
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, SPECIAL ISSUE ON MOBILE CLOUDS 1

Optimal Joint Scheduling and Cloud Offloading
for Mobile Applications

S. Eman Mahmoodi, Student Member, IEEE, R. N. Uma, Member, IEEE, Member, ACM,
and K. P. Subbalakshmi, Senior Member, IEEE

Abstract—Cloud offloading is an indispensable solution to supporting computationally demanding applications on resource constrained
mobile devices. In this paper, we introduce the concept of wireless aware joint scheduling and computation offloading (JSCO) for multi-
component applications, where an optimal decision is made on which components need to be offloaded as well as the scheduling order
of these components. The JSCO approach allows for more degrees of freedom in the solution by moving away from a compiler pre-
determined scheduling order for the components towards a more wireless aware scheduling order. For some component dependency
graph structures, the proposed algorithm can shorten execution times by parallel processing appropriate components in the mobile
and cloud. We define a net utility that trades-off the energy saved by the mobile, subject to constraints on the communication delay,
overall application execution time, and component precedence ordering. The linear optimization problem is solved using real data
measurements obtained from running multi-component applications on an HTC smartphone and the Amazon EC2, using WiFi for
cloud offloading. The performance is further analyzed using various component dependency graph topologies and sizes. Results show
that the energy saved increases with longer application runtime deadline, higher wireless rates, and smaller offload data sizes.

Index Terms—Joint scheduling–offloading, mobile cloud computing, computation offloading, scheduling.

✦

1 INTRODUCTION

C LOUD offloading has become a recognized solu-
tion for delivering computationally intensive ap-

plications (e.g., video-intensive games, computer vision-
based applications [1], and real-time visual information
reporting) on resource-constrained mobile devices [2],
[3]. Typically, energy and time (or delay) constraints have
played a strong role in determining offloading policies.
Recently, we argued that the burden placed on the wire-
less networks supporting this offloading must also be
taken into consideration [4] when developing offloading
strategies. In [4], we proposed an optimal offloading
policy for applications with sequential component de-
pendency graphs and multi-radio enabled mobile de-
vices, that minimizes the energy consumed by the mobile
device such that overall execution time of the application
will be below a given threshold while simultaneously
determining optimal percentage of data (associated with
computation offloading) to be transferred via each of the
multiple wireless interfaces. In this paper, we address
the problem of cloud offloading for mobile applications
with arbitrary dependency graphs rather than sequen-
tial dependencies or pre-determined compiler generated
schedule order. To this end, we must consider wireless-
aware scheduling of the application components jointly
with the offloading strategy. We optimally maximize a

• S.E. Mahmoodi and K.P. Subbalakshmi are with the Department of
Electrical and Computer Engineering, Stevens Institute of Technology,
Hoboken, NJ, 07030.
E-mails: {smahmood, ksubbala}@stevens.edu

• R.N. Uma is with the Department of Mathematics and Physics, North
Carolina Central University, Durham, NC, 27707.
Email: ruma@nccu.edu

net utility function, which trades-off the energy saved
at the resource constrained device with the time and
energy costs involved in offloading while meeting the
precedence constraints and execution deadline of the
application in single radio enabled mobile devices. To the
best of our knowledge, this is the first work that proposes joint
scheduling–offloading for mobile applications. By optimizing
the scheduling of the individual components along with cloud
offloading decisions, taking into account the wireless param-
eters, allows for an overall better solution compared to opti-
mizing only the offloading decisions using a pre-determined
compiler-generated schedule order of execution for the individ-
ual components. Besides, using the general dependency graphs
(without imposing a sequential ordering for processing) and
an optimal joint scheduling–offloading scheme can potentially
allow for parallel scheduling of components in the mobile and
cloud at the same time, thus reducing time to completion for
the application.

Cloud offloading can be interpreted as data flow
offloading in networking applications [5] or offloading
computationally intense tasks to the cloud [6] or cloudlet
[7], which is a self-managing data center in the layer
of network infrastructure [8]. In this paper, we refer
to computation offloading to the cloud. Existing work
on computation offloading to cloud resources can be
classified into three types: (i) ones that offload all of the
application to a cloud [9], [10]; (ii) those in which “all
or nothing offloading” is applied where either the entire
application is offloaded to the cloud or executed locally,
typically depending upon which is more energy efficient
for the mobile device [11]; and (iii) partial offloading
strategies where some of the component tasks are of-
floaded while the others are executed locally [4], [12],

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

[13], [14], [15]. In partial offloading, the application can
be coarsely partitioned into components [4], [12], [16],
[17] or a more fine-grained offloading can be achieved
[18] by using method-level partitioning as in MAUI [13],
ThinkAir [14] and CloneCloud [19].

Compared to the related work in Section 3, this paper
has several contributions. This is the first work, to the
best of our knowledge, that combines offloading and
scheduling decisions in the presence of arbitrary com-
ponent dependencies (precedence constraints of compo-
nents). To enable capturing this multi-dimensional deci-
sion aspect of this problem, a mathematical formulation
is best suited. Hence a key technical contribution of this
paper is the mathematical formulation of the component
offloading problem that arises in real mobile applica-
tions as an optimization problem using integer linear
programming formulations. The resulting mathematical
formulation is non-trivial. Specifically first, we model the
required joint offloading–scheduling decision variables,
latencies and the energy saved by cloud offloading.
Then, we provide a mathematical analysis for the op-
timization problem for joint wireless-aware scheduling
of the mobile application and cloud offloading. Note
that the optimization problem is linearized in order to
take benefit of linear programming (LP) for obtaining the
optimal solution. Third, real data are measured from an
HTC smartphone using real and random generated mo-
bile applications, WiFi radio interface for computation
offloading, and Amazon Elastic Compute Cloud (EC2)
for remote execution. We identify the optimal solution
under these real data measurements using IBM CPLEX
optimizer [20]. Finally, we derive a comprehensive per-
formance analysis of this work compared with upper
and lower bounds for dependencies of applications, the
number of application components, topology of applica-
tion component dependency graphs (CDGs), application
runtime, and wireless parameters such as rates, latencies,
and data sizes.

The rest of this paper is organized as follows. The
CDGs of mobile applications and related work are re-
spectively expressed as two important backgrounds of
the paper in Sections 2 and 3. Then, we model the
Joint Scheduling and Computation Offloading (JSCO)
scheme and formulate the optimization problem regard-
ing to the constraints for scheduling, delay, runtime
and completion deadlines in Section 4. In Section 5,
we present experiments and simulations to evaluate the
performance of the proposed optimal strategy. Finally,
Section 6 presents the conclusion and future work of the
paper.

