
1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 1

Visual Mobile Computing for
Mobile End-Users

Rita Francese, Michele Risi, Genoveffa Tortora, senior Member, IEEE, and Maurizio Tucci

Abstract—We present an approach to enable end-users to graphically compose their own applications directly on their mobile
phone, mainly integrating the functionalities available on the device and those provided by pervasive and Internet services. To this
aim, we propose a methodology and a graphical notation enabling the user to compose mobile applications, named MicroApps:
the user creates an application following an incremental and iterative development process; he composes icons representing
(pervasive) services mainly by touch-based selection and following a data-flow approach. He is not in charge of the creation
of the user interface, which is automatically generated. The methodology enables the end-user to develop applications and/or
compose services on the smartphone, so paving the way towards new scenarios where smartphones replace and overtake the
Personal Computer, given their native possibility of wide connectivity, when augmented by features for interaction with remote
systems and sensors. The methodology has been evaluated through an empirical analysis that revealed that in spite of the
reduced size of the screen the use of the MicroApp Generator tool improves the effectiveness in terms of time and editing errors
with respect to the use of MIT App Inventor [1].

Index Terms—Pervasive Mobile Applications, Graphical Environment, Service Composition.

F

1 INTRODUCTION

R ECENT advances in mobile technology, mobile
networks and mobile computing offer new func-

tionalities and applications for software systems on
mobile devices. Their popularity is increasing also
among users without specific technological skills.

Moreover, the demand for mobile applications
comes from a wide range of domains: Gartner re-
search estimates a market volume of $185 billion
in 2014 [2]. New services and innovative interaction
modalities are continuously proposed, including ges-
ture detection, device movement and context-based
control [3]. These innovations are mainly due to the
novel and cheap equipment offered by the latest gen-
eration of mobile phones, such as on-board cameras,
accelerometers, compass, GPS, together with their
increased processing power and fast Internet connec-
tivity. In addition, around us there is an enormous
number of instruments and sensors that need to be
connected: ”the Internet of Things” [4]. In this con-
text, smartphones should allow the user to combine
services across multiple instruments to get smarter
applications [5].

Nevertheless, service composition is still a task for
expert people since it requires the knowledge of com-
plex standards and technologies, such as the standard
executable languages WSCDL and BPEL. In addition,
the development of mobile applications/services still
requires the users to know specific programming

• The authors are with the Department of Management and Information
Technology, University of Salerno, Fisciano, ITALY, 84084.
E-mail: {francese, mrisi, tortora, tucci}@unisa.it

languages (i.e., Java or Objective-C) and operating
systems (i.e., Android, Symbian, iOS or Windows).

At present, mobile devices offer their functionali-
ties through one of the following three modalities:
(i) native applications, ii) services available on Web
sites, and (iii) applications that integrate native func-
tionalities with predefined services (e.g., a camera
application that enables to post a photo on the Face-
book profile). On the other hand, the user may need
to perform tasks that can be composed of several
small steps of the previous modalities, e.g., ”take a
picture, encrypt it and then send it to a predefined person”.
When a task of this kind is performed frequently,
the user can take advantage of an application that
automatizes it. The design and implementation of this
kind of applications require programming skills that
are uncommon among end-users.

In this paper we propose a mobile system, MicroApp
Generator, to compose all kinds of services, ranging
from Web services and native smartphone applica-
tions to domotic services, i.e., services to manage
highly sophisticated sensors and devices to control
temperature, lighting, security systems, etc. MicroApp
Generator lets end-users compose pre-existing ap-
plications/services available on the smartphone, the
local network and the Web. Services are represented
by rounded rectangles that can be connected to form
more complex services, directly on the smartphone,
following an incremental and iterative development
process. It runs on smartphones equipped with An-
droid SDK 4.2.2 or above.

In [6] and [?] we introduced the initial idea behind
the MicroApp generation approach, based on graphi-
cal composition of functionalities of the mobile device

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 2

(i.e., phone call, camera, etc.). An initial prototype was
evaluated in [7]. From this experimentation we under-
stood the real impact on the Internet of Things and
the need of studying a global visual environment to
communicate with all kind of services, from domotic
and sensor devices to Web services and local smart-
phone applications. In the following we summarize
the main contributions of this paper with respect to
the results reported in [6] and [?].

MicroApp Generator enables the generation of per-
vasive services (i.e., MicroApps) through the composi-
tion of existing services directly on the smartphone by
specifying a data-flow Direct Acyclic Graph (DAG) of
services using sequential, fork and join compositions.
It supports pre-conditions and loops in a transparent
way and assists the user during the composition;
MicroApp Generator does not require the user un-
derstand programming concepts such as assignments,
variables, conditions, and loops. Conditionals are lim-
ited in the form of service pre-conditions.

The MicroApp programmer focuses just on the
app behaviour, since the environment automatically
creates a user interface for the app starting from the
Web Service Description Language (WSDL) [8]. The
MicroApp execution can be triggered by various con-
ditions, including environmental and proximity ones,
and gestures. If a service is unavailable at runtime, the
tool will attempt to find another compatible service
to replace it; MicroApps can be used as services
in other MicroApps, supporting an incremental and
iterative development process. The execution of a
MicroApp is performed by interpreting a data-flow
DAG of services represented as an XML description.
This interpreter-based strategy makes it easy to test
MicroApps while they are being created, and to load
and execute MicroApps from the MicroAppStore, a
shared MicroApp repository; thus, MicroApps can
easily be shared with others and remixed to form
new apps. The hardware required both to run the
development environment (i.e., MicroApp Generator)
and the generated application is a smartphone. All
these design decisions are the results of trade-offs
among the system simplicity, expressiveness and pro-
gramming power.

To assess the usability of the proposed approach
we conducted an evaluation to compare the effec-
tiveness of MicroApp Generator on the smartphone
with respect to the well-known PC-based MIT App
Inventor. Even though the competition is unbalanced
due to the wider facilities of a PC-based environment
(keyboard, screen size) with respect to those available
on the smartphone, the results of this investigation
provide evidence that MicroApp Generator is better
than App Inventor in some dimensions.

The paper is structured as follows: Section 2 de-
scribes the proposed system and the methodology
underlying the MicroApp development environment.
Section 3 describes an experiment to compare Mi-

croApp Generator and MIT App Inventor with respect
to usability, and Section 4 discusses its results. Section
5 analyzes the existing approaches in the field of
end-user mobile application development and service
composition. Finally, Section 6 concludes the paper.

2 END-USER ORIENTED MOBILE DEVELOP-
MENT IN MICROAPP GENERATOR

In this section we present the philosophy of end-user
oriented development using MicroApp Generator and
its architecture.

Let us start by showing a sample application de-
veloped using MicroApp Generator. Consider the fol-
lowing scenario: Marc is a reporter of the newspaper
Daily News in a war zone. Repeatedly, he sends to
his editor by email encrypted pictures labelled by the
name of the place where each picture has been taken.

The steps Marc performs to design the application
”Send to the Editor” are depicted in Fig. 1, where
services are represented by rounded rectangles and
are connected through bullets which correspond to the
service input/output parameters.

Services are classified by type of action or device
sensor (e.g., Camera, Send, Facebook, Position) in
the service catalog. To compose the application Marc
performs the following actions: to take a picture,
he selects the folder Camera, which collects all the
services related to the device camera (Camera.Take,
Camera.Preview, Camera.Save). By a first touch, he se-
lects the service Camera.Take and, by a second touch,
puts it in the first column (Fig. 1(a)). As he wants to
see a preview of the picture before deciding to send
it to his editor, he selects the service Camera.Preview.
The output bullet of Camera.Take is compatible with
the input bullet of Camera.Preview since both have
the same color (pink), denoting the image data type.
Then, to encrypt the picture, he first discovers the
service Encrypt available on the Web, and then puts
it in the first column, since the output bullet of
Camera.Preview is compatible with the generic input
(black) of the selected service.

