IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING VOL:25 NO:5 YEAR 2013

Achieving Data Privacy through Secrecy
Views and Null-Based Virtual Updates

Leopoldo Bertossi and Lechen Li
Carleton University, School of Computer Science, Ottawandatia

Abstract—We may want to keep sensitive information in user, it checks if the query can be answered using those
a relational database hidden from a user or group thereof. views alone. More precise|y' if the query can be rewritten
We characterize sensitive data as the extensions of Secrecy, terms of the views. for every possible instaricé [27]. If no
views. The database, before returning the answers to a query e . . . :
posed by a restricted user, is updated to make the secrecy complete rewritings pOSSIt.)Ie, the query '_s. reJeCted'_33]
views empty or a single tuple with null values. Then, a query the problem about the existence otanditionalrewriting

about any of those views returns no meaningful information. is investigated, i.e. relative to an instance at hand.

Since the database is not supposed to be physically changed Our approach to the data protection problem is based

for this purpose, the updates are only virtual, and also ificati f wh I d
minimal. Minimality makes sure that query answers, while ©ON SPecifications of what users amet allowed to access

being privacy preserving, are also maximally informative. through query answers, which is quite natural. Data owners
The virtual updates are based on null values as used in the usually have a more clear picture of the data that are
SQL lstanglard. Wed provide the semantics of sechrecg_f;news, sensitive rather than about the data that can be publicly
virtual updates, and secret answers to queries. The differg released. Dealing with our problem as “the Complementu

instances resulting from the virtually updates are specifid as . o .
the models of a logic program with stable model semantics, of the problem formulated in terms of authorization views

which becomes the basis for computation of the secret answeer iS not natural, and not necessarily easy, since complements
of database views would be involved [20], [21].

Index Terms—Data privacy, views, query answering, null According to our approach, the information to be pro-
values, view updates, answer set programs, database repsir tected is declared as secrecy viewor a collection of
them. Their extensions have to be kept secret. Each user
or class of them may have associated a set of secrecy
views. When a user poses a query to the database, the
Database management systems allow for massive storagstem virtually updates some of the attribute values on
of data, which can be efficiently accessed and manipulatéde basis of the secrecy views associated to that user. In
However, at the same time, the problems of data privacy dtes work, we consider updates that modify attribute values
becoming increasingly important and difficult to handlex Fahrough null values, which are commonly used to represent
example, for commercial or legal reasons, administratbrsmissing or unknown values in incomplete databases. As a
sensitive information may not want or be allowed to releas@nsequence, in each of the resulting updated instances,
certain portions of the data. It becomes crucial to addreife extension of each of the secrecy views either becomes
database privacy issues. empty or contains a single tuple showing only null values.

In this scenario, certain users should have accessHther way, we say thathe secrecy view becomes null
only certain portions of a database. Preferably, what Taen, the original query is posed to the resulting class of
particular user (or class of them) is allowed or not allowedpdated instances. This amounts to: (a) Posing the query to
to access should be specified in a declarative manner. Tai&h instance in the class. (b) Answering it as usual from
specification should be used by the database engine wigaeh of them. (c) Collecting the answers that are shared by
gueries are processed and answered. We would expectalghe instances in the class. In this way, the system will
database to return answers that do not reveal anything treturn answers to the query that do not reveal the secret
should be kept protected from a particular user. On the otriata. The next example illustrates the gist of our approach.
side and at the same time, the database should return as

informative answers as possible once the privacy condition . . .
have been taken care of Example 1. Consider the following relational databage

[. Introduction

Some recent papers approach_data_pnvacy and access Varks T studentiD T courselD T mark
control on the basis ofuthorization views[27], [33]. 001 o1 6
View-based data privacy usually approaches the problem 001 02 90
by specifying which views a uses allowedto access. 002 02 70

For example, when the database receives a query from IIthee secrecy view/; defined below specifies that a student

Contact author: bertossi@scs.carleton.ca. Faculty \Welibthe 1BM W'th her course mark must be kept secret when the mark
CAS, Toronto. is less than 60:

http://arxiv.org/abs/1105.1364v3

Vi(sid, cid, mark) < Marks(sid, cid, mark), mark < 60[databases have received the attention of the database com-
The view extension on the given instanceli§D) = munity [32], [29], [18], [23], [1], and may have several
{(001,01,56)}, which is not null. Now, a user subjectpossible interpretations, e.g. as a replacement for a real

to this secrecy view wants to obtain the students’ markglue that is non-existent, missing, unknown, inapplieabl
posing the following query: etc. Several formal semantics have been proposed for them.

Q(sid, cid, mark) « Marks(sid, cid, mark). (1) Furthermore, it is_ possible to cc_msider dif_ferent, coéngst

null values. In this work, we will use a single null value,

Through this query the user can obtain the first recotknoted as above and in the rest of this papernbl.
Mark (001,01, 56), which is sensitive information. A way Furthermore, we will treatnull as the NULL in SQL
to solve this problem consists imirtually updating the relational databases.
base relation according to the definition of the secrecy We want our approach to be applicable to, and imple-
view, making its extension null. In this way, the secrementable on, DBMSs that conform to the SQL Standard,
information, i.e. the extension of the secrecy view, cannahd are used in database practice. We concentrate on that
be revealed to the user. Here, in order to protect the tugeenario and SQL nulls, leaving for possible future work
Mark(001,01,56), the new instanc&®’ below is obtained the necessary modifications for our approach to work with
by virtually updating the original instance, changing thether kinds of null values. Since the SQL standard does

attribute values6 into NULL. not provide a precise, formal semantics faULL, we
Marks | studentID | courseID | mark define and adopt here a formal, logical reconstruction of
001 01 NULL conjunctive query answering under SQL nulls (cf. Section
001 02 90 [=B). In this direction, we introduce unary predicates
002 02 70 IsNull andIsNotNull in logical formulas that are true only

Now, by posing the query about the secrecy view, i.e.when the argument is, resp. is not, the conshulitL. This

Q1 (sid, cid, mark) < Marks(sid, cid, mark) treatment of null values was first outlined i [9], but here
! T Y ’ we make it precise. It captures the logics and the semantics
mark < 60, of the SQLNULL that are relevant for our wofkincluding

to D', the user gets an empty answer, i.e. Hg@D’) = (. this aspect of nulls in our work is necessary to provide the
This is because -in SQL databases- the comparisaiiif basic scientific foundations for our approach to privacy.
with any other value is not evaluated as true. In this paper, we consider only conjunctive secrecy views
Now, query[1) will get fromD’ the first tuple withNULL ~ and conjunctive queries. The semantics of null-basedalirtu
instead of56, which can only be -misleadingly, expectedlyupdates for data privacy that we provide is model-thegretic
and intendedly- interpreted by the user as an unknown ior sense that the possible admissible instances after the
missing value for that student in the instance at hdanhd update, the so-calledecrecy instancesare defined and
(not D’, which is fully hidden to the user). B characterized. This definition captures the requiremextf th

. . 0n a secrecy instance, the extensions of the secrecy views
Notice that, among other elements (cf. end of Section,. . . .
contain only a tuple with null values or become empty.

[V}, there are two that are crucial for this approach to Woriﬁurthermore, the secrecy instances do not depart from the

(@) The given database may contain null values and if 6triginal instance by more than necessary to enforce secrecy

has them or not is not known to the user, and (b) The . .
. . , . , Next, the semantics ofecret answerdo a query is
semantics of null values, including the logical operations . .
m%roduced. Those answers are invariant under the class of

with them. In this second regard, we can say for the momen :) - ,
g Y secrecy instances. More precisely, a ground tépea first

and in intuitive terms, that we will base our work on thé N . e -
. .) olrder queryQ(z) is a secret answer from instanéeif it
SQL semantics of nulls, or, more precisely, on a logica

reconstruction of this semantics (cf. Sectibns]I-A Bn&)l- IS an answer t0Q(z) in_ every possible secrecy iqstgpce
Hiding sensitive information is one of the concerns]c.Or D. Of course, explicitly computing and mater|aI|2|.ng
Another one is about still providing as much informa‘-a" the secrecy instances to secretely answer a query is too
. . : cqstly. Ways around this naive approach have to be found.
tion as possible to the user. In consequence, the virtua .
updates have to be minimal in some sense, while St-”ActuaIIy, we show that the class of secrecy instances,
L . . . s
doing their job of protecting data. In the previous exa or a given mstanceD and S?t.Of s.ecrecy.wew]zi can
e captured in terms of a disjunctive logic program with

ple, we might consider virtually deleting the whole tup . . .
Marks(001,05,56) to protect secret information, but weStable model semantics [15]. |16]. More precisely, there is

may lose some useful information, like the student ID arld (zjni;to-otnﬁlcorre(sjp(l)nd?rtlﬁe between tg\e secrecy instances
the course ID. Furthermore, the user should not be a?@ € stable models of the program. AS a consequence,

to guess the protected information by combing informatio e-logic_programs can be used t(.): (2) Compactly specify
obtained from different queries. axiomatize) the class of secrecy instances; and (b) Com-

As illustrated above, null values will be used to virtuall;})Ute ;ser?ret gnlswle.rs to queries by running the program on
update the database instance. Null values and incompl@t@ of the original instance.

1We use Datalog notation for view definitions, and sometiniss for 2The main issue in[]9] was integrity constraint satisfaction the
queries. presence of nulls, for database repair and consistent guewering[[3].

