
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Automatic Face Naming by Learning Discriminative
Affinity Matrices From Weakly Labeled Images
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Abstract— Given a collection of images, where each image
contains several faces and is associated with a few names in
the corresponding caption, the goal of face naming is to infer
the correct name for each face. In this paper, we propose
two new methods to effectively solve this problem by learning
two discriminative affinity matrices from these weakly labeled
images. We first propose a new method called regularized
low-rank representation by effectively utilizing weakly super-
vised information to learn a low-rank reconstruction coefficient
matrix while exploring multiple subspace structures of the data.
Specifically, by introducing a specially designed regularizer to the
low-rank representation method, we penalize the corresponding
reconstruction coefficients related to the situations where a face
is reconstructed by using face images from other subjects or by
using itself. With the inferred reconstruction coefficient matrix, a
discriminative affinity matrix can be obtained. Moreover, we also
develop a new distance metric learning method called ambigu-
ously supervised structural metric learning by using weakly
supervised information to seek a discriminative distance metric.
Hence, another discriminative affinity matrix can be obtained
using the similarity matrix (i.e., the kernel matrix) based on
the Mahalanobis distances of the data. Observing that these two
affinity matrices contain complementary information, we further
combine them to obtain a fused affinity matrix, based on which
we develop a new iterative scheme to infer the name of each face.
Comprehensive experiments demonstrate the effectiveness of our
approach.

Index Terms— Affinity matrix, caption-based face naming,
distance metric learning, low-rank representation (LRR).

I. INTRODUCTION

IN SOCIAL networking websites (e.g., Facebook), photo
sharing websites (e.g., Flickr) and news websites

(e.g., BBC), an image that contains multiple faces can be
associated with a caption specifying who is in the picture.
For instance, multiple faces may appear in a news photo
with a caption that briefly describes the news. Moreover,
in TV serials, movies, and news videos, the faces may
also appear in a video clip with scripts. In the literature,
a few methods were developed for the face naming problem
(see Section II for more details).
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Fig. 1. Illustration of the face-naming task, in which we aim to infer
which name matches which face, based on the images and the corresponding
captions. The solid arrows between faces and names indicate the ground-truth
face-name pairs and the dashed ones represent the incorrect face-name pairs,
where null means the ground-truth name of a face does not appear in the
candidate name set.

In this paper, we focus on automatically annotating
faces in images based on the ambiguous supervision from
the associated captions. Fig. 1 gives an illustration of the
face-naming problem. Some preprocessing steps need to
be conducted before performing face naming. Specifically,
faces in the images are automatically detected using face
detectors [1], and names in the captions are automatically
extracted using a name entity detector. Here, the list of names
appearing in a caption is denoted as the candidate name
set. Even after successfully performing these preprocessing
steps, automatic face naming is still a challenging task. The
faces from the same subject may have different appearances
because of the variations in poses, illuminations, and
expressions. Moreover, the candidate name set may be noisy
and incomplete, so a name may be mentioned in the caption,
but the corresponding face may not appear in the image, and
the correct name for a face in the image may not appear in the
corresponding caption. Each detected face (including falsely
detected ones) in an image can only be annotated using one
of the names in the candidate name set or as null, which
indicates that the ground-truth name does not appear in the
caption.

In this paper, we propose a new scheme for automatic
face naming with caption-based supervision. Specifically,
we develop two methods to respectively obtain two discrimina-
tive affinity matrices by learning from weakly labeled images.
The two affinity matrices are further fused to generate one
fused affinity matrix, based on which an iterative scheme is
developed for automatic face naming.

To obtain the first affinity matrix, we propose a new
method called regularized low-rank representation (rLRR) by
incorporating weakly supervised information into the low-rank
representation (LRR) method, so that the affinity matrix can be
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Fig. 2. Coefficient matrix W∗ according to the groundtruth and the
ones obtained from LRR and rLRR. (a) W∗ according to the groundtruth.
(b) W∗ from LRR. (c) W∗ from our rLRR.

obtained from the resultant reconstruction coefficient matrix.
To effectively infer the correspondences between the faces
based on visual features and the names in the candidate
name sets, we exploit the subspace structures among faces
based on the following assumption: the faces from the same
subject/name lie in the same subspace and the subspaces
are linearly independent. Liu et al. [2] showed that such
subspace structures can be effectively recovered using LRR,
when the subspaces are independent and the data sampling
rate is sufficient. They also showed that the mined subspace
information is encoded in the reconstruction coefficient matrix
that is block-diagonal in the ideal case. As an intuitive
motivation, we implement LRR on a synthetic dataset and the
resultant reconstruction coefficient matrix is shown in Fig. 2(b)
(More details can be found in Sections V-A and V-C). This
near block-diagonal matrix validates our assumption on the
subspace structures among faces. Specifically, the reconstruc-
tion coefficients between one face and faces from the same
subject are generally larger than others, indicating that the
faces from the same subject tend to lie in the same sub-
space [2]. However, due to the significant variances of in-
the-wild faces in poses, illuminations, and expressions, the
appearances of faces from different subjects may be even more
similar when compared with those from the same subject.
Consequently, as shown in Fig. 2(b), the faces may also be
reconstructed using faces from other subjects. In this paper,
we show that the candidate names from the captions can
provide important supervision information to better discover
the subspace structures.

In Section III-C2, we first propose a method called rLRR by
introducing a new regularizer that incorporates caption-based
weak supervision into the objective of LRR, in which we
penalize the reconstruction coefficients when reconstructing
the faces using those from different subjects. Based on the
inferred reconstruction coefficient matrix, we can compute an
affinity matrix that measures the similarity values between
every pair of faces. Compared with the one in Fig. 2(b), the
reconstruction coefficient matrix from our rLRR exhibits more
obvious block-diagonal structure in Fig. 2(c), which indicates
that a better reconstruction matrix can be obtained using the
proposed regularizer.

Moreover, we use the similarity matrix (i.e., the kernel
matrix) based on the Mahalanobis distances between the
faces as another affinity matrix. Specifically, in Section III-D,
we develop a new distance metric learning method called
ambiguously supervised structural metric learning (ASML)
to learn a discriminative Mahalanobis distance metric based
on weak supervision information. In ASML, we consider the

constraints for the label matrix of the faces in each image by
using the feasible label set, and we further define the image
to assignment (I2A) distance that measures the incompatibility
between a label matrix and the faces from each image based
on the distance metric. Hence, ASML learns a Mahalanobis
distance metric that encourages the I2A distance based on a
selected feasible label matrix, which approximates the ground-
truth one, to be smaller than the I2A distances based on
infeasible label matrices to some extent.

Since rLRR and ASML explore the weak supervision in
different ways and they are both effective, as shown in our
experimental results in Section V, the two corresponding
affinity matrices are expected to contain complementary
and discriminative information for face naming. Therefore,
to further improve the performance, we combine the two
affinity matrices to obtain a fused affinity matrix that is
used for face naming. Accordingly, we refer to this method
as regularized low rank representation with metric learning
(rLRRml for short). Based on the fused affinity matrix, we
additionally propose a new iterative method by formulating
the face naming problem as an integer programming problem
with linear constraints, where the constraints are related to the
feasible label set of each image.

Our main contributions are summarized as follows.
1) Based on the caption-based weak supervision, we

propose a new method rLRR by introducing a new
regularizer into LRR and we can calculate the first
affinity matrix using the resultant reconstruction
coefficient matrix (Section III-C).

2) We also propose a new distance metric learning
approach ASML to learn a discriminative distance
metric by effectively coping with the ambiguous labels
of faces. The similarity matrix (i.e., the kernel matrix)
based on the Mahalanobis distances between all faces
is used as the second affinity matrix (Section III-D).

3) With the fused affinity matrix by combining the
two affinity matrices from rLRR and ASML, we
propose an efficient scheme to infer the names of faces
(Section IV).

