
Achieving Data Privacy through Secrecy
Views and Null-Based Virtual Updates

Leopoldo Bertossi and Lechen Li
Carleton University, School of Computer Science, Ottawa, Canada

Abstract—We may want to keep sensitive information in
a relational database hidden from a user or group thereof.
We characterize sensitive data as the extensions of secrecy
views. The database, before returning the answers to a query
posed by a restricted user, is updated to make the secrecy
views empty or a single tuple with null values. Then, a query
about any of those views returns no meaningful information.
Since the database is not supposed to be physically changed
for this purpose, the updates are only virtual, and also
minimal. Minimality makes sure that query answers, while
being privacy preserving, are also maximally informative.
The virtual updates are based on null values as used in the
SQL standard. We provide the semantics of secrecy views,
virtual updates, and secret answers to queries. The different
instances resulting from the virtually updates are specified as
the models of a logic program with stable model semantics,
which becomes the basis for computation of the secret answers.

Index Terms—Data privacy, views, query answering, null
values, view updates, answer set programs, database repairs.

I. Introduction

Database management systems allow for massive storage
of data, which can be efficiently accessed and manipulated.
However, at the same time, the problems of data privacy are
becoming increasingly important and difficult to handle. For
example, for commercial or legal reasons, administrators of
sensitive information may not want or be allowed to release
certain portions of the data. It becomes crucial to address
database privacy issues.

In this scenario, certain users should have access to
only certain portions of a database. Preferably, what a
particular user (or class of them) is allowed or not allowed
to access should be specified in a declarative manner. This
specification should be used by the database engine when
queries are processed and answered. We would expect the
database to return answers that do not reveal anything that
should be kept protected from a particular user. On the other
side and at the same time, the database should return as
informative answers as possible once the privacy conditions
have been taken care of.

Some recent papers approach data privacy and access
control on the basis ofauthorization views[27], [33].
View-based data privacy usually approaches the problem
by specifying which views a useris allowed to access.
For example, when the database receives a query from the

Contact author: bertossi@scs.carleton.ca. Faculty Fellow of the IBM
CAS, Toronto.

user, it checks if the query can be answered using those
views alone. More precisely, if the query can be rewritten
in terms of the views, for every possible instance [27]. If no
complete rewritingis possible, the query is rejected. In [33]
the problem about the existence of aconditionalrewriting
is investigated, i.e. relative to an instance at hand.

Our approach to the data protection problem is based
on specifications of what users arenot allowed to access
through query answers, which is quite natural. Data owners
usually have a more clear picture of the data that are
sensitive rather than about the data that can be publicly
released. Dealing with our problem as “the complement”
of the problem formulated in terms of authorization views
is not natural, and not necessarily easy, since complements
of database views would be involved [20], [21].

According to our approach, the information to be pro-
tected is declared as asecrecy view, or a collection of
them. Their extensions have to be kept secret. Each user
or class of them may have associated a set of secrecy
views. When a user poses a query to the database, the
system virtually updates some of the attribute values on
the basis of the secrecy views associated to that user. In
this work, we consider updates that modify attribute values
through null values, which are commonly used to represent
missing or unknown values in incomplete databases. As a
consequence, in each of the resulting updated instances,
the extension of each of the secrecy views either becomes
empty or contains a single tuple showing only null values.
Either way, we say thatthe secrecy view becomes null.
Then, the original query is posed to the resulting class of
updated instances. This amounts to: (a) Posing the query to
each instance in the class. (b) Answering it as usual from
each of them. (c) Collecting the answers that are shared by
all the instances in the class. In this way, the system will
return answers to the query that do not reveal the secret
data. The next example illustrates the gist of our approach.

Example 1. Consider the following relational databaseD:

Marks studentID courseID mark

001 01 56
001 02 90
002 02 70

The secrecy viewVs defined below specifies that a student
with her course mark must be kept secret when the mark
is less than 60:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING VOL:25 NO:5 YEAR 2013

http://arxiv.org/abs/1105.1364v3

2

Vs(sid , cid ,mark)← Marks(sid , cid ,mark),mark < 60.1

The view extension on the given instance isVs(D) =
{〈001, 01, 56〉}, which is not null. Now, a user subject
to this secrecy view wants to obtain the students’ marks,
posing the following query:

Q(sid , cid ,mark)← Marks(sid , cid ,mark). (1)

Through this query the user can obtain the first record
Mark (001, 01, 56), which is sensitive information. A way
to solve this problem consists invirtually updating the
base relation according to the definition of the secrecy
view, making its extension null. In this way, the secret
information, i.e. the extension of the secrecy view, cannot
be revealed to the user. Here, in order to protect the tuple
Mark (001, 01, 56), the new instanceD′ below is obtained
by virtually updating the original instance, changing the
attribute value56 into NULL.

Marks studentID courseID mark

001 01 NULL

001 02 90
002 02 70

Now, by posing the query about the secrecy view, i.e.

Q1(sid , cid ,mark) ← Marks(sid , cid ,mark),

mark < 60,

to D′, the user gets an empty answer, i.e. nowVs(D′) = ∅.
This is because -in SQL databases- the comparison ofNULL

with any other value is not evaluated as true.
Now, query (1) will get fromD′ the first tuple withNULL

instead of56, which can only be -misleadingly, expectedly
and intendedly- interpreted by the user as an unknown or
missing value for that student in the instance at handD
(notD′, which is fully hidden to the user). �

Notice that, among other elements (cf. end of Section
IV), there are two that are crucial for this approach to work:
(a) The given database may contain null values and if it
has them or not is not known to the user, and (b) The
semantics of null values, including the logical operations
with them. In this second regard, we can say for the moment
and in intuitive terms, that we will base our work on the
SQL semantics of nulls, or, more precisely, on a logical
reconstruction of this semantics (cf. Sections II-A and II-B).

Hiding sensitive information is one of the concerns.
Another one is about still providing as much informa-
tion as possible to the user. In consequence, the virtual
updates have to be minimal in some sense, while still
doing their job of protecting data. In the previous exam-
ple, we might consider virtually deleting the whole tuple
Marks(001, 05, 56) to protect secret information, but we
may lose some useful information, like the student ID and
the course ID. Furthermore, the user should not be able
to guess the protected information by combing information
obtained from different queries.

As illustrated above, null values will be used to virtually
update the database instance. Null values and incomplete

1We use Datalog notation for view definitions, and sometimes also for
queries.

databases have received the attention of the database com-
munity [32], [29], [18], [23], [1], and may have several
possible interpretations, e.g. as a replacement for a real
value that is non-existent, missing, unknown, inapplicable,
etc. Several formal semantics have been proposed for them.
Furthermore, it is possible to consider different, coexisting
null values. In this work, we will use a single null value,
denoted as above and in the rest of this paper, bynull.
Furthermore, we will treatnull as the NULL in SQL
relational databases.

We want our approach to be applicable to, and imple-
mentable on, DBMSs that conform to the SQL Standard,
and are used in database practice. We concentrate on that
scenario and SQL nulls, leaving for possible future work
the necessary modifications for our approach to work with
other kinds of null values. Since the SQL standard does
not provide a precise, formal semantics forNULL, we
define and adopt here a formal, logical reconstruction of
conjunctive query answering under SQL nulls (cf. Section
II-B). In this direction, we introduce unary predicates
IsNull andIsNotNull in logical formulas that are true only
when the argument is, resp. is not, the constantNULL. This
treatment of null values was first outlined in [9], but here
we make it precise. It captures the logics and the semantics
of the SQLNULL that are relevant for our work.2 Including
this aspect of nulls in our work is necessary to provide the
basic scientific foundations for our approach to privacy.

In this paper, we consider only conjunctive secrecy views
and conjunctive queries. The semantics of null-based virtual
updates for data privacy that we provide is model-theoretic,
in sense that the possible admissible instances after the
update, the so-calledsecrecy instances, are defined and
characterized. This definition captures the requirement that,
on a secrecy instance, the extensions of the secrecy views
contain only a tuple with null values or become empty.
Furthermore, the secrecy instances do not depart from the
original instance by more than necessary to enforce secrecy.

Next, the semantics ofsecret answersto a query is
introduced. Those answers are invariant under the class of
secrecy instances. More precisely, a ground tuplet̄ to a first
order queryQ(x̄) is a secret answer from instanceD if it
is an answer toQ(x̄) in every possible secrecy instance
for D. Of course, explicitly computing and materializing
all the secrecy instances to secretely answer a query is too
costly. Ways around this naive approach have to be found.

Actually, we show that the class of secrecy instances,
for a given instanceD and set of secrecy viewsVs, can
be captured in terms of a disjunctive logic program with
stable model semantics [15], [16]. More precisely, there is
a one-to-one correspondence between the secrecy instances
and the stable models of the program. As a consequence,
the logic programs can be used to: (a) Compactly specify
(axiomatize) the class of secrecy instances; and (b) Com-
pute secret answers to queries by running the program on
top of the original instance.

2The main issue in [9] was integrity constraint satisfactionin the
presence of nulls, for database repair and consistent queryanswering [3].

3

Our work has some similarities with that ondatabase
repairs andconsistent query answering(CQA) [3], [5]. In
that case, the problem is about restoring consistency of a
database wrt to a set of integrity constrains by means of
minimal updates. The alternative consistent instances that
emerge in this way are calledrepairs. They can be used to
characterize the consistent data in an inconsistent database
as the one that is invariant under the class of repairs. It is
possible to specify the repairs of a database by means of
disjunctive logic programs with stable model semantics (cf.
[5] for references on CQA).

Summarizing, in this paper we make the following
contributions: (a) We introducesecrecy viewsto specify
what to hide from a given user. (b) We introduce the
virtual secrecy instancesthat are obtained by minimally
changing attribute values by nulls, to make the secrecy
view extensions null. (c) We introduce thesecret answers
as those that are certain for the class of secrecy instances.
Those are the answers returned to the user. (d) We establish
that this approach works in the sense that the queries
about the secrecy view contents always return meaningless
answers; and furthermore, the user cannot reconstruct the
original instance via secret answers to different queries.
(e) We provide a precise logical characterization of query
answering in databases with null valuesà la SQL. (f) We
specify by means of logic programs the secrecy instances of
a database, which allows for skeptical reasoning, and then,
certain query answering, directly from the specification.
(g) We establish sme connections between secret query
answering and CQA in databases.

