistical averaging of the underlying
model. Recently, we have proposed a generatively trained DNN
for spectral conversion in VC [24], [25] and showed that it can
significantly improve the segmental quality of generated speech.
In this paper, we extend this approach to spectral postfiltering
for HMM-based parametric speech synthesis.

Fig. 3. The graphical model representations for an RBM (left) and a BAM
(right). The double circles represent visible units while the single circles repre-
sent hidden units.

A. Basic Components
The proposed DNN is composed by three types of gener-

ative neural networks: restricted Boltzmann machine (RBM)
[26], deep belief network (DBN) and bidirectional associative
memory (BAM) [27].
1) Restricted Boltzmann Machine: An RBM is a two layered

generative neural network, including a visible layer and a hidden
layer, which correspond to visible random variable and hidden
random variable as can be seen from the left of Fig. 3. Units
between different layers are fully connected and there are no
connections between units in the same layer.
An RBM is an undirected graphical model that describes a

probabilistic distribution defined by an energy function. We as-
sumed that it would obey a Gaussian distribution to model spec-
tral features and hence the Gaussian-Bernoulli RBM (GBRBM)
was used. The energy function of a GBRBM is given by

(5)

where is the th element in the visible random variable vector
and is that in bias vector . Here is the hidden variable

vector, is the hidden bias vector. is the th row vector of
the weight matrix , and is the number of units in the visible
layer. is usually fixed to the diagonal
covariance matrix of the training data [28] and is not considered
to be a parameter of the model. Therefore the parameter set of an
RBM is . has been ignored in the rest of this paper
for the sake of simplicity.
The probabilistic distribution of visible random variable

described by an RBM can be written as

(6)

where is the partition
function, which is intractable to compute and evaluate. There-
fore, the contrastive divergence (CD) algorithm is usually used
to estimate the parameters of an RBM [29], [30] and the an-
nealed importance sampling (AIS) algorithm is adopted to ap-
proximate the partition function for model evaluation
[31]. RBMs have been proven to be powerful for spectral mod-
eling in statistical parametric speech synthesis [6].
2) Bidirectional Associative Memory: BAM is also a shallow

neural network with only two layers, as can be seen in the right
of Fig. 3. Both layers in BAM are visible layers without any
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Fig. 4. Graphical representation of a deep belief network with three hidden
layers ( , and ) and a visible layer ( ).

hidden layers, which is different from RBM. BAM was origi-
nally proposed as a special case of the Hopfield network [32]
for information retrieval [27]. Chen et al. [1] and Liu et al. [33]
extended BAM as a generative model whose probabilistic dis-
tribution can also be given by an energy function. The energy
function for modeling binomial random variables of BAM is
given by

(7)

where and correspond to the binomial random variable vec-
tors in the two visible layers, and and are the corresponding
bias vectors. The joint distribution over and is therefore
given by

(8)

where is also an in-
tractable partition function. Therefore, following the training
method of an RBM, we adopted the CD algorithm to estimate
the parameters of BAM [33], which are .
3) Deep Belief Network: DBN is another type of neural net-

work-based generative model, but with multiple hidden layers.
Fig. 4 shows the graphical structure of a DBN with three hidden
layers. The connections between different layers are directed ex-
cept for the two top hidden layers. The units in the visible layer
are Gaussian random variables to enable spectral feature mod-
eling and those in the hidden layers are binomial variables. The
probabilistic distribution of a DBN as a generative model, with
hidden layers, can be written as:

(9)

where are the hidden variables in the th
hidden layer, and is the number of hidden units in this layer.
The conditional probabilities are given by

(10)

(11)

where are the parameters of the first layer, is the
th row vector of weight matrix that connects the th and
th layers, is the th element of corresponding bias vector

, and is the sigmoid activation function.
The joint probability of the two top hidden layers is given by
BAM Eq. (8), whose energy function is

(12)

The parameters of the DBN, , can be estimated
by using a layer-wise greedy learning algorithm initialized by
an RBM. Therefore, the DBN has a better ability to describe
the probabilistic distribution of visible variables than the
RBM [6], [28].

