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Abstract—Mobile devices may offload their applications to a
virtual machine running on a cloud host. This application may
fork new tasks which require virtual machines of their own on
the same physical machine. Achieving satisfactory performance
level in such a scenario requires flexible resource allocation
mechanisms in the cloud data center. In this paper we present
two such mechanisms which use prioritization:

one in which forked tasks are given full priority over newly
arrived tasks, and another in which a threshold is established
to control the priority so that full priority is given to the forked
tasks if their number exceeds a predefined threshold.

We analyze the performance of both mechanisms using a Marko-
vian multiserver queueing system with two priority levels to
model the resource allocation process, and a multi-dimensional
Markov system based on a Birth-Death queueing system with
finite population, to model virtual machine provisioning. Our
performance results indicate that the threshold-based priority
scheme not only performs better, but can also be tuned to achieve
the desired performance level.

Index Terms—cloud infrastructure; mobile cloud computing;
resource allocation; offloaded job; priority differentiation; per-
formance evaluation.

I. INTRODUCTION

The tension between resource-hungry applications such
as face recognition, natural language processing, interactive
gaming, and augmented reality, and resource- and energy-
constrained mobile devices poses a significant challenge for
current and future mobile platform development. Mobile cloud
computing, where mobile devices can offload some computa-
tional jobs to the cloud is envisioned as a promising approach
to address such a challenge [1]. The characteristics of mobile
devices and wireless network makes the implementation of
mobile cloud computing more complicated than stationary
clouds. Offloading requests from a mobile device usually
require quick response, may be infrequent, and are subject to
variable network connectivity, whereas stationary clouds incur
relatively long setup times, are leased for long time periods,
and enjoy uninterrupted network connectivity [2]. Also, the
volume of workload to be offloaded may not be known in ad-
vance since many of the offload requests are the consequence
of decisions made by the (generally unpredictable) human user
of the device.

In this work, we address the elasticity in mobile cloud
computing with a solution that allocates resources for on-
demand job requests in the mobile clouds. We do not consider
the offloading decision process in the mobile devices; instead,

we assume that the decision to offload has been made, and
we focus on the allocation of cloud resources to the offloaded
applications sent to a cloud data center. Namely, jobs offloaded
by mobile devices are executed by virtual machines (VMs)
hosted on physical machines (PMs) in a mobile cloud. During
their lifetime, these jobs (also referred to as primary tasks)
can fork new, secondary tasks; a job is completed when all
the forked tasks complete their service. As secondary tasks
need to communicate with the primary task as well as with
each other, their allocated VMs should preferably be hosted on
the same PM as the parent task’s VM. However, the host PM
may not have the resources required to execute the secondary
task, which is then queued as ‘overflow’ tasks in order to find a
new ‘home’. Since the job itself has been initiated by a mobile
user, secondary tasks, and overflow tasks in particular, need
to be serviced as soon as possible, so as to avoid interruption
of the application and the resulting user dissatisfaction.

The proposed solution manages these two types of tasks as
two service classes using a queueing model based on inte-
gration of multi-dimensional Markov system and Birth-Death
queueing systems with multiple servers and finite population
(M/M/L//L), inspired by the Birth-Death queueing systems
developed in [3]. We consider soft bounds on completion times
and limit the number of secondary tasks in order to prevent
resource hogging. We also consider priority differentiation be-
tween the tasks, which is implemented using two mechanisms.
In the first mechanism, overflow tasks are always serviced
before any regular tasks, be they primary or secondary. In the
second, we impose a threshold for the number of overflow
tasks in the input queue. As long as the number of overflow
tasks is below the threshold, a probabilistic selection similar to
Weighted Fair Queueing [4] is used; otherwise, only overflow
tasks are serviced until their number drops below the threshold.

The paper is organized as follows: in Section II, we survey
existing work on resource allocation in mobile cloud com-
puting, but also some relevant research results pertaining to
stationary clouds. Section III describes the proposed resource
allocation module while Section IV describes the virtual ma-
chine provisioning module and integration of the two modules.
Section V discusses the performance of our system and the
related outcomes. Section VI includes the implementation
discussions. Section VII concludes the paper and discusses
some directions for future work.

