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Abstract. This paper is motivated by the recognition of the need for a
finer grain and more personalized privacy in data publication of social
networks. We propose a privacy protection scheme that not only pre-
vents the disclosure of identity of users but also the disclosure of selected
features in users’ profiles. An individual user can select which features
of her profile she wishes to conceal. The social networks are modeled
as graphs in which users are nodes and features are labels. Labels are
denoted either as sensitive or as non-sensitive. We treat node labels both
as background knowledge an adversary may possess, and as sensitive
information that has to be protected. We present privacy protection al-
gorithms that allow for graph data to be published in a form such that
an adversary who possesses information about a node’s neighborhood
cannot safely infer its identity and its sensitive labels. To this aim, the
algorithms transform the original graph into a graph in which nodes
are sufficiently indistinguishable. The algorithms are designed to do so
while losing as little information and while preserving as much utility
as possible. We evaluate empirically the extent to which the algorithms
preserve the original graph’s structure and properties. We show that our
solution is effective, efficient and scalable while offering stronger privacy
guarantees than those in previous research.

1 Introduction

The publication of social network data entails a privacy threat for their users.
Sensitive information about users of the social networks should be protected.
The challenge is to devise methods to publish social network data in a form
that affords utility without compromising privacy. Previous research has pro-
posed various privacy models with the corresponding protection mechanisms
that prevent both inadvertent private information leakage and attacks by mali-
cious adversaries. These early privacy models are mostly concerned with identity
and link disclosure. The social networks are modeled as graphs in which users
are nodes and social connections are edges. The threat definitions and protection



mechanisms leverage structural properties of the graph. This paper is motivated
by the recognition of the need for a finer grain and more personalized privacy.

Users entrust social networks such as Facebook and LinkedIn with a wealth of
personal information such as their age, address, current location or political ori-
entation. We refer to these details and messages as features in the user’s profile.
We propose a privacy protection scheme that not only prevents the disclosure of
identity of users but also the disclosure of selected features in users’ profiles. An
individual user can select which features of her profile she wishes to conceal.

The social networks are modeled as graphs in which users are nodes and
features are labels'. Labels are denoted either as sensitive or as non-sensitive.
Figure 1 is a labeled graph representing a small subset of such a social network.
Each node in the graph represents a user, and the edge between two nodes
represents the fact that the two persons are friends. Labels annotated to the
nodes show the locations of users. Each letter represents a city name as a label
for each node. Some individuals do not mind their residence being known by the
others, but some do, for various reasons. In such case, the privacy of their labels
should be protected at data release. Therefore the locations are either sensitive
(labels are in red italic in Figure 12) or non-sensitive.
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Fig. 1. Example of the labeled graph representing a social network
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The privacy issue arises from the disclosure of sensitive labels. One might
suggest that such labels should be simply deleted. Still, such a solution would
present an incomplete view of the network and may hide interesting statisti-
cal information that does not threaten privacy. A more sophisticated approach
consists in releasing information about sensitive labels, while ensuring that the
identities of users are protected from privacy threats. We consider such threats
as neighborhood attack, in which an adversary finds out sensitive information
based on prior knowledge of the number of neighbors of a target node and the
labels of these neighbors. In the example, if an adversary knows that a user has
three friends and that these friends are in A (Alexandria), B (Berlin) and C
(Copenhagen), respectively, then she can infer that the user is in H (Helsinki).

We present privacy protection algorithms that allow for graph data to be
published in a form such that an adversary cannot safely infer the identity and

1 Although modeling features in the profile as attribute-value pairs would be closer to
the actual social network structure, it is without loss of generality that we consider
atomic labels.

2 W: Warsaw, H: Helsinki, P: Prague, D: Dublin, S:Stockholm, N: Nice, A: Alexandria,
B: Berlin, C: Copenhagen, L: Lisbon



sensitive labels of users. We consider the case in which the adversary possesses
both structural knowledge and label information.

The algorithms that we propose transform the original graph into a graph in
which any node with a sensitive label is indistinguishable from at least £—1 other
nodes. The probability to infer that any node has a certain sensitive label (we
call such nodes sensitive nodes) is no larger than 1/¢. For this purpose we design
{-diversity-like model, where we treat node labels as both part of an adversary’s
background knowledge and as sensitive information that has to be protected.