2 BACKGROUND : COMPONENT DEPENDENCY
GRAPHS

All of the prior work discussed above on partial cloud
offloading consider mobile applications with sequential
component dependencies or component scheduling or-
der that is predetermined by a compiler. In general,

components in a real life application can have arbitrary
dependency graphs and potentially, an overall better
solution can be obtained by designing a joint scheduling–
offloading policy for the components where the schedul-
ing order of the components is also cognizant of the
wireless network supporting the offloading.

Component dependency graphs (CDGs) of mobile
applications must satisfy these general properties: (i)
each component should have at least in-degree of one
(except the first component, which has in-degree of zero);
(ii) components should have at least out-degree of one
(except the last component N , which has out-degree of
zero); (iii) all of the components should have at least
one direct or indirect path from component 1 so that
they are dependent on the common starting point of
the application (typically executed on the mobile); (iv)
all of the components should have at least one direct
or indirect path to component N (the last component)
and (v) in the adjacency matrix (M) of the CDG, all
the diagonal elements are zero, because there is no self-
dependency.

Fig. 1 presents different types of CDGs for an N -
component application (N=14): (i) sequential depen-
dency graphs where all the components are sequen-
tially dependent (Fig. 1a); (ii) parallel dependency graph
where only component 1 must be executed before com-
ponents 2 to N − 1. In addition, these components are
only required to transfer their output data to compo-
nent N (Fig. 1d); (iii) random Layer-by-Layer graph
(Figures 1b, 1e); and (iv) random Fan-in/Fan-out graph
(Figures 1c, 1f) [21]. In Layer-by-Layer CDGs, a random
number of nodes is generated for each of the layers and
edges are added with a probability p going from a node
in an earlier layer to a node in one of the successive
layers. In Fan-in/Fan-out CDGs, the Fan-in/Fan-out ra-
tio of each node is constrained to the given threshold.
Since usually mobile-initiated applications must start
on the mobile device and have an output display on
the mobile device, the first and last components are
processed in the mobile device. Note that the parallel
and sequential dependency graphs show the lowest and
highest dependencies between components respectively
and can be used to obtain the lower and upper ranges
for the cost of offloading on applications exhibiting these
extremes of CDGs.

3 RELATED WORK

Time scheduling of the application components is stud-
ied in eTime [9] and [22] in which a pre-determined
compiler-generated order of execution for the applica-
tion components is considered and all the component
tasks are offloaded for remote execution. eTime explores
an energy-delay trade-off in scheduling the required
data transmissions for offloading (entire computations
of application) such that the queue stability of the
wireless interface is satisfied and offloading is done
when the wireless connectivity is sufficiently good. A

2

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

1

2

3

4

5

6 7 8 9

10

11

12

13

14

1(a) Sequential dependency graph.

1

2 3 45

6 78 910

11 1213

14

(b) Layer-by-Layer CDG where p = 0.3

and s = 5.

1

2

3

4 5

87

6

9

1011

12

13

14

(c) Fan-in/Fan-out CDG where maximum
in-degree and out-degree are 3 and 2.

1

2

3

4

5 6 7 8 9 10

11

12

13

14

(d) Parallel dependency graph.

1

3 2 54

7 109 86

12 1311

14

(e) Layer-by-Layer CDG where p = 0.7 and
s = 5.

1

2

3
4

5

8

76

910

11

12

13

14

(f) Fan-in/Fan-out CDG where maximum
in-degree and out-degree both are both 6.

Fig. 1: Examples of various CDGs for the mobile applications (N = 14).

scheduling policy for partially offloading the sequence
of fine-grained tasks with serial CDG (as in Fig. 1a) is
proposed in [15] such that the application execution time
is guaranteed. While these works that use fine-grained
method partitioning for partial offloading are limited
in input/environmental conditions in the offline pre-
processing and need to be bootstrapped for every new
application, our work, which uses component schedul-
ing, does not involve this problem. Existing component-
based mobile cloud offloading strategies, such as DOA
[17] and MACS [23], are not designed for parallel pro-
cessing simultaneously via the mobile device and cloud
because they use a pre-determined order of traversal of
the application CDG. Our proposed scheme has this flex-
ibility. Another scheduling scheme to minimize the total
energy consumption in a multi-user network is studied
in [24] where a centralized broker partially offloads
sequential tasks to the cloud. Thus, a centralized strategy
is required to perform a two-hop offloading where the
broker is an intermediary between the mobile user and
the cloud. However, using scheduling strategies based
on arbitrary CDGs extends the number of applications
to be used for partial cloud offloading. In [16], sequential
scheduling of the computational tasks is considered
in both single-channel and multi-channel communica-
tions. The objective is to minimize the energy consumed
while simultaneously meeting the delay constraints of
the application. However, wireless-aware scheduling of
the application components provides higher energy and
spectrum efficiencies in cloud offloading strategies.

4 PROPOSED SCHEDULING MODEL FOR MO-
BILE CLOUD OFFLOADING

In the mobile cloud offloading model considered in
this work, the mobile device has access to a cloud

server for computation offloading, and the cloud server
is endowed with parallel processing capabilities. We
additionally make the following assumptions: (i) the
multi-component mobile application that is utilized by
the mobile user is also installed on the cloud server;
and (ii) mobile broadband connectivity does not change
during the application processing time while the wireless
interface may provide different rate and delay values.
Note that in the second assumption, we consider that
application processing time is not large, and most of
the related works have also assumed this condition [13],
[14], [16], [17], [24], [23]. Following these assumptions,
we show a mobile cloud offloading model example of a
14-component application in Fig. 2b. Note that this 14-
component topology is the same as one of the applica-
tions we used in the performance analysis section.

4.1 Multi-Component Application Example for the
Scheduling–Offloading Model

Here we used a video navigation application, which in-
volves graphics [25], face detection [26], camera preview,
and video processing [27], running on an HTC Vivid
smartphone. Fig. 2a shows the dependency graph for
14 components of the application. The link connection
between components i and j shows that the output data
from component i is required as input by component j,
and dij represents the required data size for transferring
from i to j. We observe that this dependency could
be either sequential (like the dependencies between
components 1-2-3-5-14) or parallel (like the component
dependencies between 1-11-14, 1-12-14, and 1-13-14). In
Fig. 2b, an example of joint scheduling–offloading of
the components based on time, place of processing, and
dependency among the components is illustrated. If a
component is scheduled for offloading to the cloud, the

3

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

Cloud Offload

Manager

1

2 3

4

5

6

7

14

8 9

10

11

12

13

Graphics

Video

Processing

Face

Detection

Clustering

& Output

component
Input

component

(a) CDG of the application.

t=0

2

idle

t=T

4 7 12 14

3

6 10

11

9

time to process

component 1

time to

process 2

Processed component in the mobile

Processed component in the cloud

 output

from 1 to

cloud
output

from 6 to

mobile

output from

10,11,13 to

mobile

output

from 8 to

cloud

output

from 9 to

mobile

Execution in the mobile

Execution in the cloud

output

from 2,3

to mobile

1 8 5

13

(b) Scheduling–Offloading model.