B. Model Training
The right of Fig. 5 outlines the structure of the proposed

DNN-based probabilistic postfilter. We can see that it has a
symmetric structure, including an input layer, an output layer,
and several hidden layers. The inputs and outputs of the DNN
are synthetic and natural spectral features. They can be in the
form of mel-cepstrum or higher-dimensional spectrum, for ex-
ample. As we can see from the left of Fig. 5, the proposed
DNN-based postfilter is generatively trained layer-by-layer by
cascading two RBMs/DBNs with a BAM. The training proce-
dure is conducted in the following four detailed steps:
1) Acoustic space modeling: Two generative neural networks

are constructed in this first step, the first ( ) is for mod-
eling the probabilistic distribution of the synthetic feature
space and the second ( ) is for modeling that of the nat-
ural feature space. The generative neural network here can
consist of either RBMs or DBNs. The respective model pa-
rameters are

(13)
(14)

for the two DBNs with hidden layers ( for
RBMs). The training process for a DBN actually consists
of stacking RBMs, and therefore and

correspond to the parameters for the th
RBM of synthetic and natural spectra.

2) Binary encoding of spectral features: The estimated
RBMs/DBNs may also serve as auto-encoders for spectral
features. These auto-encoders can encode the raw spectral
features into high-level hidden binary representations [34].
The hidden binary representations are obtained according
to the conditional distribution derived from the RBM, e.g.,
for synthetic spectral features:

(15)

where is the spectral feature, is the th dimension of
its hidden representation , and and are the model
parameters related to the th hidden unit. Because the
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Fig. 5. Structure and training procedure for proposed DNN-based postfilter. The six-hidden-layer DNN is composed of a BAM and two DBNs, with three hidden
layers for synthetic and natural speech.

hidden units are conditionally independent of each other,
the hidden representations can be sampled conveniently
dimension-by-dimension.
The hidden representations for the DBNs are extracted
layer-by-layer as the binary code of the DBN auto-en-
coders [34]. Note that although the directed connections
in the DBN are top-down for generation as a decoder in
Fig. 4, they can also be bottom-up for extracting hidden
variables as an encoder [35].

3) Joint modeling: BAM is adopted in the
third step to model the joint distribution of hidden variables
from the two RBMs/DBNs estimated in step 1. Note that
the two RBMs (or the top hidden layers of the DBNs) are
trained separately in an unsupervised way in step 1 and the
relationship (or acoustic difference) between synthetic and
natural speech is captured by a single BAM in this step in
high-level hidden space.

4) Model combination: The three estimated generative
models are combined in the final step by concatenating the
two RBMs/DBNs with the BAM. The concatenated model
is then converted to a DNN (feed-forward stochastic
neural network) with hidden layers, as shown in Fig. 5.
The parameters of the DNN are copied
from the RBMs/DBNs and BAMs, which are

(16)

The parameters of each layer are estimated separately in this
training procedure and copied to form a DNN.We did not jointly
fine-tune the parameters of all layers. This does not mean that
joint fine-tuning is unnecessary. The minimum mean square
error (MMSE) criterion is usually used for DNN training in re-
gression tasks, such as those in speech generation. However,
previous work in VC has indicated that listeners prefer syn-
thetic speech generated using a network architecture without the
fine-tuning over one using the fine-tuning based on the MMSE
criterion [25]. Therefore we can assume that this criterion may
not be optimal for training a postfilter, either.

This probabilistic postfilter works because of the powerful
modeling ability of RBMs/DBNs:
• An RBM is equivalent to a structured GMMwith com-
ponents. The number of Gaussian components in an RBM
can be considerably larger than the number of training sam-
ples we can obtain, due to its ability to describe very com-
plicated multimodal distributions of spectral features.

• An RBM is a product of experts (PoE) [36] model that de-
scribes a probabilistic distribution with very sharp modes.

• A DBN is a deep extension of an RBM and it is reported
that it is a better model for spectral envelopes [6].