II. RELATED WORK

Several research studies have proposed solutions to ad-
dress the issues of computational power and battery lifetime
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of mobile devices by offloading computing tasks to cloud.
CloneCloud [5] has been an approach for extending the con-
cept of VM-based clone cloud offloading from LAN surrogates
to cloud servers. OS supporting VM migration was introduced
in CloneCloud. MAUI [6] has provided method-level code
offloading based on the .NET framework. MAUI aimed to
optimize energy consumption of a mobile device by estimation
and evaluating the trade-off between the energy consumed
by local processing versus the transmission of code and data
for cloud offloading. A framework for moving smartphone
application processing to the cloud centers was introduced
in ThinkAir [7]. This framework is based on the concept of
smartphone virtualization in the cloud and addresses lack of
scalability by creating VM of a complete smartphone system
on the cloud. CMcloud [8] is a mobile-to-cloud offloading
platform which attempts to minimize both the server costs and
the user service fee by offloading as many mobile applications
to a single server as possible, while trying to satisfy the
target performance of all applications. To achieve such goals,
CMcloud exploited architecture performance modeling and
server migration techniques. In Properly Offloading Mobile
Applications to Clouds (POMAC) framework [9], other than
offloading decision making technique, an offloading mech-
anism was designed through method interception at Dalvik
virtual machine level to allow mobile applications to offload
their computation intensive methods.

In most of the works related to resource allocation in mobile
cloud computing, there are some trade-offs among power
consumption, QoS parameters and costs. These objectives are
usually dependent on cloud resources, applications profiles
and network parameters. COSMOS (Computation Offloading
as a Service for Mobile Devices) system [2] received mobile
user computation offload demands and allocated them to a
shared set of compute resources that was dynamically acquired
(through leases) from a commercial cloud service provider.

The partitioning of elastic mobile datastream applications
was formulated in [10] as on optimization problem by mini-
mizing the cost function which is combination of communi-
cation energy and computation energy.

In [11], a model has been built to incorporate pertinent
characteristics of the workflow software and network hardware
devices. Then, the objective functions have been constructed
which guide the offloading decisions. A heuristic algorithm
was presented that produced offloading plans according to
these objective functions and their variations.

In [12], offloading requests were sent in bundles so that,
the period of time that the network interface stays in the
high-power state can be reduced. Two online algorithms were
presented, collectively referred to as Ready, Set, Go (RSG),
that make near-optimal decisions on how offloading requests
from multiple applications are to be best coalesced.

In the work presented in [13], in order to realize resource
allocation, authors have estimated a cost model for each VM
running on a server in the cloud and they have calculated the
sum of the costs required to run the physical resources required
on the server.

In another approach to connecting mobile devices to cloud
servers in [14], authors have proposed Hermes, a polynomial

time approximation scheme (FPTAS) algorithm to solve the
latency problem.

The model proposed in [15] is based on the wireless
network cloud (WNC) concept and a multi-objective linear
optimization approach using an event-based finite state model
and dynamic constraint programming method has been used to
determine the appropriate transmission power, process power,
cloud offloading and optimum QoS profiles.

In [16], a study on virtual machine deployment was pre-
sented together with an evaluation of the impact of VM
deployment and management for application processing by
analyzing the parameters such as VM deployment and exe-
cution time of applications. The work presented in [17], has
analyzed the impact of performance metrics on the execution
of applications (cloudlets).

The work in [18] has presented a task scheduling and resource
allocation scheme which used the continually updated data
from the loosely federated General Packet Radio Service
(GPRS) to automatically select appropriate mobile nodes to
participate in forming clouds.

Resource provisioning in stationary cloud computing has
been extensively studied. By taking advantage of Lyapunov
optimization techniques, an online decision algorithm was
designed for request distribution which achieves the average
response time arbitrarily close to the theoretically optimum
and controls the outsourcing cost based on a given budget
[19].

The work in [20] has proposed two different mechanisms,
which reflect two different classical economic approaches
for fairly allocating resources: the Nash Bargaining (NB)
mechanism and the Lexicographically Max-Min Fair (LMMF)
mechanism.

The work presented in [21] has proposed a randomized
auction mechanism based on an application of smoothed anal-
ysis and randomized reduction, for dynamic VM provisioning
(pricing tailor-made VMs on the spot) and pricing in geo-
distributed cloud data centers. An online procurement auction
mechanism to address the resource pooling issue in cloud
storage systems was presented in [22].

We note that Markov models with multiple priority classes
have been used in different fields. For example, a Markov
chain flow decomposition for a two-class priority queue in
presented in [26]. Also, threshold-based priorities have been
utilized in the development of Markov models. For instance, in
[27], a multi-server queueing system with two priority classes
was used with a threshold defined according to number of
servers in the system. In another similar approach, a threshold
based Markov chain system has been deployed to model elastic
and inelastic traffic flows in TCP-friendly admission control;
the threshold was defined according to some inelastic flow
parameters [28].

