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Abstract—The rapidly increasing power of personal mobile
devices (smartphones, tablets, etc.) is providing much richer
contents and social interactions to users on the move. This
trend however is throttled by the limited battery lifetime of
mobile devices and unstable wireless connectivity, making the
highest possible quality of service experienced by mobile users
not feasible. The recent cloud computing technology, with its rich
resources to compensate for the limitations of mobile devices and
connections, can potentially provide an ideal platform to support
the desired mobile services. Tough challenges arise on how to
effectively exploit cloud resources to facilitate mobile services,
especially those with stringent interaction delay requirements. In
this paper, we propose the design of a Cloud-based, novel Mobile
sOcial tV system (CloudMoV). The system effectively utilizes
both PaaS (Platform-as-a-Service) and IaaS (Infrastructure-as-
a-Service) cloud services to offer the living-room experience of
video watching to a group of disparate mobile users who can
interact socially while sharing the video. To guarantee good
streaming quality as experienced by the mobile users with time-
varying wireless connectivity, we employ a surrogate for each user
in the IaaS cloud for video downloading and social exchanges
on behalf of the user. The surrogate performs efficient stream
transcoding that matches the current connectivity quality of
the mobile user. Given the battery life as a key performance
bottleneck, we advocate the use of burst transmission from the
surrogates to the mobile users, and carefully decide the burst size
which can lead to high energy efficiency and streaming quality.
Social interactions among the users, in terms of spontaneous
textual exchanges, are effectively achieved by efficient designs
of data storage with BigTable and dynamic handling of large
volumes of concurrent messages in a typical PaaS cloud. These
various designs for flexible transcoding capabilities, battery
efficiency of mobile devices and spontaneous social interactivity
together provide an ideal platform for mobile social TV services.
We have implemented CloudMoV on Amazon EC2 and Google
App Engine and verified its superior performance based on real-
world experiments.

I. INTRODUCTION

Thanks to the revolutionary “reinventing the phone” cam-
paigns initiated by Apple Inc. in 2007, smartphones nowadays
are shipped with multiple microprocessor cores and gigabyte
RAMs; they possess more computation power than personal
computers of a few years ago. On the other hand, the wide
deployment of 3G broadband cellular infrastructures further
fuels the trend. Apart from common productivity tasks like
emails and web surfing, smartphones are flexing their strengths
in more challenging scenarios such as realtime video streaming
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and online gaming, as well as serving as a main tool for social
exchanges.

Although many mobile social or media applications have
emerged, truely killer ones gaining mass acceptance are still
impeded by the limitations of the current mobile and wire-
less technologies, among which battery lifetime and unstable
connection bandwidth are the most difficult ones. It is natural
to resort to cloud computing, the newly-emerged computing
paradigm for low-cost, agile, scalable resource supply, to
support power-efficient mobile data communication. With vir-
tually infinite hardware and software resources, the cloud can
offload the computation and other tasks involved in a mobile
application and may significantly reduce battery consumption
at the mobile devices, if a proper design is in place. The big
challenge in front of us is how to effectively exploit cloud
services to facilitate mobile applications. There have been a
few studies on designing mobile cloud computing systems
[1][2][3], but none of them deal in particular with stringent
delay requirements for spontaneous social interactivity among
mobile users.

In this paper, we describe the design of a novel mobile
social TV system, CloudMoV, which can effectively utilize the
cloud computing paradigm to offer a living-room experience
of video watching to disparate mobile users with spontaneous
social interactions. In CloudMoV, mobile users can import a
live or on-demand video to watch from any video streaming
site, invite their friends to watch the video concurrently, and
chat with their friends while enjoying the video. It therefore
blends viewing experience and social awareness among friends
on the go. As opposed to traditional TV watching, mobile
social TV is well suited to today’s life style, where family
and friends may be separated geographically but hope to share
a co-viewing experience. While social TV enabled by set-top
boxes over the traditional TV systems is already available [4]
[5], it remains a challenge to achieve mobile social TV, where
the concurrently viewing experience with friends is enabled
on mobile devices.

We design CloudMoV to seamlessly utilize agile resource
support and rich functionalities offered by both an IaaS
(Infrastructure-as-a-Service) cloud and a PaaS (Platform-as-
a-Service) cloud. Our design achieves the following goals.

