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Abstract—In certain applications, the locations of events reported by a sensor network need to remain anonymous. That is,
unauthorized observers must be unable to detect the origin of such events by analyzing the network traffic. Known as the source
anonymity problem, this problem has emerged as an important topic in the security of wireless sensor networks, with variety of
techniques based on different adversarial assumptions being proposed. In this work, we present a new framework for modeling,
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solutions for designing anonymous sensor networks using the proposed model. We show how mapping source anonymity to binary
hypothesis testing with nuisance parameters leads to converting the problem of exposing private source information into searching
for an appropriate data transformation that removes or minimize the effect of the nuisance information. By doing so, we transform the
problem from analyzing real-valued sample points to binary codes, which opens the door for coding theory to be incorporated into the
study of anonymous sensor networks. Finally, we discuss how existing solutions can be modified to improve their anonymity.
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1 INTRODUCTION

Sensor networks are deployed to sense, monitor, and report
events of interest in a wide range of applications including,
but are not limited to, military, health care, and animal tracking
[3]–[5]. In many applications, such monitoring networks con-
sist of energy constrained nodes that are expected to operate
over an extended period of time, making energy efficient
monitoring an important feature for unattended networks. In
such scenarios, nodes are designed to transmit information
only when a relevant event is detected (i.e., event-triggered
transmission). Consequently, given the location of an event-
triggered node, the location of a real event reported by the
node can be approximated within the node’s sensing range.
In the example depicted in Figure 1, the locations of the
combat vehicle at different time intervals can be revealed to
an adversary observing nodes transmissions.

There are three parameters that can be associated with an
event detected and reported by a sensor node: the description
of the event, the time of the event, and the location of the
event. When sensor networks are deployed in untrustworthy
environments, protecting the privacy of the three parameters
that can be attributed to an event-triggered transmission be-
comes an important security feature in the design of wireless
sensor networks.

While transmitting the “description” of a sensed event in
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Fig. 1. A sensor network deployed in a battlefield. Only
nodes in close proximity to the combat vehicle are broad-
casting information, while other nodes are in sleep mode.

a private manner can be achieved via encryption primitives
[6]–[9], hiding the timing and spatial information of reported
events cannot be achieved via cryptographic means [10], [11].
Encrypting a message before transmission, for instance, can
hide the context of the message from unauthorized observers,
but the mere existence of the ciphertext is indicative of
information transmission.

The source anonymity problem in wireless sensor networks
is the problem of studying techniques that provide time and
location privacy for events reported by sensor nodes. (Time
and location privacy will be used interchangeably with source
anonymity throughout the paper.) The source anonymity prob-
lem has been drawing increasing research attention recently
[10]–[20].
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Fig. 2. Different approaches for embedding the report
of real events within a series of fake transmissions; (a)
shows the pre-specified distribution of fake transmissions,
(b) illustrates how real events are transmitted as soon as
they are detected, (c) illustrates how nodes report real
events instead of the next scheduled fake message.

In the existing literature, the source anonymity problem
has been addressed under two different types of adversaries,
namely, local and global adversaries. A local adversary is
defined to be an adversary having limited mobility and partial
view of the network traffic. Routing-based techniques have
been shown to be effective in hiding the locations of reported
events against local adversaries [12]–[16]. A global adversary
is defined to be an adversary with ability to monitor the traffic
of the entire network (e.g., coordinating adversaries spatially
distributed over the network). Against global adversaries,
routing-based techniques are known to be ineffective in con-
cealing location information in event-triggered transmission.
This is due to the fact that, since a global adversary has full
spatial view of the network, it can immediately detect the
origin and time of the event-triggered transmission.

The first step towards achieving source anonymity for sensor
networks in the presence of global adversaries is to refrain
from event-triggered transmissions [10]. To do that, nodes are
required to transmit fake messages even if there is no detection
of events of interest (real events will be used to denote events
of interest for the rest of the paper). When a real event
occurs, its report can be embedded within the transmissions
of fake messages. Thus, given an individual transmission, an
observer cannot determine whether it is fake or real with a
probability significantly higher than 1/2, assuming messages
are encrypted.

In the above approach, there is an implicit assumption of the
use of a probabilistic distribution to schedule the transmission
of fake messages. However, the arrival distribution of real
events is, in general, time-variant and unknown a priori.
If nodes report real events as soon as they are detected
(independently of the distribution of fake transmissions), given
the knowledge of the fake transmission distribution, statistical
analysis can be used to identify outliers (real transmissions)
with a probability higher than 1/2, as illustrated in Figure 2(b).

In other words, transmitting real events as soon as they are
detected does not provide source anonymity against statistical
adversaries analyzing a series of fake and real transmissions.

One way to mitigate the above statistical analysis is il-
lustrated in Figure 2(c). As opposed to transmitting real
events as they occur, they can be transmitted instead of the
next scheduled fake one. For example, consider programming
sensor nodes to deterministically transmit a fake message
every minute. If a real event occurs within a minute from
the last transmission, its report must be delayed until exactly
one minute has elapsed. This approach, however, introduces
additional delay before a real event is reported (in the above
example, the average delay of transmitting real events is half
a minute). When real events have time-sensitive information,
such delays might be unacceptable. Reducing the delay of
transmitting real events by adopting a more frequent schedul-
ing algorithm is impractical for most sensor network appli-
cations since sensor nodes are battery powered and, in many
applications, unchargeable. Therefore, a frequent transmission
scheduling will drastically reduce the desired lifetime of the
sensor network.

The Statistical Source Anonymity (SSA) problem in sensor
networks is the study of techniques that prevent global adver-
saries from exposing source location by performing statistical
analysis on nodes transmissions [11], [19]–[24]. Practical SSA
solutions need to be designed to achieve their objective under
two main constraints: minimizing delay and maximizing the
lifetime of sensors’ batteries.

OUR CONTRIBUTION. In this paper, we investigate the
problem of statistical source anonymity in wireless sensor
networks. The main contributions of this paper can be sum-
marized by the following points.
• We introduce the notion of “interval indistinguishabil-

ity” and illustrate how the problem of statistical source
anonymity can be mapped to the problem of interval
indistinguishability.

• We propose a quantitative measure to evaluate statistical
source anonymity in sensor networks.

• We map the problem of breaching source anonymity to
the statistical problem of binary hypothesis testing with
nuisance parameters.

• We demonstrate the significance of mapping the prob-
lem in hand to a well-studied problem in uncovering
hidden vulnerabilities. In particular, realizing that the
SSA problem can be mapped to the hypothesis testing
with nuisance parameters implies that breaching source
anonymity can be converted to finding an appropriate data
transformation that removes the nuisance information.