4) Comprehensive experiments are conducted on one
synthetic dataset and two real-world datasets, and the
results demonstrate the effectiveness of our approaches
(Section V).

II. RELATED WORK

Recently, there is an increasing research interest in develop-
ing automatic techniques for face naming in images [3]–[9]
as well as in videos [10]–[13]. To tag faces in news photos,
Berg et al. [3] proposed to cluster the faces in the news
images. Ozkan and Duygulu [4] developed a graph-based
method by constructing the similarity graph of faces and
finding the densest component. Guillaumin et al. [6]
proposed the multiple-instance logistic discriminant metric
learning (MildML) method. Luo and Orabona [7] proposed
a structural support vector machine (SVM)-like algorithm
called maximum margin set (MMS) to solve the face
naming problem. Recently, Zeng et al. [9] proposed the
low-rank SVM (LR-SVM) approach to deal with this problem,
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based on the assumption that the feature matrix formed by
faces from the same subject is low rank. In the following, we
compare our proposed approaches with several related existing
methods.

Our rLRR method is related to LRR [2] and LR-SVM [9].
LRR is an unsupervised approach for exploring multiple
subspace structures of data. In contrast to LRR, our rLRR
utilizes the weak supervision from image captions and also
considers the image-level constraints when solving the weakly
supervised face naming problem. Moreover, our rLRR differs
from LR-SVM [9] in the following two aspects. 1) To utilize
the weak supervision, LR-SVM considers weak supervision
information in the partial permutation matrices, while rLRR
uses our proposed regularizer to penalize the corresponding
reconstruction coefficients. 2) LR-SVM is based on robust
principal component analysis (RPCA) [14]. Similarly to [15],
LR-SVM does not reconstruct the data by using itself as the
dictionary. In contrast, our rLRR is related to the reconstruc-
tion based approach LRR.

Moreover, our ASML is related to the traditional
metric learning works, such as large-margin nearest neigh-
bors (LMNN) [16], Frobmetric [17], and metric learning
to rank (MLR) [18]. LMNN and Frobmetric are based on
accurate supervision without ambiguity (i.e., the triplets of
training samples are explicitly given), and they both use the
hinge loss in their formulation. In contrast, our ASML is
based on the ambiguous supervision, and we use a max
margin loss to handle the ambiguity of the structural output,
by enforcing the distance based on the best label assignment
matrix in the feasible label set to be larger than the distance
based on the best label assignment matrix in the infeasible
label set by a margin. Although a similar loss that deals
with structural output is also used in MLR, it is used to
model the ranking orders of training samples, and there is
no uncertainty regarding supervision information in MLR
(i.e., the groundtruth ordering for each query is given).

Our ASML is also related to two recently proposed
approaches for the face naming problem using weak
supervision, MildML [6], and MMS [7]. MildML follows the
multi-instance learning (MIL) assumption, which assumes
that each image should contain a face corresponding to each
name in the caption. However, it may not hold for our face
naming problem as the captions are not accurate. In contrast,
our ASML employs a maximum margin loss to handle the
structural output without using such an assumption. While
MMS also uses a maximum margin loss to handle the
structural output, MMS aims to learn the classifiers and it was
designed for the classification problem. Our ASML learns a
distance metric that can be readily used to generate an affinity
matrix and can be combined with the affinity matrix from our
rLRR method to further improve the face naming performance.

Finally, we compare our face naming problem with
MIL [19], multi-instance multilabel learning (MIML) [20],
and the face naming problem in [21]. In the existing
MIL and MIML works, a few instances are grouped into
bags, in which the bag labels are assumed to be correct.
Moreover, the common assumption in MIL is that one positive
bag contains at least one positive instance. A straightforward

way to apply MIL and MIML methods for solving the face
naming problem is to treat each image as a bag, the faces in
the image as the instances, and the names in the caption as
the bag labels. However, the bag labels (based on candidate
name sets) may be even incorrect in our problem because the
faces corresponding to the mentioned names in the caption
may be absent in the image. Besides, one common assumption
in face naming is that any two faces in the same image
cannot be annotated using the same name, which indicates that
each positive bag contains no more than one positive instance
rather than at least one positive instance. Moreover, in [21],
each image only contains one face. In contrast, we may have
multiple faces in one image, which are related to a set of
candidate names in our problem.

III. LEARNING DISCRIMINATIVE AFFINITY MATRICES

FOR AUTOMATIC FACE NAMING

In this section, we propose a new approach for
automatic face naming with caption-based supervision.
In Sections III-A and III-B, we formally introduce the
problem and definitions, followed by the introduction of our
proposed approach. Specifically, we learn two discrimina-
tive affinity matrices by effectively utilizing the ambiguous
labels, and perform face naming based on the fused affinity
matrix. In Sections III-C and III-D, we introduce our proposed
approaches rLRR and ASML for obtaining the two affinity
matrices respectively.

In the remainder of this paper, we use lowercase/uppercase
letters in boldface to denote a vector/matrix (e.g., a denotes
a vector and A denotes a matrix). The corresponding nonbold
letter with a subscript denotes the entry in a vector/matrix
(e.g., ai denotes the i th entry of the vector a, and Ai, j denotes
an entry at the i th row and j th column of the matrix A). The
superscript ′ denotes the transpose of a vector or a matrix.
We define In as the n × n identity matrix, and 0n, 1n ∈ R

n as
the n×1 column vectors of all zeros and all ones, respectively.
For simplicity, we also use I, 0 and 1 instead of In , 0n , and 1n

when the dimensionality is obvious. Moreover, we use A ◦ B
(resp., a ◦ b) to denote the element-wise product between two
matrices A and B (resp., two vectors a and b). tr(A) denotes
the trace of A (i.e., tr(A) = ∑

i Ai,i ), and 〈A, B〉 denotes
the inner product of two matrices (i.e., 〈A, B〉 = tr(A′B)).
The inequality a ≤ b means that ai ≤ bi ∀i = 1, . . . , n
and A 
 0 means that A is a positive semidefinite (PSD)
matrix. ‖A‖F = (

∑
i, j A2

i, j )
1/2 denotes the Frobenious norm

of a matrix A. ‖A‖∞ denotes the largest absolute value of all
elements in A.

A. Problem Statement

Given a collection of images, each of which contains several
faces and is associated with multiple names, our goal is to
annotate each face in these images with these names.

Formally, let us assume we have m images, each of which
contains ni faces and ri names, i = 1, . . . , m. Let x ∈ R

d

denote a face, where d is the feature dimension. Moreover, let
q ∈ {1, . . . , p} denote a name, where p is the total number of
names in all the captions. Then, each image can be represented
as a pair (Xi ,N i ), where Xi = [xi

1, . . . , xi
ni

] ∈ R
d×ni



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

is the data matrix for faces in the i th image with each
xi

f being the f th face in this image ( f = 1, . . . , ni ), and
N i = {qi

1, . . . , qi
ri
} is the corresponding set of candidate

names with each qi
j ∈ {1, . . . , p} being the j th name

( j = 1, . . . , ri ). Moreover, let X = [X1, . . . , Xm ] ∈ R
d×n

denote the data matrix of the faces from all m images,
where n = ∑m

i=1 ni .
By defining a binary label matrix Y = [Y1, . . . , Ym] ∈

{0, 1}(p+1)×n with each Yi ∈ {0, 1}(p+1)×ni being the label
matrix for each image Xi , then the task is to infer the
label matrix Y based on the candidate name sets {N i |mi=1}.
Considering the situation where the ground-truth name of a
face does not appear in the associated candidate name set N i,
we use the (p +1)th name to denote the null class, so that the
face should be assigned to the (p+1)th name in this situation.
Moreover, the label matrix Yi for each image should satisfy
the following three image-level constraints [9].

1) Feasibility: the faces in the i th image should be anno-
tated using the names from the set Ñ i = N i ∪{(p+1)},
i.e., Y i

j, f = 0, ∀ f = 1, . . . , ni and j �∈ Ñ i .