Encoding flexibility. Different mobile devices have differ-
ently sized displays, customized playback hardwares, and var-
ious codecs. Traditional solutions would adopt a few encoding
formats ahead of the release of a video program. But even the
most generous content providers would not be able to attend
to all possible mobile platforms, if not only to the current
hottest models. CloudMoV customizes the streams for different
devices at real time, by offloading the transcoding tasks to an
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IaaS cloud. In particular, we novelly employ a surrogate for
each user, which is a virtual machine (VM) in the IaaS cloud.
The surrogate downloads the video on behalf of the user and
transcodes it into the desired formats, while catering to the
specific configurations of the mobile device as well as the
current connectivity quality.

Battery efficiency. A breakdown analysis conducted by
Carroll et al. [6] indicates that the network modules (both Wi-
Fi and 3G) and the display contribute to a significant portion
of the overall power consumption in a mobile device, dwarfing
usages from other hardware modules including CPU, memory,
etc. We target at energy saving coming from the network
module of smartphones through an efficient data transmission
mechanism design. We focus on 3G wireless networking as
it is getting more widely used and challenging in our design
than Wi-Fi based transmissions. Based on cellular network
traces from real-world 3G carriers, we investigate the key
3G configuration parameters such as the power states and
the inactivity timers, and design a novel burst transmission
mechanism for streaming from the surrogates to the mobile
devices. The burst transmission mechanism makes careful
decisions on burst sizes and opportunistic transitions among
high/low power consumption modes at the devices, in order
to effectively increase the battery lifetime.

Spontaneous social interactivity. Multiple mechanisms are
included in the design of CloudMoV to enable spontaneous
social, co-viewing experience. First, efficient synchronization
mechanisms are proposed to guarantee that friends joining in
a video program may watch the same portion (if they choose
to), and share immediate reactions and comments. Although
synchronized playback is inherently a feature of traditional
TV, the current Internet video services (e.g., Web 2.0 TV)
rarely offer such a service. Second, efficient message com-
munication mechanisms are designed for social interactions
among friends, and different types of messages are prioritized
in their retrieval frequencies to avoid unnecessary interruptions
of the viewing progress. For example, online friend lists can
be retrieved at longer intervals at each user, while invitation
and chat messages should be delivered more timely. We adopt
textual chat messages rather than voice in our current design,
believing that text chats are less distractive to viewers and
easier to read/write and manage by any user.

These mechanisms are seamlessly integrated with function-
alities provided by a typical PaaS cloud, via an efficient design
of data storage with BigTable and dynamic handling of large
volumes of concurrent messages. We exploit a PaaS cloud
for social interaction support due to its provision of robust
underlying platforms (other than simply hardware resources
provided by an IaaS cloud), with transparent, automatic scaling
of users’ applications onto the cloud.

Portability. A prototype CloudMov system is implemented
following the philosophy of “Write Once, Run Anywhere”
(WORA): both the front-end mobile modules and the back-
end server modules are implemented in “100% Pure Java”
[7], with well-designed generic data models suitable for any
BigTable-like data store; the only exception is the transcoding
module, which is implemented using ANSI C for performance
reasons and uses no platform-dependent or proprietary APIs.

The client module can run on any mobile devices supporting
HTML5, including Android phones, iOS systems, etc. To
showcase its performance, we deploy the system on Amazon
EC2 and Google App Engine, and conduct thorough tests
on iOS platforms. Our prototype can be readily migrated to
various cloud and mobile platforms with little effort.

The remainder of this paper is organized as follows. In
Sec. II, we compare our work with the existing literature and
highlight our novelties. In Sec. III, we present the architecture
of CloudMoV and the design of individual modules. A real-
world prototype implementation follows and is described in
Sec. IV, We discuss experimental evaluations in Sec. V.
Finally, we conclude the paper in Sec. VI.

II. RELATED WORK

A number of mobile TV systems have sprung up in recent
years, driven by both hardware and software advances in
mobile devices. Some early systems [8][9] bring the “living-
room” experience to small screens on the move. But they focus
more on barrier clearance in order to realize the convergence of
the television network and the mobile network, than exploring
the demand of “social” interactions among mobile users. There
is another trend in which efforts are dedicated to extending
social elements to television systems [4] [5][10]. Coppens
et al. [4] try to add rich social interactions to TV but their
design is limited to traditional broadcast program channels.
Oehllberg et al. [5] conduct a series of experiments on human
social activities while watching different kinds of programs.
Though inspiring, these designs are not that suitable for being
applied directly in a mobile environment. Chuah et al. [11]
extend the social experiences of viewing traditional broadcast
programs to mobile devices, but have yet to deliver a well
integrated framework. Schatz et al. [12][13] have designed
a mobile social TV system, which is customized for DVB-
H networks and Symbian devices as opposed to a wider
audience. Compared to these prior work and systems, we
target at a design for a generic, portable mobile social TV
framework, featuring co-viewing experiences among friends
over geographical separations through mobile devices. Our
framework is open to all Internet-based video programs, either
live or on-demand, and supports a wide range of devices
with HTML5 compatible browsers installed, without any other
mandatory component on the devices.

