
1

A Probabilistic Approach to String
Transformation

Ziqi Wang, Gu Xu, Hang Li, and Ming Zhang

Abstract—Many problems in natural language processing, data mining, information retrieval, and bioinformatics can be formalized
as string transformation, which is a task as follows. Given an input string, the system generates the k most likely output strings
corresponding to the input string. This paper proposes a novel and probabilistic approach to string transformation, which is both
accurate and efficient. The approach includes the use of a log linear model, a method for training the model, and an algorithm for
generating the top k candidates, whether there is or is not a predefined dictionary. The log linear model is defined as a conditional
probability distribution of an output string and a rule set for the transformation conditioned on an input string. The learning method
employs maximum likelihood estimation for parameter estimation. The string generation algorithm based on pruning is guaranteed
to generate the optimal top k candidates. The proposed method is applied to correction of spelling errors in queries as well as
reformulation of queries in web search. Experimental results on large scale data show that the proposed approach is very accurate
and efficient improving upon existing methods in terms of accuracy and efficiency in different settings.

Index Terms—String Transformation, Log Linear Model, Spelling Error Correction, Query Reformulation

F

1 INTRODUCTION

This paper addresses string transformation, which is an
essential problem, in many applications. In natural lan-
guage processing, pronunciation generation, spelling er-
ror correction, word transliteration, and word stemming
can all be formalized as string transformation. String
transformation can also be used in query reformulation
and query suggestion in search. In data mining, string
transformation can be employed in the mining of syn-
onyms and database record matching. As many of the
above are online applications, the transformation must
be conducted not only accurately but also efficiently.

String transformation can be defined in the following
way. Given an input string and a set of operators, we
are able to transform the input string to the k most
likely output strings by applying a number of operators.
Here the strings can be strings of words, characters, or
any type of tokens. Each operator is a transformation
rule that defines the replacement of a substring with
another substring. The likelihood of transformation can
represent similarity, relevance, and association between
two strings in a specific application. Although certain
progress has been made, further investigation of the
task is still necessary, particularly from the viewpoint of
enhancing both accuracy and efficiency, which is precisely
the goal of this work.

• Ziqi Wang and Ming Zhang are with School of EECS, Peking University,
China.
E-mail: wangziqi@pku.edu.cn, mzhang@net.pku.edu.cn

• Gu Xu is with Microsoft Bing.
E-mail: guxu@microsoft.com

• Hang Li is with Huawei Noah’s Ark Lab.
E-mail: hangli.hl@huawei.com

String transformation can be conducted at two differ-
ent settings, depending on whether or not a dictionary is
used. When a dictionary is used, the output strings must
exist in the given dictionary, while the size of the dic-
tionary can be very large. Without loss of generality, we
specifically study correction of spelling errors in queries
as well as reformulation of queries in web search in this
paper. In the first task, a string consists of characters.
In the second task, a string is comprised of words. The
former needs to exploit a dictionary while the latter does
not.

Correcting spelling errors in queries usually consists of
two steps: candidate generation and candidate selection.
Candidate generation is used to find the most likely
corrections of a misspelled word from the dictionary.
In such a case, a string of characters is input and the
operators represent insertion, deletion, and substitution
of characters with or without surrounding characters, for
example, “a”→“e” and “lly”→“ly”. Obviously candidate
generation is an example of string transformation. Note
that candidate generation is concerned with a single
word; after candidate generation, the words in the con-
text (i.e., in the query) can be further leveraged to make
the final candidate selection, cf., [1], [2].

Query reformulation in search is aimed at dealing
with the term mismatch problem. For example, if the
query is “NY Times” and the document only contains
“New York Times”, then the query and document do
not match well and the document will not be ranked
high. Query reformulation attempts to transform “NY
Times” to “New York Times” and thus make a better
matching between the query and document. In the task,
given a query (a string of words), one needs to gener-
ate all similar queries from the original query (strings
of words). The operators are transformations between

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING VOL:PP NO:99 YEAR 2013

2

words in queries such as “tx”→“texas” and “meaning
of”→“definition of”, cf., [3].

Previous work on string transformation can be cate-
gorized into two groups. Some work mainly considered
efficient generation of strings, assuming that the model
is given [4]. Other work tried to learn the model with
different approaches, such as a generative model [5],
a logistic regression model [6], and a discriminative
model [7]. However, efficiency is not an important factor
taken into consideration in these methods.

In contrast, our work in this paper aims to learn a
model for string transformation which can achieve both
high accuracy and efficiency. There are three funda-
mental problems with string transformation: (1) how to
define a model which can achieve both high accuracy
and efficiency, (2) how to accurately and efficiently train
the model from training instances, (3) how to efficiently
generate the top k output strings given the input string,
with or without using a dictionary.

In this paper, we propose a probabilistic approach
to the task. Our method is novel and unique in the
following aspects. It employs (1) a log-linear (discrim-
inative) model for string transformation, (2) an effective
and accurate algorithm for model learning, and (3) an
efficient algorithm for string generation.

The log linear model is defined as a conditional prob-
ability distribution of an output string and a rule set for
the transformation given an input string. The learning
method is based on maximum likelihood estimation.
Thus, the model is trained toward the objective of gen-
erating strings with the largest likelihood given input
strings. The generation algorithm efficiently performs
the top k candidates generation using top k pruning.
It is guaranteed to find the best k candidates without
enumerating all the possibilities. An Aho-Corasick tree
is employed to index transformation rules in the model.
When a dictionary is used in the transformation, a trie is
used to efficiently retrieve the strings in the dictionary.

We empirically evaluated our method in spelling error
correction of queries and reformulation of queries in web
search. The experimental results on the two problems
demonstrate that our method consistently and signif-
icantly performs better than the baseline methods of
generative model and logistic regression model in terms
of accuracy and efficiency. We have also applied our
method to the Microsoft Speller Challenge and found
that our method can achieve a performance comparable
to those of the best performing systems in the challenge.

2 RELATED WORK

String transformation has many applications in data
mining, natural language processing, information re-
trieval, and bioinformatics. String transformation has
been studied in different specific tasks such as database
record matching, spelling error correction, query refor-
mulation and synonym mining. The major difference
between our work and the existing work is that we focus

on enhancement of both accuracy and efficiency of string
transformation.

2.1 Learning for String Transformation
String transformation is about generating one string
from another string, such as “TKDE” from “Transactions
on Knowledge and Data Engineering”. Studies have
been conducted on automated learning of a transforma-
tion model from data.