2) Nonredundancy: each face in the i th image should
be annotated using exactly one name from Ñ i ,
i.e.,

∑
j Y i

j, f = 1, ∀ f = 1, . . . , ni .
3) Uniqueness: two faces in the same image cannot be

annotated with the same name except the (p+1)th name
(i.e., the null class), i.e.,

∑ni
f =1 Y i

j, f ≤ 1,∀ j = 1, . . . , p.

B. Face Naming Using a Discriminative Affinity Matrix

First, based on the image-level constraints, we define the
feasible set of Yi for the i th image as follows:

Y i =

⎧
⎪⎨

⎪⎩
Yi ∈ {0, 1}(p+1)×ni

1′
(p+1)(Y

i ◦ Ti )1ni = 0,

1′
(p+1)Y

i = 1′
ni

,

Yi 1ni ≤ [1′
p, ni ]′

⎫
⎪⎬

⎪⎭
(1)

where Ti ∈ {0, 1}(p+1)×ni is a matrix in which the rows related
to the indices of the names in Ñ i are all zeros and the other
rows are all ones.

Accordingly, the feasible set for the label matrix on all
images can be represented as

Y = {Y = [Y1, . . . , Ym ] | Yi ∈ Y i ∀i = 1, . . . , m}.
Let A ∈ R

n×n be an affinity matrix, which satisfies that
A = A′ and Ai, j ≥ 0,∀i, j . Each Ai, j describes the pairwise
affinity/similarity between the i th face and the j th face [2].
We aim to learn a proper A such that Ai, j is large if and only
if the i th face and the j th face share the same groundtruth
name. Then, one can solve the face naming problem based on
the obtained affinity matrix A. To infer the names of faces,
we aim to solve the following:

max
Y∈Y

p∑

c=1

y′
cAyc

1′yc
s.t. Y = [y1, y2, . . . , y(p+1)]′ (2)

where yc ∈ {0, 1}n corresponds to the cth row in Y. The
intuitive idea is that we cluster the faces with the same inferred
label as one group, and we maximize the sum of the average

affinities for each group. The solution of this problem will
be introduced in Section IV. According to (2), a good affinity
matrix is crucial in our proposed face naming scheme, because
it directly determines the face naming performance.

In this paper, we consider two methods to obtain two affinity
matrices, respectively. Specifically, to obtain the first affinity
matrix, we propose the rLRR method to learn the low-rank
reconstruction coefficient matrix while considering the weak
supervision. To obtain the second affinity matrix, we propose
the ambiguously supervised structural metric learning (ASML)
method to learn the discriminative distance metric by effec-
tively using weakly supervised information.

C. Learning Discriminative Affinity Matrix With
Regularized Low-Rank Representation (rLRR)

We first give a brief review of LRR, and then present the
proposed method that introduces a discriminative regularizer
into the objective of LRR.

1) Brief Review of LRR: LRR [2] was originally proposed
to solve the subspace clustering problem, which aims
to explore the subspace structure in the given data
X = [x1, . . . , xn] ∈ R

d×n . Based on the assumption that
the subspaces are linearly independent, LRR [2] seeks a
reconstruction matrix W = [w1, . . . , wn] ∈ R

n×n , where
each wi denotes the representation of xi using X (i.e., the
data matrix itself) as the dictionary. Since X is used as the
dictionary to reconstruct itself, the optimal solution W∗ of
LRR encodes the pairwise affinities between the data samples.
As discussed in [2, Th. 3.1], in the noise-free case, W∗ should
be ideally block diagonal, where W∗

i, j �= 0 if the i th sample
and the j th sample are in the same subspace.

Specifically, the optimization problem of LRR is as follows:

min
W,E

‖W‖∗ + λ‖E‖2,1 s.t. X = XW + E (3)

where λ > 0 is a tradeoff parameter, E ∈ R
d×n is the

reconstruction error, the nuclear norm ‖W‖∗ (i.e., the sum
of all singular values of W) is adopted to replace rank(W)
as commonly used in the rank minimization problems, and
‖E‖2,1 = ∑n

j=1 (
∑d

i=1 (Ei, j )
2)1/2 is a regularizer to

encourage the reconstruction error E to be column-wise sparse.
As mentioned in [2], compared with the sparse represen-
tation (SR) method that encourages the sparsity using the
�1 norm, LRR is better at handling the global structures
and correcting the corruptions in data automatically. Math-
ematically, the nuclear norm is nonseparable with respect
to the columns, which is different from the �1 norm. This
good property of the nulcear norm is helpful for grasping the
global structure and making the model more robust. The toy
experiments in [2, Sec. 4. 1] also clearly demonstrate that
LRR outperforms SR (which adopts the �1 norm). Similarly
in many real-world applications such as face clustering, LRR
usually achieves better results than the sparse subspace clus-
tering [22] method (see [2], [23], and [24] for more details).

2) LRR With a Discriminative Regularization: In (3), LRR
learns the coefficient matrix W in an unsupervised way. In our
face naming problem, although the names from captions are
ambiguous and noisy, they still provide us with the weak
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supervision information that is useful for improving the
performance of face naming. For example, if two faces do
not share any common name in their related candidate name
sets, it is unlikely that they are from the same subject, so we
should enforce the corresponding entries in W to be zeros or
close to zeros.

Based on this motivation, we introduce a new regularization
term ‖W ◦ H‖2

F by incorporating the weak supervised
information, where H ∈ {0, 1}n×n is defined based on
the candidate name sets {N i |mi=1}. Specifically, the entry
Hi, j = 0 if the following two conditions are both satisfied:
1) the i th face and the j th face share at least one com-
mon name in the corresponding candidate name sets and
2) i �= j . Otherwise, Hi, j = 1. In this way, we penalize the
nonzero entries in W, where the corresponding pair of faces
do not share any common names in their candidate name sets,
and meanwhile, we penalize the entries corresponding to the
situations where a face is reconstructed by itself.

As a result, with weak supervision information encoded
in H, the resultant coefficient matrix W is expected to be more
discriminative. By introducing the new regularizer ‖W ◦ H‖2

F
into LRR, we arrive at a new optimization problem as follows:

min
W,E

‖W‖∗ + λ‖E‖2,1 + γ

2
‖W ◦ H‖2

F

s.t. X = XW + E (4)

where γ ≥ 0 is a parameter to balance the new regularizer
with the other terms. We refer to the above problem as rLRR.
The rLRR problem in (4) can reduce to the LRR problem
in (3) by setting the parameter γ to zero. The visual results
for the resultant W from rLRR and the one from LRR can be
found in Fig. 2 (Section V-A).

Once we obtain the optimum solution W∗ after solving (5),
the affinity matrix AW can be computed as
AW = 1

2 (W∗ + W∗′), similarly as in [2], and AW is
further normalized to be within the range of [0, 1].

3) Optimization: The optimization problem in (4) can be
solved similarly as in LRR [2]. Specifically, we introduce an
intermediate variable J to convert the problem in (4) into the
following equivalent problem:

min
W,E,J

‖J‖∗ + λ‖E‖2,1 + γ

2
‖W ◦ H‖2

F

s.t. X = XW + E, W = J. (5)

Using the augmented Lagrange multiplier (ALM) method,
we consider the following augmented Lagrangian function:
L = ‖J‖∗ + λ‖E‖2,1 + γ

2
‖W ◦ H‖2

F + 〈U, X − XW − E〉
+〈V, W − J〉 + ρ

2

(‖X − XW − E‖2
F + ‖W − J‖2

F

)
(6)

where U ∈ R
d×n and V ∈ R

n×n are the Lagrange multipliers,
and ρ is a positive penalty parameter. Following [2], we solve
this problem using inexact ALM [25], which iteratively
update the variables, the Lagrange multipliers, and the penalty
parameter until convergence is achieved. Specifically, we set
W0 = (1/n)(1n1′

n − H), E0 = X − XW0, and J0 = W0,
and we set U0, V0 as zero matrices. Then at the tth iteration,

the following steps are performed until convergence is
achieved.