Similar to the work presented in this paper, some of the cloud
resource allocation solutions have used queueing theory: e.g.,
authors in [23] proposed a performance model for systems
with dynamic service demand where job size in number of
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tasks varies during service. It is assumed that the size of a
job in number of tasks varies randomly during the time that
job is in the system. The arrival of the jobs to the system
is according to a Poisson process with parameter λ jobs/sec.
Also, it is assumed that a new arriving job to the system
initially demands service for a single task. A job generates
random number of tasks according to a Poisson process with
parameter α task/job/sec during its service time in the system.
It is assumed that each task requires a VM for its execution
and task execution times are exponentially distributed. Service
time of a job begins with its arrival to the system and it is
completed when there are no more tasks belonging to that job
left in the system. In this model, a job has a general service
time distribution.

In [24] a resource allocation model for IaaS cloud datacen-
ters has been presented which is based on cloud federation
mechanism. The arrival of the jobs is either according to
a homogeneous Poisson process or a Markov Modulated
Poisson Process (MMPP) which allows time variations in the
arrival rate. Also, each job requires a single VM to complete
its service; service times are exponentially distributed and
mean service time is a function of the number of busy VMs
on a server. The system has a finite queue, which is managed
according to the FCFS discipline. The system queue has a
finite size and once it is full, further requests are rejected. A
federation threshold is defined on the number of jobs waiting
in this queue; when the limit of threshold is reached, jobs will
be redirected to another queue called upload queue. The jobs
waiting in upload queue will be transferred to the other cloud
datacenters participating in the cloud federation. Jobs in this
solution include a single task and the model is not suitable for
on-demand job requests as their size varies during the service
time.

The cloud resource allocation model suggested in [25]
includes fault recovery. In this model, arrival of jobs is
according to a general stochastic process and each job has
random number of tasks. Each task requires a single VM and
task service times are exponentially distributed, which results
in independent task completion times. The system has a finite
queue and each task of a job takes a position in the queue.
A job is rejected if all of its tasks are not accepted in the
system. It is assumed that all the tasks in a job will start to
get service simultaneously. The system has been modeled as a
GI [X]/M/S/N queue where N corresponds to the maximum
number of allowed tasks in the system. Also, the VM failure
rate in this model is a Poisson process and VM recovery times
are exponentially distributed. This model is not appropriate
for on-demand job requests in mobile cloud system as all the
tasks in a job are supposed to start getting service at the same
time.

III. RESOURCE ALLOCATION

Fig. 1 provides a schematic overview of the proposed
solution. We assume that jobs offloaded from a mobile device
arrive according to a Poisson process with arrival rate λ. When
the job request reaches the data center, it is queued in the new
task queue. Tasks which can’t be admitted due to a full queue
are blocked.

primary 
tasks

task 
blocking

PM

VM

secondary tasks

VM

VM

overflow tasks

RAM – resource allocation module

VMM – virtual 

machine provisioning 

module

job requests from 
mobile users

task 
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Fig. 1. Overview of the system model.

Once the task reaches the head of the queue, the resource
allocation module (RAM) attempts to find a PM that can
accommodate the task – i.e., a single VM equipped with
appropriate OS and applications, running on a PM that has
sufficient spare capacity. If such a PM is found, the appropriate
VM will be instantiated with the queued task; otherwise, the
task is rejected. Let 1/β denote the mean look up time to
find appropriate PM in the server pool. RAM is modeled as
a multi-dimensional Continuous Time Markov chain (CTMC)
presented in Figs. 3 and 4; more detailed explanation of this
chain is given below.

If the computational resources of the VM allocated to the
primary task are insufficient, additional VMs are forked to
fulfill the requirements. Forking creates a secondary VM,
which is an independently executing clone of the primary
VM [30]. Secondary or forked tasks are queued and processed
similar to the primary tasks, but with an important constraint:
namely, that all communications with the mobile device must
be routed through the primary VM. This constraint has two
consequences in practice: first, all VMs running secondary
tasks must end before the VM running the parent primary
task. Second, secondary VMs should be instantiated on the
same PM that host the VM running the parent task which
facilitates communication between them.

However, if the PM running the parent (primary) VM has
no spare capacity for a secondary one, the secondary task will
not be immediately blocked. Instead, it will be returned to the
RAM as an overflow task; these tasks are routed through a
dedicated queue, separately from the newly arrived primary
tasks and first-time secondary tasks. We note that an overflow
task can still be blocked if the required computational capacity
can’t be found when that task reached the head of the overflow
queue.

