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Abstract—To identify whether an image has been
JPEG compressed is an important issue in forensic practice. The
state-of-the-art methods fail to identify high-quality compressed
images, which are common on the Internet. In this paper,
we provide a novel quantization noise-based solution to reveal
the traces of JPEG compression. Based on the analysis of
noises in multiple-cycle JPEG compression, we define a quantity
called forward quantization noise. We analytically derive that
a decompressed JPEG image has a lower variance of forward
quantization noise than its uncompressed counterpart. With
the conclusion, we develop a simple yet very effective detection
algorithm to identify decompressed JPEG images. We show that
our method outperforms the state-of-the-art methods by a large
margin especially for high-quality compressed images through
extensive experiments on various sources of images. We also
demonstrate that the proposed method is robust to small image
size and chroma subsampling. The proposed algorithm can be
applied in some practical applications, such as Internet image
classification and forgery detection.

Index Terms— Discrete cosine transform (DCT), compression
identification, forward quantization noise, forgery detection.
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I. INTRODUCTION

HE popularization of imaging components equipped in

personal portable devices, together with the rapid devel-
opment of the high-speed Internet, makes digital images
become an important media for communications. Various types
of image compression standards, including lossy and lossless,
coexist due to different kinds of requirements on image visual
quality, storage, and transmission. Among them, JPEG is a
very popular lossy compression format.

Knowledge about the JPEG compression history of images
from unknown sources is of important interest to image
forensics experts, whose aim is to trace the processing history
of an image and detect possible forgeries [1], [2]. There are
some reported works on identifying whether an image is
uncompressed or has been compressed previously [3], [4],
whether an image has been compressed once or twice [5]-[10],
whether an JPEG image has been compressed again with a
shifted JPEG grid position [11]-[15], and on estimating
the JPEG quantization table [16] or quantization
steps [4], [17]-[21].

In this paper, we focus on the problem of identifying
whether an image currently in uncompressed form is truly
uncompressed or has been previously JPEG compressed.
Being able to identify such a historical record may help to
answer some forensics questions related to the originality and
the authenticity of an image, such as where is the image
coming from, whether it is an original one, or whether any
tampering operation has been performed [4]. For example,
the solution facilitates the detection of image forgeries cre-
ated by replacing a part of an image with a fragment from
another image with a different compression historical record.
The mismatch of historical records reveals the act of image
tampering. The JPEG identification problem [3], [4] may
also be the starting point for other forensics applications,
such as JPEG quantization step estimation [4], [17]-[20],
for that forensics experts can save time by only performing
estimation on the decompressed images after filtering out the
uncompressed images.

There are also some techniques, called JPEG anti-
forensics [22], [23], aiming to fool the forensics detectors
by concealing the traces of JPEG compression. However,
as noted by [24], removing the traces of JPEG compression
is not an easy task. Some targeted anti-forensics
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detectors [25]-[27] are designed to detect the traces left
by anti-forensics operations.

According to the results of our random crawling on three
main Internet search engines (presented in Section V-A),
images with high-quality JPEG compression (where most of
the quantization steps are close to 1) are not rare. They
are very similar to uncompressed images due to their nearly
lossless nature. High-quality JPEG compressed images are
possibly preferred to be used with the uncompressed images
for creating forgeries. Current forensics detectors [3], [4] are
not capable of detecting high-quality compressed images even
in the absence of anti-forensics operations. It is an open
problem to identify high-quality compressed images when
they are decompressed and re-saved in an uncompressed
form.

Traces of JPEG compression may be found directly in the
spatial domain (image intensity domain). Quantizing the
high-frequency DCT (discrete cosine transform) coefficients
with a quantization table containing large quantization steps
produces ringing effects when a JPEG image is decompressed.
In the case of heavy compression, undesired blocky arti-
facts [28], [29] will become obvious. Fan et al. [3] computed
the statistics of differences between pixel intensity within an
8 x 8 block and that spanning across a block boundary,
and then decided whether an image had been previously
JPEG compressed by using the discrepancy between the
two statistics. This method is effective for detecting severe
compression which produces prominent blocky artifacts.
However, in the case of high-quality compression or when
the image is of small size, the statistics will not be reliable,
as indicated in [4].

Traces of JPEG compression may also be found in the
histogram of DCT coefficients. Luo et al. [4] noted that
JPEG compression reduces the amount of DCT coefficients
with an absolute value no larger than one. There are
less DCT coefficients in the range of [—1, 1] after JPEG
compression. A discriminative statistics based on measuring
the amount of DCT coefficients in the range of [—2,2]
is constructed. When the statistics of a test image exceeds
a threshold, it is classified as uncompressed. Otherwise, it
is identified as having been previously JPEG compressed.
Although Luo ef al.’s method is considered as the current state
of the art in terms of its identification performance, it has a
few shortcomings. First, the analysis only uses a portion of
the DCT coefficients that are close to 0. Hence, information
is not optimally utilized. Second, the method requires the
quantization step to be no less than 2 to be effective. As a
result, this method fails on high-quality compressed image
such as those with a quantization table containing mostly
quantization steps being ones. Lai and Bohme [25] built a
calibrated feature based detector, which utilizes the relation
between the variance of high-frequency DCT coefficients of a
given image and that of a calibrated image [30]. It is based
on the assumption that the obtained statistics will be small
for an uncompressed image, while the statistics will become
large for an image with anti-forensics operations. The detector
is effective to detect anti-forensics operations and may also be
directly applicable to detect decompressed images.
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Built on a theoretical model on multi-cycle
JPEG compression in our previous work [31], we try to reveal
the high-quality compression traces in the “noise domain”.
In this paper, we define a quantity, called forward quantization
noise, and develop a simple yet very effective algorithm to
judge whether an image has been JPEG compressed based
on the variance of forward quantization noise. The method
fully utilizes the noise information from DCT coefficients;
therefore, it is neither restricted to large image size nor limited
by the quantization step being no less than 2. We show that
our method outperforms the previous methods by a large
margin for high-quality JPEG compressed images which
are common on the Internet and present a challenge for
identifying their compression history.

This paper is organized as follows. Section II introduces the
results from a theoretical work analyzing the noise in
multi-cycle JPEG compression. Based on the analysis,
we show how the variance of quantization noise can
be employed to detect JPEG compression in Section III.
Extensive experiments are provided in Section IV, where we
demonstrate the results on gray-scale images and on color
images with different chroma sub-sampling factors. Various
sources of images, different definitions of JPEG quality factor,
and different evaluation metrics are used to enhance the
reliability of the experiments. We show possible applications
to Internet image classification and image forgery detection
in Section V. The paper is concluded in Section VI.

II. JPEG QUANTIZATION NOISE ANALYSIS

A JPEG compression cycle consists of an encoding phase
and a decoding phase [32]. In the encoding phase, irreversible
information loss occurs due to quantizing DCT coefficients.
The decoding phase is essentially the reverse of the encoding
phase. An integer rounding and truncation operation occurs
when JPEG coefficients are restored into image intensity
representation. In a recent work [31], we presented a frame-
work for analyzing multiple-cycle JPEG compression based
on a complete JPEG compression model, in contrast to the
simplified models [4], [33] that are commonly used. The
analysis focused on information losses in JPEG compression
which can be characterized by two types of noise, i.e., quan-
tization noise (in DCT domain) and rounding noise (in spatial
domain). The truncation error is ignored in the model due to
its fairly low impact and hard-to-model nature as discussed
in [4]. Distributions of the two types of noises at different
compression cycles are derived. In this section, we introduce
notational conventions and summarize some of the related
results from the work.