Arasu et al. [8] proposed a method which can learn
a set of transformation rules that explain most of the
given examples. Increasing the coverage of the rule set
was the primary focus. Tejada et al. [9] proposed an
active learning method that can estimate the weights
of transformation rules with limited user input. The
types of the transformation rules are predefined such
as stemming, prefix, suffix and acronym. Okazaki et
al. [6] incorporated rules into an L1-regularized logis-
tic regression model and utilized the model for string
transformation. Dreyer et al. [7] also proposed a log-
linear model for string transformation, with features
representing latent alignments between the input and
output strings. Finite-state transducers are employed to
generate the candidates. Efficiency is not their main
consideration since it is used for offline application.
Our model is different from Dreyer et al.’s model in
several points. Particularly our model is designed for
both accurate and efficient string transformation, with
transformation rules as features and non-positive values
as feature weights.

Okazaki et al.’s model is largely different from the
model proposed in this paper, although both are dis-
criminative models. Their model is defined as a logistic
regression model (classification model) P (t | s), where s
and t denote input string and output string respectively,
and a feature represents a substitution rule

fk(s, t) =

{
1 rule rk can convert s to t

0 otherwise
(1)

Their model utilizes all the rules that can convert s to
t and it is assumed only one rule can be applied each
time.

2.2 Approximate String Search
There are two possible settings for string transforma-
tion. One is to generate strings within a dictionary, and
the other is to do so without a dictionary. In the for-
mer, string transformation becomes approximate string
search, which is the problem of identifying strings in a
given dictionary that are similar to an input string [10].

In approximate string search, it is usually assumed
that the model (similarity or distance) is fixed and
the objective is to efficiently find all the strings in the
dictionary. Most existing methods attempt to find all
the candidates within a fixed range and employ n-
gram based algorithms [4], [11], [12], [13], or trie based

3

algorithm [14]. There are also methods for finding the
top k candidates by using n-grams [15], [16]. Efficiency
is the major focus for these methods and the similarity
functions in them are predefined. In contrast, our work
in this paper aims to learn and utilize a similarity func-
tion which can achieve both high accuracy and efficiency.

2.3 Spelling Error Correction
Spelling error correction normally consists of candidate
generation and candidate selection. The former task is an
example of string transformation. Candidate generation
is usually only concerned with a single word.

For single-word candidate generation, a rule-based
approach is commonly used. The use of edit distance
is a typical approach, which exploits operations of char-
acter deletion, insertion and substitution. Some methods
generate candidates within a fixed range of edit distance
or different ranges for strings with different lengths [1],
[17]. Other methods learn weighted edit distance to
enhance the representation power [18], [19], [20], [21].

Edit distance does not take context information into
consideration. For example, people tend to misspell “c”
as “s” or “k” depending on context, and a straightfor-
ward use of edit distance cannot deal with the case. To
address the challenge, some researchers proposed using
a large number of substitution rules containing con-
text information (at character level). For example, Brill
and Moore [5] developed a generative model including
contextual substitution rules. Toutanova and Moore [22]
further improved the model by adding pronunciation
factors into the model. Duan and Hsu [23] also proposed
a generative approach to spelling correction using a
noisy channel model. They also considered efficiently
generating candidates by using a trie. In this paper, we
propose using a discriminative model. Both approaches
have pros and cons, and normally a discriminative
model can work better than a generative model because
it is trained for enhancing accuracy.

Since users’ behavior of misspelling and correction
can be frequently observed in web search log data, it
has been proposed to mine spelling-error and correction
pairs by using search log data. The mined pairs can be
directly used in spelling error correction. Methods of
selecting spelling and correction pairs with a maximum
entropy model [24] and similarity functions [25], [26]
have been developed. Only high frequency pairs can be
found from log data, however. In this paper, we work
on candidate generation at the character level, which can
be applied to spelling error correction for both high and
low frequency words.

2.4 Query Reformulation
Query reformulation involves rewriting the original
query with its similar queries and enhancing the effec-
tiveness of search. Most existing methods manage to
mine transformation rules from pairs of queries in the
search logs. One represents an original query and the

other represents a similar query (e.g., hotmail sign-on,
hotmail sign-up). For example, the method proposed
by Jones et al. [27] first identifies phrase-based transfor-
mation rules from query pairs, and then segments the
input query into phrases, and generates a number of
candidates based on substitutions of each phrase using
the rules. The weights of the transformation rules are cal-
culated based on log likelihood ratio. A query dictionary
is used in this case. Wang and Zhai [28] mined contextual
substitution patterns and tried to replace the words in
the input query by using the patterns. They created a set
of candidates that each differ from the input query in one
word. The existing methods mainly focused on how to
extract useful patterns and rank the candidates with the
patterns, while the models for candidate generation are
simple. In this paper, we work on query reformulation
as an example of string transformation and we employ
a more sophisticated model.

3 MODEL FOR STRING TRANSFORMATION

We propose a probabilistic approach to string transfor-
mation that can achieve both high accuracy and effi-
ciency, and is particularly powerful when the scale is
large.

In our method, it is assumed that a large number
of input string and output string pairs are given as
training data. Furthermore, a set of operators for string
transformation is provided. A probabilistic model is then
obtained from the training data and the operators, which
can assign scores to candidates of output strings given
an input string. The best candidates are defined as those
having the highest probabilistic scores with respect to
the training data.

The overview of our method is shown in Fig. 1.
There are two processes, learning and generation. In the
learning process, rules are first extracted from training
string pairs. Then the model of string transformation
is constructed using the learning system, consisting of
rules and weights. In the generation process, given a new
input string, the generation system produces the top k
candidates of output string by referring to the model
(rules and weights) stored in the rule index.

In our method, the model is a log linear model rep-
resenting the rules and weights, the learning is driven
by maximum likelihood estimation on the training data,
and the generation is efficiently conducted with top k
pruning. In the next section, we will describe the details
of our method.

3.1 Model
The model consists of rules and weights. A rule is
formally represented as α → β which denotes an op-
eration of replacing substring α in the input string with
substring β, where α, β ∈ {s|s = t, s = ˆt, s = t$, or
s = ˆt$} and t ∈ Σ∗ is the set of possible strings over
the alphabet, and ˆ and $ are the start and end symbols
respectively. For different applications, we can consider

4

String Pairs

Rule Extraction

Learning

Model

Input String

Rule Index

Generation

top k Candidates

Learning Generation

i

i

i

io o

o

o o o

Fig. 1. Overview of Our Method

Edit-distance

based alignment

Derived rules

Expanded rules

with context

Step 1

Step 2

Step 3

Fig. 2. Example of Rule Extraction

character-level or word-level transformations and thus
employ character-level or word-level rules.

All the possible rules are derived from the training
data based on string alignment. Fig. 2 shows derivation
of character-level rules from character-level alignment.
First we align the characters in the input string and the
output string based on edit-distance, and then derive
rules from the alignment. Next we expand the derived
rules with surrounding contexts. Without loss of gener-
ality, we only consider expanding 0− 2 characters from
left and right sides as contexts in this paper. Derivation
of word-level rules can be performed similarly.