• We analyze existing solutions under the proposed model.
By finding a transformation of observed data, we convert
the problem from analyzing real-valued samples to binary
codes and identify a possible anonymity breach in the
current solutions for the SSA problem.

• We pose and answer the important research question of
why previous studies were unable to detect the possible
anonymity breach identified in this paper.

• We discuss, by looking at the problem as a coding
problem, a new direction to enhance the anonymity of
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existing SSA solutions.
ORGANIZATION. The rest of the paper is organized as follows.
In Section 2, we describe our network and adversarial assump-
tions. In Section 3, we describe the proposed framework. In
Section 4, we describe the notion of statistical goodness of fit
tests and study its use in designing SSA solutions. In Section
5, we provide experimental analysis of statistical goodness
of fit test based approaches and quantify their anonymity. In
Section 6 we demonstrate the importance of converting the
SSA problem into binary codes for uncovering the hidden
vulnerabilities missed by previous studies. In Section 8 we
extend the source anonymity problem in sensor networks to
include the network topology into the anonymity analysis. In
Section 9, we discuss related work and conclude the paper in
Section 10.

2 MODEL ASSUMPTIONS

In this section, we describe the network and adversarial
assumption that will be used in this paper.

2.1 Network Model
Communication is assumed to take place in a network of
energy constrained sensor nodes. Nodes are deployed to sense
events of interest and report them with minimum delay.
Consequently, given the location of a certain node, the location
of the reported event of interest can be approximated within
the node’s communication range at the time of transmission.
When a node senses an event, it places information about the
event in a message and broadcast an encrypted version of the
message. To obscure the report of an event of interest, nodes
are assumed to broadcast fake messages, even if no event
of interest has been detected. Nodes are also assumed to be
equipped with a semantically secure encryption algorithm, so
that adversaries are unable to distinguish between the reports
of events of interest and the fake transmissions by means of
cryptographic tests.1 Furthermore, the network is assumed to
be deployed in an unreachable environment and, therefore, the
conservation of nodes’ energy is a design requirement.

2.2 Adversarial Model
The adversarial model used in this paper is similar to the one
considered in [10], [11], in that it is external, passive, and
global. An external adversary is an adversary who does not
control any of the nodes in the network. As opposed to active
adversaries injecting their own traffic or jamming the network,
a passive adversary is only capable of observing the network
traffic. A global adversary is an adversary who can monitor
the traffic of the entire network and can determine the node
responsible for the initial transmission reporting an event of
interest.

The adversary is assumed to know the locations of all nodes
in the networks. The adversary is also assumed to know the

1. In cryptography, semantic security implies that, given a ciphertext, unau-
thorized users without the knowledge of the decryption key have no means
of distinguishing between two plaintexts in which one of them corresponds
to the observed ciphertext [25].

distribution of fake message transmissions. Furthermore, the
adversary is assumed capable of observing nodes transmis-
sions over extended periods of times and performing sophisti-
cated statistical analysis to compare the observed transmission
with the known distribution of fake messages. The adversary,
however, is not assumed able to break the security of the
encryption algorithm and distinguish the report of event of
interests via cryptographic tests.

3 PROPOSED FRAMEWORK FOR SSA

In this section, we introduce our source anonymity model
for wireless sensor networks. Intuitively, anonymity should be
measured by the amount of information about the occurrence
time and location of reported events an adversary can extract
by monitoring the sensor network. The challenge, however,
is to come up with an appropriate model that captures all
possible sources of information leakage and a proper way of
quantifying anonymity in different systems.

3.1 Interval Indistinguishability

Currently, statistical anonymity in sensor networks is modeled
by the adversary’s ability to distinguish between real and fake
transmissions by means of statistical analysis. That is, given a
series of transmissions of a certain node, the adversary must
be unable to distinguish, with significant confidence, which
transmission carries real information and which transmission is
fake, regardless of the number of transmissions the adversary
may observe.

Consider now an adversary observing a sensor network
over multiple time intervals. Assume that, during a given
time interval, the adversary is able to notice a change in the
statistical behavior of transmission times of a certain node in
the network. This distinguishable change in the transmission
behavior of the node can be indicative of the existence of
real activities detected and reported by that node during
that interval, even if the adversary was unable to distinguish
between individual transmissions.

Consequently, in many applications, modeling source
anonymity in sensor networks by the adversary’s ability to
distinguish between individual transmissions is insufficient
to guarantee location privacy. It must be the case that an
adversary monitoring the network over multiple time intervals,
in which some intervals contain real event transmissions and
the others do not, is unable to determine, with significant
confidence, which of the intervals contain the real traffic.
Formally, the notion of interval indistinguishability can be
defined as follows.

Definition 1 (Interval Indistinguishability): Let IF denotes
a time interval without any real event transmission (called the
“fake interval” for the rest of the paper), and IR denotes a
time interval with real event transmissions (called the “real
interval” for the rest of the paper). The two time intervals are
said to be statistically indistinguishable if the distributions of
inter-transmission times during these two intervals cannot be
distinguished with significant confidence.
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TABLE 1
A list of used terms and notations.

SSA Statistical Source Anonymity
Ei The random variable representing the type of event reported in the ith transmission (either fake or real)
Xi The random variable representing the inter-transmission time between the ith and the i+ 1st transmissions
µ The desired mean of the Xi’s
IF A fake interval: an interval consisting of fake events only
IR A real interval: an interval containing some real event transmissions

short inter-transmission times Inter-transmission times that are shorter than the mean of the pre-defined distribution
long inter-transmission times Inter-transmission times that are longer than the mean of the pre-defined distribution

short-long pattern A short inter-transmission time followed by a long inter-transmission time

3.2 Interval versus Event Indistinguishability
This section illustrates the relation between the traditional
anonymity notion (i.e., individual event indistinguishability)
and the proposed anonymity notion (i.e., interval indistin-
guishability). First, observe that as the length of intervals
decreases, interval indistinguishability approaches event in-
distinguishability. If each interval consists of a single trans-
mission, interval indistinguishability is equivalent to event
indistinguishability.

However, in the more general scenario, in which intervals
contain more than a single transmission, interval indistin-
guishability implies indistinguishability of individual trans-
missions. To see this, assume a system satisfying interval
indistinguishability but does not satisfy individual event in-
distinguishability. Since real and fake transmissions are dis-
tinguishable, given a fake interval and a real interval, the
real interval can be identified as the one with the real trans-
mission; a contradiction to the hypothesis that the system
satisfies interval indistinguishability. That is, if intervals are
indistinguishable, then individual events within them must also
be indistinguishable.

In fact, the notion of interval indistinguishability is strictly
stronger than the traditional notion individual event indistin-
guishability. That is, while interval indistinguishability implies
individual indistinguishability, the converse is not true in
general. This will be shown in Section 5 by demonstrating
that there exist schemes that achieve high levels of individ-
ual indistinguishability while failing to achieving satisfactory
levels of interval indistinguishability.