1) Fix the others and update Jt+1 by

min
Jt+1

‖Jt+1‖∗ + ρt

2

∥
∥
∥
∥Jt+1 −

(

Wt + Vt

ρt

)∥
∥
∥
∥

2

F

which can be solved in closed form using the singular
value thresholding method in [26].

2) Fix the others and update Wt+1 by

min
Wt+1

γ

2
‖Wt+1 ◦ H‖2

F + 〈Ut , X − XWt+1 − Et 〉

+ 〈Vt , Wt+1 − Jt+1〉 + ρt

2
‖X − XWt+1 − Et‖2

F

+ ρt

2
‖Wt+1 − Jt+1‖2

F . (7)

Due to the new regularizer ‖W ◦ H‖2
F , this problem

cannot be solved as in [2] by using precomputed SVD.
We use the gradient descent method to efficiently
solve (7), where the gradient with respect to Wt+1 is

γ (H ◦ H) ◦ Wt+1 + ρt (X′X + I)Wt+1

+Vt − ρt Jt+1 − X′(ρt (X − Et ) + Ut ).

3) Fix the others and update Et+1 by

min
Et+1

λ

ρt
‖Et+1‖2,1 + 1

2

∥
∥
∥
∥Et+1 −

(

X − XWt+1 + Ut

ρt

)∥
∥
∥
∥

2

F

which can be solved in closed form based
on [27. Lemma 4.1].

4) Update Ut+1 and Vt+1 by respectively using

Ut+1 = Ut + ρt (X −XWt+1 −Et+1)

Vt+1 = Vt + ρt (Wt+1 − Jt+1).

5) Update ρt+1 using

ρt+1 = min(ρt (1 + �ρ), ρmax)

where �ρ and ρmax are the constant parameters.
6) The iterative algorithm stops if the two convergence

conditions are both satisfied

‖X − XWt+1 − Et+1‖∞ ≤ ε

‖Wt+1 − Jt+1‖∞ ≤ ε

where ε is a small constant parameter.

D. Learning Discriminative Affinity Matrix by Ambiguously
Supervised Structural Metric Learning (ASML)

Besides obtaining the affinity matrix from the coefficient
matrix W∗ from rLRR (or LRR), we believe the similarity
matrix (i.e., the kernel matrix) among the faces is also an
appropriate choice for the affinity matrix. Instead of straight-
forwardly using the Euclidean distances, we seek a discrim-
inative Mahalanobis distance metric M so that Mahalanobis
distances can be calculated based on the learnt metric, and the
similarity matrix can be obtained based on the Mahalanobis
distances. In the following, we first briefly review the LMNN
method, which deals with fully-supervised problems with the
groung-truth labels of samples provided, and then introduce
our proposed ASML method that extends LMNN for face
naming from weakly labeled images.
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1) Brief Review of LMNN: Most existing metric learning
methods deal with the supervised learning problems [16], [28]
where the ground-truth labels of the training samples are
given. Weinberger and Saul [16] proposed the LMNN method
to learn a distance metric M that encourages the squared
Mahalanobis distances between each training sample and its
target neighbors (e.g., the k nearest neighbors) to be smaller
than those between this training sample and training samples
from other classes. Let {(xi , yi )|ni=1} be the n labeled samples,
where xi ∈ R

d denotes the i th sample, with d being the
feature dimension, and yi ∈ {1, . . . , z} denotes the label of
this sample, with z being the total number of classes. ηi, j ∈
{0, 1} indicates whether x j is a target neighbor of xi , namely,
ηi, j = 1 if x j is a target neighbor of xi , and ηi, j = 0 otherwise,
∀i, j ∈ {1, . . . , n}. νi,l ∈ {0, 1} indicates whether xl and xi are
from different classes, namely, νi,l = 1 if yl �= yi , and νi,l =
0 otherwise, ∀i, l ∈ {1, . . . , n}. The squared Mahalanobis
distance between two samples xi and x j is defined as

d2
M(xi , x j ) = (xi − x j )

′M(xi − x j ).

LMNN minimizes the following optimization problem:
min
M
0

∑

(i, j ):ηi, j =1

d2
M(xi , x j ) + μ

∑

(i, j,l)∈S
ξi, j,l

s.t. d2
M(xi , xl) − d2

M(xi , x j ) ≥ 1 − ξi, j,l ∀(i, j, l) ∈ S
ξi, j,l ≥ 0 ∀(i, j, l) ∈ S (8)

where μ is a tradeoff parameter, ξi, j,l is a slack variable,
and S = {(i, j, l)|ηi, j = 1, νi,l = 1,∀i, j, l ∈ {1, . . . , n}}.
Therefore, d2

M(xi , x j ) is the squared Mahalanobis distance
between xi and its target neighbor x j , and d2

M(xi , xl) is the
squared Mahalanobis distance between xi and x j that belong
to different classes. The difference between d2

M(xi , xl) and
d2

M(xi , x j ) is expected to be no less than one in the ideal case.
The introduction of the slack variable ξi, j,l can also tolerate
the cases when d2

M(xi , xl)−d2
M(xi , x j ) is slightly smaller than

one, which is similar to the one in soft margin SVM for toler-
ating the classification error. The LMNN problem in (8) can be
equivalently rewritten as the following optimization problem:
min
M
0

∑

(i, j ):ηi, j =1

d2
M(xi , x j )

+ μ
∑

(i, j,l)∈S
|1 − d2

M(xi , xl) + d2
M(xi , x j )|+

with |·|+ being the truncation function, i.e., |x |+ = max(0, x).
2) Ambiguously Supervised Structural Metric Learning:

In the face naming problem, the ground-truth names of the
faces are not available, so LMNN cannot be applied to
solve the problem. Fortunately, weak supervision information
is available in the captions along with each image; hence,
we propose a new distance metric learning method called
ASML to utilize such weakly supervised information.

Recall that we should consider the image-level constraints
when inferring the names of faces in the same image.
Therefore, we design the losses with respect to each image,
by considering the image-level constraints in the feasible label
sets {Y i |mi=1} defined in (1).

Let us take the i th image for example. The faces in the
i th image are {xi

f |ni
f =1}. Let Yi∗ be the ground-truth label

matrix for the faces in the i th image, which is in the feasible
label sets Y i . Let Ȳi be an infeasible label matrix for the
faces in the i th image, which is contained in the infeasible
label set Ȳ i . Note the infeasible label set Ȳ i is the set of label
matrices that is excluded in Y i and, meanwhile, satisfies the
nonredundancy constraint

Ȳ i =
{

Ȳi ∈ {0, 1}(p+1)×ni
Ȳi /∈ Y i ,

1′
(p+1)Ȳ

i = 1′
ni

}

.

Assume that the face xi
f is labeled as the name q according

to a label matrix, we define face to name (F2N) distance
DF2N (xi

f , q, M) to measure the disagreement between the
face xi

f and the name q . Specifically, DF2N (xi
f , q, M) is

defined as follows:

DF2N
(
xi

f , q, M
) = 1

|Xq |
∑

x̃∈Xq

d2
M(xi

f , x̃)

where d2
M(xi

f , x̃) is the squared Mahalanobis distance between
xi

f and x̃, Xq is the set of all the faces from the images
with each image associated with the name q , and |Xq | is the
cardinality of Xq . Intuitively, DF2N (x, q, M) should be small
if q is the ground-truth name of the face x, and DF2N (x, q, M)
should be large otherwise. Recall that in LMNN, we expect
d2

M(xi , x j ) (i.e., the squared Mahalanobis distance between
xi and its target neighbor x j ) to be somehow smaller than
d2

M(xi , xl) (i.e., the squared Mahalanobis distance between
xi and xl that belong to different classes). Similarly, we expect
that DF2N (xi

f , q, M) should be smaller than DF2N (xi
f , q̄, M)

to some extent, where q is the assigned name of xi
f according

to the ground-truth label matrix Yi∗, and q̄ is the assigned
name of xi

f according to an infeasible label matrix Ȳi . For all
the faces in the i th image and a label matrix Yi , we define
the I2A distance D(Xi , Yi , M) to be the sum of F2N distances
between every face and its assigned names. Mathematically,
D(Xi , Yi , M) is defined as

D(Xi , Yi , M) =
ni∑

f =1

∑

q:Y i
q, f =1

DF2N (xi
f , q, M).