The editor’s contact is selected by adding the ser-
vice Contact.Static in the first available column on the
right as shown in Fig. 1(b). Marc also has to send
the picture location information. Thus, as shown in
Fig. 1(c), he selects the service Location, which detects
Marc’s position (by means of the GPS of the smart-
phone), and puts this service in the third column.
Next, he connects this service to the service Maps,
which determines the name of the user location and
produces a map of his position. With reference to
Fig. 1(d), the service Mail.Send needs to collect the
recipient email address, the picture and the location
information. First Marc drags and drops the service
Mail.Send in the first empty space of the first column
attaching it to Encrypt. Successively he touches the

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 3

(a) (b) (c) (d)

Fig. 1: The design steps of the application ”Send to the Editor”.

services Contact.Select and Maps to associate their out-
put parameters to the inputs of the service Mail.Send.
In coupling parameters, the editor may automatically
permute the input parameters in order to connect
them correctly. Moreover, possible coupling ambigu-
ities are solved by prompting a popup menu to the
user. For example, Mail.Send has two parameters of
type text (i.e., body and subject) both compatible with
the location information outputted by Maps: from a
popup menu, the user chooses to attach the location
information to the body parameter. If there is an
empty space between two services to be connected,
the service icon is automatically lengthened, as in the
case of Contacts.Select in the second column. Marc
selects the editor’s contact by longpressing on the
service Contact.Static. A contact specified at design
time (static) is set for all the successive uses of the
application. He can specify more than one contact and
the system will manage the collection of contacts in
a transparent way. Similarly, Marc sets the password
of the encryption algorithm for the service Encrypt at
design time.

2.1 The composition process
The overall process to compose and execute a Mi-
croApp mobile application follows an incremental
and iterative approach. It consists of two phases: Mi-
croApp Design and MicroApp Enactment, as shown
by the UML activity diagram in Fig. 2.

MicroApp Design. The Definition activity allows
users to describe the scaffolding of the MicroApp to
be developed. The user chooses how the MicroApp is
represented on the device. In particular, he provides
the icon associated with the application and its name.
The output of this activity is an empty MicroApp
in XML notation. The MicroApp logic is composed
considering the user context. Context-awareness rep-
resents the capability of a mobile system to per-
ceive the surrounding physical environment and to

Fig. 2: The MicroApp development process.

adapt its behavior accordingly. Besides user’s location
context, several other factors, such as lighting, time,
noise level, network connectivity, user actions and
status, communication costs and bandwidth should be
considered [9]. The context information is collected by
the activity Context Detection and includes information
such as user position, current time, network connec-
tion, and environmental information. Depending on
the user context, the activity Service Discovery detects
the services available on the Web or in the user
environment. If relevant services are detected, they
are added to the MicroApp Service Repository and, once
discovered, they can be reused anytime, anyplace.

A MicroApp is launched from the application menu
of the smartphone. In addition, the user can select
different activation modalities, by associating a user
gesture (i.e., circle, a line from left to right, etc.) or
by defining a trigger based on an environmental or
proximity condition (activation events).

During the MicroApp Modeling activity, the Mi-
croApp components available in the repository can
be composed by connecting them, according to the
input/output parameter constraints. The output of
this activity is the XML description of both the static
and dynamic aspects of the composed mobile ap-
plication that is then stored in the MicroApp Ser-
vice Repository on the device. In addition, the new

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 4

Fig. 3: The MicroApp Generator architecture.

MicroApp is registered in the action list launched
when the selected activation event happens. Besides
composing a MicroApp from scratch, the user can also
download the design of an existing MicroApp from
the MicroAppStore (i.e., a shared Web repository of
generated MicroApps) and modify it. This contributes
to ”Empower the end-users”, changing their role from
being passive recipients of services to active partici-
pants in service delivery and sharing [5].

MicroApp Enactment. Before executing a MicroApp,
the activity Context Detection checks the user context.
Then, the activity Contingency Management verifies the
availability of the involved services and tries to re-
place unavailable services. In this way, the application
is able to manage unpredictable availability of the
involved services, i.e., faults or network connectivity
problems. When all the required services are available,
this activity provides as output a Service Graph, that
represents the MicroApp design instantiated with the
available services. The Execution activity linearizes
the graph through a topological sort and starts the
execution. The Execution activity periodically verifies
if some context changes occur.

During the MicroApp Modeling activity the user
can try his MicroApp at any time, by enacting it. In
this way the development process is incremental and
allows experimentation and testing of partially com-
pleted applications. This feature lets end-user skills
grow gradually and provides immediate satisfaction.

2.2 The MicroApp Generator Tool

The MicroApp Generator architecture consists of the
nine components depicted in Fig. 3.

The architecture includes two engines: the Visual
Editor, which takes care of the definition and the
modeling activities, and the MicroApp Engine, which
is responsible of the Execution activity, including the
automatic generation of the Graphical User Interface
(GUI) and the management of data exchange among
services. The engines get the description of the ser-
vices from the Repository Manager, which is responsi-
ble of the MicroApp Repository on the user device,
containing the XML description of the generated ap-
plications and its components. Moreover, the engines
use the Component Manager, which handles the Mi-
croApp services as components and associates the

(a) (b) (c) (d) (e)

Fig. 4: Examples of service representation.

appropriate data type to the input/output parameters
by exploiting the Data Type Manager. It also manages
the parameter compatibility and their cardinality.

The engines use the Activity Manager to handle
services corresponding to device functionalities (e.g.,
make a phone call or get the contact list) and the
Service Manager to detect the user context, discover
Web and pervasive services, manage contingency and
execute a remote service.

The MicroApp Engine uses the Pre-Condition Man-
ager to verify whether the pre-conditions associated to
each service are satisfied in the user context.

The Graph Library is called by the MicroApp Engine
to linearize the execution flow of a MicroApp.

All these components are stored on the mobile
device. An additional component is the MicroApp-
Store Repository Manager, hosted on an external server
and responsible of the shared repository of the Mi-
croApp user community. The applications developed
by each user can be shared on the MicroAppStore.
Since each generated application could contain user
context information, such as contact telephone num-
bers or images, privacy should be protected when
the application is shared with other users [10]. Thus,
when transferring the design of a MicroApp from the
device to the MicroAppStore, the Repository Manager
removes all the private information, such as contact
data or other static parameter values. A user can
search and download a MicroApp of interest, cus-
tomize it with his own data, and modify its behavior.
This feature provides support to modification, since
novice users often prefer to learn to use a tool by
modifying an existing artifact. For example, user A
creates the application model (the MicroApp XML
description). Another user, B, downloads it from the
MicroAppStore and runs it on his device, exploiting
the native capabilities of the smartphone through
Android. Thus, when B takes a picture, he will use the
camera features offered by his device. A MicroApp ac-
cesses native sensors only by verifying their presence,
at ”sensor exists/does not exist” level.

2.3 Designing a MicroApp
The MicroApp Visual Editor is responsible of the Mod-
eling activity of a MicroApp (see Fig. 2).

2.3.1 Service Representation
The basic elements of the composition approach are
services, visually represented by rounded rectangles.
A service is characterized by:

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 5

• a category icon, such as Printer or Mail;
• a service name, representing the action per-

formed, such as Make a report or Send;
• the input parameters, represented by colored at-

taching points in the higher part of the rectangle;
• the output parameters, represented by colored

attaching points in the lower part of the rectangle;
• a service pre-condition, which has to be verified

before starting the service, represented as a dia-
mond in the lower left side of the rectangle.