3.3 Mapping Statistical Source Anonymity to Binary
Hypothesis Testing
In binary hypothesis testing, given two hypothesis, H0 and H1,
and a data sample that belongs to one of the two hypothe-
ses (e.g., a bit transmitted through a noisy communication
channel), the goal is to decide to which hypothesis the data
sample belongs. In the statistical strong anonymity problem
under interval indistinguishability, given an interval of inter-
transmission times, the goal is to decide whether the interval
is fake or real (i.e., consists of fake transmissions only or
contains real transmissions).

Given Definition 1 of interval indistinguishability, consider
the following game between a challenger, C (the system
designer), and a statistical adversary, A.

Game 1 (Anonymity Game):
1) C chooses two intervals IR and IF , in which IR is a

real interval and IF is a fake one.
2) C draws a bit b ∈ {0, 1} uniformly at random and sets

IR = Ib and IF = Ib, where b denotes the binary
complement of b.

3) C gives Ib and Ib to A.
4) A makes any statistical test of her choice on Ib and Ib

and outputs a bit b′.
5) If b′ = b, A wins the game.
Game 1 can be viewed as a standard binary hypothesis

testing problem. That is, given two hypotheses (a real interval
and a fake interval) and an observed data (an interval of
inter-transmission times of a sensor node), the goal of the
adversary is to determine to which hypothesis the observed
data belongs (i.e., whether the observed interval contains real
event transmissions).

Remark 1: Although giving the adversary two intervals
might seem too strong of an assumption, it is actually a
practical one. To see this, note that the adversary can always
observe multiple time intervals, two for instance. Then, all
that is needed is to analyze these two observed intervals. If
they are distinguishable, then it is likely that one of them is
a real interval and the other is fake. Moreover, an adversary
can discover the distribution of fake intervals by monitoring a
node in the absence of real events. Then, all that is needed is
to observe different time intervals. The more distinguishable
a time interval from the known fake interval, the more likely
it is to contain real events. Therefore, Game 1 is suitable to
analyze practical systems.

3.4 Quantifying Statistical Source Anonymity

With Definition 1 and Game 1, we aim to find a security
measure that can formally quantify the anonymity of different
systems. Let σ denote any adversarial strategy for breaching
the anonymity of the system. Let Pr[b′ = b]σ denote the
adversary’s probability of winning Game 1 using strategy σ.
We quantify the anonymity of a sensor network against the
strategy σ by

Λσ := 1− 2
(

Pr[b′ = b]σ − 0.5
)
. (1)

In the best case scenario, from the challenger’s standpoint,
the adversary’s strategy is a pure random guess; leading to
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Pr[b′ = b]σ = 1/2 and Λσ = 1 (absolute anonymity).
In the worst case, the adversary will have a strategy with
Pr[b′ = b]σ = 1 leading to Λσ = 0 (no anonymity). Any
intelligent strategy will result in a probability of winning
the game belonging to the interval [0.5, 1], leading to an
anonymity measure in the interval [0, 1].

Now, let Σ be the set of all possible adversarial strategies to
breach the anonymity of the sensor network. Then, we define
the anonymity of the system as:

Λ := min
σ∈Σ

Λσ, (2)

where Λσ is as defined in equation (1).
With the above definition of interval indistinguishability, we

introduce the notion of Λ-anonymity in sensor networks.
Definition 2 (Λ-anonymity): A wireless sensor network is

said to be Λ-anonymous if it satisfies two conditions
1) the anonymity of the system, as defined in equation (2),

is at least Λ,
2) there is no distinguishable transitional behavior between

intervals.
The second condition in Definition 2 ensures that the adver-

sary is unable to infer when an interval starts or when it ends.
This is necessary since an adversary with the knowledge that
a node is transitioning from one interval to another will infer
that either real events have started to arrive or stopped from
arriving. In either case, source anonymity can be breached. In
Table 1, the terms and notations that will be used throughout
the paper are listed.

4 STATISTICAL GOODNESS OF FIT TESTS
AND THE SSA PROBLEM

In the literature, statistical source anonymity is shown to be
achieved via the use of statistical goodness of fit tests [11],
[19]–[24]. In this section, we describe the current use of
statistical goodness of fit tests in designing anonymous sensor
networks.

4.1 SSA Solutions Based on Statistical Goodness of
Fit Tests
The statistical goodness of fit of an observed data describes
how well the data fits a given statistical model. Measures of
goodness of fit typically summarize the discrepancy between
observed values and the values expected under the statistical
model in question. Such measures can be used, for example, to
test for normality of residuals, to test whether two samples are
drawn from identical distributions, or to test whether outcome
frequencies follow a specified distribution. Examples of well-
studied goodness of fit tests include, but are not limited to, the
Anderson-Darling (A-D) test [26], the Kolmogorov-Smirnov
(K-S) test [27], the Jarque-Bera (J-B) test [28].

The following is a description of how statistical goodness
of fit tests have been used to design anonymous sensor
networks. Let sensor nodes be designed to transmit indepen-
dent identically distributed (iid) fake messages according to
a pre-specified probabilistic distribution, D, with a desired
mean, µ. Furthermore, let nodes store a sliding window of

Fig. 3. An illustration of solutions based on statistical
goodness of fit tests. Nodes transmit fake messages
according to a pre-specified probabilistic distribution and
maintain a sliding window of inter-transmission times.
When a real event occurs, it is transmitted as soon as
possible under the condition that the samples in the
sliding window maintain the designed distribution. The
transmission following the real transmission is delayed to
maintain the mean of the distribution of inter-transmission
times in the sliding window.

times between consecutive transmissions (inter-transmission
times), say Xi,Xi+1, · · · ,Xk+i−1, where Xj is the random
variable representing the time between the jth and the j + 1st

transmissions, and k is the length of the sliding window.

Assume that, after the k + ith transmission, a real event
is detected. Ideally, the inter-transmission time for reporting
the detected event, represented by Xk+i, should be a random
variable drawn from D independently of all the Xj’s. To mini-
mize delay, however, consider the following use of a statistical
goodness of fit test. Let Y be a random variable drawn from
D and let Xk+i = Y − ε, where ε is defined to be the largest
positive number such that the sequence of random variables
in the sliding window, {Xi, · · · ,Xk+i}, passes the statistical
goodness of fit test for a sequence following the distribution
D. That is, an adversary recording the sequence of inter-
transmission times will observe a sequence that is statistically
indistinguishable from an iid sequence of random variables
with the pre-specified distribution of fake transmissions.