Our work has some similarities with that afatabase conjunctive queriesthat areL(X)-formulas consisting of
repairs and consistent query answerin@QA) [3], [5]. In a possibly empty prefix of existential quantifiers followed
that case, the problem is about restoring consistency obw a conjunction of (database or built-in) atoms.

database wrt to a set of integrity constrains by means Ig;(ample 2.Consider the following database instane:
minimal updates. The alternative consistent instancets tha

emerge in this way are calledpairs They can be used to RIA| B S| B |C
characterize the consistent data in an inconsistent dsgaba ‘C‘ Z Z ch
as the one that is invariant under the class of repairs. It is e | null null |

possible to specify the repairs of a database by means of))

disjunctive logic programs with stable model semantics (JfOF the conjunctive querg, (z, z): Jy(R(z,y) AS(y, 2)),

I‘Eﬂ for references on CQA) it holds, eg D1): Ql[a, f] Actually, Ql(Dl) = {(a, f),
Summarizing, in this paper we make the foIIowingfc’ 9): {e,j)}- Notice that here, and for the moment, we are

contributions: (a) We introducsecrecy viewso specify U€atingnull as any other constant in the domain. W

what to hide from a given user. (b) We introduce the Data will be protected via a fixed st of secrecy views

virtual secrecy instancethat are obtained by minimally V. They are associated to a particular user or class of them.

changing attribute values by nulls, to make the secre%/ o) _)

view extensions null. (c) We introduce tisecret answers Definition 1. A secrecy viewl; is defined by a Datalog

as those that are certain for the class of secrecy instandé&dg of the form

Those are the answers retur_ned to the user. (d) We estab_llsh Vi(z) < Ri(Z1), ..., Ru(@n), @,)

that this approach works in the sense that the queries

about the secrecy view contents always return meaningleggh R; € R,z C |J, z; and z; is a tuple of variableB.

answers; and furthermore, the user cannot reconstruct f@mulay is a conjunction of built-in atoms containing

original instance via secret answers to different querieerms i.e. domain constants or variables. |

(€) We provide a precise logical characterization of qU€We can see that a secrecy view is defined by a conjunctive

answering in database§ with null valusa SQL'_(f) we query with built-in predicates written it.(X). The con-
specify by means of logic programs the secrecy instances Of (i e query associated to the view @ (2) is:
a database, which allows for skeptical reasoning, and thén,

certain query answering, directly from the specification. Q%(z) : G(R1(Z1) A~ A Rp(Tn) A), (3

(g) We establish sme connections between secret queri¥ B B B _
answering and CQA in databases. with § = (UJz;) ~ . Conj(X) denotes the class of
gonjunctive queries of.(X), and V(D) the extension of

The structure of the rest of this paper is as follows, v red instance) for . By definiti
In Section[I] we introduce basic notation and definition%‘?"l‘;) s CQOVT%L; ed on instanc or 2. by aertnition,

including the semantics of conjunctive query answerin
in databases with nulls. In Sectignllll, we introduce thgxample 3. (example[®2 cont.) For the given instance
secrecy instances and investigate the properties of secrgg, consider the secrecy view defined by (z) «
SectiorIV¥ presents the notion of secret answer to a quepy(z, y), S(y, z). Here, the data protected by the view are
SectionY presents secrecy logic programs. Segfidn VI ifhose that belongs to its extension, namélyD;) =
vestigates the connection to database repairs and cansis{e,), (c), (¢)}. Sometimes, to emphasize the view predicate
query answering. Sectidn_YII discusses related work. |Avolved, we write instead, (D1) = {Vi(a), Vi(c), Vi(e)}.
Sectior V1Tl we draw conclusions, and point to future workthe corresponding conjunctive query is Q% (z)
Fy3Fz(R(z,y) A S(y, 2)). |

Finally, anintegrity constraint(IC) is a sentence) of

Consider a relational schema = (U, R, B), wherel{ is L(X). D |= ¢ denotes that instanch satisfiesy. For a

the possibly infinite database domain, withil € ¢/, R fixed setZ of ICs, we say thab is consistenwhenD |= 7,

is a finite set of database predicates, #hi a finite set i-€. whenD satisfies each element 8t

of built-in predicates, saf = {=, #, >, <}. For ann-ary For both of the notions of query answer and IC satisfac-
predicateR € R, R[i] denotes theth position or attribute tion above we are using the classic concept of satisfaction
of R, with 1 < i < n. The schema determines a languagef predicate logic, denoted with=. According to it, the
L(X) of first-order (FO) predicate logic, with predicategonstant null is treated as any other constant of the
in R U B andconstantsn /. A relationalinstanceD for database domain. We will use this notion at some places.

schemaY. is a finite set of ground atoms of the forR(a), However, in order to capture the special rolenafll among
with R € R, anda a tuple of constants froi¥ [1]. those constants, as in SQL databases, we will introduce next
A query is a formulaQ(z) of L(X), with n free variables 2 different notion, denoted witk=, . In Example[2, under
z. D |= Q[¢] denotes that instanc® makesQ true with the new semantics, and due to the participatiomafi in
the free variables taking values as inc U". In this | _ _ _ i
We will frequently use Datalog notation for view definitiorand

case,c is an answer to the querQ(D.) denotes the set queries. When there is no possible confusion, we treat segseof
of answers to quen® from D. We will concentrate on variables as set of variables. 1@, - - -z, as{x1,..., 2, }.

[l. Preliminaries

join, the tuple(e, j) will not be an answer anymore, i.e.in P, makes the formuldR(x,y, z) A S(y) Ay > 2) false.
D, £, Qile, j]. The two notions= and|=,, will coexist Even if it were true, this value fay would not be allowed.

and also be related (cf. Sectibn1l-B). Finally, x = 1 is not an answer, because the only
)) candidate value foy, namely1, makes the formula false.
A. Null value semantics: The gist In consequenceyull is the only answer. [

In [12], Codd proposed a three-valued logic with truth rpis notion of query answer coincides with the classic
valuestrue, false and.ur?knowrfo.r relational dgtabases V_"th FO semantics for queries and databases without null values
NULL. When aNULL is involved in a comparison operation, [0]. The next example with SQL queries ahtlLL

the result isunknown This logic has been adopted by th rovides additional intuition and motivation for the forina

SQL standard, and partially implemented in most commQR,antics of SectidnIlB. Notice the use in logical queries

commercial DBMSs (with some variations). As a resully¢ he new unary predicatesNull and IsNotNull that we
the semantics oNULL in both the SQL standard and thealso formally introduce in Sectidn1lIB

commercial DBMSs is not quite clear; in particular, for IC
satisfaction in the presence NULL. Example 5.Consider the schemé = { R(A, B)} and the

The semantics for IC satisfaction witlULL introduced instance in the table below. In RULL is the SQL null. If
in [9], [LO] presents a FO semantics for nulls in SQIlthis instance is stored in an SQL database, we can observe
databases. It is a reconstruction in classical logic of thike behavior of the following queries when they are directly
treatment of NULL in SQL DBs. More precisely, this translated into SQL and run on an SQL DB:

semantics captures the notion of satisfaction of ICs, and—p A B IS B C
also of query answering for a broad class of queries in a b b h
relational databases. In the rest of this section, we mativa a c NULL | s
and sketch some of the elements of the notion of query d NULL | m
answer that we will use in the rest of this work. The details d e
can be found in Sectidn I[B. In the following, we assume U u (@) Qu(z,y): R(z,y) Ny = null
that there is a single constantll, to represent a null value. v yuLL | SQL:Select » fromR

A tuple ¢ of elements of/ is an answer to quer@(z), v r where B = NULL;
denoted D =5 Q(@), if the formula (that represents) NULL | NULL Result: No tuple

Q is classically truewhen the quantifiers on iteelevant
variables (attributes) run ovét/ . {null}); and those on (b) Q}(z,vy): R(z,y) A IsNull(y)
of the non-relevant variables run ovdr The free relevant SQL: Now used S NULL
variables cannot take the valueull either. For a precise Result: (d, NULL), (v,NULL), (NULL, NULL)
definition see Section 1B (and alsil [9].[10]). () Qa(z,y): R(xz,y) ANy # null

SQL:Select * fromR where B <> NULL;

Example 4.Consider the instanc®, and query below: Result: No tuple

R| A B C S| B (d) Q4(z,y): R(x,y) A IsNotNull(y)
1 1 1 null SQL: Now used S NOT NULL
2 null | null 1) .
ol 3 3 3 Answer: The five expected tuples

(€) Qs(z,y): R(z,y) Nw =y
Qo(x) : FyIz(R(z,y,2) AS(y) Ay > 2). (4) SQL: Select = fromR where A = B;

. " _ o . Result: (u,u)
A variable v (quantified or not) in a conjunctive query IS(f) Qu(x,y): R(z,y) Az £y

relevantif it appears (non-trivially) twice in the formula SOL:Sel ect * fromR where A <> B:
after the quantifier prefix[[9]. Occurrences of the form paquit: Four tuples:(a, b), (a c), (d, &), (v, r) ’

v = null andv # null do not count though. In query @) Os(x,y.2,2): R(z,y) AR(z,2) Ay # 2

@), _the only_ rele_/a_nt quantifieq v_ari_able 5 beca_u_se it SQL:Select * fromRr1, R r2 where
participates in a join and a built-in in the quantifier-free r1.A=r2.Aand rl1.B <> r2. B

matrix of (4). So, there are two reasons foio be relevant. .
The only free variable isz, which is not relevant. As (h)Rer:(I; ;&Zb,t?:cl)%,(i&;itg(z DAy =z
for query answers, the only candidate values foare: SQL: S’el’e’ct . f;om R r’l S s1
null, 2, 1. In this casenull is a candidate value because where r1.B = s1. B,'
is a non-relevant variable. Result: (a b, b, h) '
First, x = null is an answer to the query, because th&) SoL: Selve;:t « fromRrljoin S sl
formula Jy3z(R(z,y,z) A S(y) Ay > 2) is true in Do, ' on rl B = s1. B
with a non-null witness value fay and a witness value for Resulfd (a b, b, h) ' T
z that combined make the (non-quantified) formula tru?D Or(z,y, 2 t)7- 1’%(50 YAS(zt) Ay # 2
Namely,y = 3,z = 3. So, it holdsD, =x Qa[null]. Y 50 AT Y AY
Next,z = 2 is not an answer. For this value of because 4The same result is obtained from DBMSs that do not require an
the candidate value fay, namelynull that accompanie® explicitly equality together with the join.