The structure of the rest of this paper is as follows.
In Section II we introduce basic notation and definitions,
including the semantics of conjunctive query answering
in databases with nulls. In Section III, we introduce the
secrecy instances and investigate the properties of secrecy.
Section IV presents the notion of secret answer to a query.
Section V presents secrecy logic programs. Section VI in-
vestigates the connection to database repairs and consistent
query answering. Section VII discusses related work. In
Section VIII we draw conclusions, and point to future work.

II. Preliminaries

Consider a relational schemaΣ = (U ,R,B), whereU is
the possibly infinite database domain, withnull ∈ U , R
is a finite set of database predicates, andB is a finite set
of built-in predicates, sayB = {=, 6=, >,<}. For ann-ary
predicateR ∈ R, R[i] denotes theith position or attribute
of R, with 1 ≤ i ≤ n. The schema determines a language
L(Σ) of first-order (FO) predicate logic, with predicates
in R ∪ B andconstantsin U . A relational instanceD for
schemaΣ is a finite set of ground atoms of the formR(ā),
with R ∈ R, and ā a tuple of constants fromU [1].

A query is a formulaQ(x̄) of L(Σ), with n free variables
x̄. D |= Q[c̄] denotes that instanceD makesQ true with
the free variables taking values as in̄c ∈ Un. In this
case,c̄ is an answer to the query.Q(D) denotes the set
of answers to queryQ from D. We will concentrate on

conjunctive queries, that areL(Σ)-formulas consisting of
a possibly empty prefix of existential quantifiers followed
by a conjunction of (database or built-in) atoms.

Example 2. Consider the following database instanceD1:

R A B
a b
c d
e null

S B C
b f
d g

null j

For the conjunctive queryQ1(x, z) : ∃y(R(x, y)∧S(y, z)),
it holds, e.g.D1 |= Q1[a, f]. Actually,Q1(D1) = {〈a, f〉,
〈c, g〉, 〈e, j〉}. Notice that here, and for the moment, we are
treatingnull as any other constant in the domain. �

Data will be protected via a fixed setVs of secrecy views
Vs. They are associated to a particular user or class of them.

Definition 1. A secrecy viewVs is defined by a Datalog
rule of the form

Vs(x̄)← R1(x̄1), . . . , Rn(x̄n), ϕ, (2)

with Ri ∈ R, x̄ ⊆
⋃

i x̄i and x̄i is a tuple of variables.3

Formulaϕ is a conjunction of built-in atoms containing
terms, i.e. domain constants or variables. �

We can see that a secrecy view is defined by a conjunctive
query with built-in predicates written inL(Σ). The con-
junctive query associated to the view in (2) is:

QVs(x̄) : ∃ȳ(R1(x̄1) ∧ · · · ∧Rn(x̄n) ∧ ϕ), (3)

with ȳ = (
⋃
x̄i) r x̄. Conj (Σ) denotes the class of

conjunctive queries ofL(Σ), andVs(D) the extension of
view Vs computed on instanceD for Σ. By definition,
Vs(D) = QVs(D).

Example 3. (example 2 cont.) For the given instance
D1, consider the secrecy view defined byVs(x) ←
R(x, y), S(y, z). Here, the data protected by the view are
those that belongs to its extension, namelyVs(D1) =
{〈a〉, 〈c〉, 〈e〉}. Sometimes, to emphasize the view predicate
involved, we write insteadVs(D1) = {Vs(a), Vs(c), Vs(e)}.
The corresponding conjunctive query is QVs(x) :
∃y∃z(R(x, y) ∧ S(y, z)). �

Finally, an integrity constraint(IC) is a sentenceψ of
L(Σ). D |= ψ denotes that instanceD satisfiesψ. For a
fixed setI of ICs, we say thatD is consistentwhenD |= I,
i.e. whenD satisfies each element ofI.

For both of the notions of query answer and IC satisfac-
tion above we are using the classic concept of satisfaction
of predicate logic, denoted with|=. According to it, the
constant null is treated as any other constant of the
database domain. We will use this notion at some places.
However, in order to capture the special role ofnull among
those constants, as in SQL databases, we will introduce next
a different notion, denoted with|=

N
. In Example 2, under

the new semantics, and due to the participation ofnull in

3We will frequently use Datalog notation for view definitionsand
queries. When there is no possible confusion, we treat sequences of
variables as set of variables. I.e.x1 · · ·xn as{x1, . . . , xn}.

4

join, the tuple〈e, j〉 will not be an answer anymore, i.e.
D1 6|=N

Q1[e, j]. The two notions,|= and |=
N

, will coexist
and also be related (cf. Section II-B).

A. Null value semantics: The gist

In [12], Codd proposed a three-valued logic with truth
valuestrue, false, andunknownfor relational databases with
NULL. When aNULL is involved in a comparison operation,
the result isunknown. This logic has been adopted by the
SQL standard, and partially implemented in most common
commercial DBMSs (with some variations). As a result,
the semantics ofNULL in both the SQL standard and the
commercial DBMSs is not quite clear; in particular, for IC
satisfaction in the presence ofNULL.

The semantics for IC satisfaction withNULL introduced
in [9], [10] presents a FO semantics for nulls in SQL
databases. It is a reconstruction in classical logic of the
treatment ofNULL in SQL DBs. More precisely, this
semantics captures the notion of satisfaction of ICs, and
also of query answering for a broad class of queries in
relational databases. In the rest of this section, we motivate
and sketch some of the elements of the notion of query
answer that we will use in the rest of this work. The details
can be found in Section II-B. In the following, we assume
that there is a single constant,null, to represent a null value.

A tuple c̄ of elements ofU is an answer to queryQ(x̄),
denotedD |=N Q(c̄), if the formula (that represents)
Q is classically truewhen the quantifiers on itsrelevant
variables (attributes) run over(U r {null}); and those on
of the non-relevant variables run overU . The free relevant
variables cannot take the valuenull either. For a precise
definition see Section II-B (and also [9], [10]).

Example 4. Consider the instanceD2 and query below:

R A B C
1 1 1
2 null null

null 3 3

S B
null
1
3

Q2(x) : ∃y∃z(R(x, y, z) ∧ S(y) ∧ y > 2). (4)

A variable v (quantified or not) in a conjunctive query is
relevant if it appears (non-trivially) twice in the formula
after the quantifier prefix [9]. Occurrences of the form
v = null and v 6= null do not count though. In query
(4), the only relevant quantified variable isy, because it
participates in a join and a built-in in the quantifier-free
matrix of (4). So, there are two reasons fory to be relevant.
The only free variable isx, which is not relevant. As
for query answers, the only candidate values forx are:
null, 2, 1. In this case,null is a candidate value becausex
is a non-relevant variable.

First, x = null is an answer to the query, because the
formula ∃y∃z(R(x, y, z) ∧ S(y) ∧ y > 2) is true inD2,
with a non-null witness value fory and a witness value for
z that combined make the (non-quantified) formula true.
Namely,y = 3, z = 3. So, it holdsD2 |=N Q2[null].

Next,x = 2 is not an answer. For this value ofx, because
the candidate value fory, namelynull that accompanies2

in P , makes the formula(R(x, y, z)∧S(y)∧ y > 2) false.
Even if it were true, this value fory would not be allowed.

Finally, x = 1 is not an answer, because the only
candidate value fory, namely1, makes the formula false.
In consequence,null is the only answer. �

This notion of query answer coincides with the classic
FO semantics for queries and databases without null values
[9], [10]. The next example with SQL queries andNULL
provides additional intuition and motivation for the formal
semantics of Section II-B. Notice the use in logical queries
of the new unary predicatesIsNull and IsNotNull that we
also formally introduce in Section II-B.

Example 5. Consider the schemaS = {R(A,B)} and the
instance in the table below. In itNULL is the SQL null. If
this instance is stored in an SQL database, we can observe
the behavior of the following queries when they are directly
translated into SQL and run on an SQL DB:

R A B
a b
a c
d NULL

d e
u u
v NULL

v r
NULL NULL

S B C
b h

NULL s
l m

(a)Q1(x, y) : R(x, y) ∧ y = null

SQL:Select * from R
where B = NULL;

Result: No tuple

(b) Q′
1(x, y) : R(x, y) ∧ IsNull(y)

SQL: Now usesIS NULL
Result:〈d, NULL〉, 〈v, NULL〉, 〈NULL, NULL〉

(c) Q2(x, y) : R(x, y) ∧ y 6= null
SQL: Select * from R where B <> NULL;
Result: No tuple

(d) Q′
2(x, y) : R(x, y) ∧ IsNotNull(y)

SQL: Now usesIS NOT NULL
Answer: The five expected tuples

(e) Q3(x, y) : R(x, y) ∧ x = y
SQL: Select * from R where A = B;
Result: 〈u, u〉

(f) Q4(x, y) : R(x, y) ∧ x 6= y
SQL: Select * from R where A <> B;
Result: Four tuples:〈a, b〉, 〈a, c〉, 〈d, e〉, 〈v, r〉

(g) Q5(x, y, x, z) : R(x, y) ∧R(x, z) ∧ y 6= z
SQL: Select * from R r1, R r2 where

r1.A = r2.A and r1.B <> r2.B;
Result: 〈a, b, a, c〉, 〈a, c, a, b〉

(h) Q6(x, y, z, t) : R(x, y) ∧ S(z, t) ∧ y = z
SQL: Select * from R r1, S s1

where r1.B = s1.B;
Result:〈a, b, b, h〉

(i) SQL: Select * from R r1 join S s1
on r1.B = s1.B;

Result:4 〈a, b, b, h〉
(j) Q7(x, y, z, t) : R(x, y) ∧ S(z, t) ∧ y 6= z

4The same result is obtained from DBMSs that do not require an
explicitly equality together with the join.