Using separate queues allows us to prioritize secondary and,
in particular, overflow tasks. The objective is twofold: first,
to reduce the wait time for mobile applications; second, to
minimize the probability that an offloaded job will have to be
aborted because it is unable to fork the required secondary
task. Both of these goals, in fact, strive to increase user sat-
isfaction. A similar scenario is observed in cellular networks,
where handover calls, which are continuations of existing calls,
are always given priority over new calls [31].
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(c) Threshold-based priority: behavior above threshold, Nov > Tr .

Fig. 2. The service order in the dual input queue system.

Prioritization is implemented in two ways. In the simpler
approach, hereafter referred to as full priority scheme, priority
is always given to overflow tasks. In this scheme, which
is schematically shown in Fig. 2(a), primary and first-time
secondary task requests in the new arrivals queue will not
get service as long as there is a task waiting in the overflow
queue. However, this may lead to unnecessary penalization
of tasks in the new arrivals queue, which is why we have
also considered another approach, hereafter referred to as
threshold-based priority scheme. In this scheme a threshold is
set in the overflow queue. As long as the number of overflow
tasks in the queue, Nov , is not above the threshold, Tr, i.e.,
Nov ≤ Tr, as shown in Fig. 2(b), overflow tasks and new
incoming tasks get service according to the probabilities of
Po and PN , respectively, similar to Weighted Fair Queueing
(WFQ) method [4]. However, once the number of tasks in the
overflow queue exceeds the threshold, i.e., when Nov > Tr,
the system exclusively services overflow tasks, as in the first
approach, until the number of tasks in the overflow queue
drops below the threshold. In both cases, tasks from either
queue will be serviced in FCFS order. The computational
details of Po and PN are presented in Section III-B.

We will now describe the queueing model for both schemes
in more detail, using the parameters listed in Table I.

TABLE I
PARAMETER DEFINITION.

Parameter Description
N Number of servers
Nov Number of waiting overflow tasks in RAM
m Number of available VMs on the PM
λ Incoming task rate

1/β Mean look up time to find a PM
1/γ Mean clean up time in RAM
λi Primary task arrival rate into the PMs
λci Secondary task generation rate in a job
µ Mean service time of primary tasks
d Mean service time of secondary tasks
ρ Offered load
Lq Size of queues in RAM
L Maximum number of secondary tasks in a job
c Minimum number of jobs accommodable on a PM
Oi Incoming overflow rate from the RAM to VMM
Oo Outgoing overflow rate from the VMM to RAM
Tr Threshold of number of waiting overflow tasks in RAM
Po Probability of giving service to the overflow tasks
PN Probability of giving service to the new incoming tasks
Ps Successful provisioning probability
Pbq Blocking probability due to full RAM
Pbr Rejection probability due insufficient resources
Prj Total rejection probability
φ Basic instantiation/ Full transition rate
φx Partial transition rate

A. Resource allocation with full priority of overflow tasks

Resource allocation in case overflow tasks have full priority,
i.e., new arrival tasks will not be served as long as there
is an overflow task in the appropriate queue, is modeled as
a Markovian multiserver queueing system with two priority
levels. In this model, illustrated in Fig. 3, states are labeled
as (i, j, k) where i and j indicate the number of tasks in the
overflow and new arrivals queue, respectively, and k denotes
the admission mode: ’A’ means that a task is accepted while
’Ro’ (’RN ’) means that an overflow (new) task is rejected.
The length of the queue buffer is Lq .

New tasks arrive with rate of λ, while overflow tasks arrive
at a rate of Oo. If this task is accepted, the system moves to the
state (0, j−1, A)) at a rate of Psβ, where Ps is the probability
of finding appropriate VM in the Virtual Machine provisioning
Module (VMM), which we will derive in Section IV below,
and 1/β is the look-up time needed to find a suitable PM.
Otherwise, the system moves to (0, j + 1, A) which means
the new task is added to the waiting new tasks. As overflow
tasks have absolute priority, new arrivals – primary as well as
first-time secondary ones – can get service only if there are
no overflow tasks in the queue, which corresponds to j = 0,
i.e., the first row of the model.

If the queue is full, a new task cannot be admitted and the
system moves from state (0, Lq, A) to (0, Lq, RN ) at a rate of
β(1−Ps). The target state (0, Lq, RN ) denotes blocking of a
new arrival task; it is shown shaded in the top right corner of
Fig. 3. When the task is rejected, the system moves back to
(0, Lq, A) at a clean-up rate of γ = 10β.
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Fig. 3. Markovian model of resource allocation in case overflow tasks have full priority.