The MicroApp Visual Editor supports the definition
of two kinds of parameters: (i) dynamic parameters,
which are specified at run-time and represented by
bullets; (ii) static parameters, which are assigned a
value during the composition of the application. An
end-user may create a new email service by setting
at design time (statically) the email address of his
frequently contacted friend; in this way he can use
this application to send frequently emails to his friend
without specifying his address every time. This value
is set once for all the executions. Static parameters are
represented by a colored triangle on the left hand side
of the rectangle. A static parameter can be switched
to become dynamic before the icon is used in the
Composition Area. The choice between having a static
parameter or a dynamic one is made at design time.

Concerning the parameter cardinality, each bullet or
triangle represents one or more parameters of a given
type, while a circled black bullet represents zero or
more parameters of any type. Multiple instances of
a parameter are handled by an implicit loop, which
executes the service for each instance.

Fig. 4 shows samples services: the color of bullets
and triangles represent parameter types. In Fig. 4(c)
the cyan colored bullet represents a Contact object,
containing the contact data (i.e., name, surname, ad-
dress, email, phone numbers). In Fig. 4(a), the service
Camera.Preview takes an Image object as input, dis-
plays it and returns it as output. In Fig. 4(b), Mail.Send
receives as input a contact (represented by a cyan
bullet) and two text strings (represented by two red
bullets) for the subject and the body parameters of the
email, respectively. The attached objects (represented
by a black circled bullet) can be of any number
and type and can be provided by different services.
Mail.Send sends the email and provides it as output
for possible printing, storing, etc. If multiple contacts
are provided as input (implicit loop), the email is sent
to each contact. An example of a static parameter is
shown in the Contacts service of Fig. 4(c). Once this
static parameter has been defined, the Visual Editor
requires the user to select a contact from the contact
list at design time. The user can also select more than
one contact, with the effect of producing a list of
contacts that will be all managed automatically. For
example, if this list is input to an email service, the
same email will be sent to all the contacts in the list.
This feature is relevant for end-users, since they have

generally some difficulties in managing loops [11].
Figure 4(d) shows the Camera.Take service, which has
no input parameters. At execution time, the Image
object provided as output is obtained. The MicroApp
Generator also handles the native sensors (accelerom-
eter, gyroscope, temperature, proximity and bright-
ness) with specific services, similarly to how the GPS
sensor is handled by the service Location in Fig. 1.

Since remembering the meaning of color parame-
ters can be hard for a novice user, the editor provides
a description of them when the user performs a long
press on a service icon.

Pre-conditions are adopted to define a constraint
to be satisfied before starting the service execution.
Two kinds of pre-conditions can be defined: manda-
tory and non-mandatory. A mandatory pre-condition,
represented by a red diamond, forces the applica-
tion to stop if the pre-condition is not satisfied. A
non-mandatory pre-condition, represented by a green
diamond, enables the application to go on without
executing the service, and the MicroApp Engine is in
charge of defining a new control flow that excludes
the services that are dependent on the stopped one.
An example of use of pre-conditions is shown in
Fig. 4(e), where the service AirConditioner.Set takes as
input the required temperature to be reached (i.e., 21
Celsius degrees). By long pressing the service icon,
a contextual menu is activated and the user selects
the condition type (i.e., proximity, temperature). For
example, he can set the value of the activation tem-
perature to be higher than 26 Celsius degrees. The
service is executed when the required conditions are
verified by the user context. In this example, the air
conditioner service is called in case the environmental
temperature measured by the mobile device sensor
satisfies the pre-condition.

2.3.2 Service Composition
The MicroApp Visual Editor adopts a data-flow pro-
gramming approach, similarly to LabView [12] and
ProGraph [13]. It offers a Composition Area, divided
in rows and columns (see Fig. 1) where the user com-
poses the application by dragging and dropping icons
exploiting a touch-based interaction; this interaction
modality eases the positioning of the service icons and
the change of their position (low viscosity) [14].

The editor reduces error proneness [14]: it avoids
errors in composing services by enabling the user
to perform only the correct associations among data
types according to the color of the parameter bullets.
Colors also make evident the relationship among
services, avoiding hidden dependencies that could
affect comprehension [14]. In particular, two or more
services can be composed if they are compatible.
Given two services X and Y, an output parameter
h of X is compatible with an input parameter k of
Y iff h and k are of the same color or at least one
of them is a circled black bullet. Two services in the

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 6

(a) ”Social event” (b) ”I’m at home”

Fig. 5: Examples of application design.

Composition Area are disjoint if they do not exchange
any parameter.

End-users often make a series of sequential actions
on the smartphone, such as take a picture, send it
by email, etc. To create a sequence of operations the
Visual Editor supports:
- Sequential composition. Two services X and Y are
sequentially composed if they are in two successive
rows and there exists at least one column of the
Composition Area where the output parameter of X
is compatible with an input parameter of Y.

The Visual Editor also supports parallel flow, offer-
ing the possibility of grouping together different ser-
vices into one, instead of launching them sequentially.
For example ”Send a picture to a friend both by email and
MMS”. The following two compositions are defined:
- Fork composition. It occurs on a service X when its
output parameters are given in input to at least two
disjoint services, as shown in Fig. 1(d), where the
Maps service has one input and two outputs. The
user can duplicate an output parameter to feed two
or more different services. In this case, if the user
long presses the output parameter bullet, the service
icon is enlarged and the selected output parameter is
duplicated.
- Join composition. It occurs when a service X receives
inputs from two or more disjoint services (Fig. 1(d)).

The MicroApp Visual Editor avoids loop-like struc-
tures, since it automatically manages collections. The
following examples show two applications that can be
designed using MicroApp Generator. In particular, the
application ”Social event” composes Web and social
network services, while the application ”I’m at home!”
shows a sample SmartHome application using pre-
conditions and pervasive services.

EXAMPLE 1.”Social event”. Alice often organizes
meetings in public places, such as clubs or hotels,
among the members of the Project Management Asso-
ciation. She needs an application that collects the data
from the Facebook group of the association and sends
an SMS with the venue information to the association
members whose telephone numbers are stored in her
smartphone. As shown in Fig. 5(a), Alice selects the
Facebook service Facebook.Group, which provides a

list of group members as output; the service Con-
tacts.Join, which fills the input contact list with the
telephone numbers available on Alice’s device; the
service Yellow Pages providing information about the
chosen venue, and the service Send.StaticTextSMS to
send invitations to the selected contacts. In partic-
ular, the service Facebook.Group inputs three textual
static parameters: the Facebook login and password,
and the group name. These parameters are specified
once, at design time. The service Yellow Pages takes
as input the search key and the place as dynamic
text specified at runtime (service Text) and outputs
the textual information related to the chosen venue.
The service Send.StaticTextSMS takes as input a static
text (i.e., ”Project Management Association Meeting”),
the information related to the venue provided by the
service Yellow Pages, the meeting date and sends their
concatenation to the list of contacts as an SMS.

EXAMPLE 2.”I’m at home!”. Bob needs an applica-
tion that tests whether he is close to his home and,
if so : (i) it activates the air conditioner if the actual
environmental temperature is higher than 26 Celsius
degrees; (ii) it sends the message ”I’m at home!” to
his wife, who usually goes to her old father in the
evening. Bob specifies the activation event, i.e., the
following condition: ”he is at a distance less than a
given radius from a predefined latitude/longitude position
corresponding to his home”. The application is activated
when the location of the device falls into a circle
of a given radius centered on Mark’s home. To set
the proximity radius Marc touches twice the map on
the smartphone to set both his home location and
the radius. The Visual Editor supports Bob in the
composition of two execution flows, as shown in Fig.
5(b): (i) Bob sets the target temperature (e.g., 21 ◦C)
of the AirConditioner by setting the static service
Number to 21. Then he specifies the pre-condition of
the service AirConditioner.Set by setting the activation
temperature of the service to be greater than 26 ◦C,
using the GUI shown in Fig. 6; a notification is sent
by the service Info.PrintResult, which displays a toast
message on Bob’s device; (ii) two input parameters
are provided to the Send.TextSMS service: the selected
contact (i.e., Bob’s wife) and the text of the message
(e.g., ”I’m at home!”) to be sent to her (service Text
Static), specified at design time.