A. Notations

Throughout the paper, the image pixels or DCT coeffi-
cients are always in upper case symbols, and the noises
introduced during JPEG compression are using lower case
symbols.

The block-DCT coefficients in 8 x 8 grid are numbered
from 1 to 64. The first coefficient (u = 1) is the mean of all
pixel values in an 8 x 8 block and is called a DC coefficient due



560 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 3, MARCH 2015

Integer Floating-point DCT Quantized Floating-point DCT
Image Image Coefficients DCT Image Coefficients
NIL DCT Coefficients DCT
) (0 — ¥ X0 YO Oa%, Xf,:) Y,f”
2ag,
= 2 ¥ ¥
2 ' ! (] Quantization
ix i
b wO o iyu &
- v v e-quantization
- Rounding| ~ IDCT - ‘Ao(\ - IDCT ~
1 g 1 W7 D O]
o ‘—{ XOle Y® Oe—‘\\)@“ X, Y,
‘ g 5
1 o 1 1
| i (122) i,,(102)
{ NIL mm):  ix, 32
! &~ i i
A 4 v A 4
NIL DCT »| DCT 2
| " X® YO, X; Y
° I]ti?&t,‘ m u
S 2 H * | Quantization
O ; e
e W Eme) Y &
& H H e-quantization
| " v IDCT v
~ .| Rounding[ ~ IDCT | ~ ‘/wo S0 ~
1® X® Y® oe“\“a“\a an) Yu( )
m=1,...,64 u=1,..,64
Processing Diagram Logical Diagram
Fig. 1. Processing steps for multi-cycle JPEG compression.
to its low-pass property. The other coefficients (u = 2,...,64) C. General Quantization Noise Distribution

are high-pass in nature and are called AC -coefficients.
The corresponding noises in DCT domain are also using
the index u to indicate their locations. Similarly, the pixels
in spatial domain and the corresponding noise in the same
location can also be indexed from 1 to 64, and we use m to
denote their indexes. We drop the frequency index u or spatial
index m when there is no ambiguity.

The processing diagram for multiple-cycle JPEG compres-
sion is shown in the left part of Fig. 1, where the symbol NIL
means there is no processing step. We use X®) and X® to
denote the float-point image in the JPEG encoding phase and
the decoding phase, respectively, in the k-th JPEG compression
cycle. We use Y% to denote the un-quantized DCT coef-
ficients in the encoding phase, and Y®) the de-quantized
DCT coefficients in the decoding phase. The image in integer
representation is denoted by [ ® or 1*=D and the quantized
DCT coefficients are denoted by W&,

The logical diagram for multiple-cycle JPEG compression,
as shown in the right part of Fig. 1, can be obtained by
dropping the NIL operations from the processing diagram.
In the logical diagram, we can easily define quantization
noise, denoted as y(k), and rounding noise, denoted as
xk=kt1) Besides, we define two auxiliary noise, one in
spatial domain, denoted by x® and one in DCT domain,
denoted by y*—k+D),

B. Quantization Noise

The information loss due to the JPEG quantization process
can be referred to as quantization noise, which is defined as:

- Y
y=Y—Y=Y—[—}q, q €N, (1)
q

where g is the quantization step and [-] represents integer
rounding operation.

In general, the distribution for quantization noise as defined
in (1) is given by:

A6 =D frlkg+s), se[—%, keZ, ()

k=—00

q
>):
where fy, and fy is respectively the distribution for y and Y,
and ¢ is the quantization step. Since integer rounding is a
quantization operation with ¢ = 1, (2) also applies to rounding
noise.

fy is called a quantized-Gaussian distribution and denoted
by oN (62, q) if Y belongs to zero-mean Gaussian distribution
N(0,0?%), where o2 is its variance. Its distribution function
is given in (18) in Appendix B. Similarly, f, is called a
quantized-Laplacian distribution and denoted by Q%(1, q)
if Y belongs to zero-mean Laplacian distribution L£(0, 1),
where / is its shape parameter and its variance equals to 2/12.
Its distribution function is given in (16) in Appendix A.

D. Specific Quantization Noise Distribution

In [31], we found that the quantization noise of the
first-round compression (given in Property 1) is different from
that of the second round (given in Property 2).

Property 1: The quantization noise of the first compression
cycle has the following distributions:

1 1
o a

Z/{ b b
W~ 55
Q (ym i), wef2,3,... 64},

u=1

3)

where qlgl) is the quantization step of the u-th frequency

in the first compression cycle, and U represents a uniform
distribution with the indicated lower and upper supports.
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Property 2: For all DCT coefficient u, the second-cycle
quantization noise follows the following distributions:

2
QN(O';(Hz)a 1), ql,g =1
u 1
a5
2
a7

otherwise

eN “)

2
y"g ) ~ N(O’ 0-2(I—>2))9 5]1,(12) 2 2 al’ld
Yu

fy as in Equation (2),

Note that the distribution of y,gz) may depend on the variance
of the auxiliary noise y,SlH

III. IDENTIFICATION OF DECOMPRESSED JPEG IMAGES
BASED ON QUANTIZATION NOISE ANALYSIS

From above, we know that the quantization noise distrib-
utions are different in two JPEG compression cycles. In the
following, we first define a quantity, call forward quantization
noise, and show its relation to quantization noise. Then,
we give the upper bound of its variance, which depends
on whether the image has been compressed before. Finally,
we develop a simple algorithm to differentiate decompressed
JPEG images from uncompressed images.

A. Forward Quantization Noise

Given an uncompressed image, by performing the
JPEG encoding phase, we can obtain its quantization noise of
the first compression cycle. On the other hand, given an image
that has been compressed once but stored in an uncompressed
format, we can no longer retrieve the quantization noise of
the first compression cycle. However, we can compute the
quantization noise of the next cycle. To be unified, we call
the quantization noise obtained from an image for the current
available upcoming compression cycle as forward quantization
noise.

Forward quantization noise is the subject of our analysis
and it is a function of its quantization step. In this work,
we study the simplest form of the forward quantization noise
that corresponds to a quantization step of size one, i.e.,

z=Y —[Y], )

where Y is the DCT coefficients.

For an uncompressed image, the forward quantization noise
is equivalent to the first-cycle quantization noise with the
quantization step being one, i.e, q,ﬁl) =1, ue{l,---,64}.
As stated in Property 1, we know that the forward quantization
noise of the DC coefficient obtained from an uncompressed
image is uniformly distributed, while those of AC coefficients
are quantized-Laplacian distributed.

If a given image is compressed once, the forward quanti-
zation noise would be the quantization noise of the second
compression cycle. In this case, as stated in the first condition
of Property 2, since qLSZ) =1,u € {l,---,64}, the forward
quantization noise is quantized-Gaussian distributed.

B. Noise Variance for Uncompressed Images

For a uniform distribution 2/ (—0.5, 0.5), its variance equals
to 1/12. In the following, we use Cop = 1/12 = 0.0833.
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Given an uncompressed image, according to (3), the variance
of forward quantization noise for the DC coefficients equals
to Cp.

The wvariance of forward quantization noise for the
AC coefficients is determined by the shape parameter /lyu(l),
which varies across different images and different frequency
index u. However, we find that the upper bound of the variance
of quantized-Laplacian distribution is related to quantization
step ¢ by the following result.

Proposition 1: The variance of a quantized-Laplacian
distribution is upper-bounded by that of a uniform distribution
with an identical region of support.