Fig. 2: Scheduling model for cloud offloading in a 14-component mobile application with a general CDG.

energy consumption for processing will be saved by
remote execution. In addition, the time for processing the
component decreases significantly by remote execution
(compare the times taken to process components by the
mobile device and the cloud in Fig. 2b). Moreover, some
components can be processed in parallel by the cloud
(components 2, 6 and components 3, 10). However, the
cost of cloud offloading should also be considered in
the scheduling–offloading decisions: (i) the costs of delay
and energy consumed by offloading as a function of
data size for transferring (e.g., component 11 has very
large data for transferring so it takes a longer time for
communication); and (ii) the cost of the idle state as
the mobile waits to receive the required output data
from the cloud (between components 4 and 7). Thus,
a smart scheduling strategy for mobile offloading based
on energy-time trade-off is required.

4.2 Proposed Optimal Joint Scheduling & Computa-
tion Offloading Scheme (JSCO)

In this section, we present the formulation of our prob-
lem as an integer linear program. For each time period
(t−1, t] denoted by time slot index t, we define decision
variable, xljt, which indicates whether component j
completes processing at time slot t on the mobile (l = 0)
or on the cloud (l = 1). This decision variable captures
the multi-objective requirement of mobile communica-
tion applications to provide ”anywhere, anything, anytime”

service.

The processing indicators in the mobile and cloud are
respectively given by mj =

∑T

t=1
x0jt, cj =

∑T

t=1
x1jt,

∀j, where T is the number of time periods to complete
processing the application. Also τ cmij denotes the time
(the number of time slots) to transfer data from com-
ponent i to j when i ≺ j, and j is processed on the
mobile and i is processed on the cloud. τ cmij includes
the product mjci where i is processed on the cloud
and j is processed on the mobile. In order to make the
optimization problem linear, this quadratic term of two
binary decision variables is replaced by a new variable
zji where zji is the component transferring indicator. zji
gets 1 if the output data of component j (component j
is executed in the mobile) is offloaded from the mobile
device to the cloud where component i (i ≺ j) will
be executed. Otherwise, it gets 0. This parameter must
satisfy the following four constraints [28]: zji ≤ mj ,
zji ≥ 0, zji ≤ ci, zji ≥ ci − (1 − mj), ∀i, j. Thus, the
quadratic term of two decision variables is converted to
a new decision variable so that the optimization problem
still remains linear. Similarly, τmc

ij denotes the time (the
number of time slots) to transfer data from i to j when
i is processed on the mobile device and j is processed
on the cloud and includes micj which is denoted by the
variable zij . Now the times for transferring from mobile
to cloud and cloud to mobile are respectively given as

τ cmij = αijzji
dij

Rd

, τmc
ij = αijzij

dij

Ru

, ∀i, j, where αij is the

4

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

TABLE 1: Parameter Definitions.

Parameters Definitions
N number of components in the applica-

tion.
T number of time periods to complete

processing the application.
t time index for period (t-1,t].
mj mobile execution indicator for compo-

nent j.
cj cloud execution indicator for compo-

nent j.
xljt a binary indicator which equals to 1

if component j completes processing
at time t on processing system l and
otherwise equals to 0.

αij dependency indicator: 1 if component
i must be processed before j and 0
otherwise.

zij component transferring indicator,
which equals to micj .

dij size of data required by component j
from component i.

qmj (qcj) time to process component j in the
mobile (cloud).

τmc
ij time required to transmit data from

component i executing in the mobile
to component j executing in the cloud.

τ cmij time required to receive data from
component i executing in the cloud to
component j executing in the mobile.

νk time to process component k either on
mobile or cloud.

Ecom the total energy consumed by the mo-
bile device for communication.

Pac active power of the mobile while pro-
cessing a component.

PTx (PRx) power consumption of the mobile to
transmit (receive) required data.

Ru (Rd) average uplink (downlink) rate of the
wireless radio interface.

dependency indicator, and gets 1 if component i must
be processed before j and 0 otherwise. dij is the size of
data required by component j from component i, and Ru

(Rd) is the average uplink (downlink) rate of the wireless
radio interface. Note that τ cmij , τmc

ij will be zero if i = j,
or if i does not precede j, or if i and j are both processed
on the cloud, or both processed on the mobile device. In
addition, the energy consumed for communication due
to cloud offloading the components is modeled by

Ecom = PTx

N∑

i=1

N∑

j=1

τmc
ij + PRx

N∑

i=1

N∑

j=1

τ cmij . (1)

The objective function in the optimization problem
over decision variables (xljt, zij , l ∈ {0, 1}, i, j =

1, . . . , N , t = 1, . . . , T) for the mobile cloud offloading
scheme is mathematically formulated as

max{

N∑

j=1

Paccjq
m
j − Ecom}. (2)

Eqn. (2) shows the maximization of the energy saved
through remote execution. This energy saved is essen-
tially the energy cost if the offloaded components had
been executed locally minus the cost of communication
energy.

Besides the constraints for quadratic parameter, the
following constraints should be satisfied in the opti-
mization problem with the objective function given by
Eqn. (2):

Runtime deadline constraint: The multi-component appli-
cation has a time deadline, which should be satisfied.
This constraint is given by 0 <

∑T

t=1
tx0Nt ≤ T , ∀t,

where
∑T

t=1
t.x0Nt denotes the completion time slot for

processing the last component (N) on the mobile (l = 0).
This time slot should be equal or less than T .

Each component be processed only once: Each component is
processed either in the mobile or cloud, which can be
written as

mj + cj = 1 ∀j. (3)

Precedence constraint: This constraint shows that compo-
nent k is required to begin processing no earlier than
the completion time of component j where j ≺ k. The
constraint is expressed as

1∑

l=0

t+νk+τcm

jk +τmc

jk∑

s=1

xlks ≤
1∑

l=0

t∑

s=1

xljs,

if j ≺ k, t = νj , . . . , T − νk − τ cmjk − τmc
jk ,

(4)

where νk is the time to process component k either on the
mobile or cloud, and is given by νk = mkq

m
k +ckq

c
k. Based

on Eqn. (3), νk will include either the cloud processing
time slots for component k or the mobile processing time
slots for component k, but not both. Here in constraint
(4), in order for k to be completed after the time t
plus the time for possible data transferring from j to
k (τ cmjk + τmc

jk), plus the time for processing component k
(νk), component j must be completed by time t, ∀t.

Serial computation at the mobile device: The processed
components in the mobile are required to be executed in
serial. Thus, for each time interval [t−1, t) we can have at
most one component for processing in the mobile, which

can be written as
∑N

j=1

∑min{t+νj−1,T}
s=t x0js ≤ 1, ∀t.