2.3.3 Assisting the user composition
Since the system is devoted to end-users, the graphical
notation and the Visual Editor have to reduce the
cognitive effort, helping the user in resolving data
type conflicts and data dependencies among services
[15]. Examples of composition issues managed by the
system are the following:
- Automatic association. Association between compati-
ble service parameters is automatically resolved. The
parameters are automatically permuted, simplifying
the composition. In addition, the user can access

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 7

Fig. 6: The GUI for setting service pre-conditions.

information on the parameter type by a command in
the contextual menu.
- Avoiding erroneous input/output association. The Visual
Editor assists the user in case of ambiguous depen-
dence among service parameters. When a user tries to
associate services with different kinds of input/output
parameters, the editor provides an error message and
does not enable the association.
- Bridge association. The editor allows the user to con-
nect the input parameters of a service with the output
parameters of services that are not in contiguous
columns. This case is shown in Fig. 1(d), where the
Image object provided as output by the Maps service
is not provided as input to the service Mail.Send.
- Low viscosity [14]. The editor lets change the position
of an element in the Composition Area by touch-based
drag and drop features.
- Order independence [14]. The composition can be
performed selecting the services in different orders.
Indeed, referring to Fig. 1(d), the user could first
add the service Mail.Send and then position the other
services. In particular, if there exists a service in the
first row of the Composition Area that has at least
one bullet input parameter, the Visual Editor automat-
ically adds a new empty row by shifting vertically all
the services by one position.
- Combination [14]. A more complex service can be
created by combining existing services, including pre-
viously generated MicroApps that are managed in
turn as services.

2.4 Service Management

MicroApps, in turn, can be used as services in other
MicroApps, by means of their WSDL interface. Its
logic is described following a specific XML-Schema
stored in the MicroApp Service Repository. The adop-
tion of a WSDL interface for specifying a MicroApp
enables the tool to manage it as any other service
based on Service Oriented Architecture (SOA). An
example showing the recursive composition of a Mi-
croApp is given in the Appendix.

To compose applications using both MicroApps
stored in the MicroAppStore and pervasive/Web ser-
vices we adopt a discovery approach based on tra-
ditional techniques from the KNX standard [16] or
the SOA field. The service catalog on the server
contains a set of services periodically searched and
validated. The user can search among them by speci-
fying keywords matched with the Universal Descrip-
tion Discovery and Integration (UDDI) registry of the
services. A ranked list of the services in decreasing
order is generated adopting an Information Retrieval
technique based on the Vector Space Model [17]. The
user analyzes the list and selects the services of his
interest, which will be available in the MicroApp Ser-
vice Repository of the smartphone. Similarly, domotic
services are integrated by exploiting the discovery
functionality provided by the KNX protocol. If the
user selects a previously developed MicroApp in the
MicroAppStore, its XML description is downloaded.

The user gets detailed information on the service
by long-pressing the service icon. He can also change
the service name. When the user selects a Web ser-
vice, a MicroApp service is automatically generated
and its icon appears in the service catalog on the
device. The WSDL description of the service provides
all the details useful to call it (service location and
input/output parameters).

During the execution of a MicroApp, in case a
Web service is no longer available, the Service Man-
ager tries to replace it automatically; it updates the
service list by discovering new ones and searching
an equivalent service whose input/output parameters
correspond to those of the service to be substituted. If
no substitute is available, the user is notified and the
application is stopped.

The Service Manager invokes Web services by using
the SOAP client library ksoap2 for the Android plat-
form, whilst domotic services are invoked through the
Calimero library.

2.5 Testing and Deploying a MicroApp

During the design activity the user tests the MicroApp
by selecting the Try command. An XML description
of the MicroApp is stored in the Repository, ready to
be enacted by the MicroApp Engine, responsible of
the MicroApp execution.

The data-flow of a MicroApp is represented by
a directed acyclic graph since the MicroApp design
does not use loops. Each service has a set of inputs
generated by other services and, in turn, it provides
inputs for other services. The service execution plan
is automatically generated by a topological sort of
the data-flow graph. The MicroApp Engine loads
the XML description and translates it into a linear
execution sequence by instantiating the service objects
and running the process. As an example, Fig. 7(a)
shows the directed acyclic graph computed on the

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 8

(a) (b)

Fig. 7: The directed acyclic graph of a MicroApp (a) and its linearized execution plan (b).

Fig. 8: The Camera.Preview user interface.

MicroApp of Fig. 5(b): two connected components are
generated starting from the XML description. The first
one manages the air conditioning device and provides
a feedback message as output, whereas the second
one sends the SMS message to the specified contact.
Figure 7(b) shows the linearized execution plan of the
application. The solid arrows represent the data-flow,
whilst the dotted lines describe the control flow. The
pre-condition defined on the service AirConditioner is
implemented as a decision node on the control flow. If
the precondition is satisfied the service AirConditioner
is executed, otherwise the control passes to the service
Text Static. At the end of the modeling activity, the
user selects the Deploy command to install the Mi-
croApp on his device.

2.6 GUI Automatic Generation

The MicroApp Visual Editor assists the user in the
composition of the application logic. There is also the
need of modeling the GUI of the generated applica-
tion in terms of windows, pull-down menus, buttons,
scrolling, iconic images, wizards, etc. The composition
of the user interface is not an easy task for end-
users; thus, the solution adopted is the following: for
native services, the GUI is generated using an XML
description provided by the MicroApp Generator; for
Web services, it is automatically generated starting
from the WSDL.

In our approach, each service interface is a slide, so
a MicroApp has a slide-show presentation as interface
[18]. Figure 8 shows the interface generated for the
service Camera.Preview. A preview of the picture is

Fig. 9: Input and output interfaces generated for the
getWeatherInfo Web service.

shown to the user that can decide to accept it by
touching the Next button or to move a step backward
and take a new picture by touching the Back button.

The XML description of the user interface is dy-
namically created starting from the WSDL description
of the operations and parameters of the considered
service. In particular, MicroApp associates the appro-
priate graphical interfaces to the input/output param-
eters, depending on their data type, simple or struc-
tured. As an example, MicroApp Engine associates
the Android widget EditText to an input parameter
of type String, or a widget Spinner to a parameter of
type Enumeration. Android widgets offer a standard
user interface layout for which there is only the need
of defining the content. As for output parameters,
if the return value is URI, Image URI or String a
WebView, ImageView or TextView interface is shown,
respectively. The other return values use the interface
TextView as default. The user interface of structured
output parameters is generated recursively by using
a collapsible widget.

Figure 9 shows the input and output interfaces of a
Web service that provides the weather forecast, named
getWeatherInfo. The service requires as input the date
and place of interest and provides the weather infor-
mation.