SQL: Select R1I.A R1.B, S1.B, S1.C least twice iny, without considering the atom&Null(v),
fromR RL, S S1 where RL.B <> S1.B'; IsNotNull(v), v @ null, or null § v, with § € B. VE(Q)
Result:(a, ¢, b, h), (d, e b, h), (u,u,b, h), {v,r, b, h), denotes the set of relevant variables @r [|

<av bv lv m>7 <av C, lv m>a <d7 €, lv m>a <U, u, lv m>a <V7 r, Ia m> L For examp|e, for the querQ(x) : ﬂy(P(% Y, Z) A Q(y) A

B. Semantics of query answers with nulls IsNull(y)), V(Q(x)) = {y}, becausey is used twice in
) ,) , the subformulaP(z, y, z) A Q(y).
Here we introduce the semantics of FO conjunctive query aq ysual in EO logic, we consider assignments from the

answering in relational databases with null valiiedore set, Var, of variables to the underlying database donidin

precisely, in SQL relational databases with a single nu(lﬂhat contains constantull), i.e. s : Var — U. Such an

value, null, that is handled like the SQINULL. The assignment can be extended to termss.ak maps every
SQL queries are first reconstructed as queries in the EQ.-pia . 1o s(z), and every element of ¢/ to ¢. For an

languageL(X"'") associated ta=™!! = (¢, R,B"'"), assignments, a variabley and a constant, s denotes

i o
with B = B U {IsNull("), IsNotNull(-)}. The last o assignment that coincides witheverywhere, possibly
two are new unary built-in predicates that correspond cept ony, that takes the value. Given a formulay

the SQL predicates SNULL and| SNOT NULL, used t0 1} genotes the formula obtained fromby replacing its
check null values. Their intended semantics is as foIIov‘1§ee variables by their values accordingsto

(Cf. Definition E‘)]SNUH(U”) is true, bUtISNu”(C) is NOW, given a formula (query)(and a variable aSSign'
false for any other constantin the database domain. And,ment functions, we verify if instanceD satisfiesy[s| by

for any constantl € U, IsNotNull(d) is true iff IsNull(d) assuming that the quantifiers on relevant variables range

is false. _)) over (U ~ {null}), and those on non-relevant variables
Introducing these predicates is necessary, because,ra.e}?ge ovet/. More precisely, we defindy induction ony,

shown in Example[J5, in the presence NULL, SQL | hen p satisfiesy with assignment, denotedD =, y]s].
treatsl SNULL andl S NOT NULL differently from= and

£, resp. For example, the queri&(z) : Jy(R(z,y) A Definition 4. Let x be a query inConj(X™'"), and s
IsNull(y)) and Q'(z) : Jy(R(z,y) Ay = null) are both an assignment. The pai, s satisfiesy under the null-
conjunctive queries ofZ,(X"'"), but in SQL relational semantics, denoted [, x|[s], exactly in the following
databases, they have different semantics. cases: (below,t,... are terms; and;, z, x> variables)
In Example[b, each quer@ is defined by the formula 1. (@) D |, IsNull(t)[s], with s(t) = null. (b) D |5,
4 on the right-hand side. Below, we will identify the querylsNotNull(t)[s], with s(t) # null.
with its defining FO formula. Furthermore, we exclude from- D |y (t1 < t2)[s], with 5(t1) # null # 5(t2), and
the SQL-like conjunctive queries those like (a) and (c) iA(t1) < 5(t2) (similarly for >)
Exampleb. 3. (@)D &, (z =0)[s], with s(z) = ¢ € (U~ {null}).
o <l . _ (or symmetrically
Definition 2. (a) The classCon;*¥ (S™!") contains all the (b)) D = (2, = 22)[s], with s(z1) = s(w2) # null.
conjunctive querieén L(X"'") of the form (€) D =, (c = c)[s], with c € (U ~ {null}).
N T - - 4. (@) D =, (z # o)[s], with null # s(z) # c € (U ~
Q@) F(AL@) A - A An(En)), ®) {null}). (ozrvsymmetrically).
wherey C J,; i, © = (U, Z:) ~ 9, and theA; are atoms (b) D |, (c1 # c2)[s], with ¢; # c2, and ey, co € (U ~
containing any of the predicatesRUB™!! plus terms, i.e. {null}).

variables or constants . Furthermore, those atoms ar&s. D =, R(t1,...,t,)[s], with R € R, and R(5(t1), ...,
never of the form: = null, null =+¢, t # null,null #t, 35(t,)) € D.
with ¢ a term,null or not. 6. D =, (aApP)[s], with o, 8 quantifier-frees(y) # null

(b) With Conj(X"'") we denote the class of all conjunctivefor everyy € Vi(a A 3), andD |=, a[s] andD =, Bs].
queries of the form[{5), but without the restrictions o7. D =, (3y a)[s] when: (a) ify € V(a), there isc in
(in)equality atoms imposed oflon; 39 (xmu!., B (U~ {null}) with D =, a[s¥]; or (b) if y &€ VE(a), there

The idea here is to force conjunctive quergéda SQL, is cin with D =, ofs¢]. u

i.e. those in Conjsq'(Z””"), that explicitly mention the This semantics can be applied to conjunctive queries in
null value in (in)equalities, to use the built-ime.Null or ConjS% (=", The notion of relevant attribute and this
IsNotNull. Notice that the clas€'onj ("' includes both semantics of query satisfaction can be both extended to
Cong®¥ (MU' and Cong (D). more complex formulas. In particular, they can be applied

. . Iso to th tisfacti f integrit traint der SQL
Definition 3. Consider a query irConj (X"'') of the form also to the satisfaction of integrity constraints under SQ

. -) Il val , 1[9].
Q(z) : Jguw(z,y), with 37 a possibly empty prefix of null values [[10], [9]
existential quantifiers, and is a quantifier-free conjunction Definition 5. [10] Let Q(z) : 3yy(z,y) be a conjunctive
of atoms. A variable is relevantfor Q [10] if it occurs at query in Conj (3™, with & = z1,..., 7.

5This semantics can be extended to a broader class of quadesso to 60f course, when there is an order relationgn
integrity constraint satisfaction. It builds upon a simitmd more general ~ “Here we use the symbols and # both at the object and the meta
semantics first introduced in][9]. [1L0]. levels, but there should not be a confusion since valuatiwasinvolved.

(@) A tuple{cy,...,c,) € U™ is ananswer fromD under Although our framework provides a precise semantics for
the null query answering semantits Q, in short, anN- conjunctive queries inConj (%) or Conj(X"''"), in both

answer denotedD =, Qlei,...,c,], iff there exists an cases possibly containing (in)equalities involvingli, a
assignments such thats(z;) = ¢;, for ¢ = 1,...,n; and usual conjunctive query in SQL should be first translated
D =, (3yv)]s]. into a conjunctive quen® in Conj s (=M if we want

(b) QM(D) denotes the set ofV-answers toQ from to retain its intended semantics. After th@™ can be
instanceD. Similarly, V(D) denotes a view extension ac-computed.

cording to theN-answer semanticd’V(D) = (QV)M(D).

(c) If Q is a sentence (boolean query), tNeanswer isyes |ll. Secrecy Instances

iff D , andno, otherwise. . .
Fy Q In this work we will make use ohull to protect secret

Notice thatD |=, (3y+)[s] in (a) above requires, accordinginformation. The basic idea that we develop in this and the
to Definition[4, that the variables in the existential prefigext sections is that the extensions of the secrecy views,
Jy that are relevant do not take the valuell. The free obtained as query answers, should contain only the tuple
variablesz; in Q(z) may take the valuewull only when with nulls or become empty. In this case we will say that
they are not relevant in the query. Example 4 illustrates thihe view is null

definition. In it, since the free variable is not relevant,

OM(Dy) = {(null)}. Similarly, in Example[R, it holds: Definition 6. A query Q(z) is null on instanceD if

ONDy) = {{a, f), (c.g)} € Q1(Dy). ON(D) C {(null,...,null)} (with the tuple inside with
Actually, it is easy to prove that, for queries inthe same length as). A view V(z) is null on D if the
Conj (™', it holds in generalQN(D) C Q(D). Fur- query defining it is null onD. u

thermore, theV-query answering semantics coincides witfFxample 7. (example[# continued) Consider the secrecy

classical FO query answering semantics in databases witieW Vs (z) < R(z,y,z), S(y), y > 2. Its corresponding

out null values[[I0], [[9]. More precisely, ifull ¢ U (and FO queryQ¥(z) in the one in[(#), namely:

then it does not appear i or Q either): D =, Q[t] iff Qo(x) : JyIz(R(x,y,2) NS(y) Ay > 2).