Completion deadline: Each component k must be com-
pleted only after the completion of each of its precedent
components like j, plus the time (slots) to process com-
ponent k itself, and the time slots to transfer required
data to the execution site of k if j is not on that same
site. This constraint is given by

∑1

l=0

∑T

t=1
txljt + τ cmjk +

τmc
jk + νk ≤

∑1

l=0

∑T

t=1
txlkt, if j ≺ k, k = 1, . . . , N .

Also, decision variables should be 0 − 1, xljt ∈ {0, 1},

5

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

0

20

40

60

80

100

120

Local

Execution

Remote

Execution

DOA JSCO HELVM RHJS

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 [
%

]

Fig. 3: Total energy consumed by the mobile device for the proposed
and classical schemes, normalized to the energy consumed by local
execution (using the face recognition application in [30]).

0

20

40

60

80

100

120

140

Local

Execution

Remote

Execution

DOA JSCO HELVM RHJS

E
x

ec
u

ti
o

n
 T

im
e

o
f

th
e

A
p

p
li

ca
ti

o
n

 [
%

]

Fig. 4: Total execution time of the application for the proposed and
classical schemes, normalized to the execution time by local execution
(using the face recognition application in [30]).

l ∈ {0, 1}, ∀j, t, and get zero values while the coordinated
component has not been processed yet, which is written
as xljt = 0, l ∈ {0, 1}, ∀j, t = 1, . . . , νj − 1.

4.3 Scheduling Overhead

Since we have a linear optimization problem, the number
of constraints plays the important role in scheduling
overhead because number of constraints affects memory
usage more than the number of variables [29]. In this
work, the number of constraints is (6+T)N2+4N+T+2,
which is a function of application runtime and number
of components (order of complexity is O(TN2)). Also, the
number of variables is N2+2TN (order of complexity is
O(TN). However, we do not experience schedule over-
head in the offloading scenario because (i) the strategy
will be executed in the cloud server where the RAM is
high enough, and (ii) JSCO is not required for a real-time
scenario while we assume fix wireless parameters.

5 PERFORMANCE ANALYSIS

In this section, we first discuss the performance of the
proposed JSCO scheme in comparison with the related
works using an application in [30], and also based on a
real application for which we made real data measure-
ments. This is the 14-component application whose CDG
was presented in Fig. 2a. To further the understanding of
our model’s adaptability and scalability, we considered
some randomly generated CDGs whose layered struc-
ture and Fan-in/Fan-out ratio could be controlled.

5.1 Real Data Measurements and Simulation Setup

An HTC Vivid smartphone with a 1.2GHz dual-core pro-
cessor and WiFi radio interface were used to gather real
data. To test the performance of the proposed optimal
scheme, a multi-component video navigation applica-
tion was used where video processing, face detection,
graphics, and clustering were the main features. In all, 14
components were used, four of which are related to the
graphics feature, three are for the face detection feature,
six are for video processing, and one is for clustering.
Note that the first and last components are executed
locally so that the input-output of the application is
accessed by the mobile user. In addition, graphics library
tools from the OpenGL mobile Android applications
were used [25]; face detection was taken from [26]; and
all the video processing features were obtained from [27].
The CDG of this application is illustrated in Fig. 2a. The
execution times of the components in the HTC phone
and the cloud, uplink and downlink rates, delay at
the WiFi interface were measured. The Amazon Elastic
Compute Cloud (Amazon EC2) was used as the cloud
computing server. The average transmission and recep-
tion power levels of the mobile device for WiFi service
were 257.83 and 123.74mW, respectively. The active and
idle power levels of the phone were 644.9 and 22mW,
respectively. The power consumption of the last com-
ponent in the mobile device was 55mW. These power
measurements were obtained using the “CurrentWidget:
Battery monitor” application [31]. The average wireless
service rates for WiFi, obtained using the TCPdump
tool, were 0.80Mbps for the uplink transmission and
1.76Mbps for the downlink transmission, respectively.
The local execution time for the 14 components were
measured as [30 340 345 125 30 80 70 30 185 125 650 571
904 56] ms. Because processing of the components in the
mobile device is performed in serial, application runtime
in the local execution equals the sum of the processing
times for the 14 components (3541ms). Also note that
here each time period (t− 1, t], ∀t, is set to 1ms.

The obtained real data measurements were used in
the linear programming proposed in Section 4.2 with
the objective function as shown in Eqn. (2) subject to
the expressed constraints. We used the IBM CPLEX
optimizer [20] to solve the integer linear problem, which
is known to be NP hard. Also, the JSCO strategy is
scheduled at the cloud server.

6

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

0

200

400

600

800

1000

1200

1400

1600

1800

640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200

1408 1760 2112 2464 2816 3168 3520 3872 5632 10912 17600 20240

T
o

t
a
l

E

n
e
r
g
y

 S
a
v
e
d

 [
m

J
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Parallel Dependency

Applied CDG

Sequential Dependency

(a) Total energy saved.

0

500

1000

1500

2000

2500

640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200

1408 1760 2112 2464 2816 3168 3520 3872 5632 10912 17600 20240

T
o

ta
l

E
n

e
r
g

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Parallel Dependency

applied CDG

Sequential Dependency

(b) Total energy consumption.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200

1408 1760 2112 2464 2816 3168 3520 3872 5632 109121760020240

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
r
g

y
 [

m
J
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Parallel Dependency

Applied CDG

Sequential Dependency

(c) Total communication energy.

Fig. 5: Total energy for the 14-Component application versus uplink and downlink rates in WiFi while T=3s, PTx=257.83mW, PRx=123.74mW.

5.2 Comparison of JSCO with State of Art

We compare our proposed optimal work (JSCO) to (1)
no offload (local) execution where all the components
are executed locally; (2) all offload (remote) execution
where all the components are offloaded to the cloud; (3)
the dynamic offloading algorithm (DOA) in [17], which
uses an energy efficient partial offloading strategy; (4)
HELVM algorithm from [32], which provides runtime
offloading services; and (5) a heuristic algorithm that is
the revised HEFT [33] for joint scheduling (RHJS) tasks
on multiple cores used in [34]. In the simulations for
this subsection, a face recognition application with 10
sequential components was utilized [30]. The wireless
network parameters in [35] are used such that exactly
the same parameters used for the simulation of DOA in
[17] were used for all the other schemes.

In Fig. 3, we compare the total energy consumption
of the proposed scheme (JSCO) with the 5 schemes.
This comparison is normalized to the scheme with local
execution of all the components. It is observed that JSCO
consumes 54%, 37%, 16%, 30%, and 11% less energy in
comparison to the schemes using local execution, remote
execution, DOA, HELVM, and RHJS, respectively.

Fig. 4 shows the time to run the application [30] for
the 6 schemes. This comparison is also normalized to
the scheme with local execution of all the components.
We see that by using the optimal JSCO scheme, the
application will be executed 25%, 49%, 32%, 19%, and
5% faster in comparison to the schemes using local
execution, remote execution, DOA, HELVM, and RHJS,
respectively. Thus, JSCO is a joint energy and time
efficient scheme in comparison to the other 5 schemes.