5

SQL: Select R1.A, R1.B, S1.B, S1.C
from R R1, S S1 where R1.B <> S1.B’;

Result:〈a, c, b, h〉, 〈d, e, b, h〉, 〈u, u, b, h〉, 〈v, r, b, h〉,
〈a, b, l,m〉, 〈a, c, l,m〉, 〈d, e, l,m〉, 〈u, u, l,m〉, 〈v, r, l,m〉 �

B. Semantics of query answers with nulls

Here we introduce the semantics of FO conjunctive query
answering in relational databases with null values.5 More
precisely, in SQL relational databases with a single null
value, null , that is handled like the SQLNULL. The
SQL queries are first reconstructed as queries in the FO
languageL(Σnull) associated toΣnull = (U ,R,Bnull),
with Bnull = B ∪ {IsNull(·), IsNotNull(·)}. The last
two are new unary built-in predicates that correspond to
the SQL predicatesIS NULL andIS NOT NULL, used to
check null values. Their intended semantics is as follows
(cf. Definition 4): IsNull(null) is true, butIsNull(c) is
false for any other constantc in the database domain. And,
for any constantd ∈ U , IsNotNull(d) is true iff IsNull(d)
is false.

Introducing these predicates is necessary, because, as
shown in Example 5, in the presence ofNULL, SQL
treatsIS NULL andIS NOT NULL differently from= and
6=, resp. For example, the queriesQ(x) : ∃y(R(x, y) ∧
IsNull(y)) andQ′(x) : ∃y(R(x, y) ∧ y = null) are both
conjunctive queries ofL(Σnull), but in SQL relational
databases, they have different semantics.

In Example 5, each queryQ is defined by the formula
ψ on the right-hand side. Below, we will identify the query
with its defining FO formula. Furthermore, we exclude from
the SQL-like conjunctive queries those like (a) and (c) in
Example 5.

Definition 2. (a) The classConj sql(Σnull) contains all the
conjunctive queriesin L(Σnull) of the form

Q(x̄) : ∃ȳ(A1(x̄1) ∧ · · · ∧An(x̄n)), (5)

where ȳ ⊆
⋃

i x̄i, x̄ = (
⋃

i x̄i) r ȳ, and theAi are atoms
containing any of the predicates inR∪Bnullplus terms, i.e.
variables or constants inU . Furthermore, those atoms are
never of the formt = null, null = t, t 6= null, null 6= t,
with t a term,null or not.
(b) WithConj (Σnull) we denote the class of all conjunctive
queries of the form (5), but without the restrictions on
(in)equality atoms imposed onConj sql(Σnull). �

The idea here is to force conjunctive queriesà la SQL,
i.e. those inConj sql(Σnull), that explicitly mention the
null value in (in)equalities, to use the built-insInNull or
IsNotNull . Notice that the classConj (Σnull) includes both
Conj sql(Σnull) andConj (Σ).

Definition 3. Consider a query inConj (Σnull) of the form
Q(x̄) : ∃ȳψ(x̄, ȳ), with ∃ȳ a possibly empty prefix of
existential quantifiers, andψ is a quantifier-free conjunction
of atoms. A variablev is relevantfor Q [10] if it occurs at

5This semantics can be extended to a broader class of queries and also to
integrity constraint satisfaction. It builds upon a similar and more general
semantics first introduced in [9], [10].

least twice inψ, without considering the atomsIsNull(v),
IsNotNull(v), v θ null, or null θ v, with θ ∈ B. VR(Q)
denotes the set of relevant variables forQ. �

For example, for the queryQ(x) : ∃y(P (x, y, z) ∧Q(y) ∧
IsNull(y)), VR(Q(x)) = {y}, becausey is used twice in
the subformulaP (x, y, z) ∧Q(y).

As usual in FO logic, we consider assignments from the
set,Var , of variables to the underlying database domainU
(that contains constantnull), i.e. s : Var → U . Such an
assignment can be extended to terms, ass̄. It maps every
variablex to s(x), and every elementc of U to c. For an
assignments, a variabley and a constantc, s y

c
denotes

the assignment that coincides withs everywhere, possibly
except ony, that takes the valuec. Given a formulaψ,
ψ[s] denotes the formula obtained fromψ by replacing its
free variables by their values according tos.

Now, given a formula (query)χ and a variable assign-
ment functions, we verify if instanceD satisfiesχ[s] by
assuming that the quantifiers on relevant variables range
over (U r {null}), and those on non-relevant variables
range overU . More precisely, we define,by induction onχ,
whenD satisfiesχ with assignments, denotedD |=

N
χ[s].

Definition 4. Let χ be a query inConj (Σnull), and s
an assignment. The pairD, s satisfiesχ under the null-
semantics, denotedD |=

N
χ[s], exactly in the following

cases: (belowt, t1, . . . are terms; andx, x1, x2 variables)
1. (a) D |=

N
IsNull(t)[s], with s(t) = null. (b) D |=

N

IsNotNull(t)[s], with s(t) 6= null.
2. D |=

N
(t1 < t2)[s], with s̄(t1) 6= null 6= s̄(t2), and

s̄(t1) < s̄(t2) (similarly for >).6

3. (a)D |=
N

(x = c)[s], with s(x) = c ∈ (U r {null}).
(or symmetrically).7

(b) D |=
N
(x1 = x2)[s], with s(x1) = s(x2) 6= null.

(c) D |=
N
(c = c)[s], with c ∈ (U r {null}).

4. (a)D |=
N

(x 6= c)[s], with null 6= s(x) 6= c ∈ (U r
{null}). (or symmetrically).
(b) D |=

N
(c1 6= c2)[s], with c1 6= c2, and c1, c2 ∈ (U r

{null}).
5. D |=

N
R(t1, . . . , tn)[s], with R ∈ R, andR(s̄(t1), . . . ,

s̄(tn)) ∈ D.
6.D |=

N
(α∧β)[s], with α, β quantifier-free,s(y) 6= null

for everyy ∈ VR(α ∧ β), andD |=
N
α[s] andD |=

N
β[s].

7. D |=
N

(∃y α)[s] when: (a) if y ∈ VR(α), there isc in
(Ur{null}) with D |=

N
α[s y

c
]; or (b) if y 6∈ VR(α), there

is c in U with D |=
N
α[s y

c
]. �

This semantics can be applied to conjunctive queries in
Conj sql(Σnull). The notion of relevant attribute and this
semantics of query satisfaction can be both extended to
more complex formulas. In particular, they can be applied
also to the satisfaction of integrity constraints under SQL
null values [10], [9].

Definition 5. [10] Let Q(x̄) : ∃ȳψ(x̄, ȳ) be a conjunctive
query inConj (Σnull), with x̄ = x1, . . . , xn.

6Of course, when there is an order relation onU .
7Here we use the symbols= and 6= both at the object and the meta

levels, but there should not be a confusion since valuationsare involved.

6

(a) A tuple 〈c1, . . . , cn〉 ∈ Un is ananswer fromD under
the null query answering semanticsto Q, in short, anN -
answer, denotedD |=

N
Q[c1, . . . , cn], iff there exists an

assignments such thats(xi) = ci, for i = 1, . . . , n; and
D |=

N
(∃ȳψ)[s].

(b) QN(D) denotes the set ofN -answers toQ from
instanceD. Similarly,VN(D) denotes a view extension ac-
cording to theN -answer semantics:VN(D) = (QV)N(D).
(c) If Q is a sentence (boolean query), theN -answer isyes
iff D |=

N
Q, andno, otherwise. �

Notice thatD |=
N
(∃ȳψ)[s] in (a) above requires, according

to Definition 4, that the variables in the existential prefix
∃ȳ that are relevant do not take the valuenull. The free
variablesxi in Q(x̄) may take the valuenull only when
they are not relevant in the query. Example 4 illustrates this
definition. In it, since the free variablex is not relevant,
QN

2 (D2) = {〈null〉}. Similarly, in Example 2, it holds:
QN

1 (D1) = {〈a, f〉, 〈c, g〉} ⊆ Q1(D1).
Actually, it is easy to prove that, for queries in

Conj (Σnull), it holds in general:QN(D) ⊆ Q(D). Fur-
thermore, theN -query answering semantics coincides with
classical FO query answering semantics in databases with-
out null values [10], [9]. More precisely, ifnull /∈ U (and
then it does not appear inD or Q either): D |=

N
Q[t̄] iff

D |= Q[t̄].
Furthermore, every conjunctive query inConj (Σnull)

can be syntactically transformed into a new FO query for
which the evaluation can be done by treatingnull as any
other constant [10], [9]. (A similar transformation will be
found in Proposition 1 below.)

More precisely, a conjunctive queryQ(x̄) ∈
Conj (Σnull), i.e. of the form (5), can be rewritten
into a classic conjunctive query, as follows:

Qrw(x̄) : ∃ȳ(A1(x̄1)∧· · ·∧An(x̄n) ∧
∧

v∈VR(Q)

v 6= null). (6)

It holds: D |=
N
Q[c̄] iff D |= Qrw[c̄]. Here, on

the right-hand side, we have classic FO satisfaction, and
null is treated as an ordinary constant in the domain. This
transformation ensures that relevant variables range over
(Ur{null}). QueryQrw(x̄) belongs toConj (Σnull), and it
may contain atoms of the formIsNull(t) or IsNotNull(t).
However, replacing them byt = null or t 6= null, resp.,
leads to a query inConj (Σ) that has the same answers as
(6) (under the same classic semantics).

Example 6. (example 4 continued) QueryQ in (4) can be
rewritten as

Qrw

2 : ∃y∃z(P (x, y, z) ∧Q(y) ∧ y > 2 ∧ y 6= null).

We hadD 6|=
N
Q2[1]. Now alsoD 6|= ∃y∃z(P (1, y, z) ∧

Q(y) ∧ y > 2 ∧ y 6= null) under classic query evaluation,
with null treated as an ordinary constant. Similarly,D 6|=
Qrw

2 [2] due to the new conjuncty = null. Finally, D |=
Qrw

2 [null] becauseD |= (P (null, 3, 3)∧Q(3)∧3 > 2∧3 6=
null). Sincenull is treated as any other constant, we can
compare it with3. By the unique names assumption, it
holdsnull 6= 3. �

Although our framework provides a precise semantics for
conjunctive queries inConj (Σ) or Conj (Σnull), in both
cases possibly containing (in)equalities involvingnull, a
usual conjunctive query in SQL should be first translated
into a conjunctive queryQ in Conj sql(Σnull) if we want
to retain its intended semantics. After thatQrw can be
computed.

III. Secrecy Instances

In this work we will make use ofnull to protect secret
information. The basic idea that we develop in this and the
next sections is that the extensions of the secrecy views,
obtained as query answers, should contain only the tuple
with nulls or become empty. In this case we will say that
the view is null.