D = Qff). _ _) Under the semantics of secrecy in the presenasutif we
Furthermore, every conjunctive query ifionj (2"™'") expect the view to be null. This requires the values for

can be syntactically transformed into a new FO query f@firibute A associated with variable in Q. to be null,

which the evaluation can be done by treatimgl as any o the values inB associated with variablg in Q, to be

other constant [10][[9]. (A similar transformation will be,,,,;; or the negation of the comparison to bee. These

found in Propositiofil below.) B three cases correspond to the three assignments of Example
More precisely, a conjunctive queryQ(z) € @ Thus, the view extension ig (D) = {(null)}, which
Conj(x™!"), i.e. of the form [(5), can be rewritttnghows that the view is null om.. ™

into a classic conjunctive query, as follows: . .] S
In this example we are in an ideal situation, in the sense
Q"™(x) : IG(A1(T1)NA- - - ANAR(Tn) A /\ v # null). (6) that we did not have to change the instance to obtain
vEVR(Q) a “secret answer”. However, this may be an exceptional
It holds: D =, Q[iff D = Q™[d. Here, on situation, and we ywll have to wrtually distort” the given
) ! . . . |nd<,tance by replacing -as few as possible- non-null atteibu
the right-hand side, we have classic FO satisfaction, an . . .
. , . . values bynull. More generally, since it does not necessarily
null is treated as an ordinary constant in the domain. Tms .
. . olds that each secrecy becomes null on an instdnce
transformation ensures that relevant variables range OVET ~nd. the view extensions will be obtained from an
(U~{null}). QueryQ™(z) belongs toConj ("', and it ’

; alternative, possibly virtual, versio®’ of D that does
may contain atoms of the forsNull(t) or IsNotNull(t). make each c?f thosgviews null. In this senB¥,will be an
However, replacing them by = null or t # null, resp., : ’

. i admissibleinstance (cf. Definitio]7 below). At the same
leads to a query irConj (X)) that has the same answers ag , | iol f
(©) (under the same classic semantics) ime, we wantD" to stgy as close as possible 1 (cf.
' Definition [I1 below). Since there may be more that one
Example 6.(exampld# continued) Quer® in (@) can be such instanc&)’, we query all of them simultaneously, and
rewritten as return thecertain answerqdl18] (cf. Definition[I2 below).
Each of the query and view evaluations is done according
v Jydz(P A A 2N).
Q2 y3x(Plw.y,2) NQy) Ay > 2Ny # null) to the notion of N-answer introduced in Secti@n 1I-B.

We hadD =, Qo[1]. Now alsoD = Jy32(P(1,y, 2) A First, we define the instances that make the secrecy views
Q(y) Ny > 2 Ay # null) under classic query evaluatlon,empty or null.

with null treated as an ordinary constant. Similady,~

Q5*[2] due to the new conjungt = null. Finally, D = Definition 7. An instanceD for schemaX is admissiblefor

Qr¥[null] becausd | (P(null,3,3)AQ(3)A3 > 2A3 # a setV* of secrecy views of the forni}2) if under thE-

null). Sincenull is treated as any other constant, we caanswer semantics (cf. Definitidd 5), eabh(D) is empty
compare it with3. By the unique names assumptioit or in all its tuples onlynull appearsAdmiss(V?) denotes
holds null # 3. B the set of admissible instances. |

As Examplely showsD, is admissible for the the givenIn the theorem,Y denotes the universal closure of the
view. It also shows that there are some attributes that doemula that follows it; andv € (|J!'z; N C(V;)) indicates
particularly relevant for the view to be nuld and B in that variablev appears in some of the atom®(z;) and in
that case. In the following, we make precise this notiom combination attribute, etc.

of secrecy-relevant attributécf. Definition [8(d) below). SentenceNull-V® in (@) originates in the FO rewriting
Before we used (plain) “relevance” associated to variabl¢®')™ as in [8) of the query@'s associated td’*, and
for query answering under nulls. Not surprisingly, the nethe requirement that the latter becomes nullion

notion is based on the previous one. This will allow us to) .
provide an alternative and more operational charactéizat Example 9.(examplé 8 continued) According to the above
of secrecy instances (cf. Propositian 1 below). definition, in order to check whether the database instance

D is admissible, the following must hold:
Definition 8. Consider a view/, defined as in[{2).
(a) ForR € R in the body of[2) and a term(i.e. a variable D2 = VaVyVz(R(z,y,2) AS(y) — x=null V
or constant)posf(V;,t) denotes the set gfositionsin R y=null V y<2).

wheret appears in the body df;’s definition. . _
(b) The set ofcombination attributesor V; is: When checking sentence ab,, null is treated as any

C(V;) = {R]i] | for a relevant variable, i € pos™(V;, v)}. other constant. Notice that the values for the non-s-rekeva

(c) The set ofsecrecy attributesor V, is: S(V;) = {R[i] | attributes do not matter. o
for an in Vi(z) in @), i € pos™(V, v)}. Forx = 1,y = 1, the antecedent of the implication is

v
(d) The set ofs-relevant attribut& fz)r a secrecy view satisfied. For these values, the consequent is also satisfied
V, are those (associated to positions) in the 4¢t;) = becausey =1 < 2. Forz = 2,y = null, the consequent
C(V,) US(V)). m s satisfied sincey is null. For z = null, y = 3, the

antecedent is satisfied. For these values, the consequent is
Combination attributes for a secrecy vieW are those galso satisfied, becauseull = null is true. So,Ds =x
involved in joins or built-in predicates (other than buils 9V and instanceD, is admissible.]
with explicit null). Secrecy attributes are those appearing o) o
in the head ofi’s definition, and accordingly, collect the The next step consists in selecting from the admissible
query answers, which are expected to be secret. Hentstances those that are close to the database we are

“secrecy attributes”. They correspond to the free variabl@rotecting. This requires introducing a notion of distance
in the associated quer@". an order relationship between instances for a same schema.

This would allow us to talk about minimality of change.
Example 8. (example[¥ continued) Consider again thSince, in order to enforce privacy on an instafizeve will
secrecy viewV;(z) < R(z,y,z), S(y), y > 2. Here virtually change attribute values byull, the comparison of
C(V;) = {R[2],S[1]}, becausey is the only relevant instances has to take this kind of changes and the presence
variable; andS(V;) = {R[1]}, becausez is the only of nullin tuples into account. Intuitively, secrecy instance
free variable. In consequencé(V;) = {R[1], S[1], R[2]}. for D will be admissible and also minimally differ frorh.
Attribute C, i.e. R[3], is not s-relevant. Actually, its value))
is not relevant to obtain the view extension. m Definition 9. (a) The binary relatior— on the database

) N] ~_domainl, is defined as follows:c C d iff ¢ = null and
The following proposition provides a characterization of + null. Its reflexive closure is.

admissible instance for a set of secrecy of views in erms) Fort, = (c1,...,cn) and iy = (di,...,dy) in U™
of classic FO satisfaction (cf.[24, Proposition 1]). In iew Ty C iy iff ¢; T d; for eachi € {1,...,n}. Also, &1 C
use the notatio) |= ~ for the classic notion of satisfactionigt 7, = 7, and7; £ I, [
by an instanceD of FO formula~y, wherenull is treated _)) o o _
as any other constant. This partial order relationship, C ¢ indicates thatt,

is less or equally informative thaty. For example, tuple
Proposition 1. Let V* be a set of secrecy views, each ofqa, nuil) provides less information than tuple, b). Then,
whose element¥, is of the form [[2), and has an expressiofia, null) C (a,b) holds.
Q%(z): Iy(A;_; Ri(z:) A ¢) as a conjunctive query. For |n order to capture the fact that we are just modifying
an instanceD, D € Admiss(V?) iff for each V; € V*, attribute values, but not inserting or deleting tuples, we
D = Null-v®, where Null-V* is the following sentence will assume (sometimes implicitly) that database tuples

associated t@Q": havetuple identifiersMore precisely, each predicate has an

_on additional, first, attributd D, which is a key for the relation,

V(/\ Ri(z;)) — \/ v=mnull V (7) and whose values are takenNinand not subject to changes.
i=1 v e Urm N C(V) In consequence, tuples in an instareavill be of the form

/\ w=null V -p). B R(k,_i), with £ € N, andt € ur, anc_iR ERIs, implicitly,
of arity n + 1. Below, we will consider only instance®’
that arecorrelatedto D, i.e. there is a surjective function

8For distinction from the notion of relevant attribute/sie used in & from D to DI- such that:(R(k, 1)) = R(k,1"), for some
Sectiond 1A and1=B. t’. This mapping respects the predicate name and the tuple

u € U N S(Vi)

identifier. We say thaD’ is D-correlated (viax). In the {P[2]}, andUs = {R[1]} are all incomparable under set
rest of this sectionD is a fixed instance, the one undeinclusion.D, is not minimal, becausé, = { P[2], R[1]} 2
privacy protection. We will usually omit tuple identifiers. Us, which is also reflected in the fact th&(1, 1, null)

Definiton 10. (a) For database tuplesk;(ki,%1), C P(1,1,2); and then,Ds <p Da. u

Ra(ka,t2): Ri(k1,t1) C Ro(ko,t2) iff Ry = Ro, k1 = ks, , ,
aﬁéti ;212 1kt 2k t2) R \V} Privacy Preserving Query Answers

(b) For instancesD;, D2 Dy £ Dy iff for every tuple oy we want to define and compute thecret answers to
Ri(k1,t1) € Di, there is a tuplefts (kz, £2) With Ra(k,12) queriesfrom a given databas® that is subject to privacy
C Ry(k, f).] .. constraints, as represented by the nullification of theesscr
(¢) For D-correlated instanceB, Dy: Dy <p D: iff: 1. yiews. They will be defined on the basis of the class of
Dy, D> E D, andii. Do C D1. As usual,Dy <p D iff gecrecy instances fdp. This class will be queried instead
Dy <p Dy, butnotD; <p Di. B o directly queryingD. In this sense, we may consider

Notice that the condition (c)i. for the partial order, the class of secrecy instances as representiriggeal
forces D; and D, to be obtained fromD by updating database given through its models. In such a case, the
attribute values by.ull. Condition (c)ii. inverts the partial intended answers are those that are true of all the instances
orderC between tuples (and between instances). The readdihe class, and become the so-calbedtain answerg18].

is that we want secrecy instances torbmimalwrt the set Definition 12. Let Q(F) € Conj(=™!!). A tuple & of

of changeof attributes values by nulls (as customary foconstants in{ is a secret answetto O from D wrt to
database repair$1[5]). Informally, wheft, <p Do, D1 " o« slecr(;c viewss |ﬁv:t{ e QMND,) forWeach
is obtained fromD, in comparison withD,, via “less” y

replacements of values by nulls, and then is clos®to D, € Sec(D,V?). SA(Q,D,V?) denotes the set of al
secret answers. |