5.3 Simulations for the Real Mobile Application

In this subsection, we analyze the performance of the
proposed JSCO scheme using the real 14-component ap-
plication (referred to as “applied CDG”) w.r.t the critical
parameters of rate, time, and data size. We compare
and contrast the performance of our strategy on the real
14-component application with arbitrary dependencies
(Fig. 2) against a 14-component application with fully

0

200

400

600

800

1000

1200

1400

480 640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200 10000

1056 1408 1760 2112 2464 2816 3168 3520 3872 5632 10912176002024022000

O
f
f
lo

a
d
e
d
 D

a
ta

 S
iz

e
 [

K
B

]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Fig. 6: Offloaded data size of the application components versus rates
of the WiFi link while T=3s, PTx=257.83mW, PRx=123.74mW.

0

200

400

600

800

1000

1200

1400

480 640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200 10000

1056 1408 1760 2112 2464 2816 3168 3520 3872 5632 10912176002024022000

T
i
m

e

c
o

n
s
u

m
e
d

f
o

r

O

f
f
l
o

a
d

i
n

g

[
m

s
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Fig. 7: Time consumed for offloading versus rates of the WiFi link
while T=3s, PTx=257.83mW, PRx=123.74mW.

parallel dependencies (Fig. 1d) and a 14-component
application with fully sequential dependencies (Fig. 1a).
Since the parallel and sequential dependency graphs
show, respectively, the lowest and highest dependencies
between components, lower and upper bounds for the
cost of offloading could be obtained for the applied CDG.

Rate Plots: Fig. 5 shows the total energy values for
several uplink and downlink rates of the WiFi interface
provided for cloud offloading. Fig. 5a presents the total
energy saved through remote execution (the objective

7

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

function in Eqn. (2)) versus wireless rates. We see that
while rates increase, more energy is saved by the mobile
device with cloud offloading. This is expected, because
with higher rates, data communication is no longer a
bottleneck and it is more energy efficient to offload as
many components as possible to the cloud. More energy
is saved in the parallel dependency graph, while less
energy is saved in the sequential dependency graph.
We observe that in the sequential dependency graph,
no energy can be saved by cloud offloading for lower
ranges of rates, and the application cannot be processed
with these low rates in three seconds (the time for local
execution is 3541ms). However, in the higher ranges
of rates (uplink (downlink) rate= 9200 (20240Kbps)),
most of the components are offloaded to the cloud for
computations in all three CDGs. Thus, the performances
of these three are closer to each other when the wireless
rates increase. In Fig. 5b, the total energy consumed by
the mobile device (summation of active energy while
the mobile device is executing components locally, com-
munication energy, and idle energy while the mobile’s
processor is not executing any component) is plotted.
We see that less total energy is consumed by the mobile
device when WiFi rates increase. Moreover, Fig. 5c il-
lustrates the energy consumed by communication, Ecom

(given in Eqn. (1)), versus wireless rates. It is observed
that the energy consumed by communication decreases
with an increase in rates for the sequential and parallel
dependency graphs. Although this is true for the applied
CDG in higher rate ranges, more energy is consumed by
offloading while rates increase in the lower ranges. The
reason is that more computations are offloaded when
rates increase so more energy is required for offloading,
while in the higher ranges of rates, the time to offload
decreases thereby decreasing the communication energy.
Note that the application with sequential dependency
cannot be executed until rates reach 1440/3168Kbps. In
the lower rate ranges, wireless delay is high, and offload-
ing is not preferred. On the other hand, local execution
takes 3541ms when the application deadline, T , is set
to 3000ms in the simulations for this figure. Therefore,
the scheme using sequential dependency graph is not
plotted at lower rates because the application cannot be
executed in T = 3000ms.

Figures 6 and 7 depict the offloaded data size and
the time span for communication versus uplink and
downlink rates for the applied CDG. It is observed in
Fig. 6 that while rates increase, more data is transferred
for cloud offloading. More components for offloading
leads to the consumption of more energy and time for
offloading, as shown in Figures 5c and 7, respectively.
For rates higher than 1600Kbps uplink and 3520Kbps
downlink in Fig. 6, we observe that the data size for
offloading does not change much; however, the time
for offloading decreases. This results in a corresponding
decrease in the energy consumed for communication.
Time Plots: Figures 8a, 8b, and 8c respectively plot the
total energy saved, total energy consumption, and the

energy consumed by communication versus execution
time of the application for the three different CDGs
considered–sequential, applied and parallel. When more
time is allotted for the execution of the application, cloud
offloading is preferred and leads to a decrease in energy
expenditure by the mobile device.

Figures 5 and 8 show that using the JSCO scheme
(the scenario where the applied CDG is used) works
better than using an optimal offloading scheme that
uses a compiler pre-determined sequential traversal of
an arbitrary CDG (the scenario where the sequential
dependency is used). Examples of sequential traversals
of arbitrary CDGs include [13], [36]. Specifically, we
see from Fig. 8 that the processing of an application
with sequential traversal CDG can be completed in no
less than 3300ms, while the application with applied
CDG can be processed in 2400ms and the application
with parallel CDG can be processed in 2000ms (rates
are set to 800/1760Kbps). In addition, the application
with sequential dependency cannot be executed until
rates reach 1440/3168Kbps, whereas the applied CDG
is processed at much lower rates, 640/1408Kbps, while
T is set to 3000ms (Fig. 5).

We consider another metric, the number of transitions,
where a transition is a data transfer between the mobile
device and the cloud. In Fig. 9, the number of transitions
between the mobile device and the cloud is plotted
against the execution time for the applied CDG. We see
that for the simulations where T ≥ 2900ms, the number
of transitions between the mobile and cloud decreases
from six to four. Moreover, Fig. 10 illustrates that the
size of offloaded data decreases while the application
execution time increases. These two figures show that
computation offloading decreases while the execution
time increases. Therefore, the communication energy
decreases while the execution time increases, as shown
in Fig. 8c for the applied CDG.
The Data Plot: We next look at the impact on energy
consumption and savings when the amount of data to
be transferred increases. Here the required data transfer
for face detection components is increased from 21.4KB
to 2.2MB to consider the performance of total energy
as a function of the data size required for transition.
In Fig. 11, we see that, as expected, while the data size
for transferring increases, more energy is consumed for
communication, less energy is saved, and more energy
is consumed by the mobile device.

