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Abstract—This paper focuses on protecting the privacy of
individuals in publication scenarios where the attacker is ex-
pected to have only abstract or aggregate knowledge about
each record. Whereas, data privacy research usually focuses
on defining stricter privacy guarantees that assume increasingly
more sophisticated attack scenarios, it is also important to have
anonymization methods and guarantees that will address any
attack scenario. Enforcing a stricter guarantee than required
increases unnecessarily the information loss.

Consider for example the publication of tax records, where
attackers might only know the total income, and not its con-
stituent parts. Traditional anonymization methods would pro-
tect user privacy by creating equivalence classes of identical
records. Alternatively, in this work we propose an anonymization
technique that generalizes attributes, only as much as needed
to guarantee that aggregate values over the complete record,
will create equivalence classes of at size k. The experimental
evaluation on real data shows that the proposed method produces
anonymized data that lie closer to the original ones, with respect
to traditional anonymization algorithms.

I. INTRODUCTION

It is often the case that the data published by an organization

or company are too detailed to expect attackers to have

accurate partial knowledge. Still, an attacker might have some

aggregate or abstract knowledge of a record. Examples like

this often arise in practice. For example IMIS is currently

involved in anonymizing tax related data from Greece. Each

record in this data collection has hundreds of fields, that

trace financial activity often in a very detailed level. When

publishing or sharing such data, we expect that the major

threats come from attackers who will be able to identify

records using aggregate knowledge e.g. total taxable income

and not the exact values of fields that are hard to acquire

as background knowledge, e.g., exact sum of expenses in

agricultural financial activities.

Name Salary Capital Gains Other income (Total Income)

John 10 20 100 130

Nick 15 15 105 135

Paul 30 40 200 270

Mark 40 30 210 280

TABLE I

ORIGINAL TAX DATA

The same case can appear in several other application

areas; when publishing movement data an attacker might know

how long a trip took, but not detailed information on the

duration of each stop. Also when publishing medical data,

an attacker might know a previous diagnosis for a patient

that corresponds to a certain value range on a combination

of indicators, but it is unlikely that he can have exact partial

knowledge about exam results. Anonymizing such data under a

traditional anonymization framework would guarantee privacy,

but it would cause unnecessary distortion on the data, since we

need only to create groups of similar records with respect to

the abstract knowledge of the attacker (an aggregate function

over the record fields).

Consider the motivating example of Table I which contains

tax data of individuals. A realistic scenario is that an attacker

may only know the approximate total income of a target, but

not more detailed information. Thus, it is not the exact values

of attributes that act as quasi-identifiers, but the aggregate

information on them.

Assume that an attacker knows that Paul’s total income

ranges from 260 to 270. If Table I is published, after removing

direct identifiers (names), the attacker can estimate the total

income for each record and identify the one that belongs to

Paul’s. The 2-anonymous Table II is an anonymization of Table

I. The last column (Total Income) is not published, it is inferred

Id Salary Capital Gains Other income (Total Income)

1 [10-15] [15-20] [100-105] [125-140]

2 [10-15] [15-20] [100-105] [125-140]

3 [30-40] [30-40] [200-210] [260-290]

4 [30-40] [30-40] [200-210] [260-290]

TABLE II

CLASSIC 2-ANONYMOUS TABLE

Id Salary Capital Gains Other income (Total Income)

1 [10-15] 20 100 [130-135]

2 [10-15] 15 105 [130-135]

3 30 40 [200-210] [270-280]

4 40 30 [200-210] [270-280]

TABLE III

AGGREGATE 2-ANONYMOUS TABLE
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by the attacker using the rest of the values. Any attacker with

aggregate knowledge will not be able to identify less than 2

records. However, the same privacy can be ensured in Table III

where records {1, 2}, as well as {3, 4}, are indistinguishable

with reference to the aggregate function. As we can observe,

not all values are generalized and a smaller information loss is

achieved. In both cases Paul is indistinguishable from Mark.

Nonetheless, In table III more detailed information about them

is available without violating privacy with reference to the

attacker’s possible knowledge.

In this work we aim at providing a form of k-anonymity

to prevent attacks against identity disclosure. We propose a

local-recoding generalization approach that preserves utility

by generalizing the least number of values necessary to form

equivalence classes of size k (or more) with respect to the

aggregate function. Compared to classic k-anonymity, even

for local-recoding methods, we achieve better utility as we do

not create classes of completely identical records.

The basic idea of our method is to form groups of records

that have similar aggregate function values of their quasi-

identifiers. To achieve this we perform local generalizations

independently within each group. We limit our discussion

to numerical values, but our method can be extended to

categorical if aggregate functions are defined over them.