Definition 11. An instanceD; is a secrecy instancéor D

wrt a setV*® of secrecy views iff: (a)D, € Admiss(V*), and Example 11.(example_ID continued). Consider the query
(b) D, is <p-minimal in the class oD-correlated database Q(z, z) : Jy(P(z,y) A R(y,z) Ay < 3). According
instances that satisfy (a). (I.e. there is no instaB¢tén that to Definition [B, it holds: QN(Dy) = {(null, null)},
class withD’ <p D,.) Sec(D,V*) denotes the set of all QV(D,) = 0, and Q(D3) =). These answers can also
the secrecy instances f@» wrt V*. B be obtained by first rewriting2, as in [®), into the query

Notice that a secrecy instance nullifies all the secrecysneWQ (z,2) : Iy(P@,y) AR(y,2) Ay < 3Ny 7 null),
which can be evaluated on each of the secrecy instances
is obtained fromD by changing attribute values byull,
treatingnull as any other constant.

and the set of changes is minimal wrt set inclugon. We obtain SA(Q, D,{V,}) = QN(D1) n QN(Ds) N

Example 10.Consider the instanc® = {P(1,2), R(2,1)} QN(Ds) = 0. This is as expected, because in this example,
for schnemaR = {P(A, B), R(B,C)}. With tuple iden- Q is Q%, the query associated to the secrecy view. B
tifiers (underlined), it takes the formb = {P(1,1,2),

R(1,2,1)}. Consider also theecrecy view The idea behind answering queries from the secrecy

instances (SlIs) forD is that the answers are still close
Vi(w,2) « P(z,y), R(y,2), y < 3M to those we would have obtained fro (because Sls are

D fitself is not admissible (it does not nullify the secrecynaximally close toD). Furthermore, since all the secrecy

view), and then it is not a secrecy instance either. Nowiews become null on the Sls, the answers returned to any

consider the following alternative updated instanégs qguery, not necessarily to a secrecy view computation, will

Dy [{P(L, null, 2), R(L, 2, nall)} take this property into account. In the query answering
Dy {P(Ll,null) R(1 271)} part we are using akeptical or cautious semanticthat

Ds | {P(1,1,2),R(1, null 1)} sanctions as true what is simultaneously true in a whole
Di | {P(L 1, null), R(L, null, 1)} class of models, or instances in our case (the Sls). Now

For example, forD; the set of changes can be identifiegve analyze to what extent this approach does protect the
with the set of changed positiond’; = {P[1], R[2]} (ID sensitive data. A restricted user may try to pose several
has positiorD). The D; are all admissible, that is (cf](7)): queries to obtain sensitive information.

D;, E VavyVz(P(z,y) A R(y,z) — Example 12. Consider instance) = {P(1,2), P(3,4),

(y = nullV (x = null A z = null) Vy > 3). R(2,1), R(3,3)} for schemaR = {P(A, B), R(B,C)},
and the secrecy view(z, z) < P(z,y), R(y, z). In this

D1, Dy, and D3 are the only three secrecy instanceg,zge VN(D) = {(1,1)}. D has the foIIowmg Sls:
i.e. they are<p-minimal: The sets of changds,, U; =

Dy | {P(null,2), P(3,4), R(2, null), R(3,3)}
9As opposed to minimizing the cardinality of that set. ¢f. [6} a Dy | {P(1,null), P(3,4), R(2,1), R(3,3)}
discussion of different forms of “repairs” of databases. D3 | {P(1,2), P(3,4), R(null,1), R(3,3)}

101t would be easy to consider tuple ids in queries and view digfin .
but they do not contribute to the final result and will only quiicate the 1N€ USer may pose the queri& (z,y) : P(z,y) and

notation. So, we skip tuple ids whenever possible. Qs(z,y) : R(z,y), trying to reconstructD. It holds

AN(Dy) = {(null,2), (3,4)}, OY(D2) = {(1,null), on the first attribute, and that it is satisfied by then he

(3,4)}, QY(D3) = {(1,2), (3,4)}. Then,SA(Q:1, D, {V;}) will know that the received null was not originally i.

= {(3,4)}. Now, QY(D;) = {(2, null), (3,3)}, QY(Ds) = Furthermore, that it is replacing a non-null value. If he
(2,1), (3,3)}, 9Y(D3) = {(null,1), (3,3)}. Then, also knows that there is exactly one tuple in the relation

SA(Q2, D, {V;}) ={(3,3)}. (a COUNT query), and also the secrecy view definition, he

By combining the secret answers @, and Qs, it is il infer that (1) € V(D).]
not possible to obtaif,V(D). For the user who poses the °
queries@; and Q,, the relations look as follows:

P|A|B R|B|C
3] 4 313 [|

In summary, for our approach to work, we rely on the
following assumptions:

(@) The user interacts via conjunctive query answering
with a possibly incomplete database, meaning that the
latter may contain null values, and this is something
the former is aware of, and can count on (as with
databases used in common practice). In this way, if
a query returns answers with null values, the user
will not know if they were originally in the database
or were introduced for protection at query answering
time.
The queries request data, as opposed to schema ele-
ments, like integrity constraints and view definitions.
Knowing the ICs (and about their satisfaction) in
combination with query answers could easily expose
the data protection policy. The most clear example is
the one of aNOT NULL SQL constraint, when we see
nulls where there should not be any.
In particular, the user does not know the secrecy view
definitions. Knowing them would basically reveal the
data that is being protected and how.
These assumptions are realistic and make sense in many
scenarios, for example, when the database is being accessed
through the web, without direct interaction with the DBMS
Proposition 2. For every V. of the form [2) in V°, viacomplex SQL queries, or through an ontology that offers
SA(Q%,D,V*) = Vi(Dy). B 3 limited interaction layer. After all, protecting data may
This proposition tells us that by combining SAs tJequire additional measures, like withholding from certai

queries, trying to reconstruct the original instance, wWSErs certain information that is, most likely, not cruéal
cannot obtain more information that the one provided gyany applications. From these assumptions and Proposition
the SAs (cf.[[24, Proposition 2] for a proof). , we can conclude that the user cannot obtain information

The original databas® may contain null values, and about the secrecy views through a combination of SAs

users have to count on that. A restricted user will receif@ conjunctive queries. Therefore, there is not leakage of
as query answers the SAs, which are defined and compug&@sitive information.
through null values. This_user could_obtain nulls from g Secrecy Instances and Logic Programs
query, and hopefully he will not know if they were already
in D or were (virtually) introduced for privacy purposesThe updates leading to the secrecy instances (Sls) should
This is fine and accomplishes our goals. However, as longt physically change the database. Also, different users
as the user does not have other kind of information. may be restricted by different secrecy views. Rather, the
Example 14. Consider the instanc® — {P(1,1)}, and possibly s_elz_veral St_ls P}ave;hto be V|trtual, and usedt_malr\}:}/
the secrecy view/(z) « P(x,y),z — 1. D has only one as an auxiliary notion for the secret answer semantics. We
secrecy instancd,: expect be able to avpld computlr_lg all the Sls, materializing
s them, and then cautiously querying the class they form. We

would rather stick to the original instance, and use it as it
is to obtain the secret answers.

One way to approach this problem is via query rewriting.

Now, we establish in general the impossibility of ob-
taining the contents of the secrecy views through the use
of secret answers to atomic queries (as in the previous
example). Open atomic queries are the “broader” queries
we may ask; other queries are obtained from them by
conjunctive combinations.

Definition 13. Let V* be a set of secrecy views;.
The secrecy answer instand®r V* from D is Dy =
{R(¢) | R€ R and¢ € SA(R(z), D, V*)}. []

Here, we are building a database instance by collecting the
secret answers (SAs) to all the atomic queries of the form
Q(z) : R(z), with R € R. This instance has the same
schema a9.

(b)

Example 13. (example[IR continued) Consider the se{c)
crecy view Vi(z,z) <« P(z,y), R(y,z). It holds:
Dgyy = {P(3,4)} U {R(3,3)} = {P(3,4),R(3,3)}.
Notice that VN(Dyy;;) = 0 = SA(Q%,D,{V.}) =
N2_ (Q¥N(D;) = {(null, null)} NN O.]

P A B
null | 1

For the queryQ(z) : Jy(P(z,y) A x = 1) associated to

the secrecy view, the secrecy answerQ@x) on D is ().
Now, the secrecy answer @' (x) : JyP(x,y) is {{null)}.

Ideally, a queryQ posed toD and expecting secret answers
should be rewritten into another que®/. This new query

A user who receives this answer will not know if the nullvould be posed t@, and the usual answers returned By

value was introduced to protect data.

to Q' should be the secret answers@o We would like O’

However, if the user knows from somewhere else th&t be still a simple query, that can be easily evaluated. For
there is an SQL'SNGT NULL constraint or a key constraintexample, if @’ is FO, it can be evaluated in polynomial

10

time in data. However, this possibility is restricted bySls for an instance) subject to set of secrecy views.
the intrinsic complexity of the problem of computing ofThe following example illustrates the main ideas and issues

deciding secret answers, which is likely to be higher th . . -
polynomial time in data (cf. Sectidn VI). In consequenc?%';?zp; 1}?(fgeéa;r}nplglj_b {cpczr;tlgsj edR)(cho)r;sggs tﬁe

,) .
Q' may not even a FO query, let alone conjunctive. secrecy view V(z, 2) « Plx,y), R(y.),y < 5.

An alternative approach is to specify the Sls in a compa The secrecy instance progrdi{D, {V,}) is as follows:
manner, by means of a logical theory, and do reasoni_nLg P(1,2). R(2,1) (initial data{basse) '

from that theory, which is in line with skeptical query
answering. This will not decrease a possibly high intrinsié: P(null,y,) V P(z, null,u) V R(null, 2, u)
complexity, but can be much more efficient than computing < P(z,y,t), Ry, 2,t),y <3, y # null, auz(z, z).
all the secrecy instances and querying them in turns. Wrt R(y, null,u) vV P(x, null,u) V R(null, z,u)
the kind of logical specification needed, we can see that < P(z,y,t), R(y,z,t),y <3, y # null, auz(x, 2).

secret query answering (SQA) isnan-monotonigrocess. auz(z, 2) < P(z,y,t), R(y, 2 t),y <3,z # null.