C. Spectral Postfiltering
The proposed DNN directly describes a conditional distri-

bution of natural spectral feature given synthetic spectral
feature :

(17)

where are random variables in the hidden
layers of the proposed DNN-based postfilter. Here,
and are multi-variate binomial distributions defined
similarly to those in Eq. (15) and

(18)

We make an approximation in Eq. (17) in order to reduce the
computational cost by using the optimal samples for instead
of summing over them. This approximation is reasonable be-
cause the models are trained similarly layer-by-layer. The op-
timal binary samples are sampled from the conditional dis-
tribution according to the maximum probabilities as:

(19)

(20)
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When the mean-field approximation is used here, the proposed
DNN is treated exactly the same as a conventional feed-forward
neural network.
The input and output spectral features may be composed

of multiple frames in practice to capture sequential properties
of the feature trajectories. The maximum likelihood param-
eter generation (MLPG) algorithm [37] is adopted in this
case to generate a static feature sequence for synthesizing
speech. For example, the output spectral feature sequence,

, is generated by

(21)

(22)

(23)

where is the matrix that is used to convert the static feature
sequence into multiple frame sequence [1]. Note that the condi-
tional distribution in Eq. (18) is a Gaussian distribution with a
unit covariance matrix because the training samples are normal-
ized to zero mean and unit variance. Therefore, the conditional
distribution needs to be converted into the real distribution be-
fore applying the MLPG algorithm. Since the conditional distri-
butions are single Gaussian distributions with a globally shared
diagonal covariance matrix, the MLPG in this paper is the same
as that in conventional approaches.

IV. EVALUATION

This section presents the subjective evaluation and acoustic
analysis of synthetic speech processed using various quality-en-
hancement methods2. First, we will describe the text-to-speech
voices used in the experiments and the methods we used in eval-
uations to compensate for over-smoothing. Then, the acoustic
analysis in terms of modulation characteristics and spectra is
presented, after which we will present the design of the listening
test and finally the test results.

A. Voices and Methods

We used a female and a male synthetic voice for the evalua-
tion, both of which were in English. The male voice was created
from a high-quality average voice model adapted to 2840 sen-
tences recorded from a British male speaker, which consisted of
approximately three hours of speech material. The female voice
was built using 4546 sentences recorded from a Scottish female
speaker, which comprised approximately four hours of speech.
All data were sampled at 48 kHz. We extracted the following

acoustic features at 5 ms intervals: 59 mel-cepstral coefficients,
mel scale and 25 aperiodicity band energies extracted using
the Speech Transformation and Representation using Adaptive
Interpolation of weiGHTed (STRAIGHT) [38] analysis. We
used a hidden semi-Markov model as the acoustic model, and
the observation vectors for the spectral and excitation param-
eters contained static, delta, and delta-delta values, with one

2Speech samples used in the evaluation can be found at: http://wiki.inf.ed.ac.
uk/CSTR/PostfilterJournal

TABLE I
METHODS THAT WERE EVALUATED

stream for the spectrum, three streams for and one for band-
aperiodicity. Speech was synthesized in the frequency domain.
Table I outlines the methods we evaluated. The parameter

was set to 0.4 to create the PF entry as in [14]. We applied the
method of global variance [15] only to the mel-cepstral stream
for the GV entry.
The MS of the natural and the synthetic utterances were eval-

uated using Eqs. (1) and (2) and using mel-cepstrum for repre-
senting the spectrum of speech for MS enhancement. The MS
was evaluated for each file and each mel-cepstral coefficient tra-
jectory, from which the MS statistics (mean and standard de-
viation ) were estimated. We used 4096-point Fourier analysis
in Eq. (1) in order to exceed the maximum number of frames
in an utterance in the database. The synthetic trajectories were
enhanced using Eq. (3) based on the statistics that were evalu-
ated. The value of was set to 0.85 based on the findings by
Takamichi et al. [16]. The MS enhanced mel-cepstra were then
used for synthesizing speech (in the frequency domain).
The input and output of the DNN postfilters were formed by

using multiple consecutive frames of spectral features in both
mel-cepstral and spectral domains:
• Mel-cepstral domain The DNNs were trained with paired
synthetic and natural spectral features aligned using the dy-
namic time warping (DTW) algorithm3. Only a DNN with
two hidden layers was constructed for the mel-cepstral do-
main, because we observed that the more hidden layers we
used from our preliminary experiments, the worse the gen-
erated speech was. There were 2048 hidden units in each
hidden layer. The postfilter was only applied to the lower
dimensional mel-cepstral coefficients (1–18th mel-cepstral
coefficients), which are mostly related to the formants of
speech.