Observe, however, that by continuing in the same fashion
of transmitting real event as soon as possible, the mean of
the probabilistic distribution will skew away from the desired
mean, µ, since nodes always favor shorter times to transmit
real events. To adjust the mean, the inter-transmission time
between the report of the real event and next transmission,
Xk+i+1 in this example, will be purposely delayed. That
is, let Y be a random variable drawn from D and set
Xk+i+1 = Y +δ, where δ is defined to be the largest positive
number such that the sequence of random variables in the
sliding window, {Xi+1, · · · ,Xk+i+1}, passes the statistical
goodness of fit test for a sequence following the distribution
D. Then, as shown in [11], an adversary observing the sensor
node cannot differentiate between real and fake transmissions.
Figure 3 illustrates an instance of this approach.
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4.2 Statistical Goodness of Fit Under Interval Indis-
tinguishability
As discussed in Section 3.1, when an adversary can distin-
guish between real and fake intervals, source location can
be exposed. In this section, we analyze statistical goodness
of fit based solutions under the proposed model of interval
indistinguishability.

As before, let Xi be the random variable representing the
time between the ith and the i+ 1st transmissions and let the
desired mean of these random variables be µ; i.e., E[Xi] =
µ, for all i (since the Xi’s are iid). We now examine two
intervals, a fake interval and a real one.

4.2.1 Fake Interval (IF )
Recall that, in the absence of real events, nodes are pro-
grammed to transmit iid fake messages according to a pre-
specified probability distribution. That is, the Xi’s in fake
intervals are iid random variables with mean µ. Therefore,
during any fake interval, IF , for any Xi−1,Xi ∈ IF , one
gets

E
[
Xi |Xi−1 < µ

]
= µ, (3)

by the fact that Xi−1 and Xi are independent by definition
and that E[Xj ] = µ, for all j’s.

4.2.2 Real Interval (IR)
By definition, real intervals will have both fake and real
transmissions. Let Ei be the random variable representing the
type of the event reported in the ith transmission, i.e., fake or
real. Then, Ei can take the values R and F , where R denotes
a real event and F denotes a fake one. Since, in the most
general scenario, the distribution of inter-arrival times of real
events can be time-variant and unknown beforehand, we will
assume that Ei can take the values R and F with arbitrary
probabilities.

Recall that the time between the transmission of a real
event and its preceding fake one is usually shorter than the
mean, µ, by design (to reduce delay). Recall further that
the time between the transmission of a real event and its
successive one is usually longer than µ by design (to adjust
the ensemble mean). That is, during any real interval, IR, for
any Xi−1,Xi ∈ IR, one gets

E
[
Xi |Xi−1 < µ,Ei = R

]
> µ, (4)

and,
E
[
Xi |Xi−1 < µ,Ei = F

]
= µ, (5)

by design. Combining equations (4) and (5) one gets

E
[
Xi |Xi−1 < µ

]
= E

[
Xi |Xi−1 < µ,Ei = R

]
· Pr[Ei = R]

+ E
[
Xi |Xi−1 < µ,Ei = F

]
· Pr[Ei = F ] (6)

> µ · Pr[Ei = R] + µ · Pr[Ei = F ] = µ. (7)

An inter-transmission time can be either shorter or longer
than µ.2 For the rest of the paper, we call an inter-transmission

2. Since inter-transmission times are typically drawn from continuous
random variables, the probability of an inter-transmission time to be equal
to the mean, µ, is zero.

Fig. 4. An illustration of interval distinguishability in
the current state-of-the-art solutions based on statistical
goodness of fit tests. Real events are transmitted sooner
than what is determined by the probabilistic distribution,
while the transmission following the real event is later than
what is determined by the probabilistic distribution to fix
the mean of the pre-defined distribution.

time that is shorter than µ “short inter-transmission time” and
an inter-transmission time that is longer than µ “long inter-
transmission time”.

Equation (7) implies that short inter-transmission times are
most likely to be followed by long inter-transmission times
during real intervals. Therefore, by equations (3) and (7), short
inter-transmission times followed by long inter-transmission
times occur more frequently in real intervals than fake intervals
(for the rest of the paper, a short-long pattern will be used to
denote a short inter-transmission time followed by a long inter-
transmission time). Figure 4 illustrates the short-long patterns.

4.3 Questions Arising from our Analysis
Our analysis in the previous section shows that real and fake
intervals in approaches based on statistical goodness of fit tests
can be theoretically distinguishable. This raises the following
question: can the analysis in Section 4.2 be applied in prac-
tical scenarios? If the presented analysis is indeed applicable
in practical setups, then the next questions will be: what is
the mathematical explanation for the seemingly contradicting
results of Section 4.2 and prior studies acknowledging the
effectiveness of statistical goodness of fit tests in designing
anonymous systems? That is, how can one explain the fact that
the use of statistical goodness of fit is known to be secure in the
literature while the analysis of Section 4.2 states otherwise?
The answers to these questions will be the main focus of
Sections 5 and 6, respectively. First we provide experimental
analysis in an attempt to investigate the first question.

5 EXPERIMENTAL ANALYSIS OF SSA SOLU-
TIONS BASED ON STATISTICAL GOODNESS OF
FIT
The use of statistical goodness of fit tests in designing anony-
mous sensor networks was pioneered by Shao et al. in [11]
and followed by schemes that build on it or acknowledge its
effectiveness in providing secure SSA for sensor networks,
such as [19]–[24]. In this section, we analyze schemes based
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on statistical goodness of fit tests using the ideas implied by
the theoretical analysis of Section 4.2.

5.1 Converting Real-Valued Samples to Binary
Codes
Let every inter-transmission time that is shorter than the mean
µ be represented by the binary digit ‘0’, and every inter-
transmission time that is longer than the mean µ be represented
by the binary digit ‘1’. That is, given a sequence of real-valued
inter-transmission times X = {x1, · · · , xn}, the function g is
applied to every inter-transmission time as follows:

g(xi) =

 1, if xi > µ

0, if xi ≤ µ
(8)

for each i = 1, · · · , n. (We use g to denote the indicator
function instead of the commonly used notation, I , since I
is already used to denote an interval.) Then, the real-valued
sequence, X , is transformed into a binary code as follows:

f
(
X
)

= f
(
{x1, · · · , xn}

)
= {g(x1), · · · , g(xn)}. (9)

Observe that this is the same transformation used implicitly
in Section 4.2. That is, short-long patterns will be represented
by the ordered sequence ‘01’. Next, we describe the statistical
measure that will be used in our experimental analysis of SSA
solutions based on statistical goodness of fit tests.