Overflow tasks arrive at a rate of Oo: if such a task gets
service (and they always have priority), the system moves to
the first neighboring state up with a rate of Psβ; otherwise, the
task is queued and the system moves to the next state below
the current state. Yet overflow tasks can also be rejected if the
queue is full, which is represented by the additional shaded
states below the bottom line with states (Lq, j, A). The rate
of rejection is β(1−Ps), as is the case with new arrivals; the
system goes back to (Lq, j, A) at a clean-up rate of γ.

A task may be blocked due to a full queue; it occurs with
the probability

Pbq =

Lq−1∑
i=0

π(i, Lq, A) +

Lq∑
j=0

∑
k∈S2

π(Lq, j, k) + π(0, Lq, RN )

(1)

where S2 = {A,Ro}.
A task can also be rejected due to insufficient resources with

the probability

Pbr =
β(1− Ps)

γ
π(0, Lq, RN ) +

Lq∑
j=1

β(1− Ps)

γ
π(Lq, j, Ro)

(2)
The total rejection probability is the sum of the two:

Prj = Pbq + Pbr (3)

B. Resource allocation with threshold-based priority of over-
flow tasks

Resource allocation in case of threshold-based priority of
overflow tasks over new arrivals is modeled with a two-

dimensional Markovian model illustrated in Fig. 4. The model
behaves in a manner similar to the previous one, but with
an important distinction: namely, acceptance depends on the
length of the overflow task queue. (As before, both new
arrival and overflow queue can accommodate up to Lq tasks.)
If the overflow queue contains more than Tr tasks, only
overflow tasks are serviced as long as the queue length is
above the threshold. If the overflow queue contains Tr or
fewer tasks, tasks to be accepted are taken from one or
the other queue: new tasks are accepted with a probability
of PN = λ

λ+Oo
while overflow tasks are accepted with a

probability Po = 1 − PN = Oo

λ+Oo
, where λ and Oo denote

arrival rates for new and overflow tasks, respectively.
As before, shaded states outside of the two-dimensional

chain denote rejection states pertaining to new arrivals (in the
top right) and overflow tasks (at the bottom).

In this case, task blocking probability is

Pbq =

Tr∑
i=0

∑
k∈S1

π(i, Lq, k) +

Lq∑
j=0

∑
k∈S2

π(Lq, j, k) (4)

where S1 = {A,RN} and S2 = {A,Ro}, and task rejection
probability is

Pbr =

Tr∑
i=1

β(1− PNPs)

γ
π(i, Lq, RN )

+

Lq∑
j=1

β(1− Ps)

γ
π(Lq, j, Ro) (5)

Total rejection probability is, then, equal to their sum: Prj =
Pbq + Pbr.
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Fig. 4. Markovian model of resource allocation in case overflow tasks have threshold-based priority.

IV. VIRTUAL MACHINE PROVISIONING

Virtual Machine provisioning Module (VMM) manages
instantiation, provisioning and deployment of VMs. Fig. 5
shows a multi-dimensional Continuous Time Markov chain
(CTMC) that models the VMM within a PM. States are labeled
as (i, j, k) where i indicates the tasks waiting to be serviced,
while j and k denote the number of jobs (i.e., primary
tasks) and secondary tasks currently in service, respectively.
Oi denotes the incoming overflow rate coming in from the
RAM, while Oo represents the rate of tasks that can’t be
accommodated in the PM that will be returned to the RAM as
overflow. The task arrival rate to each PM, λi, can be obtained
as

λi =
λ(1− Pbq)

N
(6)

where Pbq is the blocking probability obtained from the RAM
(which will be explained below) and N is the number of PMs
in the system.

In Fig. 5, the main plane of the multi-dimensional Markov
model illustrates the waiting queues and serving status of
primary VMs. Service times for both primary and secondary
tasks are exponentially distributed with mean values of µ and

d, respectively, which includes the time needed for forking.
The shaded states represent secondary task queues which can
have up to L tasks. Secondary tasks are generated with a rate
of λci; they are modeled as Birth-Death queueing systems with
finite population of L customers and L servers (M/M/L//L).
This approach is inspired by the Birth-Death queueing systems
with finite population presented in [3]. In this case, the
stationary probability of kth state of the secondary task queue
can be obtained as

pk = p0

(
λci

d

)k (
L

k

)
(7)

where p0 is

p0 =

[
L∑

k=0

(
λci

d

)k (
L

k

)]−1

=
1

(1 + λci/d)L
(8)

by replacing the value of p0 in equation 7, pk is calculated
as
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Fig. 5. Virtual machine provisioning model of a PM with the ability to accept maximum three jobs (see text for details).