If a set of rules can be utilized to transform the input
string si to the output target string so, then the rule
set is said to form a “transformation” for the string
pair si and so. Note that for a given string pair, there
might be multiple possible transformations. For exam-

ple, both (“n”→“m”,“tt”→“t”) and (“ni”→“mi”,“t$”→ $)
can transform “nicrosoftt” to “microsoft”.

Without loss of generality, we assume that the max-
imum number of rules applicable to a string pair is
predefined. As a result, the number of possible transfor-
mations for a string pair is also limited. This is reason-
able because the difference between an input string and
output string should not be so large. In spelling error
correction, for example, the number of possible spelling
errors in a word should be rather small.

Let (si, so) denote a string pair, and R(si, so) denote a
transformation that can rewrite si to so. We consider that
there is a probabilistic mapping between the input string
si and output string so with transformation R(si, so). We
also consider a conditional probability distribution of so
and R(si, so) given si and take it as model for string
transformation. We specifically define the model as the
following log linear model:

P (so, R(si, so) | si) (2)

=
exp

(∑
r∈R(si,so)

λr

)
∑

(s′t,R(si,s′t))∈Z(si)
exp

(∑
o∈R(si,s′t)

λo

)
where r and o denote rules, λr and λo denote weights,
and the normalization is carried over Z(si), all pairs of
string s′t and transformation R(si, s

′
t), such that si can

be transformed to s′t by R(si, s
′
t). The log linear model

actually uses binary features to indicate whether or not
rules are applied.

In general, the weights in Eq. (2) can be any real
numbers. To improve generation efficiency, we further
assume that all the weights are non-positive, i.e., ∀λr ≤
0. It introduces monotonicity in rule application and
implies that applying additional rules cannot lead to
generation of better candidates. For example, in spelling
error correction, both “office” and “officer” are correct
candidates of “ofice”. We view “office” a better candidate
than “officer” (higher probability), as it needs one less
rule. The assumption is reasonable because the chance of
making more errors should be lower than that of making
fewer errors. Our experimental results have shown that
the change in accuracy by making the assumption is
negligible, but the gain in efficiency is very significant.
This is one of the key ideas of our method.

3.2 Training of Model

Training data is given as a set of pairs T =
{
(sji , s

j
o)
}N

j=1
,

where sji is an input string and sjo is an output string.
We consider employing maximum likelihood estimation
to learn the log linear model.

Ideally we would want to maximize the likelihood∏N
j=1 P (sjo, R(sji , s

j
o) | sji). However, it is often the case

that there are multiple transformations R(sji , s
j
o) which

can transform the input string to the output string. We
do not know which transformation is the “true” one,
because it is not given in the training data and it might

5

also be difficult to derive it automatically from data or
have it labeled by humans.

In this paper, we define the likelihood on the basis
of conditional probability of output string given input
string

∏N
j=1 P (sjo | sji). The conditional probability is

simply marginalized over all possible transformations.

P (so | si) =
∑

R(si,so)

P (so, R(si, so) | si) (3)

Therefore, the log likelihood function becomes

L(λ) =
∑
j

logP (sjo | sji) (4)

This is a common practice in machine learning, in which
the likelihood function is defined over observed data
(marginalized over hidden data).

Our goal is to find the optimal parameter λ∗ of the
log linear model by solving the following optimization
problem.

λ∗ =argmax
λ

L(λ) (5)

=argmax
λ

∑
j

logP (sjo | sji)

where λ denotes the weight parameter.
We employ the Quasi Newton method in the optimiza-

tion. In this paper, we specifically employ the bounded
L-BFGS [29] algorithm as the optimization technique,
which works well even when the number of parameters
is large.

L-BFGS only needs to compute the gradient of the
objective function. The partial derivative with respect to
parameter λk is calculated as

∂L

∂λk
=

∑
j

∑
R(si,so)

exp
(∑

r∈R(si,so)
λr

)
δ(k ∈ R(si, so))∑

R(si,so)
exp

(∑
r∈R(si,so)

λr

)
−

∑
j

∑
(s′t,R(si,s

′
t))∈Z(si)

exp
(∑

o∈R(si,s
′
t)
λo

)
δ(k ∈ R(si, s

′
t))∑

(s′t,R(si,s
′
t))∈Z(si)

exp
(∑

o∈R(si,s
′
t)
λo

)
(6)

where δ(c) is the binary function whose value is one if
the condition c is true.

3.3 String Generation
In string generation, given an input string si, we aim to
generate the most likely k output strings so that can be
transformed from si and have the largest probabilities
P (so, R(si, so) | si) assigned by the learned model.

max
R(si,so)

P (so, R(si, so) | si) (7)

= max
R(si,so)

exp
(∑

r∈R(si,so)
λr

)
∑

(s′t,R(si,s′t))∈Z(si)
exp

(∑
o∈R(si,s′t)

λo

)

Here we take the maximum of the conditional proba-
bilities P (so, R(si, so) | si) instead of taking max of the
conditional probabilities P (so | si), because in this way
we can make the generation process very efficient.

In fact we only need to utilize the following scoring
function to rank candidates of output strings so given an
input string si.

rank(so | si) = max
R(si,so)

 ∑
r∈R(si,so)

λr

 (8)

For each possible transformation, we simply take sum-
mation of the weights of the rules used in the transfor-
mation.

4 STRING GENERATION ALGORITHM

In this section, we introduce how to efficiently generate
the top k output strings. We employ top k pruning,
which can guarantee to find the optimal k output strings.
We also exploit two special data structures to facilitate
efficient generation. We index the rules with an Aho-
Corasick tree. When a dictionary is utilized, we index
the dictionary with a trie.

4.1 Rule Index
The rule index stores all the rules and their weights using
an Aho-Corasick tree (AC tree) [30], which can make the
references of rules very efficient.

The AC tree is a trie with “failure links”, on which
the Aho-Corasick string matching algorithm can be ex-
ecuted. The Aho-Corasick algorithm is a well-known
dictionary-matching algorithm which can quickly locate
the elements of a finite set of strings (here strings are
the αs in the rules α → β) within an input string. The
time complexity of the algorithm is of linear order in
the length of input string plus the number of matched
entries.

We construct an AC tree using all the αs in the rules.
Each leaf node corresponds to an α, and the correspond-
ing βs are stored in an associated list in decreasing
order of rule weights λ, as illustrated in Fig. 3. One
may want to further improve the efficiency by using a
trie rather than a ranking list to store the βs associated
with the same α. However the improvement would not
be significant because the number of βs associated with
each α is usually small.

In string generation, given an input string, we first
retrieve all the applicable rules and their weights from
the AC tree in time complexity of input string length
plus number of matched entries.