5.2 Correlation Measure for Binary Hypothesis Test-
ing
In this section, we specify the statistical measure that will be
used to perform our experimental analysis of SSA approaches
based statistical goodness of fit tests. Let X = {x1, · · · , xn}
and Y = {y1, · · · , yn} be two sequences of length n. Define
the correlation coefficient of the two sequences by:

ρ(X,Y ) =

| n
n∑
i=1

xiyi − (

n∑
i=1

xi)(

n∑
i=1

yi) |√√√√(n n∑
i=1

x2
i − (

n∑
i=1

xi)
2
)(
n

n∑
i=1

y2
i − (

n∑
i=1

yi)
2
) ,

(10)

where xi and yi denote the ith elements of sequences X and
Y , respectively. It can be verified that the value of ρ is always
in the interval [0, 1] [29]. When X and Y are uncorrelated, ρ
will be equal to zero. The higher value of ρ, the more the two
sequences are correlated.

5.3 Correlation Analysis of SSA Solutions Based on
Statistical Goodness of Fit Tests
The interpretation of the analysis of Section 4.2 in terms of
the transformation of the previous section is that each bit in
a binary code representing a fake interval is independent of
the all other bits, while bits in a binary code representing
a real interval are correlated. More specifically, a binary code
representing a real interval is likely to have more ‘01’ patterns

than a binary code representing a fake interval. This suggests
to the following approach to distinguish between fake and real
intervals. First, generate a “reference” binary code of the form

Ref = {0, 1, 0, 1, · · · , 0, 1}. (11)

Now, let I0 and I1 be two time intervals in which one of
them contains real event transmissions and the other does not.
Let S0 and S1 be the two sequences of real-valued inter-
transmission times corresponding to I0 and I1, respectively.
Let X0 = f(S0) and X1 = f(S1) be the conversion of S0

and S1 into their corresponding binary codes according to the
transformation of Section 5.1. Correlate X0 and X1 with the
reference code of equation (11); the binary code having a
higher correlation coefficient with the reference code is the
one corresponding to the real interval.

In the context of Game 1, given two intervals I0 and I1 in
which one is real and the other is fake, the adversary’s decision
is given by:

D(I0, I1) =


0, if ρ(Ref, X0) > ρ(Ref, X1)

γ, if ρ(Ref, X0) = ρ(Ref, X1)

1, if ρ(Ref, X0) < ρ(Ref, X1)

, (12)

where γ denotes any decisional strategy to break a tie. That
is, the interval corresponding to the binary code that is more
correlated to the reference code is decided to be the real one.

5.3.1 Experimental Parameters and Setup
In this section, We specify our parameters selection and setup
our experimental analysis of approaches based on statistical
goodness of fit tests.

Inter-transmission times between fake transmissions are
chosen to be iid exponentials with a rate parameter λ = 20.
Real events arrive according to a Poisson Arrival process
with mean 1/20. The Anderson-Darling (A-D) goodness of
fit test is used to determine the transmission times of real
events and the mean recovery algorithm. The two parameters
of the A-D test are the significance level of the test and the
allowed deviation from the mean which are set to 0.05 and
0.1, respectively.3

The experiment was run for 10, 000 independent trials. Each
trial consists of two intervals, a real one, IR, and a fake one,
IF . Every trial starts with a “warm-up” period, where 200
iid exponential random variables with rate 20 are drawn to
constitute a backlog to be used in the A-D goodness of fit
test. Then real events start arriving and they are transmitted
according to the procedure described in Section 4.1 (interested
readers may refer to [11] for more detailed algorithms of the
transmission mechanism). Each real interval consists of 50 real
events. After the 50th real event has been transmitted, the fake
interval starts for the same amount of time the real interval
lasted.

For each of the 10, 000 independent trials, denote by S
(i)
R

the sequence of inter-transmission times of the real interval
of the ith trial and, similarly, denote by S

(i)
F the sequence of

3. These are the same parameters appeared in [11].
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inter-transmission times of the fake interval of the ith trial.
The numbers in S

(i)
R and S

(i)
F will be real-valued that are

indistinguishable from iid exponential random variables. Let
X

(i)
R = f

(
S

(i)
R

)
and X(i)

L = f
(
S

(i)
L

)
, where f is the function

defined in equation (9), be the binary conversion of the real-
valued inter-transmission times of the real and fake intervals
of the ith trial.

Following the decision rule in equation (12), we corre-
late X

(i)
R and X

(i)
F with the reference sequence Ref for

all i = 1, · · · , 10, 000. Intuitively, the test is said to be
successful in distinguishing between real and fake intervals
in the ith trial if ρ(Ref, X(i)

R ) > ρ(Ref, X(i)
F ) and unsuc-

cessful if ρ(Ref, X(i)
R ) < ρ(Ref, X(i)

F ). When ρ(Ref, X(i)
R ) =

ρ(Ref, X(i)
F ) one of the intervals is chosen to be the real one

uniformly at random.

5.3.2 Experimental Results and Anonymity Interpreta-
tion
Out of the 10, 000 independent trials, the following results
were obtained:
• ρ(Ref, X(i)

R ) > ρ(Ref, X(i)
F ) in 7, 301 trials;

• ρ(Ref, X(i)
R ) < ρ(Ref, X(i)

F ) in 2, 695 trials;
• ρ(Ref, X(i)

R ) = ρ(Ref, X(i)
F ) in 4 trials.

Now, consider Game 1 for analyzing interval indistinguisha-
bility. Given two intervals I0 and I1 at which one of them is
real and one is fake, let the adversary’s strategy for deciding
which is which be according to the decision rule in equation
(12). Then, given the simulation results provided above, the
adversary’s probability of correctly identifying real intervals is
0.730. In other words, the anonymity of the system is at most
Λ = 0.539, significantly far away from the desired Λ ≈ 1
claimed and acknowledged in prior studies such as [11], [19]–
[24].

6 EXPLANATION FOR DISCREPANCIES BE-
TWEEN OUR RESULTS AND PRIOR STUDIES
The results of Section 5 provide an answer to the first question
raised in Section 4.3. Namely that the analysis of Section
4.2 can improve the adversary’s chances of distinguishing real
from fake intervals and, ultimately, breaching the anonymity
of the system in practical setups is possible. Now, it remains to
investigate the second question raised in Section 4.3. Namely,
is there a contradiction between our results and previous
studies and, if not, how can we explain such discrepancies
mathematically. The keys to answer such questions are “inter-
val indistinguishability” and “nuisance information”. We start
by a brief background.

6.1 Nuisance Parameters
In statistical decision theory, the term “nuisance parameters”
refers to information that is not needed for hypothesis testing
and, further, can preclude a more accurate decision mak-
ing [30]. When performing hypothesis testing of data with
nuisance parameters, it is desired (even necessary in some
scenarios) to find an appropriate transformation of the data that
removes or minimizes the effect of the nuisance information

before performing the hypothesis testing [30]. That is, given
a data sample X = (x1, · · · , xn) that belongs to one of
two possible hypotheses H0 or H1, the test is performed on
a transformation of the data sample, f(X), rather than the
original data itself, X . The transformation function, f , is an
application dependent and choosing the right function is a
critical step in hypothesis testing with nuisance parameters
[30].