In the ideal case, we expect that D(Xi , Yi∗, M) should be
smaller than D(Xi , Ȳi , M) by at least h(Ȳi , Yi∗), where
h(Ȳi , Yi∗) is the number of faces that are assigned with
different names based on two label matrices Ȳi and Yi∗.
To tolerate the cases where D(Xi , Ȳi , M) − D(Xi , Yi∗, M) is
slightly smaller than h(Ȳi , Yi∗), we introduce a nonnegative
slack variable ξi for the i th image and have the following
constraint for any Ȳi ∈ Ȳ i:

D(Xi , Ȳi , M) − D(Xi , Yi∗, M) ≥ h(Ȳi , Yi∗) − ξi . (9)

However, the groundtruth label matrix Yi∗ is unknown, so
h(Ȳi , Yi∗) and D(Xi , Yi∗, M) in (9) are not available. Although
Yi∗ is unknown, it should be a label matrix in the feasible
label set Y i . In this paper, we use �(Ȳi ,Y i ) to approximate
h(Ȳi , Yi∗), where �(Ȳi ,Y i ) measures the difference between
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an infeasible label matrix Ȳi and the most similar label matrix
in Yi . Similarly as in [7], we define �(Ȳi ,Y i ) as follows:

�(Ȳi ,Y i ) = minYi∈Y i h(Ȳi , Yi ).

On the other hand, since Yi∗ is in the feasible label set Y i and
we expect the corresponding I2A distance should be small,
we use minYi ∈Y i D(Xi , Yi , M) to replace D(Xi , Yi∗, M),
where minYi ∈Y i D(Xi , Yi , M) is the smallest I2A distance
based on the feasible label matrix inside Yi . In summary,
by replacing h(Ȳi , Yi∗) and D(Xi , Yi∗, M) with �(Ȳi ,Y i )
and minYi∈Y i D(Xi , Yi , M), respectively, the constraint in (9)
becomes the following one for any Ȳi ∈ Ȳ i :
ξi ≥�(Ȳi ,Y i ) − D(Xi , Ȳi , M) + min

Yi∈Y i
D(Xi , Yi , M). (10)

Instead of enforcing ξi to be no less than every �(Ȳi ,Y i ) −
D(Xi , Ȳi , M) + minYi ∈Y i D(Xi , Yi , M) (each based on an

infeasible label matrix Ȳi in Ȳ i ) as in (10), we can equiva-
lently enforce ξi to be no less than the largest one of them.
Note that the term minYi∈Y i D(Xi , Yi , M) is irrelevant to Ȳi .
Accordingly, we rewrite (10) with respect to the nonnegative
slack variable ξi in the following equivalent form:
ξi ≥ max

Ȳi∈Ȳ i
[�(Ȳi ,Y i )−D(Xi , Ȳi , M)] + min

Yi ∈Y i
D(Xi , Yi , M).

Hence, we propose a new method called ASML to learn a
discriminative Mahalanobis distance metric M by solving the
following problem:

min
M
0

σ

2
‖M − I‖2

F + 1

m

m∑

i=1

|maxȲi∈Ȳ i [�(Ȳi ,Y i )

−D(Xi , Ȳi , M)] + minYi ∈Y i D(Xi , Yi , M)|+. (11)

where σ > 0 is a tradeoff parameter and the regularizer
‖M − I‖2

F is used to enforce M to be not too far
away from the identity matrix I, and we also rewrite
ξi as |maxȲi ∈Ȳ i [�(Ȳi ,Y i ) − D(Xi , Ȳi , M)] + minYi∈Y i

D(Xi , Yi , M)|+, similarly to that in LMNN. Note that we
have incorporated weak supervision information in the max
margin loss in (11). A nice property of such max margin loss
is the robustness to label noise.

Optimization: Since minYi∈Y i D(Xi , Yi , M) in (11) is
concave, the objective function in (11) is nonconvex with
respect to M. For convenience, we define two convex functions
fi (M) = maxȲi ∈Ȳ i [�(Ȳi ,Y i ) − D(Xi , Ȳi , M)] and
gi (M) = −minYi ∈Y i D(Xi , Yi , M), ∀i = 1, . . . , m. Inspired
by the concave–convex procedure (CCCP) method [29], we
equivalently rewrite (11) as follows:

min
M
0

σ

2
‖M − I‖2

F + 1

m

m∑

i=1

| fi (M) − gi(M)|+. (12)

We solve the problem in (12) in an iterative fashion.
Let us denote M at the sth iteration as M(s). Similarly
as in CCCP, at the (s + 1)th iteration, we replace the
nonconvex term | fi (M) − gi(M)|+ with a convex term
| fi (M) − 〈M, g̃i (M(s))〉|+, where g̃i(·) is the subgradient [7]
of gi (·). Hence, at the (s+1)th iteration, we solve the following
relaxed version of the problem in (12):

min
M
0

σ

2
‖M−I‖2

F + 1

m

m∑

i=1

| fi (M)−〈M, g̃i(M(s))〉|+ (13)

Algorithm 1 ASML Algorithm

Input: The training images {Xi |mi=1}, the feasible label sets
{Y i |mi=1}, the parameters σ , Niter and ε.

1: Initialize1 M(0) = I.
2: for s = 1 : Niter do
3: Calcuate Q(s) as Q(s) = M(s) − I.
4: Obtain Q(s+1) by solving the convex problem in (14) via

the stochastic subgradient descent method.
5: Calcuate M(s+1) as M(s+1) = Q(s+1) + I.
6: break if ‖M(s+1) − M(s)‖F ≤ ε.
7: end for

Output: the Mahalanobis distance metric M(s+1).

which is now convex with respect to M. To solve (13),
we define Q = M − I and Q(s) = M(s) − I, and equivalently
rewrite (13) as the following convex optimization problem:

min
Q,ξ̃i

σ

2
‖Q‖2

F + 1

m

m∑

i=1

ξ̃i

s.t. fi (Q + I) − 〈
Q + I, g̃i (Q(s) + I)

〉 ≤ ξ̃i , ξ̃i ≥ 0 ∀i

Q + I 
 0. (14)

Although the optimization problem in (14) is convex, it may
contain many constraints. To efficiently solve it, we adopt
the stochastic subgradient descent method similarly as in
Pegasos [30]. Moreover, to handle the PSD constraint on Q+I
in (14), at each iteration when using the stochastic subgradient
descent method, we additionally project the solution onto the
PSD cone by thresholding the negative eigenvalues to be zeros,
similarly as in [31]. The ASML algorithm is summarized
in Algorithm 1.