pk =


(

λci
d

)k

(Lk)
(1+λci/d)L

0 ≤ k ≤ L

0 otherwise
(9)

Mean number of tasks in the secondary task queue is

Nt =
L∑

k=0

kpk =

L∑
k=0

k
(
λci

d

)k (L
k

)
(1 + λci/d)L

=
Lλci/d

1 + λci/d
(10)

Assuming the number of tasks in an offloaded job is limited
to one primary and L secondary ones, and that each PM can
accommodate up to m VMs, we have to make sure that m > L
so that at least one job (i.e., its primary task and all of its
secondary tasks) can be accommodated on a single PM. In fact,
a PM can accommodate at least c =

⌊
m

L+1

⌋
jobs. However,

not all jobs will have the maximum number of L + 1 tasks;
therefore, if the number of jobs is limited to c, chances are
that some of the VMs on the PM will be underused, so we
can conservatively assume that a PM can accommodate c+ c

2
job requests.

Assuming m = 10 and L = 4, we obtain c =
⌊
10
5

⌋
= 2,

and the number of jobs allowed on a PM is c + c
2 = 3; this

last number is used in the provisioning module illustrated in
Fig. 5. However, when the job number reaches c, the transition
rate of moving to serve the next job changes. This transition
rate is φ as long as the number of current jobs (i.e., primary
tasks) on a PM is below c. When the limit of c jobs is reached,
the transition rate changes to

φi,x = φPti,x (11)

where i is the number of jobs waiting for service, while x
indicates the number of serviced jobs above c; Pti,x is the

transition coefficient which can be obtained as the ratio of
the sum of steady-state probabilities where the length of each
secondary queue is larger than Nt, and the sum of steady-
state probabilities for full length of each secondary queue. As
the average number of expected secondary tasks in a single
secondary queue Nt was calculated in (10), the transition
coefficient is

Pti,x =

c+x∑
h=1

L∑
k=Nt

p(i, jh, k)

c+x∑
r=1

L∑
k=1

p(i, jr, k)

(12)

where c + x is the number of jobs in service and i is the
number of jobs waiting for service.

Probability of overflow, i.e., that a task request cannot be
deployed on the PM, is

Pna = p(Lq, 0, 0) +
L∑

k=1

c+ c
2∑

j=1

p(Lq, j, k) +

Lq−1∑
i=0

∑
y∈Φ

Py (13)

where p(i, j, k) indicates the steady-state probability of the
corresponding state and Py is a member of Φ, the set of
products of probabilities of states corresponding to secondary
queues for which the sum of the corresponding secondary
VMs exceeds the capacity of secondary VMs on a PM. The
probability that the total number of secondary VMs in a
PM exceeds the available number of VMs is a combinatorial
probability which can be computed as a sum of products in
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(13). Φ is represented as

Φ =


c+ c

2∏
l=1

p(i, jl, kl)
∣∣∣ c+ c

2∑
l=1

kl > m− (c+
c

2
)

 (14)

where m− (c+ c
2 ) denotes the number of allowed secondary

VMs on a PM.
Then, probability of successful provisioning on a PM is

Ps = 1− PN
na (15)

Finally, the overflow rate generated in a PM is derived from
the probability that a task is blocked due to lack of resources,
which may be obtained analogously to the Erlang B formula
in a truncated system consisting of two independent queues in
a multi-dimensional Markov system [32]:

Oo =

(λi/µ)
c+ c

2

(c+ c
2 )!

· (λci/d)
m−(c+ c

2
)

[m−(c+ c
2 )]!

c+ c
2∑

i=0

m−(c+ c
2 )∑

j=0

(λi/µ)i

i! · (λci/d)j

j!

(16)

V. PERFORMANCE EVALUATION

A. Practical considerations
The analytical model has been solved using Maple 16 from
Maplesoft Inc. [29].

To evaluate the performance of the proposed mobile cloud
system, we have solved the model described above in a number
of different scenarios. As presented above, the overall model
consists of two interactive stochastic modules which are solved
as follows.