Example 15. ConsiderD = {P(a)}, the secrecy view
V(z) < P(z), R(x), and the queng : Ans(x) < P(x).
Here, V(D) = 0, and then,D itself is its only SI. 3. P(z,y,bu) + P(z,y,t), R(y, z,t),y < 3,y # null,
Thfrefore,S/é(QéDD,{Ig) = ‘5;2}) R(a)}. Now, V(Dy) auz(z, 2), P(null,y,v),x # null.
et us updateD to Dy = a),R(a)}. Now, 1
— {la)}. The SIs forDy are: D) — {P(null), R(a)} TW:% bW« Ply.t), By, 2 t),y < 3,y # null,
and D/ = {P(a), R(null)}. It holds, Q(D}) = {(null)} auz(z, z), R(y, null,), z # null.
and Q(DY) = {(a)}. Then, SA(Q,D;,{V}) = 0. The P(z,y,bu) < P(z,y,t), R(y, z,t),y < 3,y # null,
previous secret answer is lost. |

auz(z,z) < P(z,y,t), R(y,z,t),y <3,z # null.

aux(x, z), P(x, null,u).
The non-monotonicity of SQA requires a non-monotonic R(y, z, bu) < P(z,y,t), R(y, z,t),y < 3,y # null,
fgrma::smr;to Iogica:)ly specifg_/ tge SIsh of a gilven indst?nc? auz(z, 2), R(null, z,u).
ctually, they can be specified as the stable models o 3 Pla,y.t) < Pla,y). Pla,y.t) « Plz,y,u).
disjunctive logic program, a so-callestcrecy program
Secrecy programs use annotation constants with the £2(z.y,t) <« R(z,y). R(z,y,t) < R(z,y,u).
intended, informal semantics shown in the table belows. P(z,y,s) < P(z,y,t), not P(x,y,bu).
More precisely, for each database predic&tes R, we R(z,y,s) < R(z,y,t), not R(z,y,bu).
introduce a copy of it with an extra, final attribute (or . o
argument) that contains an annotation constant. So, a tupfe€ facts in 1. belong to the initial instané and become
of the form R() would become an annotated atom of th@nnotated right away with by rules 4. The most important
form R(Z, a)[The annotation constants are used to kedles of the program are those in 2. and 3. They enforce

track of virtual updates, i.e. of old and new tuples: the update semantics of secrecy in the presencasfand
usingnull. Rules in 2. capture in the body the violation of

S
S

Annotation | Atom The tuplei(a) ... secrecy (i.e. a non-null view contents); and in the head, the
u R(a',u) | is being updated
bu R(a,bu) | has been updated intended way of restoring secrecy: We can either update a
t R(a,t) is new or old combination of (combination) attributes or single secrecy
s R(a,s) stays in the secrecy instange attributes withnuli. In this example, we need to update,

In R(a,bu), annotationbu means that the atonf(a) with null, values in attributeB or in attributesA and C,

has already been updated, andshould appear in the S‘m‘_*'ta“eF"%S'y-) . . .
new, updated atom, sai(a’,u). For example, consider Since disjunctive programs do not allow conjunctions in
a tuple R(a,b) € D. A new tuple R(a, null) is obtained e head, the intended hedd(null, z) A P(y, null)) v
by updatingp into null. Therefore,R(a, b, bu) denotes the P(I’"UHIZ v Q("luu’z) < Body is represented by
old atom before updating, whilé(a, null, u) denotes the Means of wo rules, as in 2P (null, z) V P(z, null) v
new atom after the update. Q(null,z) + Body and P(y,null) V P(x,null) V

The logic program uses these annotations to go throu@ﬁ?“ltlﬁ 2) + Body. dt ¢ v if the i
different steps, until its stable models are computed.Ifina urthermore, we need {o restore secrecy only It the given
the atoms needed to build an Sl are read off by restricti tabase is not already a secrecy instance, which happens

a model of the program to atoms with the annotation t('al? :he;omzlréatlon attrtlbutﬁ IS r;lotfnull, Ithe_setcrecy
As expected, the official semantics of the annotationsdié “d'u ets an 3ref_ nod _nu2, an tormutaa 1S “(;.Gif
captured through the logic program:; the table above is just®9!c@ eauz(z, 2) defined in 2. captures the condition

o iof VP : ot (x # null A\ z # null).
Lc])crﬁn(%lvsg?nt.hlg sseiiggy IogigVSrgé?:r?nﬁ;th(;g:c?ﬁzl Iﬁgﬁl The rules in 3. collect the tuples in the database that have
7 already been updated and (virtually) no longer exist in the

liwe should use a new predicate, e, but to keep the notation database. Ru_les 4. annotate the original thg atoms and also
simple, we will reuse the predicate. We also omit tuple ids. the new version of updated atoms. Rules in 5. collect the

11

tuples that stay in the final state of the updated databaSeme of the variablBdin atoms in the body of the def-
They are original or new, but have never been updaikd. initions are relevant, as in Definitidd 8, and their values

. . will be replaced bynull. As expected, and illustrated in
The secrecy instances are in one-to-one correspondeEg:(e

with the restrictions tos-annotated atoms of the stableIn in;p;romgréﬂose atoms and variables play a crucial role
s\ |12 .
models oflI(D, V) For an atom of the formR(z) and variablesy C =,

Example 17. (example[Ib continued) The program hag(@# denotesR(z) with all the variables iry replaced

three stable models (the facts in 1. are omitted): y null. In reference tf)|]8), with this notation, we define:

_ Y -\ i
M; = {P(1,2,t), R(2,1,t), auz(1,1), P(1,2,s), CP(V) = {Ri(z:) 7 | Ri(z:) is in body of [8)
R(2,1,bu), R(null,1,u), R(null,1,t), R(null,1,s)}. 7={y1,....yn} C 7, andy; € C(V;))}.
My, ={P(1,2,t), R(2,1,t), auz(1,1), P(1,2,bu), g .
R(2,1,s), P(1, null,), P(1, null, t), P(1, null,s)}. SP(Ve) = {Ri(@:)—7 | Ri(z:) is in body of [8)
M; ={P(1,2,t), R(2,1,t), auz(1,1), P(1,2,bu), J=1vy1,.yn} €, andy; € S(V;))}.
R(2,1,bu), P(null,2,u), R(2, null,u), P(null,2,t),
R(2, null, t), auz (1, null), aux(null, 1), P(null,2,s),
R(2, null,s)}.

For the sets of predicate positiorg(V;) and S(V;), see
Definition [8. The atom set€P(V;) and SP(V;) will be
used in the head of the disjunctive rules that change some
The secrecy instances are built by selecting the underlinedlevant attribute values into nulls (rules 2. in Exanipli 10
atoms, obtaining:D; = {P(1,2), R(null, 1)}, Dy = .
{P(l,null),R(Q,l)},andég(:{])D(nugl,z),R)(}z,null)}. Example 19. For _the sec.recy viewV(z, z,w) +
They coincide with those in Example]10. | P(a,y), Qy, 2,w), it holds: C(V) = {P[2], Q1]}
and S(V.) = {P[1],Q[2),Q3]}. Thus, CP(V;) =
In order to compute secret answers to a query, it {P(z, null), Q(null, z,w)}, and SP(V;) = {P(null,y),
not necessary to explicitly compute all the stable model®.(y, null, null)}. [|
Instead, the query can be posed directly on top of the

. . . _Given a database instanég a setV* of secrecy views
program and answered according to the skeptical semantics,
2 s, each of them of the fornf](8), the secrecy program
This will return the secret answers to the query. T

qguery has to be formulated as a top-layer program, wi (D, V) contains the following rules:

s-annotated atoms, that are those that affect the query.lAFacts:R(c, t) for each atomR(c) € D.
system likeDLV can be used. It computes the disjunctivg everyV; of the form [8), if SP(V,) = {R'(z)
stable-model semantics, with an interface to commerc[ql_’Ra(ja)}, andCP(V) = {R'(#1), ..., R*(z)}, then

DBMSs [22]. the program contains the rules:

Example 18.(example1l7 continued) We want the secre‘?) It S(V:) NC(Ve) # 0, the rule:

answers to the conjunctive query . X)(ﬁ;(fca u) — AL Ri(@i,t), o, é\(vi}l # null.
ce s v € s
Qw,2) « (P, y) ARy, 2) Ay <3). (b) If S(V,)NC(V;) = 0, for eachR® € SP(V]),1 < d < a,

This requires first rewriting it, as if(6), int@"™(z,vy): the rule:
Jy(P(x,y) ANR(y,z) Ay < 3Ay # null). This new query RY(z4,u) V Re(Ze,u) — A", Ri(@,t), o,
Vi) -

can be evaluated against instances wititl treated as any ReeCP(
other constant. In its turr@™ is transformed into a query N v # null, auzy (Z).
program with all the database atoms using annotation Plus rules definin v €C(Vs) .)
g the auxiliary predicates: 3{V;) =
Ans(z,2) « P(z,y,8), Ry, 2,8), y <3, y # null. {z',...,2*} andz = (z',..., %), then for each <i < k,
This one is evaluated in combination with the secreayie rule
program in Exampl&~16, under the skeptical semantics. In auzy, () — N, Ri(Zi,t) A o Azt % null
s =1 T K2} .

this evaluationnull is treated as an ordinary constani .
3. The old tuple collecting rules:

(@) For eachr’ € SP(V;), 1 <j<a:

Ri(zj,bu) + N\, Ri(Z;,t), ¢, auzy,(Z),
To provide the general form of secrecy logic program, we A v # null, RI(z;,u), A\ v # null.
need to introduce some notation first. We recall that our v €C(Vs) v €S(V:)NT;
view definitions are of the form (b) For eachi® € CP(V;), 1 < e <b:

_ _ _ Rc(a_:Ca bu) < /\:LZI R’L(jzv t)7 Y, aury; (1_7),
‘/S(I) %Rl(xl)v'-'an('rn)v P (8) /\ v #nulk Rc(j'c’u)_

v €C(V5)

A. The general secrecy logic program

12The proof of this claim is rather long, and is similar in spio the
proof of the fact that database repairs wrt integrity caists [3] can 13To be more precise, we should talk about variables in retevan
be specified by means of disjunctive logic programs with Istabodel positions or arguments, as we did before, e.g. in Sedfidnblit the
semantics (cf.[[10],012]). description would be less intuitive.