Definition 6. A query Q(x̄) is null on instanceD if
QN(D) ⊆ {〈null, . . . , null〉} (with the tuple inside with
the same length as̄x). A view V (x̄) is null on D if the
query defining it is null onD. �

Example 7. (example 4 continued) Consider the secrecy
view Vs(x) ← R(x, y, z), S(y), y > 2. Its corresponding
FO queryQVs(x) in the one in (4), namely:

Q2(x) : ∃y∃z(R(x, y, z) ∧ S(y) ∧ y > 2).

Under the semantics of secrecy in the presence ofnull, we
expect the view to be null. This requires the values for
attributeA associated with variablex in Q2 to be null,
or the values inB associated with variabley in Q2 to be
null, or the negation of the comparison to betrue. These
three cases correspond to the three assignments of Example
4. Thus, the view extension isVs(D2) = {〈null〉}, which
shows that the view is null onD2. �

In this example we are in an ideal situation, in the sense
that we did not have to change the instance to obtain
a “secret answer”. However, this may be an exceptional
situation, and we will have to virtually “distort” the given
instance by replacing -as few as possible- non-null attribute
values bynull. More generally, since it does not necessarily
holds that each secrecy becomes null on an instanceD
at hand, the view extensions will be obtained from an
alternative, possibly virtual, versionD′ of D that does
make each of those views null. In this sense,D′ will be an
admissibleinstance (cf. Definition 7 below). At the same
time, we wantD′ to stay as close as possible toD (cf.
Definition 11 below). Since there may be more that one
such instanceD′, we query all of them simultaneously, and
return thecertain answers[18] (cf. Definition 12 below).
Each of the query and view evaluations is done according
to the notion ofN -answer introduced in Section II-B.

First, we define the instances that make the secrecy views
empty or null.

Definition 7. An instanceD for schemaΣ is admissiblefor
a setVs of secrecy views of the form (2) if under theN -
answer semantics (cf. Definition 5), eachVs(D) is empty
or in all its tuples onlynull appears.Admiss(Vs) denotes
the set of admissible instances. �

7

As Example 7 shows,D2 is admissible for the the given
view. It also shows that there are some attributes that are
particularly relevant for the view to be null,A andB in
that case. In the following, we make precise this notion
of secrecy-relevant attribute(cf. Definition 8(d) below).
Before we used (plain) “relevance” associated to variables
for query answering under nulls. Not surprisingly, the new
notion is based on the previous one. This will allow us to
provide an alternative and more operational characterization
of secrecy instances (cf. Proposition 1 below).

Definition 8. Consider a viewVs defined as in (2).
(a) ForR ∈ R in the body of (2) and a termt (i.e. a variable
or constant),posR(Vs, t) denotes the set ofpositionsin R
wheret appears in the body ofVs’s definition.
(b) The set ofcombination attributesfor Vs is:
C(Vs) = {R[i] | for a relevant variablev, i ∈ posR(Vs, v)}.
(c) The set ofsecrecy attributesfor Vs is: S(Vs) = {R[i] |
for an x in Vs(x̄) in (2), i ∈ posR(Vs, v)}.
(d) The set ofs-relevant attributes8 for a secrecy view
Vs are those (associated to positions) in the setA(Vs) =
C(Vs) ∪ S(Vs). �

Combination attributes for a secrecy viewVs are those
involved in joins or built-in predicates (other than built-ins
with explicit null). Secrecy attributes are those appearing
in the head ofVs’s definition, and accordingly, collect the
query answers, which are expected to be secret. Hence,
“secrecy attributes”. They correspond to the free variables
in the associated queryQVs .

Example 8. (example 7 continued) Consider again the
secrecy viewVs(x) ← R(x, y, z), S(y), y > 2. Here
C(Vs) = {R[2], S[1]}, becausey is the only relevant
variable; andS(Vs) = {R[1]}, becausex is the only
free variable. In consequence,A(Vs) = {R[1], S[1], R[2]}.
Attribute C, i.e.R[3], is not s-relevant. Actually, its value
is not relevant to obtain the view extension. �

The following proposition provides a characterization of
admissible instance for a set of secrecy of views in terms
of classic FO satisfaction (cf. [24, Proposition 1]). In it we
use the notationD |= γ for the classic notion of satisfaction
by an instanceD of FO formulaγ, wherenull is treated
as any other constant.

Proposition 1. Let Vs be a set of secrecy views, each of
whose elementsVs is of the form (2), and has an expression
QVs(x̄) : ∃ȳ(

∧n

i=1 Ri(x̄i) ∧ ϕ) as a conjunctive query. For
an instanceD, D ∈ Admiss(Vs) iff for each Vs ∈ Vs,
D |= Null-Vs, where Null-Vs is the following sentence
associated toQVs :

∀(
n∧

i=1

Ri(x̄i) −→
∨

v ∈
⋃

n
i
x̄i ∩ C(Vs)

v = null ∨ (7)

∧

u ∈
⋃

n
i
x̄i ∩ S(Vs)

u = null ∨ ¬ϕ). �

8For distinction from the notion of relevant attribute/variable used in
Sections II-A and II-B.

In the theorem,∀ denotes the universal closure of the
formula that follows it; andv ∈ (

⋃n

i x̄i ∩ C(Vs)) indicates
that variablev appears in some of the atomsRi(x̄i) and in
a combination attribute, etc.

SentenceNull-Vs in (7) originates in the FO rewriting
(QVs)rw as in (6) of the queryQVs associated toVs, and
the requirement that the latter becomes null onD.

Example 9.(example 8 continued) According to the above
definition, in order to check whether the database instance
D2 is admissible, the following must hold:

D2 |= ∀x∀y∀z(R(x, y, z) ∧ S(y) −→ x = null ∨

y = null ∨ y ≤ 2).

When checking sentence onD2, null is treated as any
other constant. Notice that the values for the non-s-relevant
attributes do not matter.

For x = 1, y = 1, the antecedent of the implication is
satisfied. For these values, the consequent is also satisfied,
becausey = 1 < 2. For x = 2, y = null, the consequent
is satisfied sincey is null. For x = null, y = 3, the
antecedent is satisfied. For these values, the consequent is
also satisfied, becausenull = null is true. So,D2 |=N

QVs , and instanceD2 is admissible. �

The next step consists in selecting from the admissible
instances those that are close to the database we are
protecting. This requires introducing a notion of distanceor
an order relationship between instances for a same schema.
This would allow us to talk about minimality of change.
Since, in order to enforce privacy on an instanceD, we will
virtually change attribute values bynull, the comparison of
instances has to take this kind of changes and the presence
of null in tuples into account. Intuitively, asecrecy instance
for D will be admissible and also minimally differ fromD.

Definition 9. (a) The binary relation❁ on the database
domainU , is defined as follows:c ❁ d iff c = null and
d 6= null. Its reflexive closure is⊑.
(b) For t̄1 = 〈c1, . . . , cn〉 and t̄2 = 〈d1, . . . , dn〉 in Un:
t̄1 ⊑ t̄2 iff ci ⊑ di for eachi ∈ {1, . . . , n}. Also, t̄1 ❁ t̄2
iff t̄1 ⊑ t̄2 and t̄1 6= t̄2. �

This partial order relationship̄t1 ⊑ t̄2 indicates that̄t1
is less or equally informative than̄t2. For example, tuple
(a, null) provides less information than tuple(a, b). Then,
(a, null) ❁ (a, b) holds.

In order to capture the fact that we are just modifying
attribute values, but not inserting or deleting tuples, we
will assume (sometimes implicitly) that database tuples
havetuple identifiers. More precisely, each predicate has an
additional, first, attributeID , which is a key for the relation,
and whose values are taken inN and not subject to changes.
In consequence, tuples in an instanceD will be of the form
R(k, t̄), with k ∈ N, and t̄ ∈ Un, andR ∈ R is, implicitly,
of arity n+ 1. Below, we will consider only instancesD′

that arecorrelated to D, i.e. there is a surjective function
κ from D to D′, such thatκ(R(k, t̄)) = R(k, t̄′), for some
t̄′. This mapping respects the predicate name and the tuple

8

identifier. We say thatD′ is D-correlated (viaκ). In the
rest of this section,D is a fixed instance, the one under
privacy protection. We will usually omit tuple identifiers.

Definition 10. (a) For database tuplesR1(k1, t̄1),
R2(k2, t̄2): R1(k1, t̄1) ⊑ R2(k2, t̄2) iff R1 = R2, k1 = k2,
and t1 ⊑ t2.
(b) For instancesD1, D2: D1 ⊑ D2 iff for every tuple
R1(k1, t̄1) ∈ D1, there is a tupleR2(k2, t̄2) with R2(k, t̄2)
⊑ R1(k, t̄1).
(c) ForD-correlated instancesD1, D2: D1 ≤D D2 iff: i.
D1, D2 ⊑ D, and ii.D2 ⊑ D1. As usual,D1 <D D2 iff
D1 ≤D D2, but notD2 ≤D D1. �

Notice that the condition (c)i. for the partial order≤D

forcesD1 and D2 to be obtained fromD by updating
attribute values bynull. Condition (c)ii. inverts the partial
order⊑ between tuples (and between instances). The reason
is that we want secrecy instances to beminimalwrt theset
of changesof attributes values by nulls (as customary for
database repairs [5]). Informally, whenD1 ≤D D2, D1

is obtained fromD, in comparison withD2, via “less”
replacements of values by nulls, and then is close toD.

Definition 11. An instanceDs is a secrecy instancefor D
wrt a setVs of secrecy views iff: (a)Ds ∈ Admiss(Vs), and
(b)Ds is≤D-minimal in the class ofD-correlated database
instances that satisfy (a). (I.e. there is no instanceD′ in that
class withD′ <D Ds.) Sec(D,Vs) denotes the set of all
the secrecy instances forD wrt Vs. �

Notice that a secrecy instance nullifies all the secrecy views,
is obtained fromD by changing attribute values bynull,
and the set of changes is minimal wrt set inclusion.9

Example 10.Consider the instanceD = {P (1, 2), R(2, 1)}
for schemaR = {P (A,B), R(B,C)}. With tuple iden-
tifiers (underlined), it takes the formD = {P (1, 1, 2),
R(1, 2, 1)}. Consider also thesecrecy view:

Vs(x, z)← P (x, y), R(y, z), y < 3.10

D itself is not admissible (it does not nullify the secrecy
view), and then it is not a secrecy instance either. Now,
consider the following alternative updated instancesDi:

D1 {P (1, null, 2), R(1, 2,null)}
D2 {P (1, 1,null), R(1, 2, 1)}
D3 {P (1, 1, 2), R(1, null, 1)}
D4 {P (1, 1,null), R(1,null, 1)}

For example, forD1 the set of changes can be identified
with the set of changed positions:U1 = {P [1], R[2]} (ID
has position0). TheDi are all admissible, that is (cf. (7)):

Di |= ∀x∀y∀z(P (x, y) ∧R(y, z) −→

(y = null ∨ (x = null ∧ z = null) ∨ y ≥ 3).