5.4 Simulations for Variety of Component Depen-
dencies

So far, the system performance was analyzed based on
the fixed CDG from the 14-component video navigation
application shown in Fig. 2, as well as the two extreme
cases of fully sequential CDG and fully parallel CDG.
In this section, we consider the performance of the
proposed system based on two different categories of
random CDGs: (i) Layer-by-Layer, and (ii) Fan-in/Fan-
out, as explained in Section 2. Since we use random

8

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

0

100

200

300

400

500

600

700

800

2000 2200 2400 2600 2800 3000 3200 3300 3500 3600 3900

T
o

ta
l

E
n

e
r
g

y
 S

a
v

e
d

 [
m

J
]

Execution Time [ms]

Parallel Dependency

Applied CDG

Sequential Dependency

(a) Total energy saved.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2000 2200 2400 2600 2800 3000 3200 3300 3500 3600 3900

T
o

ta
l

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J
]

Execution Time [ms]

Parallel Dependency

Applied CDG

Sequential Dependency

(b) Total energy consumption.

0

200

400

600

800

1000

1200

2000 2200 2400 2600 2800 3000 3200 3300 3500 3600 3900

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
r
g

y
 [

m
J
]

Execution Time [ms]

Parallel Dependency

Applied CDG

Sequential Dependency

(c) Total communication energy.

Fig. 8: Total energy versus execution time (T) while Ru=0.8Mbps and Rd=1.76Mbps.

0

1

2

3

4

5

6

7

N
u

m
b

e
r

o
f

T
ra

n
s
it

io
n

s
 b

e
tw

e
e
n

M
o

b
il

e
 a

n
d

 C
lo

u
d

Execution Time [ms]

Fig. 9: Number of transitions between the mobile and cloud for of-
floading in correspondence with execution time (T) while Ru=0.8Mbps
and Rd=1.76Mbps.

0

200

400

600

800

1000

1200

O
ff

lo
a
d
e
d
 D

a
ta

 S
iz

e
 [

K
B

]

Execution Time [ms]

Fig. 10: Allocated data size for cloud offloading in correspondence
with execution time (T) while Ru=0.8Mbps and Rd=1.76Mbps.

CDGs in this subsection, the simulations for each data
point are run over three CDGs and the average of these
three values is plotted. Each CDG that we generate is
constrained to have only 14 components for comparison
purposes.

Figures 12 and 13 show the performance of the pro-
posed JSCO scheme for randomly generated Layer-by-
Layer CDGs. In Fig. 12, the average total energy saved
through remote execution, the average total energy con-
sumed by the mobile and the average total energy

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
ot

al
 E

ne
rg

y
[m

J]

Data Size required for transition [KB]

Communication Energy

Saved Energy

Energy Consumption

Fig. 11: Total energy versus required data size for transition of
components while T=3s, Ru=0.8Mbps and Rd=1.76Mbps using the
applied CDG.

for communication are plotted against the size of data
transferred. These bar graphs are compared as a function
of the probability of edge connections (p). When this
probability increases, more components are dependent
on each other, and the density of the CDG increases.
Therefore, the energy consumed by cloud offloading
increases (Fig. 12c), and the energy saved through re-
mote execution decreases (Fig. 12a). Moreover, it can
be observed that when data size for transferring the
components increases, the total energy consumed by the
mobile device and the energy consumed for communi-
cation increase (Figures 12b, 12c), and the energy saved
through remote execution decreases (Fig. 12a). Also note
that for high values of p and size of data transfer, the
energy costs of offloading are so high that the energy
saved through remote execution gets closer to zero (as
shown in Fig. 12a).

In Fig. 13, the average total energy saved through
remote execution, the average total energy consumed by
the mobile, and the average total energy for commu-
nication are plotted against uplink and downlink rates.
These bar graphs are also compared as a function of
the probability of edge connections. We can observe that
while the wireless rates increase, the energy consumed
by offloading decreases (Fig. 13c), the energy saved

9

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

0

200

400

600

800

1000

1200

1400

1600

10 40 70 100 130

A
v

e
ra

g
e
 T

o
ta

l
 E

n
e
rg

y
 S

a
v
e
d
 [

m
J]

Data Size for Each Transfer [KB]

p=0.3

p=0.5

p=0.7

p=0.9

(a) Average total energy saved.

0

1000

2000

3000

4000

5000

6000

7000

10 40 70 100 130

A
v

e
ra

g
e
 T

o
ta

l
E

n
e
rg

y
 C

o
n

su
m

p
ti

o
n

[m
J]

Data Size for Each Transfer [KB]

p=0.3

p=0.5

p=0.7

p=0.9

(b) Average total energy consumption.

0

1000

2000

3000

4000

5000

6000

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
C

o
m

m
u

n
ic

at
io

n

E
n

er
g

y
 [

m
J]

Data Size for Each Transfer [KB]

p=0.3

p=0.5

p=0.7

p=0.9

(c) Average total communication energy.

Fig. 12: Average total energy versus required data size for transferring each component in the apps with Layer-by-Layer CDG (s = 5) and 14
components while T=3s, PTx=257.83mW, PRx=123.74mW.

0

200

400

600

800

1000

1200

1400

1600

1800

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y
 S

av
ed

[m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

p=0.3

p=0.5

p=0.7

p=0.9

(a) Average total energy saved.

0

500

1000

1500

2000

2500

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

p=0.3

p=0.5

p=0.7

p=0.9

(b) Average total energy consumption.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

e
ra

g
e
 T

o
ta

l
C

o
m

m
u
n
ic

a
ti

o
n

E
n
e
rg

y
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

p=0.3

p=0.5

p=0.7

p=0.9

(c) Average total communication energy.

Fig. 13: Average total energy versus uplink and downlink rates in WiFi for the apps with Layer-by-Layer CDG (s = 5) and 14 components
while T=3s, PTx=257.83mW, PRx=123.74mW.

through cloud offloading increases (Fig. 13a), and the
total energy consumption decreases (Fig. 13b). Moreover,
we see that while the probability and rates increase, the
energy saved through remote execution decreases.

Figures 14 and 15 show the performance of the pro-
posed JSCO scheme for randomly generated Fan-in/Fan-
out CDGs. In Fig. 14, energy saved, energy consumed by
the mobile, and energy consumed for communication are
respectively plotted versus the average data size for each
transfer. Our results indicate that the performance of the
JSCO scheme is independent of the Fan-in/Fan-out ratio
of these graphs but dependent on the total Fan-in plus
Fan-out degrees. When the in+out degree increases, the
dependency and offloading costs increase such that the
energy saved through cloud offloading decreases and the
energy consumed by the mobile device increases (Fig-
ures 14a, 14b). Also when the data size for transferring
increases, the energy consumed by the mobile increases
(Fig. 14c). Fig. 15 presents the energy as a function of
the uplink/downlink rates. While rates increase and the
in+out degree decreases, the energy consumed for com-
munication decreases (Fig. 15c). Therefore, the energy
saved through remote execution increases (Fig. 15a), and
the energy consumed by the mobile decreases (Fig. 15c).