12

4. For eachR € R, the rule: R(z,t) < R(z,u). @): If z isz!,... 2%, then forl <i <k,

5. For eachR € R, the rule: VZg—(Ry(Z1) A+ A Rp(T) A Az # null). (10)

R(@,s) < R(@,t), not R(z,bu). That is, from each view definitio(9) we obtaindenial

Rules in 1. create program facts from the initial instanceonstraints(DCs), i.e. prohibited conjunctions of (positive)

Rules in 2. are the most important and express how tlatabase atoms and built-ins. DCs have been investigated

impose secrecy by changing attribute values into nullim CQA under several repair semantics|[14], [5].

Notice that, by definition,CP(V;) and SP(V;) already In our case, the secrecy instances correspond to the

already include those changes. The body of the rule bepairs of D wrt the set DCs in[(10). These repairs are

comes true when the database instance does not nulliigfined according to the null-based (and attribute-based

the view, and the head captures the intended ways [B]) repair semantics of Sectignllll, i.e p-minimality (cf.

imposing secrecy. Rules in 3. collect the tuples in théxampleID). Through this correspondence we can benefit

database that have already been updated and (virtually)frem concepts and techniques developed for CQA.

longer exist in the database. Rules 4. capture the atoms that i i

are part of the database or updated atoms in the procE&@Mmple 20.The secrecy view defined by

of imposing secrecy. Rules in 5. collect the tuples in the Vi(z, 2) < P(x,y), R(y,2),y <3

secrecy instance, as those that did not become old. gives rise to the following denial constraints:
The same secrecy program can be used with differertizyz(P(x,y) A R(y,2) ANy < 3 Az # null) and

queries. However, available optimization techniques @n b3zyz(P(z,y) A R(y,z) Ay < 3A z # null). A instance

used to specialize the program for a given query [(cfl [11]) has to be minimally repaired in order to satisfy thelih.

[5] for this kind of optimizations for repair logic programs

VIl. Related Work

VI. The CQA Connection Other researchers have investigated the problem of data

Consider a database instané that fails to satisfy a Privacy and access control in relational databases. We
given set of integrity constraintdC. It still contains described in Sectio | the approach based on authorization
useful and some semantically correct information. Théews [27], [33]. In [19], the privacy is specified through
area ofconsistent query answering@QA) [3], has to Vvalues in cells within tables that can be accessed by
do with: (a) Characterizing the information i that is @& user. To answer a quer@ without violating privacy,
still semantically correct wr/C, and (b) Characterizing, they propose the table and query semantics models, which
and computing, in particular, the semantically correet, i.generate masked versions of the tables by replacing all the
consistent, answers to a quedyfrom D wrt IC. The first cells that are not allowed to be accessed Wth.L. When
goal is achieved by proposingepair semanticsi.e. a class the user issue®), the latter is posed to the masked versions
of alternative instances tb that are consistent witc and Of the tables, and answered as usual. The table semantics
minimally depart fromD. The consistent information i is independent of any queries, and views. However, the
is the one that is invariant under all the repairs in the clagiuery semantics takes queries into account. [19] shows the
This applies in particular to the consistent answers: Théjplementation of two models based on query rewriting.
should hold in every minimally repaired instance. Recent work[[30] has presented a labeling approach for
There are some connections between CQA and d@,asking urjauthorized information by using two types of
treatment of privacy preserving query answering. Noticd€cial variables. They propose a secure and sound query
that every view definition of the form[(2) can be seefVvaluation algorithm in the case of cell-level disclosure

as an integrity constraint expressed in the FO languap@licies, which determine for each cell whether the cell
LS U{V,}): Is allowed to be accessed or not. The algorithm is based on

guery modification, into one that returns less information
VZ(Vi(z) +— 3y(R1(Z1) A+ A R,(Zn) Ap)), (9) than the original one. Those approaches propose query
rewiring to enforce fine-grained access control in datahase
with § = (UZ;) ~ z. From this perspective, the probleniTheir approach is mainly algorithmic.
of view maintenance.e. of maintaining the view defined Data privacy and access control in incomplete proposi-
by (d) synchronized with the base relations|[17] becomésnal databases has been studiedn [€], [7]} [31]. Theg tak
a problem ofdatabase maintenancé&e. maintenance of a different approachgontrol query evaluatio(CQE), to
the consistency of the database Wit (9) seen as an IC. Thir-grained access control. It is policy-driven, and aims t
also works in the other direction since every IC can bensure confidentiality on the basis of a logical framework.
associated to a violation view, which has to stay empty f@ security policy specifies the facts that a certain user is
the IC to stay satisfied. not allowed to access. Each query posed to the database
Actually, we want more than maintaining the view deby that user is checked, as to whether the answers to it
fined in [9). We want it to be empty or returning only tuplesvould allow the user to infer any sensitive information. If
with null values. In consequence, we have to impose tligat is the case, the answer is distorted by eitkigrg or
following ICs on D, which are obtained from the RHS ofrefusal or combined lying and refusaln [g], they extend

13

CQE to restricted incomplete FO logic databases via aThe null values are treated as in the SQL standard,
transformation into a propositional language. This apgoawhich in our case, and for conjunctive query answering,
seem to be incomparable to ours. They do not use nidlreconstructed in classical logic. This reconstructiap-c
values, and the issue of maximality of answers that do niotres well the “semantics” of SQL nulls (which in not
compromise privacy is not explicitly addressed. clear or complete in the standard), at least for the case of
Our approach is based on producing virtual updates onnjunctive query answering, and some extensions thereof.
the database, by forcing the secrecy views to become ndilhis is the main reason for concentrating on conjunctive
This is clearly reminiscent of the older, but still challémg queries and views. In this case, queries and views can
database problem of updating a database through vielws syntactically transformed into conjunctive queries and
[13]. Here we confront new difficulties, namely the ocviews for which the evaluation or verification can be done
currence of SQL nulls with a special semantics, and thy treating nulls as any other constant.
minimality of null-based changes on the base relations. The secret answers are based on a skeptical semantics.
In [9] a null-based repair semantics was introduced, blit principle, we could consider instead the more relaxed
it differs from the one introduced in Sectibn]lll. The formepossibleor bravesemantics: an answer would be returned if
was proposed for enforcing satisfaction of sets of ICs th#holdsin someof the secrecy instances. Thessibly secret
include referential ICs, which require the possible irisert answerswvould provide more information about the original
of new tuples with nulls. The comparison between instancéatabase than the (certainly) secret answers. However, the
is based onsets of full tuples and also on the occurrengke not suitable for our the privacy problem.

of nulls in them. Here, we enforce secrecy by changes of . .
attributes values only. Example 21. (example[ID continued) Aoossibly secret

answerto the queryQ(z,y) : P(x,y) is (1,2), obtained

A representation qf n_uII values in logic programs W?tl?rom Ds. Similarly, (2,1) is a possibly secret answer to
stable model semantics is proposed.in [28], whose aim |s&)2(x’y) . R(z,y). From these possibly secret answers,

capture the mtend_ed semantics Of null valaeg Reiter, i.e. the user can obtain the contents of the secrecy vievlll
as found in his logical reconstruction of relational datdsa

[26]. Two remarks have to be made here. First, Reiter We introduced disjunctive logic programs with stable
reconstructs “logical” nulls, but not SQL nulls. In our workmodel semantics to specify the secrecy instances. This
we use the latter, as done in database practice. Second,jsv@ single program that can be used to compute secret
take care of nulls by proposing a new query answerir@\Swers to any conjunctive query. This provides a general
semantics that can be captured in classic logical terms Wgchanism, but may not be the most efficient way to go for
query rewriting. The rewritten queries are the input to some classes of secrecy views and queAeshocmethods
logic program, which then treats them as ordinary constar@uld be proposed for them, as has been the case in CQA

(without having to give a logical account of them). 4], [5].
Our work leaves several open problems, and they are
VIII. Conclusions matter of ongoing and future research. Complexity issues

have to be explored. For example, of deciding whether or
In this work, we have developed a logical framework and ot a particular instance is a secrecy instance of an otigina
methodology for answering conjunctive queries that do niistance. Also, of deciding if a tuple is a secret answer to a
reveal secret information as specified by secrecy views. Qyuiery. The connection with CQA, where similar problems
work is of a foundational nature, and attempts to providetgave been investigated, looks very promising in this regard
theoretical basis, or at least part of that basis, for ptessib Another problem is about query rewriting, i.e. about the
technological developments. Implementation efforts atd epossibility of rewriting the original query into a new FO
periments, beyond the proof-of-concept examples we hayeery, in such a way that the new query, when answered
run with DLV, are left for future work. by the given instance, returns the secret answers. From the

We have concentrated on conjunctive secrecy views asonnection with CQA we can predict that this approach
conjunctive queries. We have assumed that the databasas limited applicability, but whenever possible, it shbul
may contain nulls, and also nulls are used to protect secbet used, for its simplicity and lower complexity.
information, by virtually updating with nulls some of the For future work, it would be interesting to investigate the
attribute values. In each of the resulting alternativeuwdtt connections wittview determinacy25], that has to do with
instances, the secrecy views either become empty or contéig possible determination of extensions of query answers
a tuple showing only null values. The queries can be posky a set of views with a fixed contents. The occurrence of
against any of these virtual instances or cautiously agairf8QL nulls and their semantics introduces a completely new
all of them, simultaneously. The latter guarantees privacgimension into this problem.