D1, D2, and D3 are the only three secrecy instances,
i.e. they are≤D-minimal: The sets of changesU1, U2 =

9As opposed to minimizing the cardinality of that set. Cf. [5]for a
discussion of different forms of “repairs” of databases.

10It would be easy to consider tuple ids in queries and view definition,
but they do not contribute to the final result and will only complicate the
notation. So, we skip tuple ids whenever possible.

{P [2]}, andU3 = {R[1]} are all incomparable under set
inclusion.D4 is not minimal, becauseU4 = {P [2], R[1]} %
U3, which is also reflected in the fact thatP (1, 1, null)
❁ P (1, 1, 2); and then,D3 <D D4. �

IV. Privacy Preserving Query Answers

Now we want to define and compute thesecret answers to
queriesfrom a given databaseD that is subject to privacy
constraints, as represented by the nullification of the secrecy
views. They will be defined on the basis of the class of
secrecy instances forD. This class will be queried instead
of directly queryingD. In this sense, we may consider
the class of secrecy instances as representing alogical
database, given through its models. In such a case, the
intended answers are those that are true of all the instances
in the class, and become the so-calledcertain answers[18].

Definition 12. Let Q(x̄) ∈ Conj (Σnull). A tuple c̄ of
constants inU is a secret answerto Q from D wrt to
a set of secrecy viewsVs iff c̄ ∈ QN(Ds) for each
Ds ∈ Sec(D,Vs). SA(Q, D,Vs) denotes the set of all
secret answers. �

Example 11. (example 10 continued). Consider the query
Q(x, z) : ∃y(P (x, y) ∧ R(y, z) ∧ y < 3). According
to Definition 5, it holds:QN(D1) = {〈null, null〉},
QN(D2) = ∅, andQN(D3) = ∅. These answers can also
be obtained by first rewritingQ, as in (6), into the query
Qrw(x, z) : ∃y(P (x, y) ∧ R(y, z) ∧ y < 3 ∧ y 6= null),
which can be evaluated on each of the secrecy instances
treatingnull as any other constant.

We obtain SA(Q, D, {Vs}) = QN(D1) ∩ QN(D2) ∩
QN(D3) = ∅. This is as expected, because in this example,
Q is QVs , the query associated to the secrecy view.�

The idea behind answering queries from the secrecy
instances (SIs) forD is that the answers are still close
to those we would have obtained fromD (because SIs are
maximally close toD). Furthermore, since all the secrecy
views become null on the SIs, the answers returned to any
query, not necessarily to a secrecy view computation, will
take this property into account. In the query answering
part we are using askeptical or cautious semantics, that
sanctions as true what is simultaneously true in a whole
class of models, or instances in our case (the SIs). Now
we analyze to what extent this approach does protect the
sensitive data. A restricted user may try to pose several
queries to obtain sensitive information.

Example 12. Consider instanceD = {P (1, 2), P (3, 4),
R(2, 1), R(3, 3)} for schemaR = {P (A,B), R(B,C)},
and the secrecy viewVs(x, z) ← P (x, y), R(y, z). In this
case,V N

s (D) = {〈1, 1〉}. D has the following SIs:

D1 {P (null, 2), P (3, 4), R(2,null), R(3, 3)}
D2 {P (1,null), P (3, 4), R(2, 1), R(3, 3)}
D3 {P (1, 2), P (3, 4), R(null, 1), R(3, 3)}

The user may pose the queriesQ1(x, y) : P (x, y) and
Q2(x, y) : R(x, y), trying to reconstructD. It holds

9

QN1(D1) = {〈null, 2〉, 〈3, 4〉}, QN1(D2) = {〈1, null〉,
〈3, 4〉},QN1(D3) = {〈1, 2〉, 〈3, 4〉}. Then,SA(Q1, D, {Vs})
= {〈3, 4〉}. Now,QN2(D1) = {〈2, null〉, 〈3, 3〉},QN2(D2) =
{〈2, 1〉, 〈3, 3〉}, QN2(D3) = {〈null, 1〉, 〈3, 3〉}. Then,
SA(Q2, D, {Vs}) = {〈3, 3〉}.

By combining the secret answers toQ1 andQ2, it is
not possible to obtainV N

s (D). For the user who poses the
queriesQ1 andQ2, the relations look as follows:

P A B
3 4

R B C
3 3 �

Now, we establish in general the impossibility of ob-
taining the contents of the secrecy views through the use
of secret answers to atomic queries (as in the previous
example). Open atomic queries are the “broader” queries
we may ask; other queries are obtained from them by
conjunctive combinations.

Definition 13. Let Vs be a set of secrecy viewsVs.
The secrecy answer instancefor Vs from D is DVs =
{R(c̄) | R ∈ R and c̄ ∈ SA(R(x̄), D,Vs)}. �

Here, we are building a database instance by collecting the
secret answers (SAs) to all the atomic queries of the form
Q(x̄) : R(x̄), with R ∈ R. This instance has the same
schema asD.

Example 13. (example 12 continued) Consider the se-
crecy view Vs(x, z) ← P (x, y), R(y, z). It holds:
D{Vs} = {P (3, 4)} ∪ {R(3, 3)} = {P (3, 4), R(3, 3)}.
Notice that VN

s (D{Vs}) = ∅ = SA(QVs , D, {Vs}) =⋂3
i=1(Q

Vs)N(Di) = {〈null, null〉} ∩ ∅ ∩ ∅. �

Proposition 2. For every Vs of the form (2) in Vs,
SA(QVs , D,Vs) = Vs(DVs). �

This proposition tells us that by combining SAs to
queries, trying to reconstruct the original instance, we
cannot obtain more information that the one provided by
the SAs (cf. [24, Proposition 2] for a proof).

The original databaseD may contain null values, and
users have to count on that. A restricted user will receive
as query answers the SAs, which are defined and computed
through null values. This user could obtain nulls from a
query, and hopefully he will not know if they were already
in D or were (virtually) introduced for privacy purposes.
This is fine and accomplishes our goals. However, as long
as the user does not have other kind of information.

Example 14. Consider the instanceD = {P (1, 1)}, and
the secrecy viewVs(x)← P (x, y), x = 1. D has only one
secrecy instanceDs:

P A B
null 1

For the queryQ(x) : ∃y(P (x, y) ∧ x = 1) associated to
the secrecy view, the secrecy answer toQ(x) on D is ∅.
Now, the secrecy answer toQ′(x) : ∃yP (x, y) is {〈null〉}.
A user who receives this answer will not know if the null
value was introduced to protect data.

However, if the user knows from somewhere else that
there is an SQL’sNOT NULL constraint or a key constraint

on the first attribute, and that it is satisfied byD, then he
will know that the received null was not originally inD.
Furthermore, that it is replacing a non-null value. If he
also knows that there is exactly one tuple in the relation
(a COUNT query), and also the secrecy view definition, he
will infer that 〈1〉 ∈ VN

s (D). �

In summary, for our approach to work, we rely on the
following assumptions:
(a) The user interacts via conjunctive query answering

with a possibly incomplete database, meaning that the
latter may contain null values, and this is something
the former is aware of, and can count on (as with
databases used in common practice). In this way, if
a query returns answers with null values, the user
will not know if they were originally in the database
or were introduced for protection at query answering
time.

(b) The queries request data, as opposed to schema ele-
ments, like integrity constraints and view definitions.
Knowing the ICs (and about their satisfaction) in
combination with query answers could easily expose
the data protection policy. The most clear example is
the one of aNOT NULL SQL constraint, when we see
nulls where there should not be any.

(c) In particular, the user does not know the secrecy view
definitions. Knowing them would basically reveal the
data that is being protected and how.

These assumptions are realistic and make sense in many
scenarios, for example, when the database is being accessed
through the web, without direct interaction with the DBMS
via complex SQL queries, or through an ontology that offers
a limited interaction layer. After all, protecting data may
require additional measures, like withholding from certain
users certain information that is, most likely, not crucialfor
many applications. From these assumptions and Proposition
2, we can conclude that the user cannot obtain information
about the secrecy views through a combination of SAs
to conjunctive queries. Therefore, there is not leakage of
sensitive information.

V. Secrecy Instances and Logic Programs

The updates leading to the secrecy instances (SIs) should
not physically change the database. Also, different users
may be restricted by different secrecy views. Rather, the
possibly several SIs have to be virtual, and used mainly
as an auxiliary notion for the secret answer semantics. We
expect be able to avoid computing all the SIs, materializing
them, and then cautiously querying the class they form. We
would rather stick to the original instance, and use it as it
is to obtain the secret answers.

One way to approach this problem is via query rewriting.
Ideally, a queryQ posed toD and expecting secret answers
should be rewritten into another queryQ′. This new query
would be posed toD, and the usual answers returned byD
toQ′ should be the secret answers toQ. We would likeQ′

to be still a simple query, that can be easily evaluated. For
example, ifQ′ is FO, it can be evaluated in polynomial

10

time in data. However, this possibility is restricted by
the intrinsic complexity of the problem of computing or
deciding secret answers, which is likely to be higher than
polynomial time in data (cf. Section VI). In consequence,
Q′ may not even a FO query, let alone conjunctive.

An alternative approach is to specify the SIs in a compact
manner, by means of a logical theory, and do reasoning
from that theory, which is in line with skeptical query
answering. This will not decrease a possibly high intrinsic
complexity, but can be much more efficient than computing
all the secrecy instances and querying them in turns. Wrt
the kind of logical specification needed, we can see that
secret query answering (SQA) is anon-monotonicprocess.

Example 15. ConsiderD = {P (a)}, the secrecy view
V (x)← P (x), R(x), and the queryQ : Ans(x)← P (x).
Here, V (D) = ∅, and then,D itself is its only SI.
Therefore,SA(Q, D, {V }) = {〈a〉}.