The proof of this proposition can be found in Appendix A.
As the quantization noise distributions of AC coefficients
have identical region of support with ¢ = 1, their variances
are upper bounded by the variance of ¢/(—0.5,0.5), which
equals to Cy.

In summary, we have the following upper bound for the
variance of forward quantization noise of an uncompressed
image:

ol = 03(1) = Co. (6)

C. Noise Variance for Images With Prior JPEG Compression

According to the first condition of Property 2, as we use unit
quantization steps, the forward quantization noise is distributed
as quantized-Gaussian. We provide the following proposition
to give the upper bound of the variance of the quantized-
Gaussian distribution.

Proposition 2: When a zero-mean Gaussian signal
v ~ N(0,0?) is quantized, the quantization noise, defined
by n, = v — [v], is quantized-Gaussian distributed. We have
the following results for the variance of the quantization
noise o, :

5 Co, ifa*> Co,
oy, =1C1, ifo? <Co, (7
Cy, ifa?<Cy,

where Cy = 0.0833, C; = 0.0638, and C = 0.0548.

The derivation of the upper bounds, i.e., Cp, C1, and C,
are obtained by firstly expressing the variance anzv using the
probability density function of » with the parameter o2, and
then evaluating the expression numerically with the given
value of o2, The details can be found in Appendix B.

In order to understand the property of quantization noise of
the second quantization cycle, we also need to understand the
variance of DCT auxiliary noise y(lﬁz) (see (4) and Fig. 1).
Its upper bound is given by the following proposition, and the
proof can be found in Appendix C.

Proposition 3: The variance of the auxiliary noise y(1=2
is upper bounded as follows:

2 Ci,
NS = [C()a
1)

where q, ° is the quantization step of the first cycle.
As far as our forward quantization noise is concerned, for an
image with prior JPEG compression, the forward quantization

if ¢V = 1,Vu,
otherwise,

@)
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step corresponds to ¢ = 1. In this case, according to (4),
we can further specialize Property 2 into:

Corollary 1: When q® = 1 in the second quantization
cycle, the corresponding quantization noise is given by:

. 1
(2) [QN(O-}%(IAZ), 1)’ 0-_3(192) S Cla l.fqb(t ) = I,VM,
y ~

2 2 .
QN(J},(HZ), 1), Oy = Co, otherwise.

©)

From Corollary 1 and Proposition 2, we have the following
upper bound for the variance of forward quantization noise of
an image with prior JPEG compression:

. 1
o2 = g2, < Gy, if ¢V =1,vu, (10)
z ¥ = Ci, otherwise.

D. Algorithm for Identifying Decompressed JPEG Images

Combining the results of (6) and (10), we have the following
result about the forward quantization noise. Given a test
image I, the variance of forward quantization noise z with
q =1 is given by:

C
UZZE [C(l),

if I is uncompressed, 1
if I was compressed once. 1

Note that the above result on noise variance is derived
theoretically. The distribution of empirical data may deviates
from the theoretical model because of the finite sample size.
For this reason, the estimated noise variance of the empirical
samples, denoted by &Zz, may slightly exceed the upper bound,
i.e., C1 or Co. As observed from the distribution of &Zz for
test images in our experiments in Section IV-A, the deviation
decreases as the image size increases and the quality factor
increases.

Since C1 < Cp, we can design a reliable two-step algorithm
to identify whether an image in uncompressed form has been
JPEG compressed before.

1) Compute 63 for a test image I using all block-DCT

coefficients including both DC and AC coefficients.

2) Use a decision rule:

T,

_ [uncompressed, Z > (12)
<T,

!\INN

decompressed,

where T is a predefined threshold which is in between
Cy and Co.

The threshold 7 in (12) controls the trade-off between the
true positive rate and the false positive rate of the detector,
where we regard the decompressed images as the positive class
and the uncompressed images as the negative class. We can
determine the decision threshold T according to some practical
requirements. To fix the detector characteristic, we can tune
the threshold such that the detector has a false positive rate
of 1% on a hold-out image set for specific image sizes, as
given in Section IV.

As shown in (10), compared to other kinds of quantization
tables, a quantization table which contains all unit quantization
steps has a upper bound of the noise variance being smaller
than C. With the decision rule in (12) where the threshold is
larger than Cp, our method has a better performance against

high-quality compression. It happens that this is an open
problem for previous methods [3], [4], and our approach work
effectively on it.

IV. PERFORMANCE EVALUATION

In this part, we evaluate the performance of the
proposed algorithm by comparing our method with Luo et al.’s
method [4] (referred to as Luo’s method), which is better
than [3] and is regarded as the current state of the art.
We also use Lai and Bohme’s method [25] (referred to
as Lai’s method) for comparison, which was targeted for
countering anti-forensics purpose but may also be applicable
in identifying decompressed JPEG images. The training-based
method (referred to as SPAM method) [34] with the SPAM
(subtractive pixel adjacency matrix) feature and the SVM
(support vector machine) classifier, which was designed for
steganalysis, is also included for comparison. Since it is not as
flexible and time-efficient as other three methods in performing
forensics-related tasks, we only use it in Section IV-A. The
(Gaussian) radial basis function kernel is used in the SVM
and the parameters are optimized by grid-search.

We use four different settings. Firstly, we test the methods
on gray-scale images to show how the performance is on each
designated compression quality. Secondly, we run test on color
images to show whether the methods are robust to chroma
sub-sampling. Thirdly, we conduct experiments on
JPEG images from a publicly available database with
random quality factors to verify the true positive rates.
Finally, we conduct experiments on uncompressed
images from another database to verify the false negative
rates.

A. Evaluation on Gray-Scale Images With Designated
Quality Factor

We conducted experiments with the following settings to
validate our method on gray-scale images.

1) Image Set: Our image set is composed of 3,000 images,
with 1,000 of them coming from BOSSbase ver 1.01 image
database [35], 1,000 from NRCS image database [36], and
1,000 from UCID image database [37]. These publicly
available image sets are a reliable source of uncompressed
images. Some of them have been used in [4]. The images
are first converted into gray-scale and then center-cropped to
generate images of smaller sizes, i.e., 256 x 256, 128 x 128,
64 x 64, and 32 x 32 pixels. The uncompressed images
as well as their corresponding decompressed JPEG images
are used for evaluation. In Fig. 2, we show the distribution
of the pixel variance for the uncompressed images. As we
expect, images of small sizes (e.g., 64 x 64 and 32 x 32)
which are cropped from a large image, tend to be smooth,
while images of medium sizes (e.g., 256 x 256 and
128 x 128) may contain more textures and have a larger pixel
variance.