Our main contributions include the following:

• We define the problem of anonymizing data with respect

to aggregate information;

• We define kf -anonymity guarantee to satisfy privacy

against aggregate-knowledge attacks;

• We propose a utility-preserving anonymization algorithm;

• We evaluate our methods with real-world data and com-

pare our results to Mondrian, a multidimensional local-

recoding k-anonymity algorithm.

II. PROBLEM DEFINITION

Let D be a relational table with numerical attributes

QI1, QI2, ..., QIn of the same domain I. Let f be an ag-

gregate function defined on In → R.

We consider attackers whose knowledge is limited to the

value of f(qi1, qi2, ..., qin) of a target record t. They can use

their knowledge to identify records of D that have rare or

unique values of f , and further discover detailed information

about them, such as exact attribute values.

We provide a novel privacy guarantee to address these at-

tacks that are limited to aggregate knowledge on the attributes

of the target record.

Definition 1: (aggregate privacy guarantee) A database D
is considered kf -anonymous if any attacker knowing the value

of an aggregate function f on the attributes for a record t ∈ D,

is not able to use this knowledge to identify less than k records

in D.

Our guarantee extends k-anonymity [1] for this attack

scenario. Using the Total income (f=sum) to infer tax details of

an individual, or using the GPA (f=average) to infer a student’s

grades are realistic examples of this attack.

Often, the attacker does not know the exact aggregate value

with 100% precision but rather an approximation of it. For

instance, she may not know the exact Total Income of a target

is 32,128.22. Instead, she may know the income is in the range

30,000 to 35,000. This allows us to propose a more flexible

version of the kf -anonymity guarantee which preserves higher

utility, as we show in our experimental evaluation.

Definition 2: (relaxed aggregate privacy guarantee) A

database D is considered k(f,d)-anonymous if any attacker

knowing the value of an aggregate function f on the attributes

for a record t ∈ D, there exists positive d < 1 such that at

least k records in D have aggregate values f · (1± d).
If a database D is not kf -anonymous it can be transformed

to D⋆, by generalizing attribute values, so that D⋆ satisfies

the kf -anonymity. Transformations of the records involve

generalization of those values that are necessary to make

groups of at least k records that have identical f values or

identical value ranges of f , as in table III. A generalization is

a set of rules in the form v → [a, b] , which map a value v of

the original data to a range that includes it.

There can be many possible anonymizations of a dataset

that satisfy kf -anonymity for a given function f , as shown

in tables III and II. For instance, anonymizing all values to

the domain I is a possible solution, but it would introduce the

highest information loss, as the microdata would be practically

useless.

The problem of kf -anonymization of a dataset is to find

the set of generalizations rules that satisfy kf -anonymity and

preserve as much data utility as possible.

III. ANONYMIZATION ALGORITHM

A. Possible Solutions

The solution space is the set of all possible generalization

rules, as in the classic k-anonymity. However, the set of

accepted solutions which satisfy our guarantee is much greater.

The problem of optimal multidimensional k-anonymity was

proven to be NP-hard [2]. In the worst case, i.e., an aggregate

function f which takes a different value for every combination

of the record attributes, the problem is the same. To deal

with the complexity of the optimal anonymization problem we

have opted for a heuristic solution. We cluster the records into

equivalence classes, and perform local-recoding generalization

on the values of each equivalence class separately.

B. Algorithm

We propose a local-recoding generalization algorithm. As

shown in the pseudo-code, our method has two main phases.

Phase one divides the records into groups (lines 1-4). We form

equivalence classes with respect to the f function. First, all

records are sorted with reference to their f(qi2, qi2, ..., qin)
value. Then, they are clustered into equivalence classes of

sizes k ≤ |EC| ≤ 2k − 1. We limit the EC size to avoid

overgeneralizing values.

In the second phase we consider each equivalence class

separately, and perform generalizations to its values (lines 6-

16). If all records in a class EC already have the same result
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Algorithm 1 aggrAnon AA(D, f, k)

Input: D {Original Dataset}, f {aggregate function},
k {privacy parameter}

Output: D⋆ {kf -anonymous Dataset.}
1: for all tuples t < qi1, qi2, ..., qin >∈ D do

2: estimate f(qi1, qi2, ..., qin)
3: sort tuples with reference to their f values.

4: form groups of size ≥ k and ≤ 2k − 1
5: for every group EC do

6: if all tuples have the same f value then

7: add EC to D⋆.