IV. INFERRING NAMES OF FACES

With the coefficient matrix W∗ learned from rLRR, we can
calculate the first affinity matrix as AW = 1

2 (W∗ + W∗′)
and normalize AW to the range [0, 1]. Furthermore, with the
learnt distance metric M from ASML, we can calculate the
second affinity matrix as AK = K, where K is a kernel
matrix based on the Mahalanobis distances between the faces.
Since the two affinity matrices explore weak supervision
information in different ways, they contain complementary
information and both of them are beneficial for face naming.
For better face naming performance, we combine these two
affinity matrices and perform face naming based on the fused
affinity matrix. Specifically, we obtain a fused affinity matrix
A as the linear combination of the two affinity matrices, i.e.,
A = (1 − α)AW + αAK , where α is a parameter in the range
[0, 1]. Finally, we perform face naming based on A. Since the
fused affinity matrix is obtained based on rLRR and ASML,
we name our proposed method as rLRRml. As mentioned
in Section III-B, given this affinity matrix A, we perform face
naming by solving the following optimization problem:

max
Y∈Y

p∑

c=1

y′
cAyc

1′yc
, s.t. Y = [y1, . . . , y(p+1)]′. (15)

1Our experiments show that the results using this initialization are compa-
rable with those using random initialization.
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However, the above problem is an integer programming
problem, which is computationally expensive to solve. In this
paper, we propose an iterative approach to solve a relaxed
version of (15). Specifically, at each iteration, we approxi-
mate the objective function by using ỹ′

cAyc/1′ỹc to replace
y′

cAyc/1′yc, where ỹc is the solution of yc obtained from the
previous iteration. Hence, at each iteration, we only need to
solve a linear programming problem as follows:

max
Y∈Y

p∑

c=1

b′
cyc, s.t. Y = [y1, . . . , y(p+1)]′ (16)

where bc = Aỹc/1′ỹc, ∀c = 1, . . . , p. Moreover, the candidate
name set N i may be incomplete, so some faces in the
image Xi may not have the corresponding ground-truth names
in the candidate name set N i . Therefore, similarly as in [32],
we additionally define a vector bp+1 = θ1 to allow some
faces to be assigned to the null class, where θ is a predefined
parameter. Intuitively, the number of faces assigned to
null changes when we set θ with different values. In the
experiments, to fairly compare the proposed methods and other
methods, we report the performances of all methods when
each algorithm annotates the same number of faces using real
names rather than null, which can be achieved by tuning the
parameter θ (see Section V-C for more details).

By defining B ∈ R
(p+1)×n as B = [b1, . . . , bp+1]′, we can

reformulate the problem in (16) as follows:

max
Y∈Y

〈B, Y〉. (17)

Recall that the feasible set for Y is defined as Y = {Y =
[Y1, . . . , Ym]|Yi ∈ Y i ,∀i = 1, . . . , m}, which means the con-
straints on Yis are separable. Let us decompose the matrix B as
B = [B1, . . . , Bm ] with each Bi ∈ R

(p+1)×ni corresponding
to Yi , then the objective function in (17) can be expressed
as 〈B, Y〉 = ∑m

i=1〈Bi , Yi 〉, which is also separable
with respect to Yis. Hence, we optimize (17) by solving
m subproblems, with each subproblem related to one image
in the following form:

max
Yi ∈Y i

〈Bi , Yi 〉 (18)

∀i = 1, . . . , m. In particular, the i th problem in (18) can
equivalently rewritten as a minimization problem with detailed
constraints as follows:

min
Y i

q, f ∈{0,1}

∑

q∈Ñ i

ni∑

f =1

−Bi
q, f Y i

q, f

s.t.
∑

q∈Ñ i

Y i
q, f = 1 ∀ f = 1, . . . , ni

ni∑

f =1

Y i
q, f ≤ 1 ∀q ∈ N i

ni∑

f =1

Y i
(p+1), f ≤ ni (19)

in which we have dropped the elements {Y i
q, f |q /∈Ñ i },

because these elements are zeros according to the feasibility

Algorithm 2 Face Naming Algorithm

Input: The feasible label sets {Y i |mi=1}, the affinity matrix A,
the initial label matrix Y(1) and the parameters Ñiter , θ .

1: for t = 1 : Ñiter do
2: Update B by using B = [b1, . . . , bp+1]′, where bc =

Aỹc
1′ỹc

, ∀c = 1, . . . , p with ỹc being the c-th column of
Y(t)′, and bp+1 = θ1.

3: Update Y(t + 1) by solving m subproblems in (19).
4: break if Y(t + 1) = Y(t).
5: end for

Output: the label matrix Y(t + 1).

constraint in (1). Similarly as in [32], we solve the problem
in (19) by converting it to a minimum cost bipartite graph
matching problem, for which the objective is the sum of the
costs for assigning faces to names. In this paper, we adopt
the Hungarian algorithm to efficiently solve it. Specifically,
for the i th image, the cost c( f, q) for assigning a face xi

f
to a real name q is set to −Bi

q, f , and the cost c( f, p + 1)

for assigning a face xi
f to the corresponding null name is set

to − Bi
(p+1), f .

In summary, to infer the label matrix Y for all faces,
we iteratively solve the linear programming problem in (17),
which can be efficiently addressed by solving m subproblems
as in (19) with the Hungarian algorithm. Let Y(t) be the label
matrix at the t th iteration. The initial label matrix Y(1) is set
to the label matrix that assigns each face to all names in the
caption associated with the corresponding image that contains
this face. The iterative process continues until the convergence
condition is satisfied. In practice, this iterative process always
converges in about 10–15 iterations, so we empirically set Ñiter
as 15. The iterative algorithm for face naming is summarized
in Algorithm 2.

V. EXPERIMENTS

In this section, we compare our proposed methods
rLRR, ASML, and rLRRml with four state-of-the-art
algorithms for face naming, as well as two special cases of our
proposed methods using a synthetic dataset and two real-world
datasets.

A. Introduction of the Datasets

One synthetic dataset and two real-world benchmark
datasets are used in the experiments. The synthetic dataset
is collected from the Faces and Poses dataset in [33]. We first
find out the top 10 popular names and then for each name,
we randomly sample 50 images where this name appears
in the image tags. In total, the synthetic dataset contains
602 faces in 500 images, with a total number of 20 names
appearing in the corresponding tags, which include these
top 10 popular names and other names associated with
these 500 images.

Other than the synthetic dataset, the experiments are also
conducted on the following two real-world datasets.
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TABLE I

DETAILS OF THE DATASETS. THE COLUMNS IN TURN ARE THE TOTAL NUMBER OF IMAGES, FACES AND NAMES, THE AVERAGE

NUMBER OF DETECTED FACES PER IMAGE, AND THE AVERAGE NUMBER OF DETECTED NAMES PER

CAPTION AND THE GROUNDTRUTH RATIO, RESPECTIVELY

1) Soccer Player Dataset: This dataset was used in [9],
with the images of soccer players from famous European clubs
and names mentioned in the captions. The detected faces are
manually annotated using names from the captions or as null.
Following [9], we retain 170 names that occur at least 20 times
in the captions and treat others as the null class. The images
without containing any of these 170 names are discarded.

2) Labeled Yahoo! News Dataset: This dataset was
collected in [34] and further processed in [6]. It contains
news images as well as the names in the captions. Follow-
ing [7] and [9], we retain the 214 names occurred at least
20 times in the captions and treat others as the null class. The
images that do not contain any of the 214 names are removed.

The detailed information about the synthetic and real-world
datasets is shown in Table I, where the ground-truth real name
ratio (or ground-truth ratio in short) is the percentage of faces
whose groundtruth names are real names (rather than null)
among all the faces in the dataset. In the Soccer player dataset,
there are more images with multiple faces and multiple names
in the captions when compared with the Labeled Yahoo! News
dataset, which indicates that the Soccer player dataset is more
challenging. For the synthetic dataset and the two real-world
datasets, we extract the feature vectors to represent the faces
in the same way as in [10]. For each face, 13 interest points
(facial landmarks) are located. For each interest point, a simple
pixel-wised descriptor is formed using the gray-level intensity
values of pixels in the elliptical region based on each interest
point, which is further normalized to achieve local photometric
invariance [10]. Finally, a 1937-D descriptor for each face is
obtained by concatenating the descriptors from the 13 interest
points.

B. Baseline Methods and Two Special Cases

The following four state-of-the-art methods are used as
baselines.

1) MMS learning algorithm [7] that solves the face naming
problem by learning SVM classifiers for each name.

2) MildML [6] that learns a Mahalanobis distance metric
such that the bags (images) with common labels (names
in captions) are pulled closer, while the bags that do not
share any common label are pushed apart.