4.2 Top k Pruning
The string generation problem amounts to that of finding
the top k output strings given the input string. Fig. 4
illustrates the lattice structure representing the input
and output strings. We assume that the input string si

6

ea

e a

aa

e

s

failure link

leaf node link

a e

a s

aa aa

Fig. 3. Rule Index based on Aho Corasick Tree

t
1

c
1

1

^ t
2

c
2

1

t
3

c
3

1

t
4

c
4

1

t
5

c
5

1

c
1

2 c
2

2 c
3

2 c
4

2 c
5

2

c
23

1

c
456

1

t
6

c
1

k1 c
1

k2

$

c
6

k6

Fig. 4. Lattice Structure for String Generation

consists of tokens ˆt1t2 . . . tn$. In the figure, for example,
c11 is the token transformed from t1, and c4561 is the token
transformed from t4t5t6. In this case, the top k candidates
correspond with the top k paths in the lattice. Note that
the length of the candidate string can be shorter or longer
than the input string.

One could employ a naive algorithm that tries to find
the top k candidates from all the possible paths between
ˆ and $, using the scoring function in Eq. (8). Obviously,
this is not tractable when the paths become long.

We employ the top k pruning techniques to efficiently
conduct the string generation task. Algo. 1 gives the
details. We use triple (pos, string, score) to denote each
path generated so far, corresponding to the position, the
content and the score of the path. Qpath is a priority
queue storing paths, and it is initialized with path
(1, ˆ, 0). Stopk is a set storing the best k candidates and
their scores (string, score) found so far and it is empty
at the beginning.

The algorithm picks up one path from the queue Qpath

each time. It expands the path by following the path
from its current position (line 15-20). After one path is
processed, another path is popped up from the priority
queue with heuristics (line 7).

The algorithm uses the top k pruning strategy to
eliminate unlikely paths and thus improve efficiency
(line 8-9). If the score of a path is smaller than the

Algorithm 1: Top k Pruning
Input: rule index Ir , input string s, candidate number k
Output: top k output strings (candidates) in Stopk

1 begin
2 Find all rules applicable to s from Ir with

Aho-Corasick algorithm
3 minscore = −∞
4 Qpath = Stopk = {}
5 Add (1, ˆ, 0) into Qpath

6 while Qpath is not empty do
7 Pickup a path (pos, string, score) from Qpath with

heuristics
8 if score ≤ minscore then
9 continue

10 if pos == |s| AND string reaches $ then
11 if |Sk| ≥ k then
12 Remove candidate with minimum score from

Stopk

13 Add candidate (string, score) into Stopk

14 Update minscore with minimum score in Stopk

15 foreach next substring c at pos do
16 α → β = corresponding rule of c
17 pos′ = pos+ |α|
18 string′ = string + β
19 score′ = score+ λα→β

20 Add (pos′, string′, score′) into Qpath

21 if (pos′, string′, score′′) in Qpath then
22 Drop the path with smaller score

23 return Sk

minimum score of the top k list Stopk, then the path
will be discarded and not be used further. This pruning
strategy works, because the weights of rules are all non-
positive and applying additional rules cannot generate
a candidate with higher probability. Therefore, it is not
difficult to prove that the best k candidates in terms of
the scores can be guaranteed to be found.

The algorithm further discards unlikely paths locally.
If two paths have the same pos and string, then only the
path with a larger score needs to be kept (line 21-22).

The heuristics for picking up a “promising” path from
the queue Qpath also improve the efficiency (line 7). If
the top k list Stopk can be constructed more quickly, the
pruning strategy can start to work earlier. In this paper,
we adopt the following heuristics, which are intuitively
reasonable and work well in practice:

1) A path is preferred if no rule is applicable at pos−1
of it.

2) A path is preferred if its pos is larger.
3) A path is preferred if its score is higher.

The heuristics are utilized in their ranked order. Specif-
ically, if there is a rule in Qpath satisfying the first
heuristic, we will pick it up as the current path. If there
are more than one path or there is no path satisfied, we
will use the next heuristic, and repeat this process.

7

n

m

^ i c o

u

s

ro o

o $o f t

m

^

na

i

c

o r

o

u

Fig. 5. Dictionary Trie Matching

4.3 Efficient Dictionary Matching Algorithm
Sometimes a dictionary is utilized in string transfor-
mation in which the output strings must exist in the
dictionary, such as spelling error correction, database
record matching, and synonym mining. In the setting of
using a dictionary, we can further enhance the efficiency.
Specifically, we index the dictionary in a trie, such that
each string in the dictionary corresponds to the path
from the root node to a leaf node. When we expand
a path (substring) in candidate generation, we match it
against the trie, and see whether the expansions from
it are legitimate paths. If not, we discard the expan-
sions and avoid generating unlikely candidates. In other
words, candidate generation is guided by the traversal
of the trie.

Fig. 5 gives an example. Suppose that the current path
represents string ˆmic. There are three possible ways
to expand it by either continuously matching to o or
applying the transformation rules o → u and o → ro.
However, node c in the dictionary trie does not have
node u as a child node, which means that no string in
the dictionary has ˆmicu as prefix. In such case, the path
will not be considered in candidate generation.

5 EXPERIMENTAL RESULTS
We have experimentally evaluated our method to solve
two problems, spelling error correction of queries and
reformulation of queries in web search. The difference
between the two problems is that string transformation
is performed at a character level in the former task and
at a word level in the latter task. A dictionary is used in
the former problem.

5.1 Spelling Error Correction
Efficiency is vital for this task due to the following
reasons. (1) The dictionary is extremely large and (2) The

TABLE 1
Examples of Word Pairs

Misspelled Correct Misspelled Correct
aacoustic acoustic chevorle chevrolet
liyerature literature tournemen tournament
shinngle shingle newpape newspaper
finlad finland ccomponet component
reteive retrieve olimpick olympic

response time must be very short.

5.1.1 Word Pair Mining
A search session in web search is comprised of a se-
quence of queries from the same user within a short time
period. Many of search sessions in our data consist of
misspelled queries and their corrections. We employed
heuristics to automatically mine training pairs from
search session data at Bing.

First, we segmented the query stream from each user
into sessions. If the time period between two queries was
more than 5 minutes, then we put a session boundary be-
tween them. We used short sessions here because we ob-
served that search users usually correct their misspelled
queries very quickly after they find the misspellings.
Then the following heuristics were employed to identify
pairs of misspelled words and their corrections from two
consecutive queries within a session:

1) The two queries have the same number of words.
2) There is only one word difference between the two

queries.
3) For the two distinct words, the word in the first

query is considered misspelled and the second one
its correction.

Finally, we aggregated the identified word pairs across
sessions and users and discarded the pairs with low
frequencies. Table 1 shows some examples of the mined
word pairs.