We assume that all the transition rates in the module are
equal to φ and then solve the model to obtain the steady-
state probability for all the states and overflow rate. Then, we
calculate the Pti,x for every level beyond c jobs in the system;
according to these new transition rates, we solve the model
again and compute the new values of steady-state probability
of all the states. Using these values, we can calculate Ps. As
the overflow rate is independent of steady-state probabilities,
it is not needed to calculate it again. This procedure is shown
as pseudo-code in Algorithm 1.

Algorithm 1 First Time Solving of VMM Module
1: Assume all transition rates equal to φ and solve VMM;
2: Compute outgoing overflow rate, Oo;
3: Calculate Pti,x coefficients for all states i and levels x;
4: Solve VMM again with new transition rates φ and φi,x);
5: Calculate Ps with new values;

The successful provisioning probability Ps and the overflow
rate Oo obtained in this manner are used as input parameters to
solve the RAM module. It computes the task blocking proba-
bility, Pbq, which is the input parameter to VMM module. The
overall model consists of two interactive stochastic modules
The associated pseudocode is shown in Algorithm 2. Iteration
ends when the difference between the values of probabilities in
successive iterations drops below a predefined threshold (we
have used ∆ = 10−6). Note that transition rates are obtained
only once, in the first pass of the VMM.

Algorithm 2 The Integrated model Algorithm
1: Input: Initial successful provisioning probability and

overflow rate: Ps0, Oo0;
2: Output: Blocking probability in the RAM: Pbq;
3: count = 0; maximum = 30; ∆ = 1;
4: Pbq0 ←− RAM (Ps0, Oo0);
5: while ∆ ≥ 10−6 do
6: count ←− count +1;
7: Ps ←− VMM (Pbq0);
8: Oo ←− VMM (Pbq0);
9: Pbq1 ←− RAM (Ps, Oo);

10: ∆ ←− |(Pbq1 − Pbq0)|;
11: Pbq0 ←− Pbq1;
12: if count == maximum then
13: break;
14: end if
15: end while
16: if count == maximum then
17: return -1;
18: else
19: return Pbq0;
20: end if

B. Task blocking probability

In the first scenario, we have varied the offered load: first,
by keeping mean task service time µ fixed while varying mean
task arrival rate λ; and second, by varying mean task service
rate at fixed mean task arrival rate. The offered load was
calculated as ρ = λ

mNµ , where N = 100 is the total number
of PMs in the system, each of which had up to m = 10 VMs.
The queue capacity was set to Lq = 50 for both queues, while
the threshold in the overflow queue was set to Tr = 30.

Task blocking probability obtained in this manner is shown
in Figs. 6(a) and 6(b). As expected, probability of task block-
ing increases with the offered load. Overflow tasks are given
priority – and, consequently, easier access to resources – under
both full and threshold-based priority mechanisms, which is
why the blocking probability is much lower for such tasks.
However, when threshold-based priority is applied, blocking
probability for newly arrived tasks is noticeably lower, while
that for overflow tasks is slightly higher. This indicates that
the performance for one or the other type of tasks may be
adjusted within certain limits. In the worst case, less than 4%
of overflow tasks are blocked.

We have also investigated the blocking probability under
fixed offered load but with a variable limit to the number
of secondary tasks L; the results obtained under both service
policies are shown in Fig. 6(c). Note that the case L = 0 corre-
sponds to the absence of secondary tasks which, by extension,
means that there are no overflow tasks; consequently, there
is no corresponding data value for threshold-based priority
curve. Again, new arriving tasks suffer a higher blocking
rate which slowly increases with the task forking limit L;
overflow tasks, on the other hand, are not affected much due to
the dual-queue prioritization mechanism presented above. As
before, threshold-based prioritization provides for much better
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Fig. 6. Task blocking probability.

performance for new tasks than its full priority counterpart.
We note that a rough upper bound for the probability that

a job does not complete because a forked task is ultimately
blocked may be obtained as the product of mean length of
secondary task queue and probability of overflow, PnaNt.

C. Mean task delay

As for the mean task delays, threshold-based prioritization
offers lower values (i.e., better performance), as can be seen
in Fig. 7. As can be expected, mean delays increase rather
sharply with the offered load. As the system operates well
below saturation, rise in delay values is approximately linear.
In case of variable task forking limit, the rise is somewhat
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Fig. 7. Mean task delays.

milder, but this may be due to the comparatively low value of
offered load utilized to generate data for Fig. 7(c).