The algorithms are designed to provide privacy protection while losing as
little information and while preserving as much utility as possible. In view of the
tradeoff between data privacy and utility [16], we evaluate empirically the extent
to which the algorithms preserve the original graph’s structure and properties
such as density, degree distribution and clustering coefficient. We show that
our solution is effective, efficient and scalable while offering stronger privacy
guarantees than those in previous research, and that our algorithms scale well
as data size grows.

The rest of the paper is organized as follows. Section 2 reviews previous works
in the area. We define our problem in Section 3 and propose solutions in Section
4. Experiments and result analysis are described in Section 5. We conclude this
work in Section 6.

2 Related Work

The first necessary anonymization technique in both the contexts of micro- and
network data consists in removing identification. This nave technique has quickly
been recognized as failing to protect privacy. For microdata, Sweeney et al.
propose k-anonymity [17] to circumvent possible identity disclosure in naively
anonymized microdata. ¢-diversity is proposed in [13] in order to further prevent
attribute disclosure.

Similarly for network data, Backstrom et al., in [2], show that naive anonymiza-
tion is insufficient as the structure of the released graph may reveal the identity of
the individuals corresponding to the nodes. Hay et al. [9] emphasize this problem
and quantify the risk of re-identification by adversaries with external informa-
tion that is formalized into structural queries (node refinement queries, subgraph
knowledge queries). Recognizing the problem, several works [5,11, 18,20-22, 24,
27,8, 4, 6] propose techniques that can be applied to the naive anonymized graph,
further modifying the graph in order to provide certain privacy guarantee. Some
works are based on graph models other than simple graph [12,7, 10, 3].

To our knowledge, Zhou and Pei [25,26] and Yuan et al. [23] were the first to
consider modeling social networks as labeled graphs, similarly to what we con-
sider in this paper. To prevent re-identification attacks by adversaries with imme-
diate neighborhood structural knowledge, Zhou and Pei [25] propose a method
that groups nodes and anonymizes the neighborhoods of nodes in the same group
by generalizing node labels and adding edges. They enforce a k-anonymity pri-
vacy constraint on the graph, each node of which is guaranteed to have the same



immediate neighborhood structure with other k — 1 nodes. In [26], they improve
the privacy guarantee provided by k-anonymity with the idea of ¢-diversity, to
protect labels on nodes as well. Yuan et al. [23] try to be more practical by
considering users’ different privacy concerns. They divide privacy requirements
into three levels, and suggest methods to generalize labels and modify struc-
ture corresponding to every privacy demand. Nevertheless, neither Zhou and
Pei, nor Yuan et al. consider labels as a part of the background knowledge.
However, in case adversaries hold label information, the methods of [25, 26, 23]
cannot achieve the same privacy guarantee. Moreover, as with the context of
microdata, a graph that satisfies a k-anonymity privacy guarantee may still leak
sensitive information regarding its labels [13].

3 Problem Definition

We model a network as G(V, E, L*, L, I"), where V is a set of nodes, F is s set
of edges, L® is a set of sensitive labels, and L is a set of non-sensitive labels. I’
maps nodes to their labels, I' : V' — L° U L. Then we propose a privacy model,
{-sensitive-label-diversity; in this model, we treat node labels both as part of an
adversary’s background knowledge, and as sensitive information that has to be
protected. These concepts are clarified by the following definitions:

Definition 1. The neighborhood information of node v comprises the degree
of v and the labels of v’s neighbors.

Definition 2. (¢-sensitive-label-diversity) For each node v thal associates
with a sensitive label, there must be at least £ — 1 other nodes with the same
neighborhood information, but attached with different sensitive labels.
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Fig. 2. Privacy-attaining network example

In Example 1, nodes 0, 1, 2, and 3 have sensitive labels. The neighborhood
information of node 0, includes its degree, which is 4, and the labels on nodes
4,5, 6, and 7, which are L, S, N, and D, respectively. For node 2, the neigh-
borhood information includes degree 3 and the labels on nodes 7, 10, and 11,
which are D, A, and B. The graph in Figure 2 satisfies 2-sensitive-label-diversity;
that is because, in this graph, nodes 0 and 3 are indistinguishable, having six
neighbors with label A, B, {C,L}, D, S, N separately; likewise, nodes 1 and 2
are indistinguishable, as they both have four neighbors with labels A, B, C, D
separately.