6.2 Significance of Interval Indistinguishability and
Nuisance Removal

In the literature, the use of statistical goodness of fit to design
anonymous sensor networks is known to be secure. The analy-
sis of Section 5, on the other hand, demonstrates that this is not
the case. While this might look like a contradiction, there is a
mathematical justification for such discrepancy, which can be
divided into two points. First, previous studies model statistical
source anonymity by the adversary’s ability to distinguish
between individual transmissions. That is, given a sequence of
inter-transmission times, the adversary is shown to be unable
to determine which transmission is fake and which one is
real. The interval indistinguishability notion introduced in this
paper,4 on the other hand, assumes that source anonymity
can be breached when adversaries can successfully distinguish
between real and fake intervals.

Observe that no tool in our analysis is introduced to allow
the adversary to infer which transmission is real and which one
is fake within the real interval itself. That is, if the analysis
of Section 5 is repeated with the assumption that anonymity
is breached only if the adversary can distinguish between
individual fake and real transmissions, the anonymity of the
system will be different the the obtained 0.539 (it might very
well be close to the desired Λ ≈ 1 since we do not present
any mechanism to distinguish between individual transmis-
sions). Therefore, the notion of interval indistinguishability is
essential in explaining the discrepancies between our results
and prior studies that model SSA by the adversary’s ability to
distinguish between individual real and fake transmissions.

Interval indistinguishability alone, however, does not ex-
plain why our results are different than what is believed in
prior work. That is, even though different statistical tools are
used to measure anonymity (statistical goodness of fit tests are
used to analyze anonymity in previous studies while we use the
correlation measure specified in Section 5.2), the difference in
the used statistical measure does not explain the discrepancies
between our results and prior work.

The conversion of real-valued inter-transmission times into
binary codes is the main reason for the differences between
our anonymity results of Section 5 and prior studies. The
conversion to binary codes is a key-enabling tool for the
removal of nuisance information precluding successful hypoth-
esis testing. The following experimental analysis demonstrate
the significance of the binary code conversion.

4. Recall that, as discussed in Section 3.2, interval indistinguishability
implies individual transmission indistinguishability.
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6.2.1 Experimental Parameters and Setup
In order to examine the effect of binary code conversion
for nuisance removal, the experimental analysis of Section 5
is repeated with the real-valued inter-transmission times as
opposed to their binary transformation. 10, 000 independent
trials are performed. In very trial, a real interval, S(i)

R , and a
fake interval, S(i)

F , are generated with the same parameters of
Section 5.3.1. In each trial, the two intervals are correlated
with a reference sequence using the formula in equation (10).
However, as opposed to the binary reference code of equation
(11), one real interval, Refrv, that serves as a reference
sequence of real-valued inter-transmission times is generated
as a reference sequence.

6.2.2 Experimental Results and Anonymity Interpreta-
tion
Out of the 10, 000 independent trials, the following results
were obtained:
• ρ(Refrv, S

(i)
R ) > ρ(Refrv, S

(i)
F ) in 5, 076 trials;

• ρ(Refrv, S
(i)
R ) < ρ(Refrv, S

(i)
F ) in 4, 924 trials;

• ρ(Refrv, S
(i)
R ) = ρ(Refrv, S

(i)
F ) in 0 trials.5

Under the same adversarial strategy of deciding which in-
terval is real and which is fake given in equation (12), the sys-
tem is 0.984-anonymous using real-valued inter-transmission
times. This result agrees with previous studies in that the
sequences corresponding to any trial, whether real or fake,
are statistically indistinguishable from iid exponential random
variables. On the other hand, when the same system is ana-
lyzed using the binary code conversion of inter-transmission
times it was only 0.539-anonymous. The importance of this re-
sult is that it shows how the actual lengths of inter-transmission
times can act as nuisance and prevent accurate hypothesis
testing.

The results of this section conclude our explanations to the
questions posed in Section 4.3. In particular, the results show
that there is no contradiction between the results obtained and
acknowledged in prior studies and our result of Section 4.2,
and that the combination of the interval indistinguishability
model and the existence of nuisance information is the math-
ematical explanation for such seemingly contradicting results.

7 IMPROVING SSA VIA INDUCED CORRELA-
TION IN FAKE INTERVALS

Our analysis of SSA solutions based on statistical goodness of
fit tests shows that the use of such statistical tools is insuffi-
cient to guarantee source anonymity. In particular, not only the
real-valued inter-transmission times must be indistinguishable
from the desired distribution of fake transmissions, but also
the binary codes representing the inter-transmission times of
fake and real intervals must have indistinguishable statistical
properties. In what follows, we describe a modification to
approaches based on statistical goodness of fit tests to improve
their anonymity. The main idea behind the proposed approach

5. this is expected since we are dealing with real valued inter-transmission
times in this case

is the attempt to induce the same correlation pattern of inter-
transmission times during real intervals into inter-transmission
times during fake intervals.

7.1 The Proposed Approach
As can be seen from the analysis in Section 4.2, inter-
transmission times during fake intervals are iid’s, while inter-
transmission times during real intervals are neither indepen-
dent nor identically distributed. In theory, the only way to
guarantee that a sequence of random variables is statistically
indistinguishable from a given iid sequence is to generate it
as an iid sequence with the same distribution.

The notion of interval indistinguishability, suggests a dif-
ferent approach for the design of anonymous sensor networks.
Observe that Definition 1 of interval indistinguishability does
not impose any requirements, such as iid, on the distribution
of inter-transmission times during fake intervals. Therefore,
designing fake intervals with the distribution that is easiest
to emulate during real intervals is the most logical solution.
This idea opens the door for more solutions as it gives more
flexibility for system designers.

To improve anonymity, we suggest introducing the same
correlation of inter-transmission times during real intervals to
inter-transmission times during fake intervals. That is, let the
transmission procedure consists of two different algorithms:
AR and AF . In the presence of real events (i.e., in real
intervals), algorithm AR is implemented. In the absence of real
events (i.e., in fake intervals), algorithm AF is implemented.
Algorithm AR is the same as the algorithm described in
Section 4.1. In algorithm AF , the nodes generates two sets
of events independently of each other: “dummy events” and
fake events. Fake events serve the same purpose they serve
in algorithm AR, that is, they are used to hide the existence
of real transmissions. Since there are no real events in fake
intervals, however, dummy events are generated to be handled
as if they are real events. That is, dummy events are generated
independently of fake messages and, upon their generation,
their transmission times are determined according to the used
statistical goodness of fit test. The purpose of this procedure
is to introduce the same correlation of real intervals into
fake intervals. That is, not only the two sequences of inter-
transmission times will be statistically indistinguishable by
means of statistical goodness of fit tests, but also the binary
codes representing fake and real intervals will have the same
statistical behavior. (There is more to be done to decide how
nodes switch from algorithm AR to AF and vice versa, but
since this is not the main focus of this paper, we defer detailed
discussion to future investigation that converts the solution to
coding problem.)