We note that for the same offered load in the both priority
cases, the cloud center generally appears to be more sensitive
to the task arrival rate than to mean service time. This is due to
the overhead imposed by the waiting times and provisioning
processes which increases with the number of tasks but is
independent of the task service time.
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D. Utilization and the impact of queue threshold Tr

Server utilization is shown in Fig. 8. Under both priori-
tization policies, utilization increases with the offered load.
As the system does not enter saturation, the rate of rise is
approximately linear in both cases, although some flattening
may be observed at offered load ρ = 0.7 and above. We note
that utilization is slightly lower when full priority is given to
the overflow tasks, compared to the threshold-based policy,
since the number of overflow tasks is low.

Finally, Fig. 9 shows the effect of queue threshold in
the threshold-based prioritization policy on task blocking
probability. As the threshold moves closer to the queue size
of Lq = 50, value of the blocking probability for new
and overflow tasks are getting closer to each other as the
probability that the threshold will be exceeded diminishes.
Conversely, lower values of the threshold push the system to
behave in a manner closer to that under full priority – in fact,
full priority policy is equivalent to a threshold-based one with
threshold value of Tr = 0.

Overall, the threshold-based policy allows the cloud oper-
ator to fine-tune the performance of the cloud, as there are
a number of parameters which can be adjusted to provide
the desired values, or ranges thereof, for critical performance
indicators such as mean delay and task blocking.

VI. DISCUSSIONS

There are some points regarding implementation of our re-
source allocation model which worth to be mentioned:

We have assumed that the RAM and VMM modules are
located in the same cloud datacenter.

It is possible to compute the time complexity of our algo-
rithms through a hybrid solution of simulation and analytical
modeling. The Maple engine can be integrated into simulation
environments such as Simulink, NS2 simulator or OPNET
Modeler. The Maple algorithms and data structures can be
exported to the simulation blocks and the time spent in
different steps can be obtained.

Choosing the optimal size of primary and overflow tasks
queues, Lq , can be complicated. If the size of the queues is
large, tasks will wait for long time in the queues to get served;
whereas, if the size is small, significant number of new and
overflow tasks will get blocked. Blocking the overflow tasks
prevents the completion of the corresponding jobs.

Setting limitation for the maximum number of forked tasks,
L, can cause issues during serving the jobs: if the chosen
limit is low, the running jobs cannot be completed as they
are in need of more VMs for their secondary tasks. Another
drawback is that the PM will accept more jobs than it can
serve appropriately. Generally, selecting low values of L will
incur under-provisioning of the resources. Also, if the chosen
size for L is high, the secondary task queues in the PM will
not get full. Another pitfall is that defining large secondary
task queue will prevent the PM from accepting more new jobs.
Therefore, choosing high values of L will result in under-
utilization in the cloud system.

The arrival rate can be considered as the components of
Poisson processes with different intensities during the daytime
or nighttime; therefore, the interarrival time of the tasks
in components can be exponential. We have provided the
spectrum of offered load in our scenarios and investigated
the effect of the variability of arrival rate and service time
on the system separately. We have assumed that the service
times in different steps are exponential. Although we are
aware that the service times are in nature sub-exponential,
with assuming them as exponential, we have investigated the
worst case scenario and evaluated the upper bound of the vari-
ables. In this paper, we have considered the general case of
hypoexponential distribution as the service time of the system
and we have decomposed the service time distribution into a
linear combination of structured exponential distributions in
different steps of the model [3].

VII. CONCLUSION AND FUTURE WORK

We have proposed a solution for resource allocation of on-
demand job requests in mobile cloud computing. We have
developed two priority schemes for resource allocation in a
server pool based on giving different priorities to the over-
flow tasks including full priority of overflow tasks and the
threshold-based priority of overflow tasks.

Unlike most of existing works that either rely on a linear
programming formulation or on intuitively derived heuristics
that offer no theoretical performance guarantees, our model
does not sacrifice the complexity of offloading problem just
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to make it solvable. Instead, complexity is addressed through
the use of two interacting stochastic models which are solved
through fixed point iteration to achieve any desired error level.

We have investigated the impact of task arriving rate, service
time and the size of offloaded job on the performance metrics
for both priority schemes. Also, we have evaluated the effect of
threshold location on the threshold-based priority scheme. Our
results confirm that threshold-based priority presents better
system performance than full priority of overflow tasks.

Our next step will be the modification of threshold-based
priority scheme in order to adjust the location of threshold in
the overflow queue. Finding the best location of threshold is an
optimization problem and the position can change according
to the performance metrics, different policies adopted by cloud
computing providers or cloud system’s requirements. Also, we
have observed that the performance metrics do not change
linearly with regard to the offered load, which indicates that
finding the settings of parameter values that would lead to
optimal values of performance metrics is non-trivial.
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