The update semantics enforces (or captures) two natural natural extension of this work would go in the di-
requirements. That the updates are based on null values, egation of freeing ourselves from the assumptions listed
that the updated instances stay close to the given instaratethe end of Sectiof V. Their relaxation would create
In this way, the query answers become implicitly maximallg challenging new scenario, and most likely, would require
informative, while not revealing the original contentsloét a non-straightforward modification of our approach. One
secrecy views. of these possible relaxations consists in the addition ef IC

to the schema. If they are known to the user, and, mqgst]
importantly, that they are satisfied by the database, then
privacy could be compromised. Also the updates leadi
to the virtual updates should take these ICs into account,
to produce consistent secrecy instances.
. . . . [16]

It would also be interesting to investigate more expressu[/e
queries and secrecy views, going beyond the conjunctive
case. However, if we allow negation, the challenges becofiél
intrinsically more difficult. On one side, in the case of se-
crecy views, negation becomes a fundamental complicatipg)
for privacy [27], [33]. On the other, the query rewriting
methodology that captures nulls as ordinary constants (cf.
Section[1-B) that we have used in our work does not
include the combination of nulls and negation. The exten-
sion of our privacy approach to queries or secrecy vie
with negation would make it necessary to first attempt an
extension of this kind of query rewriting. However, thid21]
requires to agree on a sensible semantics for SQL nulls in
the context of such more expressive queries, something tpaf
is definitely worth investigating.

Acknowledgements: This research started when Leo Bertossi

was spending his sabbatical at the TU Vienna. Support froffe!

Georg Gottlob, Thomas Eiter and a Pauli Fellowship of thgg

“Wolfgang Pauli Institute, Vienna” is highly appreciatetiVe

are indebted to Thomas Eiter and Loreto Bravo for technic@
. . - 5]

conversations at an early stage of this research, and toA8iyen

for some computational experiments. Research funded byRTCSE

Discovery and NSERC/IBM CRDPJ/371084-2008. (26]

References 27]

(1]
(2]

Abiteboul, S., Hull, R. and Vianu, V.Foundations of Databases
Addison-Wesley, 1995.

Barcelo, P. Applications of Annotated Predicate Calsuand Logic 28]
Programs to Querying Inconsistent Databases. MSc Thesis, PLJ
2002.| http://people.scs.carletonTékrtossi/papersi/tesisk.pdf

[3] Bertossi, L. Consistent Query Answering in Databage€3M Sigmod

29
Record June 2006, 35(2):68-76. [29]

[4] Bertossi, L. From Database Repair Programs to Congisgerery
Answering in Classical Logic (extended abstract). In Probe [30]

Alberto Mendelzon International Workshop on Foundatioh®ata
Management (AMW’09), CEUR-WS, Vol-450, 15 pp.

Bertossi, L. Database Repairing and Consistent Query Answering
Morgan & Claypool, Synthesis Lectures on Data Managemdit] 2 [31]
Biskup, J. and Weibert, T. Confidentiality Policies foo@rolled
Query Evaluation. InData and Applications SecuritySpringer
LNCS 4602, 2007, pp. 1-13.

Biskup,J. and Weibert. Keeping Secrets in Incomplet¢bBbases.
International Journal of Information Sercurity2008, 7(3):199-217.
Biskup, J., Tadros, C. and Wiese, L. Towards Controllede
Evaluation for Incomplete First-Order Databases. In PFotKS'10,
Springer LNCS 5956, 2010, pp. 230-247.

Bravo, L. and Bertossi, L. Semantically Correct Querysivers in

(5]

(6]
[32]

(7]

(8] [33]

El

14

Chomicki, J. and Marcinkowski, J. Minimal-Change ity
Maintenance Using Tuple Deletionsformation and Computatign
2005, 197(1-2):90-121.

] Gelfond, M. and Lifschitz, V. Classical Negation in Liog°rograms

and Disjunctive Databases.New Generation Computingl991,

9:365-385.

Gelfond, M. and Leone, N. Logic Programming and Knowged
Representation: The A-Prolog Perspectivatificial Intelligence

2002, 138(1-2):3-38.

Gupta, A. and Singh Mumick, I. Maintenance of Matedali Views:
Problems, Techniques, and ApplicationEEE Data Engineering
Bulletin, 1995, 18(2):3-18.

Imielinski, T. and Lipski, W. Jr. Incomplete Informati in Relational
DatabasesJournal of the ACM 1984, 31(4):761-791.

] LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishn&, Xu,

Y. and DeWitt, D. Limiting Disclosure in Hippocratic Datates.
In Proc. International Conference on Very large Data Bases
(VLDB'04), 2004, pp. 108-119.

] Lechtenborger, J. and Vossen, G. On the ComputatiorRelf-

tional View ComplementsProc. ACM Symposium on Principles of
Database System®0ODS’02), 2002, pp. 142-149.

Lechtenborger, J. The Impact of the Constant Complgmgproach
towards View UpdatingProc. ACM Symposium on Principles of
Database System®ODS’03), 2003, pp. 49-55.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob,, ®erri, S.
and Scarcello, F. The DLV System for Knowledge Represeamtati
and ReasoningACM Transactions on Computational Logi2006,
7(3):499-562.

Levene, M. and Loizou, GA Guided Tour of Relational Databases
and Beyond Springer, 1999.

Li, L. Achieving Data Privacy Through Virtual Update$lSc.
Thesis, Carleton University, Department of Computer Sme2011.
http://people.scs.carleton.cabertossi/papers/thesisLechen|pdf
Nash, A., Segoufin, L. and Vianu, V. Views and Queriestebmi-
nacy and RewritingACM Transactions on Database Syste2(310,
35(3).

Reiter, R. Towards a Logical Reconstruction of RelagioDatabase
Theory. InOn Conceptual ModellingM.L. Brodie, J. Mylopoulos
and J.W. Schmidt (eds.), Springer, 1984, pp. 191-233.

Rizvi, S., Mendelzon, A., Sudarshan, S. and Roy, P. hditey
Query Rewriting Techniques for Fine-Grained Access Cantio
Proc. Proc. ACM International Conference on Management afaD
(SIGMOD’04), 2004, pp. 551-562.

Traylor, B. and Gelfond, M. Representing Null Values lingic
Programming. InLogical Foundations of Computer Science, Proc.
LFCS'94 Springer LNCS 813, 1994, pp. 341-352.

Vassiliou, Y. Null Values in Data Base Management: A Diional
Semantics Approach. IRroc. ACM International Conference on
Management of Dat§SIGMOD’79), 1979, pp. 162-169.

Wang, Q., Yu, T., Li, N., Lobo, J., Bertino, E., Irwin, Kand Byun,
J.-W.. On the Correctness Criteria of Fine-Grained Accessti©l

in Relational Databases. Proc. International Conference on Very
large Data BasegVLDB’'07), 2007, pp. 555-566.

Weibert, T. A Framework for Inference Control in Incolefe Logic
Databases. PhD thesis, Technische Universitat Dortm20ag.
Zaniolo, C. Database Relations with Null Values. Pnoc. ACM
Symposium on Principles of Database Syst¢R©ODS’'82), 1982,
pp. 27-33. ACM.

Zhang, Z. and Mendelzon, A. Authorization Views and @itional
Query Containment. I®roc. International Conference on Database
Theory (ICDT’05), Springer LNCS 3363, 2005, pp. 259-273.

[10]

[11]

[12]

[13]

the Presence of Null Values. Proc. EDBT WS on Inconsistemdy a
Incompleteness in Databases (IIDB’06), J. Chomicki and ijseff
(eds.), Springer LNCS 4254, 2006, pp. 336-357

Bravo, L. Handling Inconsistency in Databases and Datiegration
Systems. PhD. Thesis, Carleton University, Departmentash@uter
Science, 2007.
http://people.scs.carleton.cabertossi/papers/Thesis36.pdf
Caniupan, M. and Bertossi, L. The Consistency Extna&gstem:
Answer Set Programs for Consistent Query Answering in Ceteb.
Data & Knowledge Engineering2010, 69(6):545-572.

Codd, E.F. Extending the database relational modebafiure more
meaning.ACM Trans. Database Systl979, 4(4):397-434.
Cosmadakis, S. and Papadimitriou, Ch. Updates of ReltViews.
Journal of the ACM 1984, 31(4):742-760.

Leopoldo Bertossihas been Full Professor at the School of
Computer Science, Carleton University (Ottawa, Canada)
since 2001. He is Faculty Fellow of the IBM Center for
Advanced Studies. He obtained a PhD in Mathematics
from the Pontifical Catholic University of Chile (PUC)
in 1988. Until 2001 he was professor at the Department
of Computer Science, PUC; and also the President of the
Chilean Computer Science Society (SCCC) in 1996 and
1999-2000. His research interests include database theory
data integration, peer data management, intelligentimnéer
tion systems, data quality, knowledge representation, and

http://people.scs.carleton.ca/~bertossi/papers/tesisk.pdf
http://people.scs.carleton.ca/~bertossi/papers/Thesis36.pdf
http://people.scs.carleton.ca/~bertossi/papers/thesisLechen.pdf

answer set programming.

Lechen Li was born in Sichuan, China in 1985. She
received a Bachelor in Computer Engineering from the
Sichuan Normal University, Chengdu, China, and a MSc
degree in computer science in 2011 from Carleton Uni-
versity, Ottawa, Canada, under the supervision of Prof. L.
Bertossi. Her master’s research was in the area of data
privacy.

15

	I Introduction
	II Preliminaries
	II-A Null value semantics: The gist
	II-B Semantics of query answers with nulls

	III Secrecy Instances
	IV Privacy Preserving Query Answers
	V Secrecy Instances and Logic Programs
	V-A The general secrecy logic program

	VI The CQA Connection
	VII Related Work
	VIII Conclusions
	References