5.5 Scalability of the JSCO Scheme

TABLE 2: Program runtimes of the CPLEX optimizer for the pro-
posed LP using Layer-by-Layer and Fan-in/Fan-out CDGs.

N mobile-
only
execution
time [ms]

T
[ms]

runtime
for Layer-
by-Layer
[s]

runtime
for Fan-
in/Fan-
out [s]

25 7714 6500 561 439
45 16230 13500 924 834
65 17412 14250 1764 1649
85 27877 17100 2862 2700
105 28098 21000 7654 8647

In this subsection, we discuss the scalability of our
JSCO scheme. Specifically, we want to address the largest
application that the JSCO scheme can handle in terms
of the number of components and total execution time.
In our discussions so far, we have used only a 14-
component application (either real or randomly gener-
ated). In order to maintain the same probability dis-
tribution of our measurements when scaling up the
application, we calculate the histogram of the current
real data measurements (qmk , qck, Pac ∀k) from the 14-

10

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

0

500

1000

1500

2000

2500

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y
 S

av
ed

 [
m

J]

Data Size for Each Transfer [KB]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(a) Average Total energy saved.

0

500

1000

1500

2000

2500

3000

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 [

m
J]

Data Size for Each Transfer [KB]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(b) Average total energy consumption.

0

500

1000

1500

2000

2500

3000

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
C

o
m

m
u
n
ic

at
io

n

E
n
er

g
y
 [

m
J]

Data Size for Each Transfer [KB]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(c) Average total communication energy.

Fig. 14: Average total energy versus required data size for transferring each component in the apps with Fan-in/Fan-out CDGs and 14
components while T=3s, PTx=257.83mW, PRx=123.74mW.

0

500

1000

1500

2000

2500

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

 S
av

ed
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(a) Average Total energy saved.

0

200

400

600

800

1000

1200

1400

1600

1800

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(b) Average total energy consumption.

0

200

400

600

800

1000

1200

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
C

o
m

m
u
n
ic

at
io

n

E
n
er

g
y
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(c) Average total communication energy.

Fig. 15: Average total energy versus uplink and downlink rates in WiFi for the apps with Fan-in/Fan-out CDGs and 14 components while
T=3s, PTx=257.83mW, PRx=123.74mW.

component video navigation application. Using the ob-
tained distribution, we generate the new data for ap-
plications with a greater number of components (25,
45, 65, 85, and 105 components). Increasing the number
of components requires a corresponding increase in the
runtime deadline (T); for example, for a 25-component
application T = 6500ms; for N = 45, T = 13500ms; for
N = 65, T = 14250ms; for N = 85, T = 17100ms; and
for N = 105, T = 21000ms.

Table 2 shows the program runtimes using the pro-
posed scheme for the two types of randomly generated
CDGs– Layer-by-Layer and Fan-in/Fan-out. In this table,
we consider the total execution time in accordance with
the number of components (N). We see that while the
number of components and total execution time increase,
the runtime of the proposed scheme increases. The JSCO
scheme is capable of handling over 100 components with
a mobile-only execution time of 28 seconds. Our simu-
lations were done on a single server machine with an
Intel Xeon(R) E7340 processor @ 2.5GHz CPU and 60GB
of RAM. Although the runtime to solve the associated
integer linear program increases with the number of
components to over 2hours, this time can be reduced
through parallel implementation using more powerful

processors.

Three scenarios are considered in this part: (A) the
scenario where the average data size to transfer is fixed
at 1220KB and the uplink/downlink rate is fixed at
1.28/2.816Mbps; (B) the scenario where the average data
size to transfer is fixed at 1220KB (the same as A) and
the uplink/downlink rate is fixed at 4.96/10.912 Mbps
(more than A); and (C) the scenario where the average
data size to transfer is fixed at 2196KB (more than A) and
the uplink/downlink rate is fixed at 1.28/2.816Mbps (the
same as A). In Fig. 16, the Layer-by-Layer CDG with
a larger number of components is considered. In this
figure, the energy saved, total energy consumed, and
energy consumed for communication are respectively
shown as a function of the number of application com-
ponents for the three scenarios, A, B, C. Note that here,
p = 0.2 and s = 5 (which is the number of layers). When
the number of application components increases, the
edges between components increase and therefore the
costs of offloading increase. Thus, all the energy values
increase. We can see that while the rates increase in
Scenario B in comparison to Scenario A, the energy saved
through remote execution increases, energy consumed
for offloading decreases, and the total energy consumed

11

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

25 45 65 85 105

T
o

ta
l

E
n
e
rg

y
 S

a
v
e
d
 [

m
J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(a) Total energy saved.

0

2000

4000

6000

8000

10000

12000

14000

25 45 65 85 105

T
o

ta
l

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 [
m

J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(b) Total energy consumption.

0

2000

4000

6000

8000

10000

12000

14000

25 45 65 85 105

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
rg

y
 [

m
J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(c) Total communication energy.

Fig. 16: Total energy versus the number of application components with Layer-by-Layer CDG (p=0.2 and s = 5), presented in Scenarios A, B,
and C.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

25 45 65 85 105

T
o

ta
l

E
n
e
rg

y
 S

a
v
e
d
 [

m
J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(a) Total energy saved.

0

1000

2000

3000

4000

5000

6000

25 45 65 85 105

T
o

ta
l

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 [
m

J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(b) Total energy consumption.

0

500

1000

1500

2000

2500

3000

25 45 65 85 105

T
o

ta
l

C
o
m

m
u

n
ic

a
ti

o
n
 E

n
e
rg

y
 [

m
J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(c) Total communication energy.

Fig. 17: Total energy versus the number of application components with Fan-in/Fan-out CDGs (maximum in-degree is 3 and maximum
out-degree is 2), presented in Scenarios A, B, and C.

by the mobile device decreases. On the other hand, while
the data size increases in Scenario C in comparison to
Scenario A, the energy saved decreases, communication
energy increases, and the total energy consumed by the
mobile device also increases, which is all as expected.

Fig. 17 plots the energy values in accordance with the
number of application components for the applications
with Fan-in/Fan-out CDGs in the three scenarios, A,
B, C. Here maximum in-degree is set to 3 and the
maximum out-degree is set to 2 for the corresponding
CDGs. Similar observations as in Fig. 16 are made here
as well.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed the first energy-efficient JSCO
scheme for mobile devices using applications with ar-
bitrary component dependency graphs. Existing work
considers either sequential ordering of the components
or a pre-determined ordering, leading to less adapt-
ability with wireless conditions. This was cast as an
optimization problem, and the results using real data
measurements show that the proposed JSCO reduces
consumption by 54% compared to local execution and up
to 37% compared to other existing schemes. Future work

includes devising polynomial-time heuristics to reduce
the runtime for the optimization problem.

REFERENCES

[1] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[2] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, pp. 51–
56, Apr. 2010.