5.1.2 Experiments on Accuracy
Two representative methods were used as baselines:
the generative model proposed by Brill and Moore [5]
referred to as generative and the logistic regression model
(classification model) proposed by Okazaki et al. [6]
referred to as logistic.

We compared our method with the two baselines in
terms of top k accuracy, which is the ratio of the true
corrections among the top k candidates generated by a
method. For each case,

Accuracy@k =

{
1 true correction is in the top k

0 otherwise
(9)

All the methods shared the same default settings:
973,902 words in the dictionary, 10,597 rules for correc-
tion, and up to two rules used in one transformation.
We made use of 100,000 word pairs mined from query

8

TABLE 2
Summary of Experiments on Spelling Error Correction

Experiment Settings Accuracy Efficiency
Default Settings Fig. 6 Fig. 12
Dictionary Sizes (small v.s. large) Fig. 7 Fig. 13
Applicable Rules (2 v.s. 3) Fig. 8 Fig. 14
Size of Rule Set (small v.s. large) Fig. 9 Fig. 15

0 5 10 15 20 25 30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Top k

 Generative
 Generative (1 applicable rule)
 Logistic
 Our Method
 Our Method (1 applicable rule)

Fig. 6. Accuracy Comparison between Baselines and Our
Method with Default Settings

sessions for training, and 10,000 word pairs for testing. A
summary of following experiments is shown in Table 2.

The experimental results are shown in Fig. 6. We
can see that our method always performs better when
compared with the baselines and the improvements are
statistically significant (p < 0.01 in t-test). The perfor-
mance of logistic becomes saturated when k increases,
because the method only allows the use of one rule each
time. We observe that there are many word pairs in the
data that need to be transformed with multiple rules. We
further compared the three methods by only allowing
application of one rule. Our method still works better
than the baselines, especially when k is small.

Next, we conducted experiments to investigate how
the top k accuracy changes with different sizes of dictio-
nary, maximum numbers of applicable rules, and sizes of
rule set for the three methods. The experimental results
are shown in Fig. 7, Fig. 8 and Fig. 9. For the experiment
in Fig. 7, we enlarged the dictionary size from 973,902
(small dict) to 2,206,948 (large dict) and kept the other
settings the same as in the previous experiment. The
performances of all the methods decline, because more
candidates can be generated with a larger dictionary.
However, the drop of accuracy by our method is smaller
than that by generative, which means our method is
more powerful when the dictionary is large. For the
experiment in Fig. 8, we changed the maximum number
of rules that can be applied to a transformation from 2
to 3. Logistic is not included in this experiment, because

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Top k

 Generative (small dict)
 Generative (large dict)
 Logistic (small dict)
 Logistic (large dict)
 Our Method (small dict)
 Our Method (large dict)

Fig. 7. Accuracy Comparison between Baselines and Our
Method with Different Dictionary Sizes

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

Top k

A
cc

ur
ac

y
(%

)

 Generative (2 applicable rules)
 Generative (3 applicable rules)
 Our Method (2 applicable rules)
 Our Method (3 applicable rules)

Fig. 8. Accuracy Comparison between Generative and
Our Method with Different Maximum Numbers of Applica-
ble Rules

it can only use one rule at a time. When there are more
applicable rules, more candidates can be generated and
thus ranking of them becomes more challenging. The
accuracies of both methods drop, but our method is
constantly better than generative. Moreover, the decrease
in accuracy by our method is clearly less than that by
generative. For the experiment in Fig. 9, we enlarged the
size of the rule set from 10,497 (small rule set) to 24,054
(large rule set). The performance of our method and
those of the two baselines do not change so much, and
our method still visibly outperforms the baselines when
more rules are exploited.

5.1.3 Experiments on Model Constraint

We introduce the non-positive constraint on the param-
eters, i.e., ∀λr ≤ 0, to facilitate our pruning strategy
for efficient top k candidate generation. This is also
one of the major differences between our method and
that of Dreyer et al.’s. We experimentally verified the

9

0 5 10 15 20 25 30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Top k

 Generative (large rule set)
 Generative (small rule set)
 Logistic (large rule set)
 Logistic (small rule set)
 Our Method (large rule set)
 Our Method (small rule set)

Fig. 9. Accuracy Comparison between Baselines and Our
Method with Different Sizes of Rule Set

0 5 10 15 20 25 30

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Top k

 Bounded
 Unbounded

Fig. 10. Accuracy Comparison between Bounded and
Unbounded Models

impact of the constraint on the accuracy. For ease of
reference, we name the model with the non-positive
constraint bounded, and the original model unbounded.
The experimental results on the accuracy are shown
in Fig. 10. The experiment was conducted based on
the typical setting of our experiments: 973,902 words
in the dictionary, 10,597 rules, and up to two rules
in one transformation. We can see that the difference
between bounded and unbounded in terms of accuracy is
negligible, and we can draw a conclusion that adding
the constraint does not hurt the accuracy. Furthermore,
as will be discussed in Section 5.1.4, bounded is much
faster than unbounded because of the application of the
pruning strategy.

5.1.4 Experiments on Efficiency
We also experimentally evaluated the efficiency of our
method, Brill and Moore’s method (generative), and
Okazaki et al.’s method (logistic).

First, we tested the effect of using the Aho-Corasick
algorithm (the rule index). The time complexity of Aho-

0 5000 10000 15000 20000 25000

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Size of Rule Set

Word Length

N
um

be
r o

f M
at

ch
es

 4
 5
 6
 7
 8
 9
 10

Fig. 11. Efficiency Evaluation on Rule Index

Corasick algorithm is determined by the length of query
word plus the number of matches. We examined how
the number of matches on query word changes when
the size of the rule set increases. The experimental result
is shown in Fig. 11. We can see that the number of
matches is not largely affected when the size of the rule
set increases in the rule index. It implies that the time
for searching applicable rules is close to a constant and
does not change much with different numbers of rules.

Next, we evaluated the efficiency of our method and
the baselines in terms of running time. We implemented
their methods according to the papers. All the exper-
iments are run on an AMD 2.1GHz CPU with 96GB
memory running Windows Server.

The results reported here are those when k is 30, as in
Fig. 12. The running time of our method is remarkable
less than that of logistic and generative, especially when
the word length is short. When only one rule is applied,
the running times of all the three methods are very small.
We can conclude that our method is more efficient than
the baselines, and the pruning strategy of our method
works well.