2.7 Design decisions
In this section we discuss the design decisions, which
conducted to the proposal of MicroApp Generator.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 9

Our choices were the result of a trade-off between
expressive power and user-friendliness.
- When designing the composition process we decided
to foster the development by trials, which is appro-
priate for end-users [19]. To this aim we selected an
incremental and iterative approach which enables a
user to try his application, at any time, by enacting it.
- End-user development is also facilitated by the
adoption of graphical metaphors [20] [21] [22] [23].
Thus, we decided to base the app generation on the
composition of graphical icons.
- The Visual Editor has been designed taking into
account the limited size of the device screen, then
eliminating all the textual components and limiting
the overall information displayed. In addition, the
adoption of a touch-based interface simplifies the
input mechanisms and minimizes typing. The choice
of representing services by rounded rectangles simpli-
fies the touch-based interaction, since they have been
dimensioned considering the finger size.
- To simplify the composition of services and to
connect them correctly we decided to adopt colors for
representing the type of parameters. As it is generally
agreed, the number of colors should be between 6 and
8 [14] and we followed this direction.
- Concerning the expressive power of the composition
language we decided to adopt pre-conditions instead
of conditions, because generally end-users think in
terms of triggers such as ”in a given condition, perform
this action” [24], based on personal, spatial and tem-
poral relationships (e.g., ”At ten o’ clock, send a message
to my wife”).
- Implicit loops instead of loops were supported to
handle any number of inputs in a transparent way.
The number of input objects depends on the number
of outputs produced by the input sources.
- Since loops are not admitted, it is possible to
represent the service execution plan by an acyclic
graph. The specification of the execution order of the
activities is not an easy task for end-users [21]. Thus,
we decided to automatically generate the service exe-
cution plan performing a topological sort of the data-
flow graph, as detailed in Section 2.5. This guarantees
that, during the execution, all the data needed by a
service are available.
- Also the choice of automatically generating the user
interface is the result of a trade-off between simplicity
during the generation and user satisfaction of the
generated application.

3 EVALUATION

To assess the usability of MicroApp Generator we per-
formed a user study comparing MicroApp Generator
and App Inventor [1], the MIT tool generating mobile
applications on the PC. App Inventor was initially
developed at Google and now is managed by the MIT
Center for Mobile Learning [1]. Generally, empirical

studies carried out to compare the usefulness of two
development environments/programming languages
evaluate which one significantly reduces the errors
and the time spent by the developer to complete
a programming task. Thus, we measured Time and
Error, since the lack of big screen and keyboard affects
the time required and the error-proneness of the user
interaction.

The primary purpose of App Inventor1 is to de-
mocratize the creation of mobile apps. App Inventor
adopts a jigsaw programming approach and provides
support for Web services. It is composed of two
tools: (i) the Designer, a Web application that enables
the user to select the widgets for the user interface;
(ii) the Blocks Editor running on PCs, for the visual
programming language OpenBlocks [25]. It enables
implementing applications that span the spectrum
of mobile computing: stand-alone disconnected apps,
multiperson games and other shared applications,
clients for Web services and databases, and interfaces
to instruments and sensors.

An evaluation of the initial prototype of MicroApp
Generator has been conducted in [7], where it has
been compared to App Inventor Classic. That experi-
ment was limited to the composition of functionalities
of the mobile device. The evaluation proposed in this
paper concerns the use of mobile computing features
of both MicroApp and App Inventor related to the
development of applications executing Web services
integrated with native device features, and exploiting
the user context.

3.1 Experiment definition and context
The study was conducted in the Mobile Computing
Lab of the University of Salerno. Data for the study
have been gathered considering a group of 40 stu-
dents in Computer Science that voluntarily took part
in the experiment. The choice of Computer Science
students as participants of an End-User development
experiment could be a threat to the experiment va-
lidity. For this reason, we considered only Computer
Science students at the beginning of their first year of
University and, after a Pre-experiment questionnaire,
we selected as participants only those having no
programming skills.

During the experiments, we assigned the following
two tasks to each participant, consisting of the devel-
opment of small functionalities:
- T1: implement and generate the mobile application
Stock Quotes, selected from the tutorials proposed by
App Inventor. In particular, the task requires to call a
Web service (i.e., Yahoo! Finance) to get the latest price
for a stock, and to visualize the numeric result. Figures
10 and 11 show the composition of the application
by using MicroApp Generator and App Inventor,

1. There exist two versions of App Inventor: App Inventor Classic
and App Inventor 2. In this study we adopted the former.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 10

TABLE 1: Experimental Design.

Group 1 Group 2 Group 3 Group 4
Lab1 T1-MMA T1-MAI T2-MMA T2-MAI

Lab2 T2-MAI T2-MMA T1-MAI T1-MMA

Fig. 10: The application ”Stock Quotes” in MicroApp.

respectively. The App Inventor blocks to get stock
quotes (Web.Url and Web.GotText) are generic blocks
that access information to any Web page or Web
service. In Fig. 11, the programmer has filled them
in with the details that allow access to Yahoo finance
stock quotes. In contrast, the Stock Quotes service icon
in the MicroApp design represents a mechanism in
which this information has already been filled in.
- T2: implement and generate the mobile application
I’m at home, described in Section 2.3.2 (the App Inven-
tor solution is reported in the Appendix).

Two different methods, namely MMA and MAI ,
using MicroApp Generator and App Inventor, respec-
tively, have been considered for the tasks T1 and T2.

Effectiveness is evaluated considering the depen-
dent variables Time and Error. The former is mea-
sured as the time (expressed in minutes) needed to
accomplish the task. Error measures the number of
editing operations required to change the application
provided as output by the participant into a correct
one.

Mono-operation and mono-method biases are
avoided thanks to the adoption of two tasks and two
methods. In particular, the considered treatments are
all combinations of the Methods (MMA and MAI) and
Tasks (T1 and T2). To avoid results to be biased by
group ability, each user experienced both Methods
and both Tasks over the two subsequent laboratory
sessions Lab1 and Lab2. Also, to minimize the learning
effect, we needed to have users starting to work in
Lab1 using both the Methods (MMA and MAI) on
both the generation tasks. Table 1 summarizes the
design of the experiments, where Ti-Mj indicates the
combination of task and method performed by a
group of users in each laboratory session. To avoid
the threats to validity due to history and maturation,
the circumstances are the same in both the lab sessions
and the two sessions occurred on the same day. The
groups of students were homogeneously composed
considering scores reported by them in the admission
test for the degree program.

(a)

(b)
Fig. 11: The user interface (a) and the visual com-
position (b) of the application ”Stock Quotes” in App
Inventor.

3.2 Preparation, Material and Execution
The study has been divided in three steps and per-
formed in one-to-one sessions (i.e., a supervisor for
each subject) using the think aloud technique. Prior
to the study, users were informed of the anonymous
and confidential use of their data and their right to
quit the tests at any time. In the first step, a lesson
of 20 minutes introduced the principles of editing a
MicroApp and the main features of the prototype.
Analogously, 20 minutes more were devoted to App
Inventor. To give participants more confidence with
the two tools, some examples (not related to the tasks,
to avoid biasing the experiment) were also presented.
The training sessions of the controlled experiment
were concluded presenting detailed instructions on
the tasks.

After each task and for a given method, partic-
ipants had to fill in a usability questionnaire. In
particular, to measure the usability of the different
mobile application generation methods, the Computer
Systems Usability Questionnaire (CSUQ) was used
[26]. The adoption of a standard questionnaire ex-
cludes threats such as poor question wording. CSUQ
adopts a 7-point Likert scale. In CSUQ, four subscales
provide detailed information on usability aspects of
the system. In particular, the subscales are: the over-
all satisfaction score (OVERALL), system usefulness
(SYSUSE), information quality (INFOQUAL) and in-
terface quality (INTERQUAL). After each task, par-
ticipants also filled in the Post-Task Questionnaire,
aiming at assessing whether the laboratory tasks were

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 11

TABLE 2: Descriptive statistics and results.

MMA MAI p-value effect size
Var. median mean st. dev. median mean st. dev. d

Time ∗ 7 7.125 2.37 11 12 4.94 <0.01 medium (-0.74)
Error ∗ 0 0.65 0.95 1 1.32 1.38 0.02 small (-0.37)
* a parametric analysis has been performed through Mann-Whitney test

clear and whether the provided material was enough
to perform the activity.

Regarding the preparation of the devices involved
in the controlled experiments, we installed a proto-
type supporting the composition of MicroApps on
an Android based Samsung Galaxy S4 device, SDK
version 4.2.2, to support the tasks performed using
the MMA method, while the App Inventor editor has
been installed on a LAN Internet connected PC. The
same Android device connected to the PC via USB
cable was used in the App Inventor tasks.