• Spectral domain The spectral envelopes, which were
extracted using STRAIGHT with a fast Fourier transform
(FFT) length of 4096, were directly used as the spectral
domain features. The dimensionality of the spectral en-
velopes was 2049. The spectral envelopes were warped
into the Bark scale (using a bilinear transform with a
warping factor of 0.77 [39]) before the DNNs were trained.
Spectral envelopes of synthetic and natural speech were
aligned using the alignment paths calculated from their
corresponding mel-cepstra. We found from our internal
experiments that the generated speech improved as we
increased the number of hidden layers. However, DBNs
with three hidden layers, which formed a DNN with six

3It is also possible to obtain such paired data via the forced alignment algo-
rithms. However a preliminary subjective evaluation test showed that the above
DTW algorithm was preferred in terms of the quality of synthetic speech.
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Fig. 6. Preference scores between samples generatedwith DNN postfilters with
one, three and five frames in input/output.

hidden layers, were used to limit the computational costs.
There were 2048 hidden units in each hidden layer.

The RBMs, DBNs and BAMs were estimated using the
CD algorithm with one-step Gibbs sampling (CD-1). The
mini-batch size was set to 10 during training. The learning
rate was set to 0.0001 for all models. The momentum and
weight decay were also employed to train the models [30].
Two hundred epochs were executed in training the RBMs and
DBNs, and 50 epochs were executed in training the BAMs.

B. Listening Experiment: Context Size of DNN Postfilter

We used three consecutive frames for input and output of the
DNN postfilter in our previous experiments [1]. We wanted to
evaluate the effect of context size in this experiment by varying
the number of consecutive frames. We trained DNN postfilters
with one, three and five frames as input and output to do this.
We evaluated the quality of the postfilters by three possible

paired comparisons. Ten native English speakers participated in
the listening test. Each listener compared 120 pairs of speech
samples, which were comprised of 40 samples from each of the
three paired comparisons.
Fig. 6 provides the breakdown in percentages excluding the

no preference option with 95% confidence intervals calculated
using a two-tailed binomial test. The scores indicate that the
DNN postfilter with five frames was preferable to those with
one and three frames. The three-frame systemwas also preferred
over the one-frame system. Although we also built systems with
seven and nine frames, no clear differences were perceived be-
tween these and the five-frame system, and the model training
took much longer. Therefore, we fixed the context size of the
DNN-based postfilter to five frames for the experiments in the
rest of this paper.
Note that this experiment was conducted in the mel-cepstral

domain. The performance of the DNN postfilter in the spectral
domain could differ from what we observed in the mel-cepstral
domain. However, it was difficult to train the DNN with more
than five frames in such a high dimensional space. Therefore,
we also fixed the context size of DNN in spectral space to five
frames in the experiments.

C. Acoustic Analysis

This section presents the results obtained from acoustic
analysis. One interesting aspect to compare is to analyze
the modulation characteristics. This is because the proposed
DNN-based postfilter uses five frames as input and hence may

Fig. 7. Average difference in modulation spectrum of mel-cepstra for different
systems compared to natural speech for the female (top) and male (bottom)
speakers.

Fig. 8. Average difference in modulation per mel-cepstral coefficient for
different systems compared to natural speech for the female (tom) and male
(bottom) speakers.

implicitly learn such temporal characteristics without explicitly
using modulation spectrum features.
Frame-wise mel-cepstra were evaluated from all the synthetic

and natural speech waveforms to study the modulation char-
acteristics of the test speech samples. The average modulation
spectra of all systems were then evaluated following the same
procedure as that in MS enhancement, which was described in
Section II-C. Fig. 7 shows the differences in modulation spectra
with respect to natural speech for each method calculated from
mel-cepstra and averaged across sentences and all mel-cepstral
coefficients for the female and male speakers. The same data
are presented in Fig. 8, but they have been plotted separately
for each mel-cepstral coefficient and averaged over all modula-
tion frequencies.
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Fig. 9. Spectrogram of utterance “on the smooth planks” generated using baseline system (NONE) and the enhancement methods: PF, GV, MS, DNN-MCEP,
DNN-SPEC and DNN-SPEC (refers here to the DNN-SPEC method but with the mean-field approximation). The female speaker model was used.