[3] N. Vallina-Rodriguez and J. Crowcroft, “Energy management
techniques in modern mobile handsets,” IEEE Communications
Surveys Tutorials, vol. 15, no. 1, pp. 179–198, First 2013.

[4] S. E. Mahmoodi, K. P. Subbalakshmi, and V. Sagar, “Cloud
offloading for multi-radio enabled mobile devices,” in IEEE In-
ternational Communication Conference (ICC), Jun. 2015, pp. 1–6.

[5] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency
oriented traffic offloading in wireless networks: A brief survey
and a learning approach for heterogeneous cellular networks,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 4,
pp. 627–640, Apr. 2015.

[6] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When mobile
terminals meet the cloud: computation offloading as the bridge,”
IEEE Magazine on Network, vol. 27, no. 5, pp. 28–33, Sep. 2013.

[7] B. Zhou, A. Dastjerdi, R. Calheiros, S. Srirama, and R. Buyya,
“A context sensitive offloading scheme for mobile cloud comput-
ing service,” in IEEE International Conference on Cloud Computing
(CLOUD), Jun. 2015, pp. 869–876.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-Based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

12

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2560808, IEEE
Transactions on Cloud Computing

[9] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, and Y. Qu, “eTime: Energy-
efficient transmission between cloud and mobile devices,” in IEEE
Conference on Computer Communications (INFOCOM), Apr. 2013,
pp. 195–199.

[10] Y.-D. Lin, E.-H. Chu, Y.-C. Lai, and T.-J. Huang, “Time-and-
Energy-Aware computation offloading in handheld devices to
coprocessors and clouds,” IEEE Systems Journal, vol. 9, no. 2, pp.
393–405, Jun. 2015.

[11] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu,
“Energy-optimal mobile cloud computing under stochastic wire-
less channel,” IEEE Transactions on Wireless Communications,
vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[12] H. Wu, Q. Wang, and K. Wolter, “Trade-off between performance
improvement and energy saving in mobile cloud offloading sys-
tems,” in IEEE International Conference on Communications Work-
shops (ICC), Jun. 2013, pp. 728–732.

[13] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proceedings of the International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys. ACM,
2010, pp. 49–62.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in IEEE proceedings of INFOCOM,
2012, pp. 945–953.

[15] W. Zhang, Y. Wen, and D. Wu, “Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp.
81–93, Jan. 2015.

[16] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Computation
offloading for mobile cloud computing based on wide cross-layer
optimization,” in Future Network and Mobile Summit (FutureNet-
workSummit), Jul. 2013, pp. 1–10.

[17] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading
algorithm for mobile computing,” IEEE Transactions on Wireless
Communications, vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[18] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,”
IEEE Communications Magazine, vol. 53, no. 3, pp. 80–88, Mar. 2015.

[19] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proceedings of the conference on Computer systems, 2011, pp. 301–
314.

[20] [Online]. Available: http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/.

[21] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent,
and F. Wagner, “Random graph generation for scheduling sim-
ulations,” in Proceedings of the International ICST Conference on
Simulation Tools and Techniques, 2010, pp. 60:1–60:10.

[22] P. Balakrishnan and C. K. Tham, “Energy-efficient mapping and
scheduling of task interaction graphs for code offloading in
mobile cloud computing,” in IEEE/ACM International Conference
on Utility and Cloud Computing (UCC), Dec. 2013, pp. 34–41.

[23] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation of-
floading from mobile devices into the cloud,” in IEEE International
Symposium on Parallel and Distributed Processing with Applications,
Apr. 2012, pp. 784–791.

[24] M. Nir, A. Matrawy, and M. St-Hilaire, “An energy optimizing
scheduler for mobile cloud computing environments,” in IEEE
Conference on Computer Communications Workshops (INFOCOM
workshops), Apr. 2014, pp. 404–409.

[25] [Online]. Available: http://www.opengl.org/.
[26] [Online]. Available: http://www.developer.com/ws/android/

programming/face-detection-with-android-apis.html.
[27] [Online]. Available: http://opencv.org/.
[28] P. Rubin. [Online]. Available: http://orinanobworld.blogspot.de/

2010/10/binary-variables-and-quadratic-terms.html.
[29] [Online]. Available: http://www-01.ibm.com/support/docview.

wss?uid=swg21399933.
[30] [Online]. Available: http://darnok.org/programming/

face-recognition/.
[31] [Online]. Available: http://code.google.com/p/currentwidget/.
[32] S. Ou, K. Yang, and J. Zhang, “An effective offloading middleware

for pervasive services on mobile devices,” Pervasive and Mobile
Computing, vol. 3, no. 4, pp. 362 – 385, Aug. 2007.

[33] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 260–274, Mar. 2002.

[34] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization
in the mobile cloud computing environment,” IEEE Transactions
on Services Computing, vol. 8, no. 2, pp. 175–186, Mar. 2015.

[35] [Online]. Available: http://www.3gpp.org/ftp/tsg-ran/
wg4-radio/.

[36] U. Kremer, J. Hicks, and J. M. Rehg, “Compiler-directed remote
task execution for power management,” in Workshop on Compilers
and Operating Systems for Low Power, Oct. 2000.

S. Eman Mahmoodi is currently pursuing his
PhD degree at the Department of Electrical
and Computer Engineering, Stevens Institute of
Technology. He received the BS and MS degree
in Electrical Engineering from Iran University of
Science and Technology, respectively in 2009
and 2012. He has been working on Mobile Cloud
Computing, Optimization and Applied Modeling,
Cognitive Networks, and Wireless Communica-
tions. Mahmoodi is a Stevens Innovation and
Entrepreneurship Doctoral Fellow.

R. N. Uma ’s research interests include data
science, scheduling and resource allocation with
applications to cloud computing, robotics, wire-
less sensor networks, multimedia networking,
and large logistics problems. She received her
BSc degree in Mathematics from the Univer-
sity of Madras, Chennai, India, the ME degree
in Computer Science from the Indian Institute
of Science, Bangalore, India, and the PhD de-
gree in Computer Science from the NYU Tan-
don School of Engineering (formerly, Polytechnic

University) New York. She is an associate professor in the Department of
Mathematics and Physics at North Carolina Central University, Durham.
She is a member of the IEEE and the ACM.

K. P. (Suba) Subbalakshmi is a Professor at
Stevens Institute of Technology, and will serve
as a Jefferson Science Fellow in 2016. Her re-
search interests span: Cognitive radio networks,
Cognitive Mobile Cloud Computing, Social Me-
dia Analytics and Wireless security. She is a
Founding Associate Editor of the IEEE Trans-
actions on Cognitive Communications and Net-
working and an Associate Editor of the IEEE
Transactions on Vehicular Technology. She is the
Founding Chair of the Security Special Interest

Group of the IEEE Technical Committee on Cognitive Networks. She is
also a recipient of the NJIHOF Innovator award.

13