7.2 Experimental Parameters and Setup
The same experimental analysis of Section 5 is performed with
one major difference. To make fake intervals possess the same
correlation of real intervals, we implemented the AF algorithm
described above. Dummy events were generated according to
iid Gaussian inter-arrival times with mean 0.05 seconds and
a variance of 0.02. (We reemphasize the distinction between
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TABLE 2
A quantitative comparison of the statistical goodness of fit test based approach of Section 4.1 after the transformation

of Section 5.1 (i.e., without nuisance), the statistical goodness of fit test based approach of Section 4.1 without the
transformation of Section 5.1 (i.e., with nuisance), and our improved SSA solution of Section 7 after the

transformation of Section 5.1 (i.e., without nuisance). ρ
R
> ρ

F
denotes larger correlation coefficient in real intervals,

ρ
R
< ρ

F
denotes larger correlation coefficient in fake intervals, while ρ

R
= ρ

F
denotes equal correlation coefficient in

real and fake intervals. The simulation results are obtained from 10, 000 independent trials.

ρR > ρF ρR < ρF ρR = ρF Anonymity bound
Statistical goodness of fit based approach (without nuisance) 7, 301 2, 695 4 0.539

Statistical goodness of fit based approach (with nuisance) 5, 076 4, 924 0 0.984

Our modified approach (without nuisance) 5, 161 4, 832 7 0.967

fake messages and dummy events: fake messages are the ones
transmitted to hide the existence of real transmissions, while
dummy events are the ones generated, during fake intervals
only, to resemble the existence of real events.) Note that
the inter-arrival distribution of dummy events is purposely
different than the inter-arrival distribution of real events to
count for the general case of unknown distribution of real
events inter-arrivals. The A-D test is used in both algorithms,
AR and AF , to determine the transmission times of real events
and dummy events, respectively.

7.3 Experimental Results and Anonymity Interpreta-
tions
By running the experiment for 10, 000 independent trials, the
following observations were recorded.
• ρ(Ref, X(i)

R ) > ρ(Ref, X(i)
F ) in 5, 161 trials;

• ρ(Ref, X(i)
R ) < ρ(Ref, X(i)

F ) in 4, 832 trials;
• ρ(Ref, X(i)

R ) = ρ(Ref, X(i)
F ) in 7 trials.

In terms of the anonymity measure of equation (1), the
system is 0.967-anonymous under the adversarial strategy of
equation (12). Observe the improvement in anonymity against
correlation attacks in our modified version (from 0.539 without
the use of dummy events to 0.967 when dummy events are
used). Table 2 summarizes our experimental results.

7.4 Performance of the Solution
Compared to the original SSA scheme described in Section
4.1, the solution presented in this section induces more compu-
tational overhead. That is, while the original scheme described
in Section 4.1 requires nodes to perform statistical goodness of
fit tests during real intervals only, the solution of this section
involves the use of statistical goodness of fit test in both
real and fake intervals. Note, however, that the solution of
this section does not involve extra communication overhead,
only rescheduling of fake transmissions that must be sent
anyway. This is an important observation since communication
consumes orders of magnitude more energy than computations
(depending on hardware, transmitting one bit may consume
up to 2,900 times the energy consumed by performing one
instruction) [31].

We emphasize, however, that this solution is merely pre-
sented to illustrate how to improve the anonymity of ap-
proaches based on statistical goodness of fit tests. The main

Fig. 5. An example of a sensor networks monitoring a
moving target. As the tank moves along its path, nodes
a, b,c, d, and e report that the tank is within their sensing
range.

focus of this work is to come up with a framework that can
be used to design and analyze anonymous sensor networks.
Using the proposed framework, including the mapping of the
problem of statistical source anonymity to coding theory, in
order to design more efficient schemes that satisfy the notion
of interval indistinguishability is an open research problem.

8 EFFECT OF NETWORK TOPOLOGY ON
SOURCE ANONYMITY

So far, anonymity discussions were restricted to single-hop
analysis. However, since the adversary, by assumption, has a
global view of the network, the adversary can utilize his/her
knowledge of the network’s topology to increase the advantage
of exposing secret location information. In this section, we
bring the network’s topology into the picture to illustrate the
importance of increasing the anonymity of each node.

Assume the network is deployed to monitor a moving target.
Assume further that a global adversary will have a 55% chance
of distinguishing between real and fake intervals. In some
scenarios, a 0.45 probability of false alarm (the probability that
the adversary has concluded a certain interval is real while it is
fake) can be considered high enough to prevent the adversary
from taking the risk. Since the adversary has a global view of
the network, however, he/she can correlate the analysis to the
next hop by monitoring adjacent sensor nodes.
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Fig. 6. An example of multiple sensor nodes reporting a
stationary event. Six nodes are simultaneously reporting
that the tank is within their sensing range.

Consider the example of Figure 5 and assume the adver-
sary’s chance of distinguishing between real and fake intervals
of each node’s transmissions is 55%. In such a scenario,
according to equation (1), the anonymity of each node is
Λ = 0.9. The monitored target, however, is moving and node
b will start reporting its existence. On average, the adversary
will also have a 55% chance of breaking the anonymity of
node b. Combining the observations from node a and b, the
anonymity is reduced to be Λ2 = 0.81. Consequently, by
the time the target reaches node e, the anonymity is already
reduced to 0.59. That is, given the adversary’s knowledge of
the network topology, the anonymity of a moving target is
an exponentially decreasing function of the number of hops
reporting its proximity.

In a different direction, consider the case in which multiple
nodes are reporting the same event simultaneously, as depicted
in Figure 6. Then, even if the target is stationary, the anonymity
is reduced to Λ6 = 0.53 (assuming the anonymity of each node
is 0.9).

Therefore, unless the anonymity of each node is Λ = 1, or
if there is a multi-hop anonymous design, global adversaries
can substantially increase their advantages of breaking the
anonymity of the sensor network by utilizing their knowledge
of the network topology and performing multi-hop analysis.

9 RELATED WORK

The privacy problem in wireless sensor networks comes
in different flavors. Proposals dealing with providing sink
anonymity in wireless sensor networks have appeared in,
e.g., [32]–[36]. Network coding based approaches that protect
against traffic analysis have appeared in, e.g., [37]–[39]. The
privacy problem most relevant to this work is the source
location privacy in wireless sensor networks. Li et al. presented
a state-of-the-art survey on privacy preservation in wireless
sensor networks [20].