Fig. 7 indicates that GV and DNN-SPEC have the highest
modulation at low modulation frequencies that represent mod-
ulation frequencies that are mostly associated with relatively
slow movements of the articulators. Interestingly, the modu-
lation in these two systems is even higher than that in natural
speech. Speech with no enhancement (NONE) has the least
modulation overall, and the rest of the systems fall between
these two extremes. Although the modulation decreases for
higher modulation frequencies for all systems, MS enhance-
ment indicates a consistent increase in modulation for all
frequencies, especially for the female speaker, thus possibly
over-enhancing the higher modulation frequencies.
Fig. 8 indicates that DNN-SPEC provides the largest boost in

modulation for mid-quefrency mel-cepstral coefficients, while
MS enhancement seems to create the highest overall boost in
modulation for each coefficient, probably due to all modula-
tion frequencies being enhanced. Speech with no enhancement
(NONE) has the lowest modulation for all mel-cepstral coeffi-
cients. However, all systems have less modulation on almost all

mel-cepstral coefficients compared to natural speech. Interest-
ingly, the DNN-MCEP that enhanced the coefficients from 1 to
18 shows increase only within these coefficients.
Finally, we present the spectrogram of a test sentence pro-

duced by the systems we evaluated here in Fig. 9. We can see
that both the formants and the spectral fine structure are more
enhanced when using the DNN-SPEC postfilter compared to
other methods of enhancement.We also present the spectrogram
generated by the proposed postfilter with mean-field sampling
for hidden units to show the effectiveness of the proposed sam-
pling method (Eqs. (19) and (20)). Benefiting from direct mod-
eling in the spectral domain, the spectrogram of the DNN-SPEC
system has a more detailed spectral structure especially at the
high frequencies than the conventional methods of enhancement
that operate in the mel-cepstral domain.

D. Listening Experiment: Comparing Postfilters
We evaluated the methods in Table I using the MUltiple

Stimuli with Hidden Reference and Anchor (MUSHRA)
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Fig. 10. Results for the male voice: box plots of subjective ratings. Means are
represented by solid red lines and medians are represented by dashed green hor-
izontal lines.

methodology [40]. Participants rated stimuli produced by all
methods in parallel in the MUSHRA test using a scale from
0 to 100. It was possible for subjects to directly compare the
methods and revise scores accordingly in this way. Such tests
require reference stimulus to be presented that participants
should rate as 100. The reference was natural speech in our
tests. The same sentence was used in each comparison apart
from the female voice whose natural speech reference was a
different sentence as we did not have the recordings of the test
sentences used here. Each participant evaluated 10 sentences
for the male voice and 10 for the female voice. A set of 60
sentences were balanced across participants so that for every
six participants all sentences were rated under all conditions.
The sentences were chosen from the first six sets of the Harvard
dataset [41], which was a set that was not used to train either
of the voices. As 24 native English speakers participated in
the listening test, 240 scores were obtained for each method
applied to each voice.

E. Results

The distributions of the subjective scores are indicated by the
box plots in Fig. 10 and Fig. 11 for the male and female voices.
We performed a series of pairwise -tests to identify sig-

nificant differences in mean scores between the methods. We
applied the Bonferroni correction to compensate for the large
number of comparisons. All pairs were found to be significantly
different at a 1% level except (PF, MS), (PF, DNN-MCEP)
and (GV, MS) for the male voice and (PF, DNN-MCEP) and
(DNN-MCEP, MS) for the female voice according to this
procedure.
The results indicate that all the postfiltering methods resulted

in better quality of synthetic speech than that without post-pro-
cessing. GV and MS were the most preferable for the male
speaker out of the conventional postfiltering methods, and GV
was the most preferable for the female speaker.
Further we can see that the proposed DNN-based postfilter

in the mel-cepstral domain performs as well as the conven-

Fig. 11. Results for the female voice: box plots of subjective ratings. Means
are represented by solid red lines and medians are represented by dashed green
horizontal lines.

tional mel-cepstral postfilter. Finally, we found that the pro-
posed DNN-based postfilter in the spectral domain produced
synthetic speech that was of higher quality than that obtained
with any conventional postfilters.