8: else

9: Q = {QI1, QI2, ..., QIn} //Q contains all attributes

10: j = n− 1
11: while Q not empty do

12: estimate f for all combinations of j attributes

13: Let Cj be the combination with most similar f
for all tuples

14: generalize the remaining attribute QIj = Q\Cj

to a common range [vmin, vmax]
15: remove QIj from Q
16: j = j − 1
17: estimate f for all tuples in EC
18: if all tuples have the same f value then

19: break

20: add EC to D⋆

21: return D⋆

for function f , then EC is directly added to the anonymous

result D⋆. Otherwise, we find the least set of generalizations

to make all records in EC indistinguishable with reference to

f . Let n be the dimensionality of the dataset, i.e., the number

of attributes in a record. We calculate f for all combinations

of n−1 attributes, i.e., f is calculated for all but one attribute

each time. Assume {Q = QI1, .., QIj−1, QIj+1, ..., QIn} is

the set of (n− 1) attributes for which the value of f is more

similar among all tuples in EC. Then we generalize attribute

QIj to the range [vmin, vmax], where vmin and vmax are the

minimum and the maximum value that appears in QIj in class

EC. We then remove QIj from Q and continue with the rest

of the attributes of Q. We calculate f for all combinations of

n− 2 remaining attributes of Q and repeat the above process

until all tuples in EC give the same value of f .
The choice of the attribute to generalize at each step is made

by estimating f(t) for every tuple t in EC, having excluded one
attribute each time, as described above. We denote as fi the

value of f when attribute i is excluded form the estimation. We

compute all the differences fi(t)− fi(t
′), for all tuples t, t′ ∈

EC (t 6= t′) and estimate their average avg(fi(t) − fi(t
′)).

We select the attribute j which corresponds to the minimum

avg(fj(t)− fj(t
′)). For reasons of simplicity we consider all

QI attributes as equally important, or equally sensitive. It is

straightforward to adjust the proposed method for taking into

account weights.

Algorithm 1 can be modified to satisfy k(f,d)-anonymity,

by adjusting the termination condition at line 18, to require

that all tuples to have aggregate function values in the range

f · (1± d).

More than one aggregate function. An interesting problem

is when the attacker may know the values of more than one

aggregate functions about a target tuple. Assume f1, . . . , fn
are such functions. The attacker knows f1(t), . . . , fn(t) about
a target tuple t. Algorithm 1 can be easily adjusted to this

case by simply considering in all functions in the termination

check of line 18. Moreover, the sorting and grouping of lines

3 and 4 has to take into account more than one function. This

can be simply done by assigning a priority on how f1, . . . , fn
are used in the sorting, or by employing a more advanced

clustering algorithm.

Correctness. We can show that Algorithm 1 always pro-

duces a kf -anonymous dataset, by showing that the output

cannot contain any tuple t which shares the same value for

function f , f(t) with less than k − 1 other tuples. This can

happen if either its equivalence class is of size less than k or

the class is not fully anonymized. The algorithm divides the

tuples into equivalence classes of size ≥ k in the beginning

(line 4) and each class is anonymized separately. Thus, it is

impossible for a tuple to be in a class with size less than k
records. The algorithm progressively generalizes each attribute

inside its class to a common value, until the f(t) value for

every tuple in the class. Since the generalization hierarchy

allows generalizing all domain values to common one and

f(t1) = f(t2) for t1 = t2, then there is always the trivial

solution of generalizing all attributes in the equivalence class

to the same value, thus creating identical tuples. Consequently,

there cannot exist a tuple indistinguishable from less than k
others in terms of the value of function f .

Note that in the worst-case scenario all equivalence classes

will become totally k-anonymous. This happens if all attributes

are generalized to their [min,max] range in every equivalence

class. Thus, the upper limit of our information loss cost

is the cost introduced by a local-recoding generalization k-
anonymity approach.

C. Information Loss

To estimate the loss of utility introduced by the value

generalizations we use Normalized Certainty Penalty (NCP )
metric [3]. Let v be a value in original domain I. Then:

NCP (v) =

{

0, v not generalized
|maxv −minv|/|I|, otherwise

where [minv,maxv] is the range to which v is generalized.

The total loss of an anonymous dataset D with |D| records
and n attributes, is the average NCP of all values:

NCP (D) =

∑|D|
i=0{

∑n

j=0 NCP (vi,j)}

n · |D|

where vi,j is the value of the jth attribute in the ith record.
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IV. EXPERIMENTAL EVALUATION

We evaluated experimentally the aggrAnon on real datasets

from the UCI repository [4]. The implementation was done

in C++ and the experiments were performed on a Core i7 at

2.13GHz with 8GB RAM, running Ubuntu Linux.

Algorithms. We compare our algorithm to Mondrian [5] a

multidimensional local recoding generalization algorithm for

k-anonymity. The code we used is from [6], implemented in

java. Experimental results suggest that aggrAnon preserves

greater data utility than Mondrian, when considering attackers

whose knowledge is limited to an aggregate function of the

attribute values. The aggregate function that we consider in our

experiments is sum(). Since the implementations are different

we do not compare the two algorithms in terms of execution

time. However, we note that our algorithm was on average

faster by an order of magnitude in all the experiments we

performed.