3) Constrained Gaussian mixture model (cGMM)
[32], [35]. For this Gaussian mixture model based
approach, each name is associated with a Gaussian
density function in the feature space with the parameters
estimated from the data, and each face is assumed
to be independently generated from the associated

Gaussian function. The overall assignments are chosen
to achieve the maximum log likelihood.

4) LR-SVM [9] that simultaneously learns the partial
permutation matrices for grouping the faces and
minimize the rank of the data matrices from each group.
SVM classifiers are also trained for each name to deal
with the out-of-sample cases.

More details of these methods can be found in Section II. For
detailed analysis of the proposed rLRRml, we also report the
results of the following two special cases.

1) Low Rank Representation With Metric Learning (LRRml
for Short): rLRRml reduces to LRRml if we do not
introduce the proposed regularizer on W. In other words,
we set the parameter γ in rLRR to 0 when learning W.

2) LRR: rLRRml reduces to LRR if we neither consider
the affinity matrix AK nor pose the proposed regularizer
on W. In other words, we set the parameter γ in rLRR
to 0 when learning the coefficient matrix W, and we use
AW as the input affinity matrix A in Algorithm 2.

On the synthetic dataset, we empirically set γ to 100 for
our rLRR, and we empirically set λ to 0.01 for both LRR and
rLRR.2 On the real-world datasets, for MMS, we tune the para-
meter C in the range of {1, 10, . . . , 104} and report the best
results from the optimal C . For MildML, we tune the parame-
ter about the metric rank in the range of {22, 23, . . . , 27} and
report the best results. For cGMM, there are no parameters to
be set. For the parameters λ and C in LR-SVM, instead of
fixing λ = 0.3 and choosing C in the range of {0.1, 1, 10}, as
in [9], we tune these parameters in larger ranges. Specifically,
we tune λ in the range of {1, 0.3, 0.1, 0.01} and C in the
range of {10−2, 10−1, . . . , 102}, and report the best results
from the optimal λ and C . The parameter α for fusing the two
affinity matrices in rLRRml and LRRml is empirically fixed
as 0.1 on both real-world datasets, namely, we calculate A as
A = 0.9AW + 0.1AK . On the two real-world datasets, after
tuning λ in LRR in the range of {1, 0.1, 0.01, 0.001}, we
observe that LRR achieves the best results when setting λ
to 0.01 on both datasets, so we fix the parameter λ for
LRR, rLRR, LRRml, and rLRRml to 0.01 on both datasets.
The parameter γ for rLRR and rLRRml is empirically
set to 100, and the tradeoff parameter σ for ASML,
LRRml, and rLRRml is empirically fixed to one. For
the kernel matrix K in ASML, LRRml, and rLRRml,
we use the kernel matrix based on the Mahalanobis dis-

2We set the parameters ρmax , �ρ, and ε to the default values in the code
from http://www.columbia.edu/~js4038/software.html. We set the number of
iterations to 20 since the result becomes stable after about 20 iterations.
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tances, namely we have Ki, j = exp(−√
νDM(xi , x j )),

where DM(xi , x j ) = ((xi − x j )
′M(xi − x j ))

1/2 is the
Mahalanobis distance between xi and x j , and ν is the
bandwidth parameter set as the default value 1/β, with β being
the mean of squared Mahalanobis distances between all
samples [36].

C. Experimental Results

1) Results on the Synthetic Dataset: First, to validate the
effectiveness of our proposed method rLRR for recovering
subspace information, we compare the coefficient matrices
obtained from LRR and rLRR with the ideal coefficient
matrix W∗ according to the groundtruth, as shown in Fig. 2.

Fig. 2(a) shows the ideal coefficient matrix W∗ according to
the groundtruth. For better viewing, the faces are reordered by
grouping the faces belonging to the same name at contiguous
positions. Note the white points indicate that the corresponding
faces belong to the same subject (i.e., with the same name),
and the bottom-right part corresponds to the faces from the
null class. The diagonal entries are set to be zeros since we
expect self-reconstruction can be avoided.

Fig. 2(b) shows the coefficient matrix W∗ obtained from
LRR. While there exists block-wise diagonal structure to some
extent, we also observe the following.

1) The diagonal elements are large, meaning that a face is
reconstructed mainly by itself. It should be avoided.

2) In general, the coefficients between faces from the same
subject are not significantly larger than the ones between
faces from different subjects.

Fig. 2(c) shows the coefficient matrix W∗ obtained from
our rLRR. It has smaller values for the diagonal elements.
In general, the coefficients between faces from the same
subject become larger, while the ones between faces from
different subjects become smaller. Compared with Fig. 2(b),
Fig. 2(c) is more similar to the ideal coefficient matrix in
Fig. 2(a), because the reconstruction coefficients exhibit more
obvious block-wise diagonal structure.

2) Results on the Real-World Datasets: For performance
evaluation, we follow [37] to take the accuracy and precision
as two criteria. The accuracy is the percentage of correctly
annotated faces (also including the correctly annotated faces
whose ground-truth name is the null name) over all faces,
while the precision is the percentage of correctly annotated
faces over the faces that are annotated as real names (i.e., we
do not consider the faces annotated as the null class by a face
naming method). Since all methods aim at inferring names
based on the faces in the images with ambiguous captions,
we use all the images in each dataset for both learning and
testing. To fairly compare all methods, we define the real name
ratio as the percentage of faces that are annotated as real
names using each method over all the faces in the dataset,
and we report the performances at the same real name ratio.

To achieve the same real name ratio for all methods,
we use the minimum cost bipartite graph matching method
(introduced in Section IV) to infer the names of the faces,
and vary the hyperparameter θ to tune the real name
ratio, as suggested in [37]. Specifically, the costs c( f, q)
and c( f, p + 1) are set as follows. For MildML, we set

TABLE II

PERFORMANCES (AT GROUND-TRUTH RATIOS) OF DIFFERENT METHODS

ON TWO REAL-WORLD DATASETS. THE BEST RESULTS ARE IN BOLD

c( f, q) = − ∑
x∈Sq

w(xi
f , x) and c( f, p + 1) = θ , as

in [6], where w(xi
f , x) is the similarity between xi

f and x
and Sq contains all faces assigned to the name q while
inferring the names of the faces. For cGMM, we set
c( f, q) = − lnN (xi

f ; µq ,�q ), and c( f, p + 1) =
− lnN (xi

f ; µ(p+1), �(p+1)) + θ , as in [32], where µq and
�q (resp. µ(p+1) and �(p+1)) are the mean and covariance
of the faces assigned to the qth class (resp., the null class)
in cGMM. Similarly for MMS and LR-SVM, we consider the
decision values from the SVM classifiers of the nth name and
the null class by setting the cost as c( f, q) = −decq(xi

f )

and c( f, p + 1) = −decnull(xi
f ) + θ , where decq(xi

f ) and
decnull(xi

f ) are the decision values of SVM classifiers from
the qth name and the null class, respectively. The accuracies
and precisions of different methods on the real-world datasets
are shown in Table II, where the real name ratio for each
method is set to be close to the ground-truth ratio using
a suitable hyperparameter θ , as suggested in [37]. For a
more comprehensive comparison, we also plot the accuracies
and precisions on these two real-world datasets when using
different real name ratios for all methods, by varying the value
of the parameter θ . In Fig. 3, we compare the performances of
our proposed methods ASML and rLRRml with the baseline
methods MMS, cGMM, LR-SVM, and MildML on these
two real-world datasets, respectively. In Fig. 4, we compare the
performances of our proposed methods rLRRml, rLRR with
the special cases LRRml, and LRR on these two real-world
datasets, respectively. According to these results, we have the
following observations.

1) Among the four baseline algorithms MMS, cGMM,
LR-SVM, and MildML, there is no consistent winner on
both datasets in terms of the accuracies and precisions
in Table. II. On the Labeled Yahoo! News dataset,
MMS achieves the best accuracy and precision among
four methods. On the Soccer player dataset, MMS still
achieves the best precision, but MildML achieves the
best accuracy.