Next, we tested how the running time of our method
changes according to three factors: dictionary size, max-
imum number of applicable rules in a transformation
and rule set size. The experimental results are shown in
Fig. 13, Fig. 14 and Fig. 15 respectively. In Fig. 13, with
increasing dictionary size, the running time is almost
stable, which means our method performs well when the
dictionary is large. In Fig. 14, with increasing maximum
number of applicable rules in a transformation, the run-
ning time increases first and then stabilizes, especially
when the word is long. In Fig. 15, the running time
keeps growing when the length of words gets longer.
However, the running time is still very small, which can
meet the requirement of an online application. From all
the figures, we can conclude that our pruning strategy
is very effective and our method is always efficient
especially when the length of query is short.

10

4 5 6 7 8 9 10
0

5

10

15

20

25

30

Word Length

R
un

ni
ng

 T
im

e
(m

s)
 Generative (2 applicable rules)
 Generative (1 applicable rule)
 Logistic (1 applicable rule)
 Our Method (2 applicable rules)
 Our Method (1 applicable rule)

Fig. 12. Efficiency Comparison between Baselines and
Our Method with Default Settings

0 100 200 300 400 500
0

5

10

15

20

Word Length

R
un

ni
ng

 T
im

e
(m

s)

Size of Dictionary (million)

 4
 5
 6
 7
 8
 9
 10

Fig. 13. Efficiency Evaluation with Different Sizes of
Dictionary

1 2 3 4 5 6
0

100

200

300

400

500

600

R
un

ni
ng

 T
im

e
(m

s)

Word Length

Maximum Number of Applicable Rules

 4
 5
 6
 7
 8
 9
 10

Fig. 14. Efficiency Evaluation with Different Maximum
Numbers of Applicable Rules

5000 10000 15000 20000 25000
0

5

10

15

20

25

30 Word Length

Size of Rule Set

R
un

ni
ng

 T
im

e
(m

s)

 4
 5
 6
 7
 8
 9
 10

Fig. 15. Efficiency Evaluation with Different Sizes of Rule
Set

TABLE 3
Results of Microsoft Speller Challenge

Team with Rank EF1%
Team 1 86.62
Our Method 85.89
Team 2 85.81
Team 3 85.41
Team 4 85.40
Team 5 85.13

5.2 Microsoft Speller Challenge
The task in the Microsoft Speller Challenge is to build
a spelling error correction system that can generate
the most plausible candidates for each search query.
Submissions to the challenge are evaluated based on the
Expected F1 (EF1) measure against a test set created
at Bing1. We applied our method to generate word
candidates and then simply utilized the Microsoft Web
N-gram information2 to rank the final query candidates.
The result of our method is shown in Table 3. We also
list the results of the best performing systems3. The
results demonstrate that the performance of our method
is comparable to that of the best performing systems.
Although our method is a generic algorithm and we did
not conduct special tuning, our method still performed
well.

5.3 Query Reformulation
In spelling error correction, heuristic is used to mine
word pairs. In query reformulation, similar query pairs
are used as training. Similar queries can be found from
a click-through bipartite graph if they share the same
clicked URLs (cf., [31]). Specifically, the Pearson cor-
relation coefficient can be calculated between any two
queries on the basis of co-clicks in the bipartite graph.

1. http://web-ngram.research.microsoft.com/spellerchallenge
2. http://web-ngram.research.microsoft.com
3. Information was obtained from the organizers of the challenge.

11

TABLE 4
Examples of Similar Query Pairs

Similar Query Pairs
jobs hiring in cedar hill tx jobs in cedar hill
define load meaning of load
cheap cars in katy used cars in katy
city of st francis ks st francis kansas
1978 boston red sox roster 1978 red sox players
a map of berlin wall map berlin wall
san francisco ca halloween events san francisco halloween
word start with t words that start with a t

TABLE 5
Summary of Experiments on Query Reformulation

Experiment Settings Accuracy Efficiency
Default Settings Fig. 16 Fig. 21
Applicable Rules (2 v.s. 3) Fig. 17 Fig. 22
Size of Rule Set (small v.s. large) Fig. 18 Fig. 23

If the coefficient is larger than a threshold, then the two
queries are considered similar. This method only works
well for head (high frequency) queries. We consider
learning a string transformation model trained from
head queries and applying the model to tail queries, i.e.,
conducting top k similar query finding on tail queries.
Note that in this case, no dictionary can be used in string
transformation, because it is impossible to construct a
dictionary of queries in advance in web.

We still take generative and logistic as baselines, which
are extensions of Brill and Moore’s model and Okasaki
et al.’s model to query reformulation. Similar query pairs
were mined from search log data at Bing. We made use
of 100,000 similar query pairs for training, and 10,000
similar query pairs for testing. Table 4 shows examples
of similar query pairs.

Transformation rules were automatically extracted
from the training data and there are 55,255 transforma-
tion rules. The rules were used for both our method and
the baselines, and it was assumed that up to two rules
can be used in one transformation. A summary of the
experiments is shown in Table 5.

5.3.1 Experiments on Accuracy
We compared our method with the baselines, in terms of
top k accuracy. Fig. 16 shows the experimental results.
It is clear that our method always outperforms the base-
lines and the improvements are statistically significant
(p < 0.01 in t-test).

Fig. 17 and Fig. 18 show how the performances of
our method and the baselines change with different
maximum numbers of applicable rules and sizes of rule
set. In Fig. 17, the maximum number of rules that can
be applied to a transformation is changed from 2 to
3. More candidates can be generated in such case, and
the generation task becomes harder. The accuracies of
both methods drop, but our method is consistentlybetter
than generative. Since the input query and similar query

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Top k

 Generative
 Generative (1 applicable rule)
 Logistic
 Our Method
 Our Method (1 applicable rule)

Fig. 16. Accuracy Comparison between Baselines and
Our Method with Default Settings

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80
A

cc
ur

ac
y

(%
)

Top k

 Generative (2 applicable rules)
 Generative (3 applicable rules)
 Our Method (2 applicable rules)
 Our Method (3 applicable rules)

Fig. 17. Accuracy Comparison between Generative and
Our Method with Different Maximum Numbers of Applica-
ble Rules

cannot be so different, the number of applicable rules
may not be so large in practice. In Fig. 18, the size of
the rule set is increased from 55,255 (small rule set)
to 105,609 (large rule set). When there are more rules
available, a query can be transformed into more candi-
dates. As a result, the performances of all the methods
decrease. Nonetheless our method still consistently and
significantly outperforms the baselines.

5.3.2 Experiments on Model Constraint

Again, we tested the accuracy of the model with or
without the positivity constraint in our method. We
use bounded to denote the model with the constraint
and unbounded to denote the model without the con-
straint. The experimental result is shown in Fig. 19,
while the experiment was conducted in the same setting
as before: 55,255 transformation rules and up to two
rules used in one transformation. The result indicates

12

0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90

A
cc

cu
ra

cy
 (%

)

Top k

 Generative (small rule set)
 Generative (large rule set)
 Logistic (small rule set)
 Logistic (large rule set)
 Our Method (small rule set)
 Our Method (large rule set)

Fig. 18. Accuracy Comparison between Baselines and
Our Method with Different Sizes of Rule Set

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

Top k

A
cc

ur
ac

y
(%

)

 Bounded
 Unbounded

Fig. 19. Accuracy Comparison between Bounded and
Unbounded Models

that the difference between bounded and unbounded in
terms of accuracy is small, which means that adding the
constraint does not hurt the accuracy. As will be seen,
however, the gain in efficiency is significant.