2) Evaluation Metrics: As we assume the decompressed
images and uncompressed images respectively to be the pos-
itive class and the negative class, true positive rate and true
negative rate respectively evaluate the percentage of correctly
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TABLE I
THRESHOLD USED WHEN FALSE POSITIVE RATE IS 1% FOR THE IMAGE SET DESCRIBED IN SECTION IV-A

256 x 256 128 x 128 64 x 64 32 x 32
Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours
Threshold  0.1973  0.2055 0.0822 0.3629 0.1781 0.0817 0.7080 0.1648 0.0802 1.5342 0.1414 0.0775
TABLE II

THE ACCURACY (IN %) ON IDENTIFYING GRAY-SCALE UNCOMPRESSED IMAGES AND DECOMPRESSED JPEG IMAGES

256 x 256 128 x 128 64 x 64 32 x 32
QF SPAM Lai’s  Luo’s Ours SPAM Lai’s  Luo’s Ours SPAM Lai’s  Luo’s Ours SPAM Lai’s  Luo’s Ours
100 62.58 49.93  50.00 99.99 59.42  50.00 50.00 99.96 57.08 49.99  50.03 99.93 5533 4983 49.87 99.87
99 7450 5390 51.03  99.99  68.67 5076 5093  99.96 6275 51.09 5049 99.88  59.08 51.66 51.04 99.85
98  86.58 6597 9723  99.99  79.67 6278 97.03  99.94 6892 63.63 9656 99.88 6492 71.09 9555 99.79
95 9567 8653 99.93  99.97 9042 8408 99.84  99.94 8450 84.65 9971  99.87 7525 91.10 99.47 99.52
90 9833  94.12 9991 99.96 95.67 93.08 99.80 99.93 91.08 94.13  99.57 99.81 85.33  96.53 9933  99.40
85 98.92  97.59  99.90 99.98 9742 9633  99.73 99.94 94.67 9733  99.50 99.76 90.33  98.12 99.24  99.38
75 99.33 9942  99.85 99.98 9842  99.15  99.68 99.93 96.75  99.58  99.35 99.68 9258 9932  98.89  99.30
50 99.67 99.96 99.74 99.99 99.25 9994 9947 99.87 9842  99.89 99.28 99.70 97.75 99.63 9871 99.19
02 25656 always utilize the thresholds from Table I to other data sets
ol . . . .
5015 —a 128 % 128 (e.g., Section IV-C and IV-D) and to practical applications
g —o—64 % 64 (e.g. Section V) for evaluation.
% 3) Results on Designated 1JG Quality Factors: We desig-
& nate IJG (Independent JPEG Group) [38] QF (quality factor)
) of 100, 99, 98, 95, 90, 85, 75, and 50. The results evaluated
i . . .
= in metric accuracy are demonstrated in Table II. It can
o 1000 20003000 4000 5000 be observed that our method always perforrps the best.
Pixel Variance Luo’s method starts to perform well when QF is below 98,
Fig. 2. Distribution of the pixel variances of uncompressed images used while Lai’ method and SPAM method achieve satisfactory

in Section IV-A.

identified decompressed images and that of uncompressed
images. False positive rate evaluates the percentage of wrongly
identified uncompressed images.

It is not easy to tune the parameters for the SPAM detector
by non-linear SVM with a designated false positive rate. In this
case, we use the metric accuracy, which is defined as the total
amount of true positive samples and true negative samples over
the total amount of test samples for each quality factor. As we
report the results with accuracy, we always randomly split the
images into the training set (4/5 of the overall images) and the
testing set (1/5 of the overall images), and apply the threshold
or the parameters, obtained on the training set with the best
accuracy, to the testing set. The testing results are averaged
by 5-times splitting.

As we fix a false positive rate for the whole image set,
we can easily obtain a threshold respectively for Lai’s, Luo’s,
and our method. In this case, the performance can be evaluated
based on the true positive rate, the higher the better. When the
false positive rate is set as 1%, the threshold of each detector
is shown in Table I.

Note that for the results reported in accuracy, we may
need to tune the threshold or the parameters for each
quality factor. For the results reported in true positive,
we only need to set the threshold according to the uncom-
pressed images, which bring us great flexibility. We will

results when QF is even lower. The identification results
evaluated when the false positive rate is 1% are demonstrated
in Table III. It can be observed that when QF is below 85, all
three methods perform similarly. When QF is below 98, the
performance difference between our method and Luo’s method
is marginal.

Our method shows great improvement over other methods
when QF is above 98, where the quantization tables are mainly
composed of small steps, i.e., 1 or 2. To our knowledge, there
is no other methods can distinguish uncompressed images
from decompressed JPEG images with such high quality
factors.

To better understand why our method can performs well
on high-quality compressed images, we show the distribution
of the estimated noise variance &Zz in Fig. 3 for the test
images. The variances of uncompressed images are concen-
trated around Cy 0.0833, while that of decompressed
images are concentrated around or less than C; = 0.0638. The
results conform to our theoretical analysis. We demonstrate
the standard deviation of the noise variance under different
image size and different quality factor in Table IV. We can
observe that as the image size increases or the quality factor
increases, the standard deviation decreases, indicating the
deviation of the empirical data from the theoretical model
becomes less.

4) Results on Designated Photoshop Quality Factors: We
perform experiments by using Photoshop QF of 100, 99,
98, 95, 93, 90, 85, 80, and 75. The results are shown
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TABLE III
TRUE POSITIVE RATE (IN %) ON IDENTIFYING GRAY-SCALE DECOMPRESSED JPEG IMAGES WHEN FALSE POSITIVE RATE Is 1%

256 x 256 128 x 128 64 x 64 32 x 32
QF Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours
100 0.87 0.20  100.00 0.83 0.30  100.00 0.80 0.37  100.00 0.90 0.33  100.00
99 0.73 0.33  100.00 0.63 0.30  100.00 0.73 0.37  100.00 1.43 040  100.00
98 18.13 4237  100.00 1547 1577  100.00 20.87 10.10  100.00 39.40 5.77 99.97
95 69.10 100.00 100.00 64.83 100.00 100.00 69.13 100.00 100.00 83.27 99.90 99.73
90 88.20  100.00 100.00 86.40 99.97 100.00 88.80 99.93  100.00 93.93 99.77 99.70
85 95.83  100.00 100.00 93.27 99.90 100.00 95.17 99.83 99.97 97.27 99.50 99.50
75 99.30 99.97  100.00 98.97 99.90  100.00 99.17 99.73 99.90 99.40 99.00 99.57
50 99.97 99.97  100.00 99.90 99.77  100.00 99.77 99.43 99.87 99.13 98.50 99.13
1 1
I Uncompressed I Uncompressed
[__1QF=% B [__1QF=%
g 0.8 N QF=100 g 08 N Qr=100
§ QF=75 § QF=75
3 =]
3 0.6 3 0.6
o ]
b 4
=} =]
04 5 04
o [}
3 =
g g
0.2 =02
0 i, el 0 'uH{
0.05 0.06 0.07 0.08 0.09 0.05 0.06 0.07 0.08 0.09
Variance of Forward Quantization Noise Variance of Forward Quantization Noise
(a) (b)
0.7 0.5
| I Uncompressed I Uncompressed
0.6 [ JQF=% [__JQF=%
8 N QF=100 g 04 I gF=100
§ 0.5 QF=75 é N QF=75
3 8 03
S 04 s
G G
=] =]
) 3 )
g 0.3 202
E =
g 02 g
i) & o1
0.1
0 AH | l’ P 0 A | : 3 i —
0.05 0.06 0.07 0.08 0.09 0.05 0.06 0.07 0.08 0.09
Variance of Forward Quantization Noise Variance of Forward Quantization Noise
(©) (d)
Fig. 3. Distribution of the estimated variance of forward quantization noise. (a) 256 x 256. (b) 128 x 128. (c) 64 x 64. (d) 32 x 32.