Let us updateD to D1 = {P (a), R(a)}. Now, V (D1)
= {〈a〉}. The SIs forD1 are: D′

1 = {P (null), R(a)}
andD′′

1 = {P (a), R(null)}. It holds,Q(D′
1) = {〈null〉}

and Q(D′′
1) = {〈a〉}. Then, SA(Q, D1, {V }) = ∅. The

previous secret answer is lost. �

The non-monotonicity of SQA requires a non-monotonic
formalism to logically specify the SIs of a given instance.
Actually, they can be specified as the stable models of a
disjunctive logic program, a so-calledsecrecy program.

Secrecy programs use annotation constants with the
intended, informal semantics shown in the table below.
More precisely, for each database predicateR ∈ R, we
introduce a copy of it with an extra, final attribute (or
argument) that contains an annotation constant. So, a tuple
of the formR(t̄) would become an annotated atom of the
form R(t̄, a).11 The annotation constants are used to keep
track of virtual updates, i.e. of old and new tuples:

Annotation Atom The tupleR(ā) ...
u R(ā′,u) is being updated
bu R(ā,bu) has been updated
t R(ā, t) is new or old
s R(ā, s) stays in the secrecy instance

In R(ā,bu), annotationbu means that the atomR(ā)
has already been updated, andu should appear in the
new, updated atom, sayR(ā′,u). For example, consider
a tupleR(a, b) ∈ D. A new tupleR(a, null) is obtained
by updatingb into null. Therefore,R(a, b,bu) denotes the
old atom before updating, whileP (a, null,u) denotes the
new atom after the update.

The logic program uses these annotations to go through
different steps, until its stable models are computed. Finally,
the atoms needed to build an SI are read off by restricting
a model of the program to atoms with the annotations.
As expected, the official semantics of the annotations is
captured through the logic program; the table above is just
for motivation. In Section V-A we provide the general form
of Π(D,Vs), the secrecy logic programthat specifies the

11We should use a new predicate, e.g.R′, but to keep the notation
simple, we will reuse the predicate. We also omit tuple ids.

SIs for an instanceD subject to set of secrecy viewsVs.
The following example illustrates the main ideas and issues.

Example 16. (example 10 continued) ConsiderR =
{P (A,B), R(B,C)}, D = {P (1, 2), R(2, 1)} and the
secrecy view Vs(x, z)← P (x, y), R(y, z), y < 3.

The secrecy instance programΠ(D, {Vs}) is as follows:
1. P (1, 2). R(2, 1). (initial database)

2. P (null, y,u) ∨ P (x, null,u) ∨R(null, z,u)
← P (x, y, t), R(y, z, t), y < 3, y 6= null, aux(x, z).

R(y, null,u) ∨ P (x, null,u) ∨R(null, z,u)
← P (x, y, t), R(y, z, t), y < 3, y 6= null, aux(x, z).

aux (x, z)← P (x, y, t), R(y, z, t), y < 3, x 6= null.

aux (x, z)← P (x, y, t), R(y, z, t), y < 3, z 6= null.

3. P (x, y,bu) ← P (x, y, t), R(y, z, t), y < 3, y 6= null,

aux(x, z), P (null, y,u), x 6= null.

R(y, z,bu) ← P (x, y, t), R(y, z, t), y < 3, y 6= null,

aux(x, z), R(y, null,u), z 6= null.

P (x, y,bu) ← P (x, y, t), R(y, z, t), y < 3, y 6= null,

aux(x, z), P (x, null,u).

R(y, z,bu) ← P (x, y, t), R(y, z, t), y < 3, y 6= null,

aux(x, z), R(null, z,u).

4. P (x, y, t) ← P (x, y). P (x, y, t)← P (x, y,u).

R(x, y, t) ← R(x, y). R(x, y, t)← R(x, y,u).

5. P (x, y, s) ← P (x, y, t), not P (x, y,bu).

R(x, y, s) ← R(x, y, t), not R(x, y,bu).

The facts in 1. belong to the initial instanceD, and become
annotated right away witht by rules 4. The most important
rules of the program are those in 2. and 3. They enforce
the update semantics of secrecy in the presence ofnull and
usingnull . Rules in 2. capture in the body the violation of
secrecy (i.e. a non-null view contents); and in the head, the
intended way of restoring secrecy: We can either update a
combination of (combination) attributes or single secrecy
attributes withnull. In this example, we need to update,
with null, values in attributeB or in attributesA andC,
simultaneously.

Since disjunctive programs do not allow conjunctions in
the head, the intended head(P (null, z) ∧ P (y, null)) ∨
P (x, null) ∨ Q(null, z) ← Body is represented by
means of two rules, as in 2.:P (null, z) ∨ P (x, null) ∨
Q(null, z) ← Body and P (y, null) ∨ P (x, null) ∨
Q(null, z)← Body .

Furthermore, we need to restore secrecy only if the given
database is not already a secrecy instance, which happens
when the combination attributeB is not null, the secrecy
attributesA and C are not null, and formulaϕ is true.
Predicateaux (x, z) defined in 2. captures the condition
not (x 6= null ∧ z 6= null).

The rules in 3. collect the tuples in the database that have
already been updated and (virtually) no longer exist in the
database. Rules 4. annotate the original the atoms and also
the new version of updated atoms. Rules in 5. collect the

11

tuples that stay in the final state of the updated database:
They are original or new, but have never been updated.�

The secrecy instances are in one-to-one correspondence
with the restrictions tos-annotated atoms of the stable
models ofΠ(D,Vs).12

Example 17. (example 16 continued) The program has
three stable models (the facts in 1. are omitted):

M1 = {P (1, 2, t), R(2, 1, t), aux(1, 1), P (1, 2, s),
R(2, 1,bu), R(null, 1,u), R(null, 1, t), R(null, 1, s)}.

M2 = {P (1, 2, t), R(2, 1, t), aux (1, 1), P (1, 2,bu),
R(2, 1, s), P (1, null,u), P (1, null, t), P (1, null, s)}.

M3 = {P (1, 2, t), R(2, 1, t), aux (1, 1), P (1, 2,bu),
R(2, 1,bu), P (null, 2,u), R(2, null,u), P (null, 2, t),
R(2, null, t), aux (1, null), aux(null, 1), P (null, 2, s),
R(2, null, s)}.

The secrecy instances are built by selecting the underlined
atoms, obtaining:D1 = {P (1, 2), R(null, 1)}, D2 =
{P (1, null), R(2, 1)}, andD3 = {P (null, 2), R(2, null)}.
They coincide with those in Example 10. �

In order to compute secret answers to a query, it is
not necessary to explicitly compute all the stable models.
Instead, the query can be posed directly on top of the
program and answered according to the skeptical semantics.
This will return the secret answers to the query. The
query has to be formulated as a top-layer program, with
s-annotated atoms, that are those that affect the query. A
system likeDLV can be used. It computes the disjunctive
stable-model semantics, with an interface to commercial
DBMSs [22].

Example 18. (example 17 continued) We want the secret
answers to the conjunctive query

Q(x, z) : ∃y(P (x, y) ∧R(y, z) ∧ y < 3).

This requires first rewriting it, as in (6), intoQrw (x, y) :
∃y(P (x, y)∧R(y, z)∧ y < 3∧ y 6= null). This new query
can be evaluated against instances withnull treated as any
other constant. In its turn,Qrw is transformed into a query
program with all the database atoms using annotations:

Ans(x, z)← P (x, y, s), R(y, z, s), y < 3, y 6= null.

This one is evaluated in combination with the secrecy
program in Example 16, under the skeptical semantics. In
this evaluation,null is treated as an ordinary constant.�

A. The general secrecy logic program

To provide the general form of secrecy logic program, we
need to introduce some notation first. We recall that our
view definitions are of the form

Vs(x̄)← R1(x̄1), . . . , Rn(x̄n), ϕ. (8)

12The proof of this claim is rather long, and is similar in spirit to the
proof of the fact that database repairs wrt integrity constraints [3] can
be specified by means of disjunctive logic programs with stable model
semantics (cf. [10], [2]).

Some of the variables13in atoms in the body of the def-
initions are relevant, as in Definition 8, and their values
will be replaced bynull. As expected, and illustrated in
Example 10, those atoms and variables play a crucial role
in the program.

For an atom of the formR(x̄) and variables̄y ⊆ x̄,
R(x̄) ȳ

null
denotesR(x̄) with all the variables in̄y replaced

by null. In reference to (8), with this notation, we define:

CP(Vs) = {Ri(x̄i)
ȳ

null
| Ri(x̄i) is in body of (8),

ȳ = {y1, ..., yn} ⊆ x̄, andyi ∈ C(Vs))}.

SP(Vs) = {Ri(x̄i)
ȳ

null
| Ri(x̄i) is in body of (8),

ȳ = {y1, ..., yn} ⊆ x̄, andyi ∈ S(Vs))}.

For the sets of predicate positions,C(Vs) and S(Vs), see
Definition 8. The atom setsCP(Vs) and SP(Vs) will be
used in the head of the disjunctive rules that change some
relevant attribute values into nulls (rules 2. in Example 10).

Example 19. For the secrecy viewVs(x, z, w) ←
P (x, y), Q(y, z, w), it holds: C(Vs) = {P [2], Q[1]}
and S(Vs) = {P [1], Q[2], Q[3]}. Thus, CP(Vs) =
{P (x, null), Q(null, z, w)}, and SP(Vs) = {P (null, y),
Q(y, null, null)}. �

Given a database instanceD, a setVs of secrecy views
Vss, each of them of the form (8), the secrecy program
Π(D,Vs) contains the following rules:

1. Facts:R(c̄, t) for each atomR(c̄) ∈ D.

2. For everyVs of the form (8), if SP(Vs) = {R1(x̄1),
. . . , Ra(x̄a)}, and CP(Vs) = {R1(x̄1), ..., R

b(x̄b)}, then
the program contains the rules:
(a) If S(Vs) ∩ C(Vs) 6= ∅, the rule:

∨
Rc∈CP(Vs)

Rc(x̄c,u) ←
∧n

i=1 Ri(x̄i, t), ϕ,
∧

vl∈C(Vs)

vl 6= null.