The participants accomplished each laboratory ses-
sion without time limit. For replication purposes, the
experiment material is available online2.

4 RESULTS

In this section, we present the results of the empirical
analysis and draw some conclusions with respect to
the experiment questionnaires.
- Objective evaluation. No participant abandoned the
experiment. We summarize the results in the box plots
shown in Fig. 12, where the Time values concerning
the two treatments MMA and MAI are shown On
the left-hand side. The results related to the Error
dependent variable are shown on the right-hand side
of the same figure. Table 2 reports descriptive statistics
of the dependent variables, grouped by treatment (i.e.,
MMA and MAI).

Let us note that both the variables Time and Error
have a significant statistical difference with respect to
the adopted method, p-value < 0.01 in both cases. To
evaluate the magnitude of the effectiveness achieved
with the different methods we adopted the Cohen d
effect size. The effect size is considered negligible for
d < 0.2, small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d <
0.8, and large for d ≥ 0.8. As shown in Table 2, the
effect size is medium and negative for Time, and small
and negative for Error. In addition, 60% (resp. 45%)
of participants generated a correct application with
MMA (resp. MAI). These results show that MicroApp
has a little advantage with respect to App Inventor
when considering errors, while the advantage grows
in case of the accomplishment time, as better detailed
by the box plots in Fig. 12. These results are positive,
also considering the availability of a keyboard and a
larger screen when using App Inventor with respect
to those available on a mobile device.
- Subjective evaluation. Concerning the system useful-
ness and the quality of the information provided,

2. www.unisa.it/docenti/ritafrancese/ricerca/microappgenerator

Fig. 12: BoxPlots of the empirical analysis.

Fig. 13: BoxPlots of the user perception questionnaire.

the participants diffusely had a positive perception
of both the systems. As shown in the box plots in
Fig. 13, MicroApp Generator is perceived better than
App Inventor. Perceptions decreased in the case of
the interface quality (INFOQUAL) for both the sys-
tems. Also in this case, MicroApp Generator reached
better results. In addition, the results of the Post-Task
questionnaire revealed that the objective was clear for
both tasks and methods. The activity to be performed
was perceived as a bit clearer in MMA for task T1.
The provided material was positively evaluated in
all cases, while some additional difficulties has been
perceived during MAI sessions with respect to MMA

ones.

5 RELATED WORK

Many tools for mobile end-user development and
(pervasive) service composition are available. In or-
der to allow an effective comparison with respect
to MicroApp Generator, in Table 3 we classify the
features of each tool depending on the following
characteristics.

http://www.unisa.it/docenti/ritafrancese/ricerca/microappgenerator

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 12

TABLE 3: Technological features of related works and
tools.

Tool Primitive
Components Language Expressive

Power
Target
Users

Development
Device

Target
Device

Cloud
Services

MobiOne NC TBT D PC Sm Y
ContextStudio NC TB Pre EU Sm Sm N

MobiDev NC Vis D Sm Sm N
App Inventor SC, NC Vis C,L EU PC Sm Y

Cabana - Vis, Txt C,L D PC Sm N
Puzzle SC, SDC, NC Vis EU Sm Sm Y

TouchDevelop SC, NC TBT C,L D Sm Sm Y
Microservice SC TBT C,L D Sm Sm N

HUSKY SC Txt C EU PC PC N
Marmite SC TB C EU PC PC N
ICrafter SC TB EU PC PC N

iCAP SC TB Pre EU PC Sm N
Pocket Code NC Vis, Txt C,L EU Sm Sm N

MicroApp [6] [?] NC Vis IL EU Sm Sm N
MicroApp
Generator SC, SDC, NC Vis Pre, IL EU Sm Sm Y

- Primitive Components. The kind of primitive compo-
nents that the tool can use to compose applications
are classified as follow: Service Components (SC) can
use Web and Internet services; Sensor and Domotics
Components (SDC) can handle sensor data and net-
works; Native Components (NC) can use the function-
alities available on the mobile device (e.g., phone call,
camera, etc.).
- Language. The tool uses one of the following inter-
action metaphors to specify the applications: Visual
(Vis), the user interacts by means of a visual/graphical
language; Template-Based (TB), the user interacts by
exploiting predefined forms, Template-Based & Textual
(TBT), only simple apps can be programmed by using
the template-based metaphor, whilst the others need
textual programming; Textual (Txt) programming.
- Expressive Power. The tool uses the following con-
structs for programming the application logic: Condi-
tion (C), Pre-condition (Pre), Loop (L), Indirect loop (IL).
- Target Users. It specifies if the tool is end-user (EU)
oriented (i.e., no programming skills are required);
Developer (D) oriented (i.e., programming skills re-
quired).
- Development Device. It identifies the minimum hard-
ware required to run the development environment:
Smartphone (Sm); Personal Computer (PC) to locally
generate the mobile application; Server (Se) to re-
motely generate the mobile application.
- Target Device. The final execution device on which the
generated application will run: Smartphone; Personal
Computer.
- Cloud services. The environment requires the access
to cloud services for generating the app.

MobiOne [27] is a Windows-based tool for creating
cross-platform mobile applications which are stored
in a cloud repository. The tool creates the GUI of the
application by means of a device emulator on a PC.
Then it connects to an App Center Builder on a remote
server to generate the mobile application, which is
then downloaded on the PC. For simple predefined
tasks, such as Go to Url, Go Back, Send SMS, there is no
need of writing code, but more specific actions need
to be defined through JavaScript.

The tool ContextStudio [3] [28] supports the user in
the definition of context-action rules (triggers) aiming

at activating mobile phone functions when the rule
conditions are satisfied. The tool, running on a smart-
phone, provides a selection of contextual triggers and
application actions. The triggers can include implicit
(context) inputs, such as location, noise and device
activity, or explicit input actions, such as gestures or
RFID-based commands. The user can include more
than one trigger in the rule, while a single rule can
contain only one action. The tool interface enables the
user to specify the name of the rule and select the
action and the triggers among the ones available in the
corresponding list. It does not support service compo-
sition, but only the triggering of native functionalities
of the device.

MobiDev is a system that allows building mobile
interfaces directly on a mobile device [29]. In addition,
the authors provide functionalities to transform UI
sketches created on paper into a mobile User Interface.
The definition of the application logic is partially
supported by creating the User Interface storyboard
and connecting the GUI sketches with arrows. Code
entry is needed for processing the user inputs and for
refining the application logic.

MIT App Inventor has been described in Section
3. It uses a visual programming language supporting
all the programming constructs and a server to store
projects and generate .apk files. However, there are
stand-alone versions that run entirely on the PC.

Cabana is a Web-based application supporting the
development of multiple mobile platforms [30]. Pro-
gramming is based on a wiring diagram supple-
mented by the use of JavaScript. It is addressed to
beginner computer science students.

Danado and Paternò [31] [32] adopt a jigsaw ap-
proach to compose pervasive/Web services. They use
colors for specifying data types, following the idea
presented in [?]. The tool Puzzle needs the support of
an external server to manage external objects and the
application repository. It also provides an authoring
tool for designing the User Interface, an HTML viewer
and native modules to exploit device functionalities.
Puzzle does not support static parameter definition,
thus, it does not exploit the advantage of having a pre-
defined application, with some information bounded
at design time. Their approach gets the list of ap-
plications from an external Application Repository,
without contingency management.

Microsoft TouchDevelop [33] is a programming en-
vironment running on smartphones. The user writes
scripts by tapping on the screen. It has built-in prim-
itives which make it easy to access the sensor data
available on a mobile device. It supports the com-
binations of phone sensor data (e.g., location) and
the cloud (via services, storage, computing, and so-
cial networks). Differently from MicroApp Generator,
the language is not graphical: it uses variables and
assignment statements. The smartphone needs to be
connected to the TouchDevelop server in order to

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 13

generate an app.
In [34] a mobile tool has been proposed to compose

Microservices. They can be created considering two
user expertise levels: beginner, enabling a template-
based development of a Microservice, and advanced,
based on an XML-based language. Experienced users
may use a visual editor for editing the XML describing
Microservices’ profile, content, logic, and presentation
[35].