TABLE IV
STANDARD DEVIATION OF THE NOISE VARIANCE UNDER DIFFERENT
IMAGE SIZE AND DIFFERENT QUALITY FACTOR

QF 256 x 256 128 x 128 64 x 64 32 x 32
100 0.0011 0.0019 0.0027 0.0034
99 0.0012 0.0021 0.0030 0.0038
98 0.0013 0.0022 0.0031 0.0039
95 0.0015 0.0023 0.0033 0.0041
90 0.0026 0.0033 0.0042 0.0050
85 0.0053 0.0059 0.0067 0.0077
75 0.0101 0.0110 0.0120 0.0134
50 0.0139 0.0153 0.0168 0.0188

in Table V. We can observe that when using a high Photoshop
QF (larger than 90), our method is significantly better than
Luo’s method and Lai’s method.

The significant performance of our method highlights the
power of quantization noise analysis which reveals the great

difference between uncompressed images and high-quality
compressed image. Such difference turns out to be not promi-
nent in the distribution of DCT coefficients and explains
why Luo’s method and Lai’s method failed under such
conditions.

B. Evaluation on Color Images

Since color images are pervasive in daily life, we verify the
performance on color images.

1) Test Image Set: We use the same source image set
as that in Section IV-A. The color images are first center-
cropped to some smaller sizes, and then compressed with
designated IJG QFs. During compression, we generate two
types of color JPEG images. For the first type, there is no
down-sampling operation on color channels. This corresponds
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TABLE V
TRUE POSITIVE RATE (IN %) ON IDENTIFYING GRAY-SCALE DECOMPRESSED JPEG IMAGES
BY PHOTOSHOP QUALITY FACTORS WHEN FALSE POSITIVE RATE Is 1%

256 x 256 128 x 128 64 x 64 32 x 32
Photoshop QF  Lai’s Luo’s Ours  Lai’s Luo’s Ours  Lai’s Luo’s Ours  Lai’s Luo’s Ours
100 6.87 0.77 100.00 4.10 0.73 100.00 4.33 0.70  100.00 12.13 0.50  100.00
99 6.77 1.17 100.00 4.53 0.93 100.00 5.53 0.77 100.00  14.87 0.60  100.00
98 15.83 1.60  100.00 13.87 1.03 100.00  18.33 090  100.00 33.40 0.60 99.97
95 27.53 19.77 100.00  24.17 6.17 100.00  31.40 3.93 100.00  53.40 2.87 99.97
93 39.63 66.50  100.00 35.20 30.63 100.00 41.53  21.00  100.00 6420 11.40 99.97
90 56.73  100.00  100.00 52.37 97.93 100.00 5823  92.10  100.00 76.73  71.97 99.83
85 74.27 100.00  100.00 70.57  100.00 100.00  75.00  99.97 100.00  88.07  99.97 99.87
80 85.90  100.00  100.00 82.43  100.00 100.00 83.13  99.97 100.00  91.60  99.87 99.70
75 9270  100.00  100.00 90.30  100.00 100.00  90.53  99.97 100.00 94.17  99.90 99.77
TABLE VI

TRUE POSITIVE RATE (IN %) ON IDENTIFYING COLOR DECOMPRESSED JPEG IMAGES (WITH CHROMA SUB-SAMPLING
FACTOR 4 : 4 : 4 DURING COMPRESSION) WHEN FALSE POSITIVE RATE IS 1%

256 x 256 128 x 128 64 x 64 32 x 32
QF Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours
100 0.37 0.20  100.00 0.57 0.37  100.00 1.37 0.40  100.00 2.00 0.37  100.00
99 0.37 0.37  100.00 0.57 0.37  100.00 1.10 047  100.00 1.93 0.40 99.70
98 17.53 41.60  100.00 897 1537 99.97 3.83 10.00 99.73 4.23 5.77 98.87
95 73.63  100.00 99.93  66.37  99.93 99.87  63.13  99.73 99.23  65.67  99.27 97.20
90 90.13 99.87 100.00 88.10  99.60 99.97 8843  99.30 98.53 84.50 98.17 96.20
85 96.50 99.67 99.90 9397  99.00 99.80 95.13  98.57 98.77 91.10 97.57 96.10
75 99.33 99.50 99.90 99.03 98.57 99.80 99.20 97.87 98.77 98.53  96.77 96.27
50 99.97 99.17 99.90 9990 98.27 99.63 99.80 97.53 98.67  99.67 96.10 95.80
TABLE VII

TRUE POSITIVE RATE (IN %) ON IDENTIFYING COLOR DECOMPRESSED JPEG IMAGES (WITH CHROMA SUB-SAMPLING
FACTOR 4 : 1 : 1 DURING COMPRESSION) WHEN FALSE POSITIVE RATE Is 1%

256 x 256 128 x 128 64 x 64 32 x 32
QF Lai’s Luo’s Ours Lai’s  Luo’s Ours Lai’s Luo’s Ours Lai’s  Luo’s Ours
100 0.93 0.23 99.97 0.87 040  99.87 0.83 043 99.13 0.93 043  97.53
99 0.77 0.33  100.00 0.67 040 99.77 0.77 047  98.97 1.43 043 96.77
98 18.07 37.77 99.93 1520 13.07 99.63 20.53 8.00 98.73 38.83 473 96.13
95 68.87  99.83 99.90 64.57 9947 99.77 6890 99.13 9847 8257 9830 95.67
90 88.03  99.77 99.90 8620 99.20 99.70 88.67 98.67 98.53 93.67 97.57 9547
85 9580  99.60 99.87 9320 9890 99.57 95.10 98.37 9847 97.10 9743 95.03
75 99.30  99.33 99.80 9897 9843 9933 99.13 9747 9790 9930 96.27 95.13
50 99.97 98.83 99.83 9990 97.83 99.23 99.77 97.10 9797 9920 9537 94.80

to the chroma sub-sampling factor of 4 : 4 : 4. For the second
type, we use a chroma sub-sampling factor of 4 : 1 : 1, which
means the two chrominance channels are down-sampled by
a factor of 2 on each dimension. These two types of color
images are often found in our daily uses. We decompress the
JPEG images into RGB representation for testing, and only
use the luminance channel of the image as the input for each
method for evaluation.

2) Evaluation Metrics and Results: We use the constant
threshold giving out the false positive rate of 1% to compute
the true positive rate. Since the luminance images are exactly
the same as that in Section IV-A, the thresholds are the same
as that in Table I.

The results on two different chroma sub-sampling types
are reported in Table VI and VII, respectively. It can be
observed that the trend of the performances is similar to the
case of gray-scale images. The performances of Luo’ method
and our method may slightly decrease on color images. The
reason for the performance drop is that extra noise has been

introduced due to color space conversion. For our method,
the variance of forward quantization noise of a decompressed
image in color representation is thus larger than that in gray-
scale representation. Since we use the same threshold as the
gray-scale case, the true positive rate, which measures how
many decompressed images have a noise variance below the
threshold, decreases. The sub-sampling on the chrominance
channels does not deteriorate the performance much when
compared to the non-sub-sampling case, which demonstrates
that applying our method only to the luminance channel is
effective.