The source location privacy in sensor networks is part
of a broader area, the design of anonymous communication
systems. The foundation for this field was laid by Chaum
in [40], and since then has become a very active area of
research. In particular, topics related to location anonymity

have been discussed by Reed et al. in [41], who introduced
the idea of preserving anonymity through onion routing, and
by Gruteser and Grunwald in [42], who discussed ways to
provide anonymity in location-based services, such as Global
Positioning Systems.

In wireless sensor networks, much of the work in source lo-
cation privacy assumes a passive, local eavesdropper operating
close to the base station. Privacy is maintained in such models
through anonymous routing. The location privacy problem was
first introduced in [12], [13]. The local eavesdropper model
was introduced and the authors demonstrated that existing
routing methods were insufficient to provide location privacy
in this environment. They also proposed a phantom flooding
scheme to solve the problem. In [17], Xi et al. proposed a new
random walk routing method that reduces energy consumption
at the cost of increased delivery time. Path confusion has also
been proposed as an anonymity-preserving routing scheme by
Hoh and Gruteser in [18]. In [14], Ouyang et al. developed a
scheme in which cycles are introduced at various points in the
route, potentially trapping the adversary in a loop and forcing
the adversary to waste extra resources. In [21], Wang et al.
proposed a technique to maximize source location privacy by
designing routing protocols that distribute message flows to
different routes.

However, in the global adversarial model, in which the ad-
versary has access to all transmissions in the network, routing-
based schemes are insufficient to provide location privacy
[10], [11]. The global adversarial model was first introduced
by Mehta et al. in [10]. The authors motivated the problem,
analyzed the security of existing routing-based schemes under
the new model, and proposed two new schemes. In the first
scheme, some sensor nodes act as fake sources by mimicking
the behavior of real events. For example, if the network is
deployed to track an animal, the fake sources could send
fake messages with a distribution resembling that of the
animal’s movements. This, however, assumes some knowledge
of the time distribution of real events. In the second scheme,
packets (real and fake) are sent either at constant intervals or
according to a predetermined probabilistic schedule. Although
this scheme provides perfect location privacy, it also introduces
undesirable performance characteristics, in the form of either
relatively high delay or relatively high communication and
computational overhead. The scheme of [11] was proposed
to address this delay/overhead tradeoff.

In [11], Shao et al. introduced the notion of statistically
strong source anonymity in which a global adversary with
ability to monitor the traffic in the entire network is unable to
infer source locations by performing statistical analysis on the
observed traffic. In order to realize their notion of statistical
anonymity, nodes are programmed to transmit fake events
according to pre-specified distribution. More specifically, after
the transmission of every fake event, the node draws an
exponentially distributed random variable t ∼ Exp(λ), where
λ is the pre-specified rate of the exponential distribution.
The node then waits for t time units and then transmits
another fake event. That is, in the absence of real event
transmissions, an adversary monitoring the sensor node will
observe inter-transmission times that are iid exponentials with
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mean µ = 1/λ.
Upon the occurrence of real events, the goal of a sensor

node is to transmit them while maintaining the exponential
distribution of the inter-transmission times. Obviously, if nodes
delay their transmission of real events to the next scheduled
fake transmission, no statistical test can be used to distinguish
between real and fake events (since inter-transmission times
are kept exponential iid’s with the same rate). The goal in [11],
however, is to minimize the latency of reporting real events
while maintaining statistical indistinguishability between real
and fake transmissions.

To reduce the latency, the authors of [11] proposed the
following procedure: let imdi represent the inter-transmission
time between the ith and the i + 1st transmissions. As-
sume a real event has occurred after the transmission of
the ith event. Given {imd1, imd2, . . . , imdi}, imdi+1, the
time after the transmission of the ith event the node must
wait before it can transmit the real event, is determined
as follows: imdi+1 is the smallest positive value such that
the sequence {imd1, imd2, . . . , imdi, imdi+1} passes the
Anderson-Darling (A-D) goodness of fit test [43] for a se-
quence of iid exponentials with mean µ.

Observe, however, that on average imdi+1 < µ since
imdi+1 is, by definition, the minimum value that passes the
test. Therefore, continuing in this fashion will cause the mean
of the entire sequence to skew away from desired mean.

To solve the problem of mean deviation described above,
the scheme in [11] includes a mean recovery algorithm. The
mean recovery algorithm outputs a delay δ and the time
between the transmission of a real event and the following
event (fake or real) is set to imdi+2 = t + δ, where
t ∼ Exponential(λ). The scheme in [11] is designed so that the
sequence {imd1, . . . , imdn}, where n is the last transmitted
message, always passes the A-D goodness of fit test.

To reduce the amount of traffic in the network that is due
to the transmission of fake events, techniques based on node
proxies and data aggregation have been proposed [19], [44].
In such techniques, the overall communication overhead is
reduced by making intermediate nodes act as proxies that filter
out fake messages or by aggregating multiple messages in a
single transmission. Such approaches make schemes based on
generating fake messages more attractive by mitigating the
high communication overhead issue.

Shao et al. also consider the problem of an active adversary
in [45]. Their adversary also has the ability to perform node
compromise attacks, and they develop tools to prevent the
adversary from gaining access to event data stored in a node
even if the adversary possesses that node’s secret keys.

In recent works, Li and Ren [46] proposed a scheme
to provide both content confidentiality and source-location
privacy through routing to a randomly selected intermediate
node (RRIN) and a network mixing ring (NMR), where the
RRIN provides local source location privacy and NMR yields
network-level (global) source location privacy. Ouyang et al.
[47] proposed four schemes: naive, global, greedy, and proba-
bilistic to protect the source location against global adversaries
in. Abbasi et al. [48] proposed a distributed algorithm to mix
real event traffic with carefully chosen dummy traffic to hide

the real event traffic pattern.

10 CONCLUSION AND FUTURE WORK

In this paper, we provided a statistical framework based on
binary hypothesis testing for modeling, analyzing, and evalu-
ating statistical source anonymity in wireless sensor networks.
We introduced the notion of interval indistinguishability to
model source location privacy. We showed that the current
approaches for designing statistically anonymous systems in-
troduce correlation in real intervals while fake intervals are
uncorrelated. By mapping the problem of detecting source
information to the statistical problem of binary hypothesis
testing with nuisance parameters, we showed why previous
studies were unable to detect the source of information leakage
that was demonstrated in this paper. Finally, we proposed a
modification to existing solutions to improve their anonymity
against correlation tests.

Future extensions to this work include mapping the problem
of statistical source anonymity to coding theory in order to
design an efficient system that satisfies the notion of interval
indistinguishability.
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