(b) If S(Vs)∩C(Vs) = ∅, for eachRd ∈ SP(Vs), 1 ≤ d ≤ a,
the rule:

Rd(x̄d,u) ∨
∨

Rc∈CP(Vs)

Rc(x̄c,u) ←
∧n

i=1 Ri(x̄i, t), ϕ,
∧

vl∈C(Vs)

vl 6= null, auxVs(x̄).

Plus rules defining the auxiliary predicates: IfS(Vs) =
{x1, ..., xk} andx̄ = 〈x1, . . . , xk〉, then for each1 6 i 6 k,
the rule

auxVs(x̄)←
∧n

i=1Ri(x̄i, t) ∧ ϕ ∧ xi 6= null.

3. The old tuple collecting rules:
(a) For eachRj ∈ SP(Vs), 1 ≤ j ≤ a:

Rj(x̄j ,bu)←
∧n

i=1 Ri(x̄i, t), ϕ, auxVs(x̄),∧
vl∈C(Vs)

vl 6= null, Rj(x̄j ,u),
∧

vl∈S(Vs)∩x̄j

vl 6= null.

(b) For eachRc ∈ CP(Vs), 1 ≤ c ≤ b:

Rc(x̄c,bu)←
∧n

i=1Ri(x̄i, t), ϕ, auxVs(x̄),∧
vl∈C(Vs)

vl 6= null, Rc(x̄c,u).

13To be more precise, we should talk about variables in relevant
positions or arguments, as we did before, e.g. in Section III, but the
description would be less intuitive.

12

4. For eachR ∈ R, the rule: R(x̄, t)← R(x̄,u).

5. For eachR ∈ R, the rule:
R(x̄, s)← R(x̄, t), not R(x̄,bu).

Rules in 1. create program facts from the initial instance.
Rules in 2. are the most important and express how to
impose secrecy by changing attribute values into nulls.
Notice that, by definition,CP(Vs) and SP(Vs) already
already include those changes. The body of the rule be-
comes true when the database instance does not nullify
the view, and the head captures the intended ways of
imposing secrecy. Rules in 3. collect the tuples in the
database that have already been updated and (virtually) no
longer exist in the database. Rules 4. capture the atoms that
are part of the database or updated atoms in the process
of imposing secrecy. Rules in 5. collect the tuples in the
secrecy instance, as those that did not become old.

The same secrecy program can be used with different
queries. However, available optimization techniques can be
used to specialize the program for a given query (cf. [11],
[5] for this kind of optimizations for repair logic programs).

VI. The CQA Connection

Consider a database instanceD that fails to satisfy a
given set of integrity constraintsIC . It still contains
useful and some semantically correct information. The
area ofconsistent query answering(CQA) [3], [5] has to
do with: (a) Characterizing the information inD that is
still semantically correct wrtIC , and (b) Characterizing,
and computing, in particular, the semantically correct, i.e.
consistent, answers to a queryQ from D wrt IC . The first
goal is achieved by proposing arepair semantics, i.e. a class
of alternative instances toD that are consistent wrtIC and
minimally depart fromD. The consistent information inD
is the one that is invariant under all the repairs in the class.
This applies in particular to the consistent answers: They
should hold in every minimally repaired instance.

There are some connections between CQA and our
treatment of privacy preserving query answering. Notice
that every view definition of the form (2) can be seen
as an integrity constraint expressed in the FO language
L(Σ ∪ {Vs}):

∀x̄(Vs(x̄) ←→ ∃ȳ(R1(x̄1) ∧ · · · ∧Rn(x̄n) ∧ ϕ)), (9)

with ȳ = (
⋃
x̄i) r x̄. From this perspective, the problem

of view maintenance, i.e. of maintaining the view defined
by (9) synchronized with the base relations [17] becomes
a problem ofdatabase maintenance, i.e. maintenance of
the consistency of the database wrt (9) seen as an IC. This
also works in the other direction since every IC can be
associated to a violation view, which has to stay empty for
the IC to stay satisfied.

Actually, we want more than maintaining the view de-
fined in (9). We want it to be empty or returning only tuples
with null values. In consequence, we have to impose the
following ICs onD, which are obtained from the RHS of

(9): If x̄ is x1, . . . , xk, then for1 ≤ i ≤ k,

∀x̄ȳ¬(R1(x̄1) ∧ · · · ∧Rn(x̄n) ∧ ϕ ∧ x
i 6= null). (10)

That is, from each view definition (9) we obtaink denial
constraints(DCs), i.e. prohibited conjunctions of (positive)
database atoms and built-ins. DCs have been investigated
in CQA under several repair semantics [14], [5].

In our case, the secrecy instances correspond to the
repairs ofD wrt the set DCs in (10). These repairs are
defined according to the null-based (and attribute-based
[5]) repair semantics of Section III, i.e.≤D-minimality (cf.
Example 10). Through this correspondence we can benefit
from concepts and techniques developed for CQA.

Example 20.The secrecy view defined by

Vs(x, z)← P (x, y), R(y, z), y < 3

gives rise to the following denial constraints:
¬∃xyz(P (x, y) ∧ R(y, z) ∧ y < 3 ∧ x 6= null) and
¬∃xyz(P (x, y)∧R(y, z)∧ y < 3∧ z 6= null). A instance
D has to be minimally repaired in order to satisfy them.�

VII. Related Work

Other researchers have investigated the problem of data
privacy and access control in relational databases. We
described in Section I the approach based on authorization
views [27], [33]. In [19], the privacy is specified through
values in cells within tables that can be accessed by
a user. To answer a queryQ without violating privacy,
they propose the table and query semantics models, which
generate masked versions of the tables by replacing all the
cells that are not allowed to be accessed withNULL. When
the user issuesQ, the latter is posed to the masked versions
of the tables, and answered as usual. The table semantics
is independent of any queries, and views. However, the
query semantics takes queries into account. [19] shows the
implementation of two models based on query rewriting.

Recent work [30] has presented a labeling approach for
masking unauthorized information by using two types of
special variables. They propose a secure and sound query
evaluation algorithm in the case of cell-level disclosure
policies, which determine for each cell whether the cell
is allowed to be accessed or not. The algorithm is based on
query modification, into one that returns less information
than the original one. Those approaches propose query
rewiring to enforce fine-grained access control in databases.
Their approach is mainly algorithmic.

Data privacy and access control in incomplete proposi-
tional databases has been studied in [6], [7], [31]. They take
a different approach,control query evaluation(CQE), to
fine-grained access control. It is policy-driven, and aims to
ensure confidentiality on the basis of a logical framework.
A security policy specifies the facts that a certain user is
not allowed to access. Each query posed to the database
by that user is checked, as to whether the answers to it
would allow the user to infer any sensitive information. If
that is the case, the answer is distorted by eitherlying or
refusal or combined lying and refusal. In [8], they extend

13

CQE to restricted incomplete FO logic databases via a
transformation into a propositional language. This approach
seem to be incomparable to ours. They do not use null
values, and the issue of maximality of answers that do not
compromise privacy is not explicitly addressed.

Our approach is based on producing virtual updates on
the database, by forcing the secrecy views to become null.
This is clearly reminiscent of the older, but still challenging
database problem of updating a database through views
[13]. Here we confront new difficulties, namely the oc-
currence of SQL nulls with a special semantics, and the
minimality of null-based changes on the base relations.

In [9] a null-based repair semantics was introduced, but
it differs from the one introduced in Section III. The former
was proposed for enforcing satisfaction of sets of ICs that
include referential ICs, which require the possible insertion
of new tuples with nulls. The comparison between instances
is based onsets of full tuples and also on the occurrence
of nulls in them. Here, we enforce secrecy by changes of
attributes values only.

A representation of null values in logic programs with
stable model semantics is proposed in [28], whose aim is to
capture the intended semantics of null valuesà la Reiter, i.e.
as found in his logical reconstruction of relational databases
[26]. Two remarks have to be made here. First, Reiter
reconstructs “logical” nulls, but not SQL nulls. In our work
we use the latter, as done in database practice. Second, we
take care of nulls by proposing a new query answering
semantics that can be captured in classic logical terms via
query rewriting. The rewritten queries are the input to a
logic program, which then treats them as ordinary constants
(without having to give a logical account of them).

VIII. Conclusions

In this work, we have developed a logical framework and a
methodology for answering conjunctive queries that do not
reveal secret information as specified by secrecy views. Our
work is of a foundational nature, and attempts to provide a
theoretical basis, or at least part of that basis, for possible
technological developments. Implementation efforts and ex-
periments, beyond the proof-of-concept examples we have
run with DLV, are left for future work.

We have concentrated on conjunctive secrecy views and
conjunctive queries. We have assumed that the databases
may contain nulls, and also nulls are used to protect secret
information, by virtually updating with nulls some of the
attribute values. In each of the resulting alternative virtual
instances, the secrecy views either become empty or contain
a tuple showing only null values. The queries can be posed
against any of these virtual instances or cautiously against
all of them, simultaneously. The latter guarantees privacy.

The update semantics enforces (or captures) two natural
requirements. That the updates are based on null values, and
that the updated instances stay close to the given instance.
In this way, the query answers become implicitly maximally
informative, while not revealing the original contents of the
secrecy views.

The null values are treated as in the SQL standard,
which in our case, and for conjunctive query answering,
is reconstructed in classical logic. This reconstruction cap-
tures well the “semantics” of SQL nulls (which in not
clear or complete in the standard), at least for the case of
conjunctive query answering, and some extensions thereof.
This is the main reason for concentrating on conjunctive
queries and views. In this case, queries and views can
be syntactically transformed into conjunctive queries and
views for which the evaluation or verification can be done
by treating nulls as any other constant.

The secret answers are based on a skeptical semantics.
In principle, we could consider instead the more relaxed
possibleor bravesemantics: an answer would be returned if
it holdsin someof the secrecy instances. Thepossibly secret
answerswould provide more information about the original
database than the (certainly) secret answers. However, they
are not suitable for our the privacy problem.

Example 21. (example 10 continued) Apossibly secret
answerto the queryQ1(x, y) : P (x, y) is 〈1, 2〉, obtained
from D3. Similarly, 〈2, 1〉 is a possibly secret answer to
Q2(x, y) : R(x, y). From these possibly secret answers,
the user can obtain the contents of the secrecy view.�

We introduced disjunctive logic programs with stable
model semantics to specify the secrecy instances. This
is a single program that can be used to compute secret
answers to any conjunctive query. This provides a general
mechanism, but may not be the most efficient way to go for
some classes of secrecy views and queries.Ad hocmethods
could be proposed for them, as has been the case in CQA
[4], [5].