The HUSKY tool [36] enables the PC-users to com-
pose the logic of a PC-application by spatially arrang-
ing the component services within spreadsheet cells,
following the idea presented in [37]. The execution
proceeds on the spreadsheet from left to right and
from top to bottom. A set of adjacent cells makes a se-
quence of events. The information regarding the flow
of data among cells is not graphically represented.

Marmite [38] is an end-user mashup composition
tool. The system runs on the PC. It offers a set of
operators such as Search, Extract and Filter by, to
extract and process data from Web pages and Web
services. A data-flow approach is adopted to chain
operators. The flow of data is displayed in a table,
adopting a spreadsheet view.

ICrafter [39] supports PC users in on-the-fly ag-
gregation of services and interface generation using
patterns of interfaces.

The iCAP system [24] allows PC end-users to visu-
ally design context-aware mobile applications based
on if-then rules, temporal and spatial relationships.
Parameter types are explicitly declared as in textual
programming language.

Pocket Code [40] uses a block-based visual lan-
guage to create mobile apps on the smartphone. It
enables users to create applications exploiting objects.
Each object consists of costumes (images), sounds, and
actions. Actions are built with lego-like bricks and
let the user specify variables, logical operators, loops,
and conditions, and access to device sensors.

In the initial idea [6] [?], MicroApps were graphi-
cally composed using only Native Components. Pro-
gram constructs were represented using rounded rect-
angles with colored input/output ports that constrain
the way in which pieces can be connected. The app
components were implemented as native modules on
the device and colors were adopted for specifying
data types [?]. No external service was accessed.

The comparison summarized in Table 3 highlights
that MicroApp Generator is more oriented to end-
users than other development environments support-
ing service composition.

6 FINAL REMARKS

This paper presents MicroApp Generator, an end-user
environment which supports the generation of perva-
sive mobile applications, MicroApps, directly on the
smartphone. MicroApps are graphically developed by

composing native device features with Web services,
domotics and sensor management services.

We also evaluated the MicroApp Generator usabil-
ity by comparing its use with respect to the well
known MIT App Inventor. The results of this inves-
tigation provide evidence that, even if the mobile
interface is restricted in size, the users took less time
and made fewer errors.

Future work will be devoted to enable the users
to tweak the GUI to match their needs and to port
MicroApp Generator on other Mobile Operating Sys-
tems. We will also add adaptive controls that allow
the generated apps to handle the different capabilities
provided by devices, such as the camera resolution.

At present, the MicroApp Generator has been im-
plemented as an Android app. Since the MicroApp-
Store shares the MicroApp design, a MicroApp writ-
ten on one platform will be portable on all other
platforms running MicroApp Generator.

The analysis of the state-of-the-art concerning end-
user pervasive service composition directly on the
smartphones revealed that a tool satisfying these re-
quirements like MicroApp Generator was lacking. In
fact, it addresses a new mobile computing scenario
where the end-users actively access and compose their
personal information, Internet of Things and services
available on the Web, to create new services. The
approach used in MicroApp Generator enriches the
smartphone features with capabilities for interacting
with remote systems and sensors. It goes towards
a new technological trend where smartphones will
replace the Personal Computers thanks to their na-
tive possibility of wide connectivity, localization and
context awareness.

REFERENCES

[1] App Inventor, MIT Center for Mobile Learning. http://
appinventor.mit.edu/explore, 2013.

[2] J. Wilcox, Gartner: 185B mobile app downloads
by 2014. http://betanews.com/2011/01/26/
gartner-185b-mobile-app-downloads-by-2014, 2014.

[3] P. Korpipää, E.-J. Malm, T. Rantakokko, V. Kyllonen, J. Kela,
J. Mantyjarvi, J. Häkkilä, and I. Kansala, “Customizing User
Interaction in Smart Phones,” IEEE Pervasive Comp., vol. 5,
no. 3, pp. 82–90, 2006.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
survey,” Comp. Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[5] J. Brnsted, K. Hansen, and M. Ingstrup, “Service Composition
Issues in Pervasive Computing,” IEEE Pervasive Computing,
vol. 9, no. 1, pp. 62–70, 2010.

[6] S. Cuccurullo, R. Francese, M. Risi, and G. Tortora, “A Visual
Approach supporting the Development of MicroApps on Mo-
bile Phones,” in Intl. Conf. on Distributed Multimedia Systems
(DMS), 2011, pp. 171–176.

[7] A. De Lucia, R. Francese, M. Risi, and G. Tortora, “Generating
Applications directly on the Mobile Device: An empirical
evaluation,” in Intl. Conf. on Adv. Vis. Interfaces (AVI), 2012,
pp. 640–647.

[8] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana et al.,
“Web Services Description Language (WSDL) 1.1,” 2001.

[9] V. R. Basili and D. M. Weiss, “A Methodology for Collecting
Valid Software Engineering Data,” IEEE Trans. Softw. Eng.,
vol. 10, no. 6, pp. 728–738, 1984.

http://appinventor.mit.edu/explore
http://appinventor.mit.edu/explore
http://betanews.com/2011/01/26/gartner-185b-mobile-app-downloads-by-2014
http://betanews.com/2011/01/26/gartner-185b-mobile-app-downloads-by-2014

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 14

[10] European Commission, Report of the workshops on the
Common Strategic Framework for Research and Innovation:
Inclusive, Innovative and Secure Societies Challenge. http://ec.
europa.eu/research/horizon2020/pdf/workshops/inclusive
innovative and secure societies challenge/summary report
workshops on 27 june 2011 and 13 july 2011.pdf, 2011.

[11] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive Strategies
and Looping Constructs: An empirical study,” Commun. ACM,
vol. 26, no. 11, pp. 853–860, 1983.

[12] G. W. Johnson, LabVIEW Graphical Programming: Practical Ap-
plications in Instrumentation and Control. McGraw-Hill School
Education Group, 1997.

[13] P. Cox, F. R. Giles, and T. Pietrzykowski, “Prograph: A step
towards liberating programming from textual conditioning,”
in IEEE Workshop on Vis. Languages, 1989, pp. 150–156.

[14] T. Green and M. Petre, “Usability Analysis of Visual Program-
ming Environments: A Cognitive Dimensions Framework,”
Vis. Languages and Computing, vol. 7, no. 2, pp. 131–174, 1996.

[15] N. Mehandjiev, A. Namoune, U. Wajid, L. Macaulay, and
A. Sutcliffe, “End User Service Composition: Perceptions
and Requirements,” in IEEE European Conf. on Web Services
(ECOWS), 2010, pp. 139–146.

[16] KNX Specification, Version 1.1. Konnex Association, Diegem,
2004.

[17] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[18] T. Nestler, M. Feldmann, A. Preuner, and E. Schill, “Service
Composition at the Presentation Layer using Web Service
Annotations,” in Intl. Conf. ComposableWeb, 2009, pp. 63–68.

[19] A. Repenning and A. Ioannidou, “What Makes End-User
Development Tick? 13 Design Guidelines,” in End User Devel-
opment, ser. Human-Computer Interaction. Springer Nether-
lands, 2006, vol. 9, pp. 51–85.

[20] M. M. Burnett, Visual Progr. John Wiley & Sons, Inc., 2001.
[21] A. Namoun, T. Nestler, and A. De Angeli, “End User Re-

quirements for the Composable Web,” in Workshop on HCI and
Services (HCI), 2009.

[22] ——, “Conceptual and Usability Issues in the Composable
Web of Software Services,” in Intl. Conf. on Current trends in
web eng. (ICWE). Springer-Verlag, 2010, pp. 396–407.