5.3.3 Experiments on Efficiency

In this experiment, we examined the efficiency of our
method and Okasaki et al.’s method logistic in query
reformulation. The retrieval part of Brill and Moore’s
method is based on a hierarchy of tries, which are
constructed using dictionary. However, there is no dic-
tionary in the query reformulation task. Although we
can compute the score for candidates, we cannot retrieve
candidates using the data structure proposed by Brill
and Moore. Thus we did not make comparison with their
method in terms of efficiency.

First, we tested the effect of using Aho-Corasick al-
gorithm for rule index, which is shown in Fig. 20. We
can observe the advantage of using the Aho-Corasick
algorithm, because the number of matches and thus the

50000 60000 70000 80000 90000 100000 110000
0

2

4

6

8

10

12

14

16

N
um

be
r o

f M
at

ch
es

Query Length

Size of Rule Set

 2
 3
 4
 5
 6
 7
 8

Fig. 20. Efficiency Evaluation on Rule Index

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

R
un

ni
ng

 T
im

e
(m

s)

Query Length

 Logistic (1 applicable rule)
 Our Method (2 applicable rules)
 Our Method (1 applicable rule)

Fig. 21. Efficiency Evaluation between Logistic and Our
Method with Default Settings

computation time are basically same with different sizes
of rule set.

The running time of our method and logistic are shown
in Fig. 21, in which k is 30 and only one rule is applied.
The running time of logistic increases rapidly, while that
of our method grows slowly. It indicates that our method
which has pruning is very efficient compared to logistic
which does not have pruning.

Finally, we investigated how the running time of our
method changes with different maximum numbers of
applicable rules in a transformation and different sizes
of rule set. The experimental results are shown in Fig. 22
and Fig. 23 respectively. From Fig. 22, we can see that
with increasing maximum numbers of applicable rules,
first the running time increases and then stabilizes,
especially when the query is long. Since the method’s
running time is proportional to the number of paths,
more paths will be created when more rules are applied.
In the meantime, the paths are likely to be pruned
because the scores of the paths will also decrease. In
Fig. 22, the running times are almost steady for short

13

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Query Length

Maximum Number of Applicable Rules

R
un

ni
ng

 T
im

e
(m

s)

 1
 2
 3
 4
 5
 6
 7
 8

Fig. 22. Efficiency Evaluation with Different Maximum
Numbers of Applicable Rules

40000 60000 80000 100000 120000 140000 160000 180000
0

10

20

30

40

50

60

Size of Rule Set

Query Length

R
un

ni
ng

 T
im

e
(m

s)

 1
 2
 3
 4
 5
 6
 7
 8

Fig. 23. Efficiency Evaluation with Different Sizes of Rule
Set

queries, and the numbers of paths gradually increase
for long queries. The effect of pruning in our method is
very noticeable, because its running time is significantly
smaller.

5.4 Summary of Results
Our method has been applied to two applications,
spelling error correction of queries and reformulation
of queries in web search. Experiments have been con-
ducted between our method and the baselines including
Brill and Moore’s method and Okazaki et al.’s method.
The results show that our method performs consistently
better than the baselines in terms of accuracy. Moreover,
the accuracy of our method is constantly better than the
baselines in different experiment settings, such as size
of the rule set, maximum number of applicable rules,
and dictionary size. Experiments on efficiency have been
conducted with running time as the measure. The run-
ning times of our method are smaller than those of the
baselines, which indicates that the pruning strategy in

our method is very effective. Moreover, the efficiency of
our method remains high when the scale becomes large,
i.e., larger maximum number of applicable rules, size of
rule set, and size of dictionary. In addition, we evaluated
our method on the Microsoft Speller Challenge, and the
results show that our method is comparable to the best
performing systems.

6 CONCLUSION

In this paper, we have proposed a new statistical learn-
ing approach to string transformation. Our method is
novel and unique in its model, learning algorithm, and
string generation algorithm. Two specific applications
are addressed with our method, namely spelling error
correction of queries and query reformulation in web
search. Experimental results on two large data sets and
Microsoft Speller Challenge show that our method im-
proves upon the baselines in terms of accuracy and
efficiency. Our method is particularly useful when the
-problem occurs on a large scale.

REFERENCES

[1] M. Li, Y. Zhang, M. Zhu, and M. Zhou, “Exploring distributional
similarity based models for query spelling correction,” in Proceed-
ings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational
Linguistics, ser. ACL ’06. Morristown, NJ, USA: Association for
Computational Linguistics, 2006, pp. 1025–1032.

[2] A. R. Golding and D. Roth, “A winnow-based approach to
context-sensitive spelling correction,” Mach. Learn., vol. 34, pp.
107–130, February 1999.

[3] J. Guo, G. Xu, H. Li, and X. Cheng, “A unified and discriminative
model for query refinement,” in Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in
information retrieval, ser. SIGIR ’08. New York, NY, USA: ACM,
2008, pp. 379–386.

[4] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-based
indexing for efficient approximate string search,” in Proceedings
of the 2009 IEEE International Conference on Data Engineering, ser.
ICDE ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 604–615.

[5] E. Brill and R. C. Moore, “An improved error model for noisy
channel spelling correction,” in Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics, ser. ACL ’00.
Morristown, NJ, USA: Association for Computational Linguistics,
2000, pp. 286–293.

[6] N. Okazaki, Y. Tsuruoka, S. Ananiadou, and J. Tsujii, “A discrim-
inative candidate generator for string transformations,” in Pro-
ceedings of the Conference on Empirical Methods in Natural Language
Processing, ser. EMNLP ’08. Morristown, NJ, USA: Association
for Computational Linguistics, 2008, pp. 447–456.

[7] M. Dreyer, J. R. Smith, and J. Eisner, “Latent-variable modeling of
string transductions with finite-state methods,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing,
ser. EMNLP ’08. Stroudsburg, PA, USA: Association for Com-
putational Linguistics, 2008, pp. 1080–1089.

[8] A. Arasu, S. Chaudhuri, and R. Kaushik, “Learning string trans-
formations from examples,” Proc. VLDB Endow., vol. 2, pp. 514–
525, August 2009.

[9] S. Tejada, C. A. Knoblock, and S. Minton, “Learning domain-
independent string transformation weights for high accuracy
object identification,” in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, ser.
KDD ’02. New York, NY, USA: ACM, 2002, pp. 350–359.