Our work leaves several open problems, and they are
matter of ongoing and future research. Complexity issues
have to be explored. For example, of deciding whether or
not a particular instance is a secrecy instance of an original
instance. Also, of deciding if a tuple is a secret answer to a
query. The connection with CQA, where similar problems
have been investigated, looks very promising in this regard.

Another problem is about query rewriting, i.e. about the
possibility of rewriting the original query into a new FO
query, in such a way that the new query, when answered
by the given instance, returns the secret answers. From the
connection with CQA we can predict that this approach
has limited applicability, but whenever possible, it should
be used, for its simplicity and lower complexity.

For future work, it would be interesting to investigate the
connections withview determinacy[25], that has to do with
the possible determination of extensions of query answers
by a set of views with a fixed contents. The occurrence of
SQL nulls and their semantics introduces a completely new
dimension into this problem.

A natural extension of this work would go in the di-
rection of freeing ourselves from the assumptions listed
at the end of Section IV. Their relaxation would create
a challenging new scenario, and most likely, would require
a non-straightforward modification of our approach. One
of these possible relaxations consists in the addition of ICs

14

to the schema. If they are known to the user, and, most
importantly, that they are satisfied by the database, then
privacy could be compromised. Also the updates leading
to the virtual updates should take these ICs into account,
to produce consistent secrecy instances.

It would also be interesting to investigate more expressive
queries and secrecy views, going beyond the conjunctive
case. However, if we allow negation, the challenges become
intrinsically more difficult. On one side, in the case of se-
crecy views, negation becomes a fundamental complication
for privacy [27], [33]. On the other, the query rewriting
methodology that captures nulls as ordinary constants (cf.
Section II-B) that we have used in our work does not
include the combination of nulls and negation. The exten-
sion of our privacy approach to queries or secrecy views
with negation would make it necessary to first attempt an
extension of this kind of query rewriting. However, this
requires to agree on a sensible semantics for SQL nulls in
the context of such more expressive queries, something that
is definitely worth investigating.

Acknowledgements: This research started when Leo Bertossi
was spending his sabbatical at the TU Vienna. Support from
Georg Gottlob, Thomas Eiter and a Pauli Fellowship of the
“Wolfgang Pauli Institute, Vienna” is highly appreciated.We
are indebted to Thomas Eiter and Loreto Bravo for technical
conversations at an early stage of this research, and to SinaAriyan
for some computational experiments. Research funded by NSERC
Discovery and NSERC/IBM CRDPJ/371084-2008.

References

[1] Abiteboul, S., Hull, R. and Vianu, V.Foundations of Databases,
Addison-Wesley, 1995.

[2] Barcelo, P. Applications of Annotated Predicate Calculus and Logic
Programs to Querying Inconsistent Databases. MSc Thesis PUC,
2002. http://people.scs.carleton.ca/∼bertossi/papers/tesisk.pdf

[3] Bertossi, L. Consistent Query Answering in Databases.ACM Sigmod
Record, June 2006, 35(2):68-76.

[4] Bertossi, L. From Database Repair Programs to Consistent Query
Answering in Classical Logic (extended abstract). In Proc.The
Alberto Mendelzon International Workshop on Foundations of Data
Management (AMW’09), CEUR-WS, Vol-450, 15 pp.

[5] Bertossi, L. Database Repairing and Consistent Query Answering,
Morgan & Claypool, Synthesis Lectures on Data Management, 2011.

[6] Biskup, J. and Weibert, T. Confidentiality Policies for Controlled
Query Evaluation. InData and Applications Security, Springer
LNCS 4602, 2007, pp. 1-13.

[7] Biskup,J. and Weibert. Keeping Secrets in Incomplete Datbabases.
International Journal of Information Sercurity, 2008, 7(3):199-217.

[8] Biskup, J., Tadros, C. and Wiese, L. Towards Controlled Query
Evaluation for Incomplete First-Order Databases. In Proc.FoIKS’10,
Springer LNCS 5956, 2010, pp. 230-247.

[9] Bravo, L. and Bertossi, L. Semantically Correct Query Answers in
the Presence of Null Values. Proc. EDBT WS on Inconsistency and
Incompleteness in Databases (IIDB’06), J. Chomicki and J. Wijsen
(eds.), Springer LNCS 4254, 2006, pp. 336-357

[10] Bravo, L. Handling Inconsistency in Databases and DataIntegration
Systems. PhD. Thesis, Carleton University, Department of Computer
Science, 2007.
http://people.scs.carleton.ca/∼bertossi/papers/Thesis36.pdf

[11] Caniupan, M. and Bertossi, L. The Consistency Extractor System:
Answer Set Programs for Consistent Query Answering in Databases.
Data & Knowledge Engineering, 2010, 69(6):545-572.

[12] Codd, E.F. Extending the database relational model to capture more
meaning.ACM Trans. Database Syst., 1979, 4(4):397-434.

[13] Cosmadakis, S. and Papadimitriou, Ch. Updates of Relational Views.
Journal of the ACM, 1984, 31(4):742-760.

[14] Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity
Maintenance Using Tuple Deletions.Information and Computation,
2005, 197(1-2):90-121.

[15] Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs
and Disjunctive Databases.New Generation Computing, 1991,
9:365-385.

[16] Gelfond, M. and Leone, N. Logic Programming and Knowledge
Representation: The A-Prolog Perspective.Artificial Intelligence,
2002, 138(1-2):3-38.

[17] Gupta, A. and Singh Mumick, I. Maintenance of Materialized Views:
Problems, Techniques, and Applications.IEEE Data Engineering
Bulletin, 1995, 18(2):3-18.

[18] Imielinski, T. and Lipski, W. Jr. Incomplete Information in Relational
Databases.Journal of the ACM, 1984, 31(4):761-791.

[19] LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu,
Y. and DeWitt, D. Limiting Disclosure in Hippocratic Databases.
In Proc. International Conference on Very large Data Bases
(VLDB’04), 2004, pp. 108-119.

[20] Lechtenbörger, J. and Vossen, G. On the Computation ofRela-
tional View Complements.Proc. ACM Symposium on Principles of
Database Systems(PODS’02), 2002, pp. 142-149.

[21] Lechtenbörger, J. The Impact of the Constant Complement Approach
towards View Updating.Proc. ACM Symposium on Principles of
Database Systems(PODS’03), 2003, pp. 49-55.

[22] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S.
and Scarcello, F. The DLV System for Knowledge Representation
and Reasoning.ACM Transactions on Computational Logic, 2006,
7(3):499-562.

[23] Levene, M. and Loizou, G.A Guided Tour of Relational Databases
and Beyond. Springer, 1999.

[24] Li, L. Achieving Data Privacy Through Virtual Updates.MSc.
Thesis, Carleton University, Department of Computer Science, 2011.
http://people.scs.carleton.ca/∼ bertossi/papers/thesisLechen.pdf

[25] Nash, A., Segoufin, L. and Vianu, V. Views and Queries: Determi-
nacy and Rewriting.ACM Transactions on Database Systems, 2010,
35(3).

[26] Reiter, R. Towards a Logical Reconstruction of Relational Database
Theory. InOn Conceptual Modelling, M.L. Brodie, J. Mylopoulos
and J.W. Schmidt (eds.), Springer, 1984, pp. 191–233.

[27] Rizvi, S., Mendelzon, A., Sudarshan, S. and Roy, P. Extending
Query Rewriting Techniques for Fine-Grained Access Control. In
Proc. Proc. ACM International Conference on Management of Data
(SIGMOD’04), 2004, pp. 551-562.

[28] Traylor, B. and Gelfond, M. Representing Null Values inLogic
Programming. InLogical Foundations of Computer Science, Proc.
LFCS’94. Springer LNCS 813, 1994, pp. 341-352.

[29] Vassiliou, Y. Null Values in Data Base Management: A Denotational
Semantics Approach. InProc. ACM International Conference on
Management of Data(SIGMOD’79), 1979, pp. 162-169.

[30] Wang, Q., Yu, T., Li, N., Lobo, J., Bertino, E., Irwin, K.and Byun,
J.-W.. On the Correctness Criteria of Fine-Grained Access Control
in Relational Databases. InProc. International Conference on Very
large Data Bases(VLDB’07), 2007, pp. 555-566.

[31] Weibert, T. A Framework for Inference Control in Incomplete Logic
Databases. PhD thesis, Technische Universität Dortmund,2008.

[32] Zaniolo, C. Database Relations with Null Values. InProc. ACM
Symposium on Principles of Database Systems(PODS’82), 1982,
pp. 27-33. ACM.

[33] Zhang, Z. and Mendelzon, A. Authorization Views and Conditional
Query Containment. InProc. International Conference on Database
Theory(ICDT’05), Springer LNCS 3363, 2005, pp. 259-273.

Leopoldo Bertossihas been Full Professor at the School of
Computer Science, Carleton University (Ottawa, Canada)
since 2001. He is Faculty Fellow of the IBM Center for
Advanced Studies. He obtained a PhD in Mathematics
from the Pontifical Catholic University of Chile (PUC)
in 1988. Until 2001 he was professor at the Department
of Computer Science, PUC; and also the President of the
Chilean Computer Science Society (SCCC) in 1996 and
1999-2000. His research interests include database theory,
data integration, peer data management, intelligent informa-
tion systems, data quality, knowledge representation, and

http://people.scs.carleton.ca/~bertossi/papers/tesisk.pdf
http://people.scs.carleton.ca/~bertossi/papers/Thesis36.pdf
http://people.scs.carleton.ca/~bertossi/papers/thesisLechen.pdf

15

answer set programming.

Lechen Li was born in Sichuan, China in 1985. She
received a Bachelor in Computer Engineering from the
Sichuan Normal University, Chengdu, China, and a MSc
degree in computer science in 2011 from Carleton Uni-
versity, Ottawa, Canada, under the supervision of Prof. L.
Bertossi. Her master’s research was in the area of data
privacy.

	I Introduction
	II Preliminaries
	II-A Null value semantics: The gist
	II-B Semantics of query answers with nulls

	III Secrecy Instances
	IV Privacy Preserving Query Answers
	V Secrecy Instances and Logic Programs
	V-A The general secrecy logic program

	VI The CQA Connection
	VII Related Work
	VIII Conclusions
	References