Data. We use the IPUMS Census dataset from UCI data

mining repository. We selected 7 numerical attributes which

refer to different types of income.

Dataset Records Attributes Domain size

ipums 233,584 7 1010000

TABLE IV

DATASET PROPERTIES

Parameters. We study the behavior of our algorithm with

respect to various parameters: a) k parameter of anonymity,

b) parameter d which quantifies the attacker’s knowledge

accuracy, and c) the dataset size |D|. In every experiment we

vary one of these parameters keeping others fixed. The default

setting of our parameters is k = 10, d = 0%, |D| = 233,584.

Evaluation Metrics. We evaluate our method with respect

to the execution time of our algorithm and the information

loss of the produced anonymous data. The information loss

metric that we use is NCP.

Information Loss. In Figure 1 we present the behavior of

the algorithms in terms of information loss, which is caused by

generalizations. The scale is logarithmic. As k increases, both

algorithms increase sublinearly. However, aggrAnon (with

d=0%) preserves significantly more utility than Mondrian for

any k, as expected.
In the next graph of Figure 1, we vary the dataset size |D|.

To perform this experiment we created two random samples of

our dataset of sizes 100,000 and 50,000 records respectively.

The latter was sampled from the former. We observe that

information loss of aggrAnon decreases monotonically with

|D| and remarkably outperforms Mondrian.

As the percentage of the attacker’s uncertainty (d) increases,
the information loss falls dramatically, in the third graph. We

could not compare to Mondrian, as there is no such relaxation

parameter for this algorithm.

Execution Time. Figure 2 demonstrates the computational

cost of our algorithm. Execution time is larger for small

k values, but decreases super-linearly as k increases. This

happens because the data is divided into fewer equivalence

classes of greater size. Each EC is anonymized separately.

Thus, fewer steps are made by the algorithm.

The scalability of our algorithm is shown in the second

graph of figure 2. The curve grows linearly with the dataset

size |D|. This happens because more data records form more

equivalence classes of similar sizes, each examined indepen-

dently of others.

Finally, in the last graph we observe that running time is

almost insensitive to d parameter.

V. RELATED WORK

L. Sweeney proposed k-anonymity guarantee to address this

type of linking attacks [1]. A table is k-anonymous if each

record is indistinguishable from at least k − 1 others with

respect to the quasi identifier (QI) set [7], [1]. To achieve this,

QI are transformed to form groups of records with identical

QI values, called equivalence classes.

The objective of most anonymizing algorithms is to find

an optimal recoding of the data that satisfies a given privacy

guarantee and preserves as much data utility as possible. The

latter is accomplished by minimizing a function which esti-

mates the information loss that recoding introduces to the data.

[2] proved that optimal k-anonymity for multidimensional QI

is NP-hard, under both the generalization and suppression

models. For the latter, they proposed an approximate algorithm

that minimizes the number of suppressed values with the

approximation bound O(k · logk). [8] improved this bound

to O(k), while [9] further reduced it to O(logk).
Considering only global recoding can limit the search space

[10], [11]. On the other hand, lower information loss can

be achieved by considering multidimensional local recoding.

Mondrian [5] partitions the space recursively across the dimen-

sion with the widest normalized range of values and supports

a limited version of local recoding. [12] model the problem

as clustering and propose a constant factor approximation of

the optimal solution, but the bound only holds for the Eu-

clidean distance metric. [3] propose agglomerative and divisive

recursive clustering algorithms, which attempt to minimize

the Normalized Certainty Penalty (NCP). [13] introduced the

notion of km-anonymity for set-valued data. The authors limit

the strength of the attacker by assuming she may know up

to m items of a target. Moreover, attributes are not separated

into quasi-identifiers and sensitive. Any item known to the

attacker can act as a quasi-identifier, while if it is unknown it

is considered sensitive.

VI. CONCLUSIONS

In this paper we studied the problem of anonymizing data in

the presence of aggregate knowledge. To address this attack

we proposed a relaxation of k-anonymity, that we call kf -
anonymity. We provided a utility-preserving algorithm which

greedily selects a solution that satisfies our guarantee.

To the best of our knowledge, this is the first work treating

aggregate information as potential attacker knowledge. In the
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Fig. 1. Information Loss vs. k, |D| and d.
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Fig. 2. Execution Time vs. k, |D| and d.

future, we will extend our guarantee to provide a form of l-
diversity. We also wish to examine more complicated functions

as potential background knowledge and also attack scenarios

where the attacker has knowledge of multiple aggregate values

for a record. Finally, we will examine the scenario that an

attacker has partial knowledge of a record, i.e., some attribute

values, additionally to her aggregate-knowledge.
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