[23] S. Thöne, R. Depke, and G. Engels, Process-Oriented, Flexible
Composition of Web Services with UML, 2002.

[24] A. K. Dey, T. Sohn, S. Streng, and J. Kodama, “iCAP: Interac-
tive Prototyping of Context-aware Applications,” in Pervasive,
2006, pp. 254–271.

[25] R. V. Roque, “OpenBlocks: An Extendable Framework for
Graphical Block Programming Systems,” in Master Thesis Mas-
sachusetts Institute of Tech., 2007.

[26] J. R. Lewis, “IBM Computer Usability Satisfaction Question-
naires: Psychometric Evaluation and Instructions for Use,”
Hum.-Comput. Interact., vol. 7, no. 1, pp. 57–78, 1995.

[27] Genuitec, MobiOne. http://www.genuitec.com/mobile, 2014.
[28] J. Häkkilä, P. Korpipää, S. Ronkainen, and U. Tuomela, “In-

teraction and End-User Programming with a Context-Aware
Mobile Application,” in Intl. Conf. on HCI (INTERACT), 2005,
pp. 927–937.

[29] J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamóndez,
M. Hermes, E. Rukzio, and A. Schmidt, “Mobidev: A Tool for
Creating Apps on Mobile Phones,” in Intl. Conf. on HCI with
Mobile Dev. and Serv. (MobileHCI). ACM, 2011, pp. 109–112.

[30] P. E. Dickson, “Cabana: A cross-platform mobile development
system,” in SIGCSE, 2012, pp. 529–534.

[31] J. Danado and F. Paternò, “A Prototype for EUD in Touch-
based Mobile Devices,” in IEEE Symp. on Vis. Languages and
Human-Centric Computing (VL/HCC), 2012, pp. 83–86.

[32] ——, “Puzzle: A Visual-Based Environment for End User
Development in Touch-based Mobile Phones,” in HCSE, 2012,
pp. 199–216.

[33] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich,
“TouchDevelop: Programming Cloud-connected Mobile De-
vices via Touchscreen,” in SIGPLAN Symp. on New ideas, new
paradigms, and reflections on prog. and softw. (ONWARD). ACM,
2011, pp. 49–60.

[34] J. Danado, M. Davies, P. Ricca, and A. Fensel, “An Authoring
Tool for User Generated Mobile Services,” in Conf. on Future
Internet, 2010, pp. 118–127.

[35] M. Davies, F. Carrez, D. Urdiales, A. Fensel, M. Nar-
ganes, and J. Danado, “Defining User-generated Services in
a Semantically-enabled Mobile Platform,” in Intl. Conf. on Inf.
Integration and Web-based App. & Services (iiWAS). ACM, 2010,
pp. 333–340.

[36] D. Skrobo, HUSKY: A Spreadsheet for End-User Service Com-
position. http://www.fer.unizg.hr/ download/repository/
DanielSkrobo KvalifDrIspit HUSKY.pdf, 2011.

[37] D. D. Hoang, H.-y. Paik, and B. Benatallah, “An Analysis of
Spreadsheet-based Services Mashup,” in Australasian Conf. on
Database Tech. (ADC), 2010, pp. 141–150.

[38] J. Wong and J. I. Hong, “Making Mashups with Marmite:
Towards End-user Programming for the Web,” in SIGCHI Conf.
on Human factors in computing systems (CHI). ACM, 2007, pp.
1435–1444.

[39] S. R. Ponnekanti, B. Lee, A. Fox, O. Fox, T. Winograd, and
P. Hanrahan, “ICrafter: A Service Framework for Ubiquitous
Computing Environments,” in Ubicomp. Springer-Verlag,
2001, pp. 56–75.

[40] Catrobat, Pocket Code. http://www.catrobat.org, 2014.

Rita Francese is Assistant Professor at the
University of Salerno since 2004. She is co-
author of more than 70 papers published in
scientific journals or proceedings of refer-
eed conferences. Her research interests con-
cern software engineering, empirical evalu-
ation, human-computer interaction, collabo-
rative work and learning, e-learning, visual
languages, and mobile application develop-
ment.

Michele Risi received his University degree
in Computer Science in 2001 and his Ph.D.
degree in Computer Science from the Uni-
versity of Salerno, Italy, in 2005. His re-
search interests include grammar formalisms
and parsing techniques for visual languages,
sketch understanding, architecture and de-
sign pattern recovery, reverse engineering
of Web applications, human-computer inter-
action, empirical evaluation, data-warehouse
and data visualization, and mobile develop-

ment and applications.

Genoveffa Tortora is a full professor in
Computer Science at the University of
Salerno, since 1990, where she has been
Department Chair, and then Dean of the
Faculty of Sciences. She has co-authored
more than 250 papers published in scientific
journals or proceedings of refereed confer-
ences, and has co-edited three books. Her
research interests are in the software engi-
neering and information systems areas, and
include human-computer interaction, visual

languages, databases, data-warehouses, geographic information
systems, image processing and biometric systems.

Maurizio Tucci received the Laurea degree
in Computer Science from the University of
Salerno, Italy, in 1988. He is a full profes-
sor of Computer Science at the University
of Salerno, since 2000. He was the direc-
tor of the Department of Mathematics and
Computer Science from 2000 to 2006. His
research interests include formal models and
tools for visual environment design and their
applications to visual systems development,
image indexing techniques providing an ef-

ficient mean to content-based retrieval of images and software
engineering.

http://ec.europa.eu/research/horizon2020/pdf/workshops/inclusive_innovative_and_secure_societies_challenge/summary_report_workshops_on_27_june_2011_and_13_july_2011.pdf
http://ec.europa.eu/research/horizon2020/pdf/workshops/inclusive_innovative_and_secure_societies_challenge/summary_report_workshops_on_27_june_2011_and_13_july_2011.pdf
http://ec.europa.eu/research/horizon2020/pdf/workshops/inclusive_innovative_and_secure_societies_challenge/summary_report_workshops_on_27_june_2011_and_13_july_2011.pdf
http://ec.europa.eu/research/horizon2020/pdf/workshops/inclusive_innovative_and_secure_societies_challenge/summary_report_workshops_on_27_june_2011_and_13_july_2011.pdf
http://www.genuitec.com/mobile
http://www.fer.unizg.hr/_download/repository/DanielSkrobo_KvalifDrIspit_HUSKY.pdf
http://www.fer.unizg.hr/_download/repository/DanielSkrobo_KvalifDrIspit_HUSKY.pdf
http://www.catrobat.org

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2422295, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. -, NO. -, APR 2015 15

APPENDIX

EXAMPLE A. Rita is a painter. She cannot answer
phone calls during her activity. Thus, she would
like to send an SMS possibly by dictating it to the
smartphone, sending it, and then saving her location,
the caller contact and the SMS text message. She finds
on the MicroAppStore the MicroApp Speech SMS (see
Fig. 14(a)), which inputs a contact and the GPS po-
sition; then it requires the vocal message and sends
an SMS with the corresponding text message to the
specified contact. At the end, this MicroApp outputs
the contact and the text message.

Rita decides to solve her problem by composing a
MicroApp CannotAnswer by using Speech SMS. She
downloads it into the Service Repository from the
MicroAppStore; thus it can be used similarly to all
the other services. The parameters of Speech SMS are
automatically determined from its DAG.

Figure 14(b) shows the solution to Rita’s problem.

(a) (b)

Fig. 14: The MicroApp service Speech SMS (a) and its
reuse (b).

EXAMPLE B. Figure 15 shows the App Inventor
solution of the ”I’m at home” application, described
in Section 2.

(a)

(b)

Fig. 15: The user interface (a) and the visual com-
position (b) of the application ”I’m at home” in App
Inventor.