V. DISCUSSION

A. Why did DNN-based Spectral Postfilter Perform Better?

The results presented in Section IV-E indicate that the pro-
posed DNN-based postfilter in the spectral domain produced
synthetic speech of significantly higher quality than that ob-
tained with the conventional postfilters. Three possible reasons
for this include:
• The DNNwas trained directly in the spectral domain rather
than in the mel-cepstral domain, and was therefore able
to learn spectral fine structures in detail. Note that we did
not include GV in the spectral domain in our experiments
although it provided good results in a previous study on
speech data sampled at 16 kHz [20]. However, it did not
work well on the speech data sampled at 48 kHz in our ex-
periments. In contrast, the proposed DNN-based postfilter
worked well for speech sampled at both 16 and 48 kHz [1],
[42]. The DNNwas also able to learn the gap in speech dy-
namics between synthetic and natural speech in the spectral
domain similarly to GV in the spectral domain.

• The DNN spectra are generated from an RBM trained on
natural speech, which is equivalent to training a struc-
tured GMM that has a huge number of mixture components
( in this work) [25]. The RBMs/DBNs are proba-
bilistic models with some beneficial properties, as was dis-
cussed in Section III-B. The acoustic differences between
synthetic and natural speech are modeled in a high-level
binary hidden space. There are fewer patterns in this space
than in the original spectral space, and it is therefore easier
to compensate for the differences with a single layered
BAM.
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Fig. 12. Histogram of for hidden units from first hidden layer in
mel-cepstral domain (top) and spectral domain (bottom).

• The DNN could also learn modulation characteristics since
it uses five consecutive frames for mapping and because
there is a close relationship between the DNN and MS.
The FFT convolution is equivalent to the weighted sum
in a network unit of the convolutional DNN [43], and the
next deep layer of a DNN trained in the spectrum domain
may therefore contain a representation related to MS.

The spectral features were encoded into binary representa-
tions by RBMs/DBNs for mapping in the proposed DNN-based
postfilter. This is important because the modeling and mapping
in a transformed binary space can avoid the statistical aver-
aging effect in the continuous space of original spectra, which is
the main cause of the over-smoothing problem in conventional
HMM-based statistical parametric speech synthesis.
However, the subjective results indicate that the proposed

method is feature sensitive. Although it works well in the spec-
tral domain, it is significantly worse than DNN-SPEC in mel-
cepstral domain. However, it is better than the baseline method
without any post-processing (NONE). One reason for this is the
use of high-dimensional spectra in DNN-SPEC. Another reason
could be that the DNN is not well estimated in the mel-cepstral
domain. It is vital in the training of the proposed DNN to first
generate good binary representations for spectral features using
RBMs for estimating higher hidden layers of DBNs and BAM.
Each dimension of these binary representations are produced ac-
cording to the probability of the corresponding unit being one
(probability of the unit being “switched on”, e.g.,
for synthetic speech in Eq. (15)). Fig. 12 presents the histograms
for in the mel-cepstral and spectral domains. The
histograms were counted using all 2048 hidden units of a sen-
tence from the training set. We can see a clear 0/1 pattern in
histogram of the spectral domain, i.e., the probabilities are ei-
ther close to zero or close to one. This makes it easy to sample
reliable binary representations with many units being one. How-
ever, most probabilities are focused on 0.2 in the mel-cepstral

domain and very few are close to one. The sampled binary
sample is not a good representation of the mel-cepstrum be-
cause it was sampled with a very low probability. Therefore
we used a mean-field approximation for DNN-MCEP discussed
in this paper instead of sampling binary representations. Using
mean-field approximation loses the beneficial properties of bi-
nary representations in avoiding over-smoothing.