C. Evaluation on JPEG Images From a Database With
Random Quality Factors

Since the decompressed JPEG images encountered in daily
life are coming from different sources, and thus having been
compressed with varying quality factors. We conduct the
following experiment to show the performance on random
quality factors.
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TABLE VIII
TRUE POSITIVE RATE (IN %) ON IDENTIFYING COLOR DECOMPRESSED JPEG IMAGES FROM REWIND SYNTHESIS DATABASE

256 x 256 128 x 128 64 x 64 32 x 32
Image Set  Lai’s Luo’s Ours  Lai’s Luo’s Ours  Lai’s Luo’s Ours  Lai’s Luo’s Ours
Original 88.00 9038  99.99 87.63 9028  99.96 86.40 90.17 99.83 8383 89.88  99.21
Class 1 87.27 89.79 9988 8724 89.69  99.75 8595 89.61 99.51 8371 8933  98.83
Class 2 99.88  99.76 9992 9946 99.19  99.89 9856  99.11 99.78 9543  98.95 99.28
Class 3 8943 9044 9985 8847 90.83  99.72 8745 90.75  99.50 85.08 90.46  98.80
Class 4 99.86 99.82 9991 9894 99.21 99.85 9836 99.13  99.71 9547 9893  99.17
TABLE IX

FALSE POSITIVE RATE (IN %) ON IDENTIFYING UNCOMPRESSED IMAGES IN BOWS2 WITH THE THRESHOLDS IN TABLE I

256 x 256 128 x 128 64 x 64 32 x 32
Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours Lai’s Luo’s Ours
4.77 413  2.01 3.36 2.08 0.98 2.83 095 042 5.13 0.36 0.58

1) Test Image Set: To increase the amount and the diversity
of images for testing, and also to test whether the thresholds
of the methods heavily rely on image database, we use the test
image set composed of 9,600 color JPEG images created by
Fontani et al. [39], which we called REWIND SYNTHESIS
database. In this database, 4,800 images are generated with
IJG QFs randomly selected from the set {40, 50, -- -, 100}.
These images are referred to as “Original”. The rest 4,800
images are divided into four classes (referred to as Class 1 to
Class 4). Each class contains 1,200 images where aligned or
non-aligned double compression operation is performed in a
portion of each image. The QF in the first compression, Q Fy,
is randomly chosen from the set {40, 50, - - - , 80}, and the QF
in the second compression is set to Q F> = Q F1 +20. Readers
can refer to [39] for details of the four classes.

Since all the images in the REWIND SYNTHESIS database
are already JPEG compressed, the images are decompressed
and saved in uncompressed format in our experiment to play
the role of positive samples. We also divide the images of
original size 1024 x 1024 pixels into smaller sizes. It is
equivalent to the case that we have 153,600 images with
size 256 x 256, 614,400 images with size 128 x 128,
2,457,600 images with size 64 x 64, and 9,830,400 images
with size 32 x 32.

2) Evaluation Metrics and Results: We use the constant
threshold giving out the false positive rate of 1% as that
in Table I to compute the true positive rate. No matter which
type (single compressed, aligned double compressed, or
non-aligned double compressed) an image belongs to, the
image is in the category of JPEG decompressed. A perfect
detector would give a result indicating all images are positives.

The results are reported in Table VIII. Our method performs
the best and it is very stable across different image types and
image sizes. It can be observed that both Lai’s method and
Luo’s method perform better on Class 2 and Class 4 than on
Original, Class 1, and Class 3. This phenomenon may probably
due to how the images are composed of. In Original, Class 1,
and Class 3, the major part of the image is singly compressed,
possibly with a high QF being close to 100 and difficult for
Lai’s method and Luo’s method to work well.

D. Evaluation on Uncompressed Images From Another Set

Before ending the evaluation, we perform one more test to
verify if the thresholds of the methods obtained in Table I is
robust to other uncompressed images.

1) Test Image Set: We use the test image set composed
of 10,000 uncompressed gray-scale images from BOWS2
image database [40]. The images are resized with the near-
est neighbor algorithm to generate images of smaller sizes,
i.e., 256 x 256, 128 x 128, 64 x 64, and 32 x 32 pixels.

2) Evaluation Metrics and Results: We apply the thresholds
in Table I, and evaluate the false positive rate, the lower
the better. It can be observed from Table IX that the false
positive rate of our method is the lowest when the image size
is no smaller than 64 x 64, and it is close to Luo’s method
when image size is 32 x 32. The false positive rate of
Lai’s method is always larger than 1%, indicating the
threshold used in Lai’s method may highly depend on the
image set, and may not be as stable as other two methods.
In fact, when we compare the scale of the threshold (the
ratio between the largest threshold and the smallest threshold)
across different image sizes in Table I, both Luo’s method
(0.2055/0.1414 = 1.4533) and our method (0.0822/0.0755 =
1.0887) have a smaller scale than Lai’s method
(1.5342/0.1973 = 7.7760), which implies that these two
methods may be more adaptable than Lai’s method.

V. PRACTICAL APPLICATIONS

In the previous section, we have reported the performance
of different methods on identifying decompressed images in
designated image sizes. In practical scenarios, the methods
may be applied to images with arbitrary sizes and it is
infeasible to give a threshold for each individual image size.
This raises a question: how to apply the methods in practical
applications? In this section, we address the issue in two
applications.

A. Internet Image Classification

The first application of our JPEG identification method
is Internet image classification. Internet search engines cur-
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rently allow users to search by content type, but not by
compression history. There may be some graphic designers
who wish to differentiate good-quality decompressed images
from uncompressed images in a set of images returned by
Internet search engines. In this case, searching images by
compression history is important. In this section, we show
the feasibility of such an application.

1) Image Classification Algorithm: We first convert color
images into gray-scale images. Then we divide each image
into non-overlapping macro-blocks of size B x B
(e.g., B = 128, 64, or 32). If the dimension of the
image is not exactly the multiple times of B, the last a few
rows or columns are removed from testing. Next, we perform
JPEG identification on each macro-block. We can use the
threshold as given in Table I for each macro-block size. For a
test image I, suppose it contains a total number of N5
macro-blocks, and assume a number of D®) macro-blocks
are identified as decompressed. We use a measuring quantity,
called block hit (BT), to assess the proportion of macro-blocks
being identified, i.e.,

13)

Ideally, BT ® should be close to 1 for a decompressed image
and be close to 0 for an uncompressed image. However, the
results in the previous section show that none of the three
methods result in 100% true positive rate and 100% true
negative rate. There may be some macro-blocks identified
as uncompressed in a decompressed image, and vice versa.
Therefore, we make a decision rule based on:

I— Iuncompressed, BT®) < R,

14
decompressed, BT®) > R, (14)

where R € [0, 1] is a threshold controlling the classification
accuracy, which will be discussed later.

2) Test Image Set: We have downloaded 15,000 color
JPEG images from Internet by the main search engines,
where 5,000 are from Google (http://images.google.com.hk/),
5,000 from Baidu (http://image.baidu.com/), and 5,000 from
Microsoft Bing (http://cn.bing.com/images). We restrict the
width or height of each image to be no smaller than 128.
These images are decompressed and served as the ground-truth
JPEG decompressed images. The image contents cover a wide
range of semantics, including peoples, animals, buildings,
landscapes, daily used goods, cartoons, logos, advertisements
and so on. The file size of the downloaded images spreads
over a wide range: 2.78% of them are smaller than 10 KB,
25.59% are in 10 KB~50 KB, 67.55% are in 50 KB~500 KB,
and 5.21% are larger than 500 KB.

Since the “quality factor” is not consistently defined for
different JPEG compression tools, we use a metric, called
average quantization step (AQS), to evaluate the compression
quality. The AQS is computed by averaging 64 quantization
steps from the quantization table of luminance channel. The
monotonic relationship between IJG QF and AQS, and that
between Photoshop QF and AQS are given in Fig. 4. The
distribution of compression qualities of the image set is shown
in Fig. 5. We can infer from the figure that 5.2% of the
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Fig. 4. The relation between the average quantization step (AQS) and the
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Fig. 5. The distribution of average quantization step (AQS) of the downloaded
JPEG images.

images are compressed by a quantization table where all
steps are ones, and 5.5% of the images are compressed by
a quantization table that corresponds to that of IJG QF=99
(or Photoshop QF from 98 to 100). It indicates that in the age
of high-speed Internet, high-quality compressed JPEG images
are very common, and they may become much more as
Internet bandwidth is getting cheaper.