2) We also compare ASML with MildML, because
both methods use captions-based weak supervision
for distance metric learning. According to Table II,
ASML outperforms MildML on both datasets in terms
of both accuracy and precision. From Fig. 3, we
observe that ASML consistently outperforms MildML
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Fig. 3. Accuracy and precision curves for the proposed methods rLRRml and ASML, as well as the baseline methods MMS, cGMM, LR-SVM, and MildML,
on the Soccer player dataset and the Labeled Yahoo! News dataset, respectively. (a) Accuracy versus real name ratio on the Soccer player dataset. (b) Precision
versus real name ratio on the Soccer player dataset. (c) Accuracy versus real name ratio on the Labeled Yahoo! News dataset. (d) Precision versus real name
ratio on the Labeled Yahoo! News dataset.

Fig. 4. Accuracy and precision curves for the proposed methods rLRRml and rLRR, as well as the special cases LRRml and LRR, on the Soccer player
dataset and the Labeled Yahoo! News dataset. (a) Accuracy versus real name ratio on the Soccer player dataset. (b) Precision versus real name ratio on the
Soccer player dataset. (c) Accuracy versus real name ratio on the Labeled Yahoo! News dataset. (d) Precision versus real name ratio on the Labeled Yahoo!
News dataset.

on the Labeled Yahoo! News dataset, and generally
outperforms MildML on the Soccer player dataset.
These results indicate that ASML can learn a more dis-
criminative distance metric by better utilizing ambiguous
supervision information.

3) LRR performs well on both datasets, which indicates
that our assumption that faces in a common subspace
should belong to the same subject/name is generally
satisfied on both real-world datasets. Moreover, rLRR
consistently achieves much better performance com-
pared with the original LRR algorithm on both datasets
(Table II and Fig. 4), which demonstrates that it is
beneficial to additionally consider weak supervision
information by introducing the new regularizer into LRR
while exploring the subspace structures among faces.

4) According to Table II, rLRRml is better than rLRR, and
LRRml also outperforms LRR on both datasets in terms
of accuracy and precision. On the Soccer player dataset
[Fig. 4(a) and (b)], rLRRml (resp., LRRml) consistently
outperforms rLRR (resp., LRR). On the Labeled Yahoo!
News dataset [Fig. 4(c) and (d)], rLRRml (resp., LRRml)
generally outperforms rLRR (resp., LRR). One possible
explanation is that these two affinity matrices contain
complementary information to some extent, because they
explore weak supervision information in different ways.
Hence, the fused affinity matrix is more discriminative
for face naming. Note that the performance of rLRR
on the Labeled Yahoo! News dataset is already high,
so the improvement of rLRRml over rLRR on this
dataset is not as significant as that on the Soccer player
dataset.

5) Compared with all other algorithms, the proposed
rLRRml algorithm achieves the best results in terms of
both accuracy and precision on both datasets (Table II).
It can be observed that rLRRml consistently outperforms
all other methods on the Soccer player dataset [Fig. 3(a)
and (b) and Fig. 4(a) and (b)], and rLRRml generally
achieves the best performance on the Labeled Yahoo!
News dataset [Fig. 3(c) and (d) and Fig. 4(c) and (d)].
These results demonstrate the effectiveness of our
rLRRml for face naming.

6) For all methods, the results on the Soccer player dataset
are worse than those on the Labeled Yahoo! News
dataset. One possible explanation is that the Soccer
player dataset is a more challenging dataset because
there are more faces in each image, more names in each
caption, and relatively more faces from the null class in
the Soccer player dataset (Table I).

More Discussions on H in Our rLRR: In our rLRR,
we penalize the following two cases using the specially
designed H: 1) a face is reconstructed by the irrelevant faces
that do not share any common names with this face according
to their candidate name sets and 2) a face is reconstructed by
using itself. If we only consider one case when designing H
in our rLRR, the corresponding results will be worse than the
current results in Table II. Taking the Soccer player dataset
as an example, we redefine H by only considering the first
(resp., the second) case, the accuracy and precision of our
rLRR method become 0.714 and 0.682 (resp., 0.694 and
0.664), respectively. These results are worse than the results
(i.e., the accuracy is 0.725 and the precision is 0.694) of our
rLRR in Table II that considers both cases when designing H,
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Fig. 5. Performances (accuracies and precisions) of our methods on the Soccer player dataset when using different parameters. The black dotted line indicates
the empirically set value (i.e., the default value) of each parameter. (a) Performances of rLRR with respect to γ. (b) Performances of rLRR with respect to λ.
(c) Performances of ASML with respect to σ . (d) Performances of rLRRml with respect to α.

which experimentally validates the effectiveness of penalizing
both cases.

3) Performance Variations of Our Methods Using Different
Parameters: We take the Soccer player dataset as an example
to study the performances (i.e., accuracies and precisions) of
our methods using different parameters.

We first study the performances of our rLRR when using
different values of the parameters γ and λ, and the results are
shown in Fig. 5(a) and (b), respectively. Note that we vary
one parameter and set the other parameter as its default value
(i.e., γ = 100 and λ = 0.01). In (4), γ is the tradeoff
parameter for balancing the new regularizer ‖W◦H‖2

F (which
incorporates weakly supervised information) and other terms.
Recall that our rLRR reduces to LRR when γ is set to zero.
When setting γ in the range of (1, 500), the performances of
rLRR become better as γ increases and rLRR consistently
outperforms LRR, which again shows that it is beneficial
to utilize weakly supervised information. We also observe
that the performances of rLRR are relatively stable when
setting γ in the range of (50, 5000). The parameter λ is used
in both LRR and our rLRR. We observe that our rLRR is
relatively robust to the parameter λ when setting λ in the range
of (5 × 10−4, 10−1).

In Fig. 5(c), we show the results of our new metric learning
method ASML when using different values of the parameter σ
in (11). It can be observed that our ASML is relatively stable
to the parameter σ when σ is in the range of (0.1, 10).

Finally, we study the performance variations of our rLRRml
when setting the parameter α to different values, as shown
in Fig. 5(d). When setting α = 0 and α = 1, rLRRml reduces
to rLRR and ASML, respectively. As shown in Table II, rLRR
is better than ASML in both cases in terms of accuracy and
precision. Therefore, we empirically set α as a smaller value
such that the affinity matrix from rLRR contributes more in
the fused affinity matrix. When setting α in the range of
(0.05, 0.15), we observe that our rLRRml is relatively robust
to the parameter α and the results are consistently better than
rLRR and ASML, which demonstrates that the two affinity
matrices from rLRR and ASML contain complementary
information to some extent.

VI. CONCLUSION

In this paper, we have proposed a new scheme for face
naming with caption-based supervision, in which one image

that may contain multiple faces is associated with a caption
specifying only who is in the image. To effectively utilize the
caption-based weak supervision, we propose an LRR based
method, called rLRR by introducing a new regularizer to
utilize such weak supervision information. We also develop
a new distance metric learning method ASML using weak
supervision information to seek a discriminant Mahalanobis
distance metric. Two affinity matrices can be obtained from
rLRR and ASML, respectively. Moreover, we further fuse
the two affinity matrices and additionally propose an iterative
scheme for face naming based on the fused affinity matrix. The
experiments conducted on a synthetic dataset clearly demon-
strate the effectiveness of the new regularizer in rLRR. In the
experiments on two challenging real-world datasets (i.e., the
Soccer player dataset and the Labeled Yahoo! News dataset),
our rLRR outperforms LRR, and our ASML is better than the
existing distance metric learning method MildML. Moreover,
our proposed rLRRml outperforms rLRR and ASML, as well
as several state-of-the-art baseline algorithms.

To further improve the face naming performances, we plan
to extend our rLRR in the future by additionally incorporating
the �1-norm-based regularizer and using other losses when
designing new regularizers. We will also study how to auto-
matically determine the optimal parameters for our methods
in the future.
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