B. Modulation Spectrum

The results suggest that low modulation frequencies are per-
ceptually most significant, and enhancing these improves the
quality of synthetic speech. There is still a large gap in modu-
lation spectra at the higher modulation frequencies in compar-
ison to natural speech, but it is not yet clear how much this has
perceptual relevance. MS enhancement, which had the highest
modulation at high modulation frequencies, did not produce
the best quality. However, the higher modulation frequencies,
probably linked to the excitation patterns, may still be percep-
tually important, but simple MS enhancement probably cannot
reproduce or enhance the modulation patterns present in natural
glottal excitation.
We noticed that the excitation of speech had a significant

effect on the modulation characteristics of the estimated spec-
tral parameters in the experiments with MS enhancement.
Fig. 2 plots difference in the modulation spectra between
1) parameters estimated from natural speech, and 2) parameters
generated from statistical models. However, if the modulation
spectrum of the latter is estimated from a synthesized speech
waveform instead of the generated parameters, the MS has
higher levels of modulation. This is probably due to the exci-
tation of speech that generates additional modulation at higher
modulation frequencies. Thus, the difference in modulation
spectra between natural and synthetic speech should theoreti-
cally be estimated using parameters estimated from natural and
synthetic waveforms in both cases. Chen et al. calculated the
difference in MS between parameters estimated from natural
speech and parameters generated from statistical models [1],
[16], thus ignoring the effect of excitation of synthetic speech.
The effect of ignoring synthetic excitation will most likely
over-estimate the difference in modulation between natural
and synthetic speech and thus higher modulation frequencies
will be over-emphasized after MS enhancement, as is shown
in Fig. 7. This might degrade speech quality due to the strong,
overly fast modulations in the spectral parameters. Due to this
issue, Takamichi et al. uses low-pass filtering of the MS before
enhancement [16] (although it was not explicitly mentioned
in the paper), which might explain why MS enhancement
performed better in that particular experiment. Despite this pre-
viously mentioned issue, the method in [1] (i.e., MS estimated
from generated parameters and without low-pass filtering of
MS) was used as a reference in this study since it was proven
to be successful despite the effect of excitation being ignored.
Preliminary experiments on estimating MS from the natural
and synthetic speech waveforms indicated that the method is
feasible: the higher modulation spectrum is not overly empha-
sized, but lightly less enhancement will be achieved also in the
lower modulation frequencies.
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C. Computational Cost
The proposed DNN-based enhancement can be time con-

suming since the model is applied directly to high-dimensional
spectra. For example, applying a sentence with frames,
the computational complexity of this method is ,
where is the dimensionality of the spectral envelope, is
the number of units in each hidden layer, and is the number
of hidden layers. The computational complexity of the GV
method is , where is the dimensionality of the
spectral feature (e.g., mel-cepstrum) and is the number of
iterations for applying GV (note that ).
We can see that the computational complexity of the pro-

posed DNN-based postfilter is still hundreds of times that of the
conventional GV-based approach. This could be a limitation in
real time systems. However, the DNN-based postfilter can also
be applied to the model parameters of HMMs to accelerate the
synthesis process. For example, the mean vector of the spectral
stream (mel-cepstrum) of each HMMstate can be converted into
multiple frames of spectra, and the DNN-based postfilter can be
applied to the converted mean vectors. The postfiltered mean
vectors can then be converted back to the mel-cepstral domain
with dynamic features to replace the corresponding mean vec-
tors of the HMMs. In this case, the computational cost of the
synthesis process is exactly the same as that of the conventional
method (NONE).

VI. CONCLUSION
We proposed a data-driven postfilter technique to improve the

segmental quality of statistical parametric text-to-speech syn-
thesis. The proposed method uses a DNN to model the condi-
tional probability of the spectrum of natural speech given the
spectrum of synthetic speech. We evaluated the proposed post-
filter in two different spectral domains: the low dimensional
mel-cepstral domain and the full spectrum domain, which we
described in correspondence. We found that the full spectral
domain DNN-based postfilter significantly improved the seg-
mental quality of synthetic speech by comparing these two vari-
ants with existing postfilter techniques. We also compared and
evaluated them with conventional methods for both a female
and male voice.
Future work will include studies on the DNN-based postfilter

in a speaker independent fashion, investigation into long term
modulation spectra with LSTM-based RNN in hidden binary
space, and also studies on enhancements to modulation spectra
using higher-dimensional spectra instead of mel-cepstra.
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