[10] M. Hadjieleftheriou and C. Li, “Efficient approximate search on
string collections,” Proc. VLDB Endow., vol. 2, pp. 1660–1661,
August 2009.

14

[11] C. Li, B. Wang, and X. Yang, “Vgram: improving performance of
approximate queries on string collections using variable-length
grams,” in Proceedings of the 33rd international conference on Very
large data bases, ser. VLDB ’07. VLDB Endowment, 2007, pp.
303–314.

[12] X. Yang, B. Wang, and C. Li, “Cost-based variable-length-gram
selection for string collections to support approximate queries
efficiently,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’08. New York,
NY, USA: ACM, 2008, pp. 353–364.

[13] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms
for approximate string searches,” in Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, ser. ICDE ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 257–266.

[14] S. Ji, G. Li, C. Li, and J. Feng, “Efficient interactive fuzzy keyword
search,” in Proceedings of the 18th international conference on World
wide web, ser. WWW ’09. New York, NY, USA: ACM, 2009, pp.
371–380.

[15] R. Vernica and C. Li, “Efficient top-k algorithms for fuzzy search
in string collections,” in Proceedings of the First International Work-
shop on Keyword Search on Structured Data, ser. KEYS ’09. New
York, NY, USA: ACM, 2009, pp. 9–14.

[16] Z. Yang, J. Yu, and M. Kitsuregawa, “Fast algorithms for top-k
approximate string matching,” in Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, ser. AAAI ’10, 2010, pp.
1467–1473.

[17] C. Whitelaw, B. Hutchinson, G. Y. Chung, and G. Ellis, “Using the
web for language independent spellchecking and autocorrection,”
in Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, ser. EMNLP ’09. Morristown, NJ, USA:
Association for Computational Linguistics, 2009, pp. 890–899.

[18] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 522–532, May
1998.

[19] J. Oncina and M. Sebban, “Learning unbiased stochastic edit
distance in the form of a memoryless finite-state transducer,” in In
Workshop on Grammatical Inference Applications: Successes and Future
Challenges, 2005.

[20] A. McCallum, K. Bellare, and F. Pereira, “A conditional random
field for discriminatively-trained finite-state string edit distance,”
in Proceedings of the 21st Conference on Uncertainty in Artifical
Intelligence, ser. UAI ’05, 2005, pp. 388–395.

[21] F. Ahmad and G. Kondrak, “Learning a spelling error model
from search query logs,” in Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language
Processing, ser. HLT ’05. Morristown, NJ, USA: Association for
Computational Linguistics, 2005, pp. 955–962.

[22] K. Toutanova and R. C. Moore, “Pronunciation modeling for
improved spelling correction,” in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ser. ACL ’02.
Morristown, NJ, USA: Association for Computational Linguistics,
2002, pp. 144–151.

[23] H. Duan and B.-J. P. Hsu, “Online spelling correction for query
completion,” in Proceedings of the 20th international conference on
World wide web, ser. WWW ’11. New York, NY, USA: ACM,
2011, pp. 117–126.

[24] Q. Chen, M. Li, and M. Zhou, “Improving query spelling cor-
rection using web search results,” in Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, ser. EMNLP ’07, 2007,
pp. 181–189.

[25] A. Islam and D. Inkpen, “Real-word spelling correction using
google web it 3-grams,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, ser. EMNLP ’09.
Morristown, NJ, USA: Association for Computational Linguistics,
2009, pp. 1241–1249.

[26] ——, “Correcting different types of errors in texts,” in Proceedings
of the 24th Canadian conference on Advances in artificial intelligence,
ser. Canadian AI ’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 192–203.

[27] R. Jones, B. Rey, O. Madani, and W. Greiner, “Generating query
substitutions,” in Proceedings of the 15th international conference on
World Wide Web, ser. WWW ’06. New York, NY, USA: ACM,
2006, pp. 387–396.

[28] X. Wang and C. Zhai, “Mining term association patterns from
search logs for effective query reformulation,” in Proceeding of the

17th ACM conference on Information and knowledge management, ser.
CIKM ’08. New York, NY, USA: ACM, 2008, pp. 479–488.

[29] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM J. Sci.
Comput., vol. 16, pp. 1190–1208, September 1995.

[30] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Commun. ACM, vol. 18, pp. 333–340, June
1975.

[31] J. Xu and G. Xu, “Learning similarity function for rare queries,” in
Proceedings of the fourth ACM international conference on Web search
and data mining, ser. WSDM ’11. New York, NY, USA: ACM,
2011, pp. 615–624.

Ziqi Wang Ziqi Wang is currently working to-
ward the PhD degree in the Institute of Network
Computing and Information, Peking University.
She received the BS degree from the Depart-
ment of Computer Science, Peking University, in
2010. Her research interests include information
retrieval, natural language processing and rec-
ommender system.

Gu Xu Gu Xu is a applied researcher in Mi-
crosoft Bing. Prior to this, he was a researcher
in the Information Retrieval and Mining Group at
Microsoft Research Asia. He joined Microsoft in
2003 and formerly worked in Multimedia Com-
puting Group. His research interests include
web information retrieval, mining and statistical
machine learning. He graduated from Tsinghua
University in 2003. Gu’s recent research is on
web query analysis, including query reformu-
lation, query similarity learning and query rec-

ommendation. The results of this research were published in major
academic conferences including SIGIR, WSDM and CIKM. His recent
academic activities include serving as a program committee member of
SIGIR’11, WSDM’11, ACL’12 and AAAI’12.

Hang Li Hang Li is chief scientist of the Noahs
Ark Lab at Huawei. He is also adjunct profes-
sor of Peking University and Nanjing University.
His research areas include information retrieval,
natural language processing, statistical machine
learning, and data mining. He graduated from
Kyoto University in 1988 and earned his PhD
from the University of Tokyo in 1998. He worked
at the NEC lab in Japan during 1991 and 2001,
and Microsoft Research Asia during 2001 and
2012. He joined Huawei Technologies in 2012.

Hang has about 100 publications at top international journals and con-
ferences, including SIGIR, WWW, WSDM, ACL, EMNLP, ICML, NIPS,
and SIGKDD.

Ming Zhang Ming Zhang received the Bachelor
and PhD degrees in Computer Science from
Peking University in 1988 and 2005, respec-
tively. She is a full professor at the School of
Electronics Engineering and Computer Science,
Peking University. Prof. Zhang is a member of
the Advisory committee of Computing Educa-
tion, the Ministry of Education in China. Her
research interests include digital librari es, text
mining and social computing. Prof. Zhang is
the leading author of several textbooks on Data

Structures and Algorithms in Chinese, and the corresponding course is
awarded as the National Elaborate Course by MOE China.