4 Algorithm

The main objective of the algorithms that we propose is to make suitable group-
ing of nodes, and appropriate modification of neighbors’ labels of nodes of each
group to satisfy the [-sensitive-label-diversity requirement. We want to group
nodes with as similar neighborhood information as possible so that we can change
as few labels as possible and add as few noisy nodes as possible. We propose an
algorithm, Global-similarity-based Indirect Noise Node (GINN), that does not
attempt to heuristically prune the similarity computation as the other two algo-
rithms, Direct Noisy Node Algorithm (DNN) and Indirect Noisy Node Algorithm
(INN) do. Algorithm DNN and INN, which we devise first, sort nodes by degree
and compare neighborhood information of nodes with similar degree. Details
about algorithm DNN and INN please refer to [15].

4.1 Algorithm GINN

The algorithm starts out with group formation, during which all nodes that have
not yet been grouped are taken into consideration, in clustering-like fashion. In
the first run, two nodes with the maximum similarity of their neighborhood
labels are grouped together. Their neighbor labels are modified to be the same
immediately so that nodes in one group always have the same neighbor labels.
For two nodes, v; with neighborhood label set (LS, ), and ve with neighborhood
label set (LS., ), we calculate neighborhood label similarity (NLS) as follows:

LS,, NLS
0 O E5s) 1)

NLS(v1,v2) = o575,
vl v

Larger value indicates larger similarity of the two neighborhoods.

Then nodes having the maximum similarity with any node in the group are
clustered into the group till the group has ¢ nodes with different sensitive labels.
Thereafter, the algorithm proceeds to create the next group. If fewer than ¢ nodes
are left after the last group’s formation, these remainder nodes are clustered into
existing groups according to the similarities between nodes and groups.

After having formed these groups, we need to ensure that each group’s mem-
bers are indistinguishable in terms of neighborhood information. Thus, neigh-
borhood labels are modified after every grouping operation, so that labels of
nodes can be accordingly updated immediately for the next grouping opera-
tion. This modification process ensures that all nodes in a group have the same
neighborhood information. The objective is achieved by a series of modification
operations. To modify graph with as low information loss as possible, we devise
three modification operations: label union, edge insertion and noise node addi-
tion. Label union and edge insertion among nearby nodes are preferred to node
addition, as they incur less alteration to the overall graph structure.

Edge insertion is to complement for both a missing label and insufficient
degree value. A node is linked to an existing nearby (two-hop away) node with
that label. Label union adds the missing label values by creating super-values



shared among labels of nodes. The labels of two or more nodes coalesce their
values to a single super-label value, being the union of their values. This approach
maintains data integrity, in the sense that the true label of node is included
among the values of its label super-value. After such edge insertion and label
union operations, if there are nodes in a group still having different neighborhood
information, noise nodes with non-sensitive labels are added into the graph so as
to render the nodes in group indistinguishable in terms of their neighbors’ labels.
We consider the unification of two nodes’ neighborhood labels as an example.
One node may need a noisy node to be added as its immediate neighbor since it
does not have a neighbor with certain label that the other node has; such a label
on the other node may not be modifiable, as its is already connected to another
sensitive node, which prevents the re-modification on existing modified groups.

Algorithm 1: Global-Similarity-based Indirect Noisy Node Algorithm

Input: graph G(V, E, L, L®), parameter ;
Result: Modified Graph G’

1 while V.t > 0 do

2 if |Vies¢| > I then

3 compute pairwise node similarities;

4 group g < U1, U2 with Mamsimilarity;

5 Modify neighbors of G;

6 while |G| <[ do

7 dissimilarity(Viest, G);

8 group G < v with Mazsimiarity;

9 Modify neighbors of G without actually adding noisy nodes ;
10 else if |Vicsi| < 1 then
11 for each v € Vs do
12 similarity(v, Gs);
13 gMam,similm’ity AECH
14 Modify neighbors of Garaz_similarity Without actually adding noisy

nodes;

15 Add expected noisy nodes;
16 Return G'(V', E', L),

In this algorithm, noise node addition operation that is expected to make
the nodes inside each group satisfy /-sensitive-label-diversity are recorded, but
not performed right away. Only after all the preliminary grouping operations
are performed, the algorithm proceeds to process the ezpected node addition
operation at the final step. Then, if two nodes are expected to have the same
labels of neighbors and are within two hops (having common neighbors), only
one node is added. In other words, we merge some noisy nodes with the same
label, thus resulting in fewer noisy nodes.