We also use the 10,000 images of size 512 x 512 pixels
without resizing from BOWS?2 image database [40] to play
the role of uncompressed images. The reason why we do not
use the images in uncompressed format from Internet search
engines is that the search engines do not provide the ground-
truth information of the image compression history.

3) Evaluation Metrics and Results: We define the TP
(true positive) and the TN (true negative) respectively as the
ratio of the decompressed images being correctly classified,
and the uncompressed images being correctly classified.
From (14), we know that TP and TN depend on the
classification threshold R. On one hand, we report the
performance when R = Rpesr, Where Rpesr 1S selected
to maximize the ACC (accuracy), which can be simply
computed as the amount of correctly identified decompressed
images and uncompressed images over the total amount of
test images. Note that in this case, Rp.s; may depend on the
image dataset. On the other hand, we report the performance
when R = 0.5, which may be a blind but reasonable criterion
due to the majority rule.

The performances with two different criteria on selecting
R are reported in Table X, where we also include the value
of Rpes; for each method. In accordance with the performance
reported in the previous section, our method is the most
accurate one under both criteria. It is not surprising that
the performance under R = 0.5 is inferior to that under
Rpest # 0.5. The performance drop is not obvious in our
method, which indicates that in practical scenario where



568 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 3, MARCH 2015

TABLE X
PERFORMANCE ON INTERNET IMAGE CLASSIFICATION

128 x 128 64 x 64 32 x 32
Lai’s Luo’s Ours Lai’s  Luo’s Ours Lai’s Luo’s Ours
Rpest 0.25 0.63 0.63 0.11 0.50 0.47 0.09 0.50 0.34
ACC 91.71  94.68 98.98 95.24  94.18 99.11 97.81  94.08 98.98
R = Rpest TP 87.19 9243 99.03 93.59 92.79 99.01 96.57 91.74 98.84
N 98.49  98.06 98.92 97.71  96.26 99.26 99.67 97.60 99.19
ACC  87.57 94.56 98.88 88.14  94.18 99.07 89.52  94.08 98.40
R=0.5 TP 79.30  93.53 99.53 80.23  92.79 98.87 82.53 91.74 97.49
N 99.98  96.10 97.89  100.00 96.26 99.38  100.00 97.60 99.78

Fig. 6. Tllustration of feasible forgery detection scenarios.

training is not available, R =
threshold.

0.5 may be a reasonable

B. Forgery Detection

The second application of our method is image tampering
detection. Once an image has inconsistency in JPEG com-
pression history among different parts, possible forgery may
be detected. Suppose an image forgery is composed of two
parts as illustrated in Fig. 6. Part A is from a decompressed
JPEG image, while Part B is inserted from another image.
Even if Part A is decompressed from a high-quality com-
pressed JPEG image, our method is capable of detecting image
forgery that belongs to one of the following cases.

Forgery Case A: Part B is from an uncompressed image.

Forgery Case B: Part B is synthesized through a computer
graphics rendering or uncompressed image-based synthesis
technique.

1) Forgery Detection Algorithm: Given a color test image,
we first extract its luminance channel, and then perform
JPEG identification independently on non-overlapping
B x B-pixel macro-blocks of the Iluminance channel.
Considering a good trade-off between detection sensitivity
and accuracy, we use B = 32 for forgery detection.

Through the macro-block based detection, each macro-block
will be identified as uncompressed or JPEG decompressed.
Ideally, we would expect the detection outcomes from a clean
image to be consistent over the entire image. In contrast, some
distinctive patterns should appear in the manipulated regions
of a tampered image.

We use two examples to demonstrate the detection results.
When a JPEG decompressed part has been identified, we show
its original brightness. Otherwise, we use a dark macro-block
to replace the identified uncompressed part.

We give an example of Forgery Case A. Fig. 7 (a) is
a decompressed JPEG image, whose previous JPEG quality
factor is IJG QF=90. A license plate image, in uncompressed
format, as shown in Fig. 7(e), is resized and inserted into

the decompressed image. The resulting image is saved in
uncompressed format and shown in Fig. 7(i). The detection
results provided by Lai’s method, Luo’s method, and our
method for these three kinds of images are respectively shown
in Fig. 7(b) to (d), (f) to (h), and (j) to (). It can be observed
that both Luo’s method and our method can differentiate the
decompressed image from the uncompressed image, and they
can recognize the tampered part well. Lai’s method can detect
the tampered part; however, it makes some false positives
on the non-tampered part, especially those macro-blocks in
smooth regions.

An example of Forgery Case B is given in Fig. 8, where
Fig. 8(a) is a decompressed JPEG image, whose previous
JPEG quality factor is Photoshop QF=95. An apple in the
image is removed by the “content-aware-filling” function of
Photoshop CS5. The resulting image is saved in uncompressed
format and shown in Fig. 8(d). The detection results to
these images provided by Lai’ method, Luo’s method, and
our method are respectively shown in Fig. 8(b) to (d),
and (f) to (h). It can be observed that both Lai’s method
and our method can detect the tampered part; however,
Lai’s method makes some false positives on the non-tampered
part. Luo’s method wrongly labels most of the parts as
uncompressed and performs the worst among the three meth-
ods, which is in accordance with the performance reported
in Table V for Photoshop QF=95.

2) Test Image Set: Currently there is no off-the-shelf forgery
dataset on decompressed JPEG images. Therefore we create
two sets based on the 10,000 images of size 512 x 512 pixels
from BOWS?2 database [40] for our experiments, and they are
available to the research community.!

3) Set A: To simulate the scenario of Forgery Case A,
we first compress the image with random IJG QFs, ranging
from 75 to 100, then decompress and save it in uncompressed
format. The decompressed images are served as negative
samples. Next, inspired by the forgery creation process by
Fontani et al. [39], we cut a portion (from position (193, 193)
to (256,256) with 64 x 64 pixels) of each uncompressed
image and paste it into its decompressed counterpart, exactly
in the same position. No perceptual clue can be found in the
composite image.

4) Set B: To simulate the scenario of Forgery Case B,
we first compress the image with Photoshop and then
we decompress and save it in uncompressed format.

Lavailable at http://ist.sysu.edu.cn/BOWS2F/idb.html.
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Fig. 7. Detection of image-splicing forgery. (a) Decompressed JPEG image. (b) Detection by Lai’s method on the decompressed JPEG image. (c) Detection
by Luo’s method on the decompressed JPEG image. (d) Detection by our method on the decompressed JPEG image. () Uncompressed image. (f) Detection
by Lai’s method on the uncompressed image. (g) Detection by Luo’s method on the uncompressed image. (h) Detection by our method on the uncompressed

image. (i) Spliced image. (j) Detection by Lai’s method on the spliced image. (k) Detection by Luo’s method on the spliced image. (I) Detection by our
method on the spliced image.

(€3] ()

Fig. 8.  Detection of content-aware-filling forgery. (a) Decompressed JPEG image. (b) Detection by Lai’s method on the decompressed JPEG image.
(c) Detection by Luo’s method on the decompressed JPEG image. (d) Detection by our method on the decompressed JPEG image. (e) Content-aware-filling

image. (f) Detection by Lai’s method on the content-aware-filling image. (g) Detection by Luo’s method on the content-aware-filling image. (h) Detection by
our method on the content-aware-filling image.