5 Experimental Evaluation

We evaluate our approaches using both synthetic and real data sets. All of the
approaches have been implemented in Python. The experiments are conducted



on an Intel core, 2Quad CPU, 2.83GHz machine with 4GB of main memory
running Windows 7 Operating System. We use three data sets. The first data
set [1] is a network of hyperlinks between weblogs on US politics. The second
data set that we use is generated from the Facebook dataset proposed in [14]. The
third data set that we use is a family of synthetic graphs with varying number of
nodes. The first and second datasets are used for the evaluation of effectiveness
(utility and information loss). The third data set is used to measure runtime and
scalability (running time). (Please refer to [15] for more information.)

5.1 Data Utility

We compare the data utilities we preserve from the original graphs, in view of
measurements on degree distribution, label distribution, degree centrality [19],
clustering coefficient, average path length, graph density, and radius. We show
the number of the noisy nodes and edges needed for each approach.
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Fig. 3. Facebook Graph Degree Distribution

Figure 3 shows the degree distribution of the Facebook graph both before
and after modification. Each subfigure in Figure 3 shows degree distributions of
graphs modified by one algorithm. We can see that the degree distributions of
the modified graphs resemble the original ones well, especially when [ is small.

To sum up, these measurements (for other results please refer to [15]) show
that the graph structure properties are preserved to a large extent. The strong
resemblance of the label distributions in most cases indicates that the label infor-
mation, another aspect of graph information, is well maintained. They suggest
as well that algorithm GINN does preserve graph properties better than the
other two while these three algorithms achieve the same privacy constraint.

5.2 Information Loss

In view of utility of released data, we aim to keep information loss low. In-
formation loss in this case contains both structure information loss and label
information loss. We measure the loss in the following way: for any node v € V/,

label dissimilarity is defined as: D(l,,1)) = 1 — };:8?%},

v’s original labels and I/, the set of labels in the modified graph. Thus, for the
modified graph including n noisy nodes, and m noisy edges, information loss is
defined as

where [, is the set of

IL:w1n+w2m+(1—w1—wg)ZD(lv,l;) 2)



where wy ,ws and 1 — w; — wo are weights for each part of the information loss.
Figure 4 shows the measurements of information loss on the synthetic data set
using each algorithm. Algorithm GINN introduces the least information loss.
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5.3 Algorithm Scalability

We measure the running time of the methods for a series of synthetic graphs with
varying number of nodes in our third dataset. Figure 5 presents the running time
of each algorithm as the number of nodes increases. Algorithm DNN is faster
than the other two algorithms, showing good scalability at the cost of large noisy
nodes added. Algorithm GINN can also be adopted for quite large graphs as fol-
lows: We separate the nodes to two different categories, with or without sensitive
labels. Such smaller granularity reduces the number of nodes the anonymization
method needs to process, and thus improves the overall efficiency.

6 Conclusions

In this paper we have investigated the protection of private label information in
social network data publication. We consider graphs with rich label information,
which are categorized to be either sensitive or non-sensitive. We assume that
adversaries possess prior knowledge about a node’s degree and the labels of its
neighbors, and can use that to infer the sensitive labels of targets. We suggested
a model for attaining privacy while publishing the data, in which node labels are
both part of adversaries’ background knowledge and sensitive information that
has to be protected. We accompany our model with algorithms that transform
a network graph before publication, so as to limit adversaries’ confidence about
sensitive label data. Our experiments on both real and synthetic data sets con-
firm the effectiveness, efficiency and scalability of our approach in maintaining
critical graph properties while providing a comprehensible privacy guarantee.
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