Next, we perform a ‘“content-aware-filling” operation in a and QF=90 to simulate high-quality compression.

100 x 100-pixels region (from position (181,181) to A sample image and its tampered counterpart are demonstrated
(280, 280)) of the image. We wuse Photoshop QF=95 in Fig. 9.
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Fig. 9.  An example of a pristine image (left) and its tampered counterpart
(right).
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Fig. 10. Illustration of the tampered region (the block with dash line) for

each image in Set B.

5) Evaluation Metrics and Results: In Set A, since the
composite image is of size 512 x 512, there will be an amount
of 256 macro-blocks of size 32 x 32. Among them, exactly
4 macro-blocks are from the uncompressed image. When all
252 macro-blocks in the outer region of the composite image
are identified as decompressed, and at least 2 out of the
4 macro-blocks in the inner tampered region are identified
as uncompressed, we regard the image as being correctly
identified. The decision criterion to the tampered part is based
on the majority rule as being used in Section V-A.

In set B, the tampered 100 x 100 region is not aligned with
the 32 x 32 macro-block grid, as illustrated in Fig. 10.
A number of 16 macro-blocks may be involved in the manip-
ulation, but only 4 of them are fully covered by the tampered
region. As a result, we regard the tampered image as being
correctly detected when all 240 macro-blocks in the outer
region are identified as decompressed, and at least 2 out of the
fully-covered 4 macro-blocks are identified as uncompressed.

For non-tampered image, when all 256 macro-blocks are
identified as decompressed, we regard the image as being
correctly detected.

The detection results are shown in Table XI, where
the detection accuracy of the tampered images and the
non-tampered images in Set A and Set B are respectively
reported. Our method performs the best. It seems that our
method is more effective on Set B; however, we cannot
interpret that the content-aware-filling is easier to be detected.
In fact, our method has an advantage on the images which
are compressed with a higher compression quality in Set B.
Besides, the tampering is performed in a larger region
in Set B. Luo’s method performs better on Set A and the
non-tampered images in Set B with a lower Photoshop QF.

TABLE XI
DETECTION RESULTS (IN %) ON FORGERY DETECTION

Image Type Lai’s  Luo’s Ours
Set A Non-tampered 17.27 7530 84.58
Tampered 1698  71.55 84.40
Set B Non-tampered (Photoshop QF=95) 51.88  15.06 99.98
Non-tampered (Photoshop QF=90) 68.26  87.62 99.95
Tampered (Photoshop QF=95) 0.15 0.00 95.37
Tampered (Photoshop QF=90) 2.07 1.46  91.59

Lai’s method performs poor on Set A and the tampered images
in Set B. These results conform to the two examples shown
in Fig. 7 and Fig. 8.

VI. CONCLUSION

In this paper, we propose a method to reveal the traces
of JPEG compression. The proposed method is based on
analyzing the forward quantization noise, which is obtained
by quantizing the block-DCT coefficients with a step of one.
A decompressed JPEG image has a lower noise variance than
its uncompressed counterpart. Such an observation can be
derived analytically. The main contribution of this work is
to address the challenges posed by high-quality compression
in JPEG compression identification. Specifically, our method
is able to detect the images previously compressed with
IJG QF=99 or 100, and Photoshop QF from 90 to 100.
Experiments show that high-quality compressed images are
common on the Internet, and our method is effective to identify
them. Besides, our method is robust to small image size and
color sub-sampling in chrominance channels. The proposed
method can be applied to Internet image classification and
forgery detection with relatively accurate results. It should be
noted that the proposed method is limited to discriminating
uncompressed images from decompressed ones which have
not undergone post-processing. Our future studies will be on
trying to extend the noise analysis to other forensics tasks,
i.e., identifying the resized decompressed JPEG images such
as the images presented in IEEE IFS (Information Forensics
and Security) Image Forensic Challenge [41].

APPENDIX A
PROOF OF PROPOSITION 1

Assume quantizing a random variable S with a step g.
The resulting quantization noise is denoted by €. Denote the
characteristic function (CF) of § as Wg(¢). It has been shown
in [42] that the probability density function (PDF) of the
quantization noise can be expressed in a series form as

1 1 2wk _io2mk
f@==+= > ws(Zo)e N xel-1. D).
keZ,k#0
(15)

When § follows a zero-mean Laplacian distribution with
parameter A, ie., S ~ L(0, 1), its CF is Ws(t) = Az‘—ﬂz,
t € (—o00,00). As a result, we can express the PDF of the
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quantized-Laplacian distribution as

2}(2

SIS N SN
xX)=—+-— - —x), xel[—=,2).
¢ I R q22% +4n2k? q 272
(16)
The variance can be obtained by
%
03 :/ x2 fo (x)dx
q
-2
1 k 2/12
= q—+q— s Vg .an
12 =#2 k> q%A% +4n2k?

Note that the first term of the second equation in (17) is %,
which equals to the variance of a uniform distribution with
support on [—— ) The second term is a convergent alter-
nating series w1th decreasmg absolute value with respect to k.

2
As a result, 03 < %, and this completes the proof.

APPENDIX B
DERIVATION OF PROPOSITION 2
When v ~ N(0,62), its CF is Wz(1) = e 277
t € (—00,00). According to (15), when ¢ = 1, the PDF
of the quantized Gaussian is

o

2,2 2 1

=142 e " cosQukx), x €[—=,=).

) =1+23 e cos(2rkx), x € [~3.3)
(18)

Its variance is given by
(- 1) 22,2

e e W

Note that the second term of (19) is a convergent alternating
series with decreasing absolute value with respect to k. As a
result, anzv is upper bounded by anzv < Cyp = 1—12 = 0.0833 for
any value of 2. When we respectively assign o2 =
= 0.0833 and ¢% = C1 = 0.0638, and use a sufficient
large number of k in (19), we can numerically obtain
”1) = C1 = 0.0638 and a = Cy = 0.0548.

APPENDIX C
PROOF OF PROPOSITION 3

When q(l) = 1,Vu, according to Property 1 and
Proposition 1, we can obtain 02(1) < Cop = 11—2 = 0.0833, Vu.

The auxiliary noise x(!) is the inverse DCT transform of the
quantization noise y(! [31]. According to the central limit
theorem, xM ~ A/(0, axz(l)). Its variance is bounded by

ol < m;lx{aig,)} < Cp = 0.0833. (20)
The rounding noise x!~? is arising from negatively round-
ing off the auxiliary noise x(1 [31]. Hence we know
x1=2 ~ N Cx ~wy» 1). Based on the second condition of
Proposition 2, the variance of x'2 is bounded by

021 < C1 = 0.0638. 1)
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The auxiliary noise y(=? is the DCT transform of the
rounding noise x(1=2) [31]. According to the central limit
theorem, y!=>2) ~ N/(0, 03(,%)). Its variance is bounded by
02 < max{o’iy} < C1 = 0.0638. (22)

This completes the proof of the first case of Proposition 3.
When the condition q,gl) = 1, Vu is not satisfied, (22) does
not hold. However, based on Proposition 2, for any value

of o2, we know that the variance of x(!=2 is bounded by
0212 < Co = 0.0833. (23)
Similar to (22), we can arrive
o2 iy < max{a (Hz)} < Co = 0.0833. (24)

This completes the proof of the second case of Proposition 3.
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