For any application targeted at mobile devices, reducing
power consumption is perennially one of the major concerns
and challenges. Flinn et al. [14] exploit collaborations between
the mobile OS and the mobile applications to balance the
energy conservation and application performance. Yuan et
al. [15] investigate mobile multimedia streaming, similar to
most of the other work, by adjusting the CPU power for energy
saving; however, according to the recent measurement work of
Carroll et al. [6], the display and the wireless network card
(including the cellular module) and not the CPU consume
more than half of the overall power consumption in smart
phones nowadays. Our work is able to achieve a significant
(about 30%) power saving, by opportunistically switching
the device between high-power and low-power transmission
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modes during streaming. Some existing work (e.g., Anastasi
et al. [16]) have provided valuable guidelines for energy saving
over WiFi transmissions; our work focuses on 3G cellular
transmissions which have significantly different power models;
3G is a more practical wireless connection technology for
mobile TVs on the go at the present time.

Cloud computing had its debut with much fanfare and is
now deemed a most powerful hosting platform in many areas
including mobile computing. Satyanarayanan et al. [1] suggest
offloading mobile devices’ computation workload to a nearby
resource-rich infrastructure (i.e., Cloudlets) by dynamic VM
synthesis. Kosta et al. [2] propose a virtualization framework
for mobile code offloading to the cloud. Zhang et al. [17]
introduce an elastic mobile application model by offloading
part of the applications (weblets) to an IaaS cloud. All these
work target at computational job offloading. Recently, atten-
tions have been drawn to enabling media applications using
the cloud, for both media storage [18] and processing [19].
We are aware of a recent work by Huang et al. [3] which, in
resemblance to ours, also leverages cloud resources for video
transcoding. But they advocate scalable video coding (SVC)
using multiple cluster nodes, which is not suitable in a mobile
social TV scenario due to the encoding complexity of SVC
(hence leading to intolerable delays), when realtime video
retrievals and social interactions via mobile devices are de-
sired. We instead advocate non-layered coding in such delay-
sensitive mobile applications, although the detailed transcod-
ing algorithm designs are out of the scope of this work. In
addition, we novelly employ a surrogate for each mobile user
in the cloud rather than relying on a dedicated cluster, which
can be more easily implemented in practice. Liu et al. [20]
build a mobile-based social interaction framework on top of
the Google App Engine and offer an iOS implementation. We
set out to design a portable, generic, and robust framework to
enable realtime streaming and social interaction concurrently,
which is not bound to any specific cloud platform. Although
our prototype is implemented on only two public clouds, i.e.,
Amazon EC2 and Google App Engine, it can be easily ported
to other cloud systems as long as the targeted cloud platforms
conform to the unified standard.

A recent work by Zhang et al. [21] investigates the media
caching management problem under HTTP adaptive bit rate
streaming over a wireless network environment, which can
complement our work when video streams are required to be
transcoded into multiple bit rates.

Finally, we are aware of the lack of a richly-featured cloud-
based mobile social TV system in real life. The only system
coming close to ours is Live Stream [22] on the iOS platform.
This iOS-locked application only supports live video channels,
and all its social functions are bound to Facebook open APIs.
Conversely, the prototype we implement is browser-based and
platform independent; it supports both live channels, VoD
channels and even personal channels hosted by any user, with
wider usage ranges and flexible extensibility. The framework
we propose can be readily applied to other cloud-assisted
mobile media applications as well.
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Fig. 1. The architecture of CloudMoV.

III. CLOUDMOV: ARCHITECTURE AND DESIGN

As a novel Cloud-based Mobile sOcial tV system, Cloud-
MoV provides two major functionalities to participating mobile
users: (1) Universal streaming. A user can stream a live or
on-demand video from any video sources he chooses, such
as a TV program provider or an Internet video streaming
site, with tailored encoding formats and rates for the device
each time. (2) Co-viewing with social exchanges. A user can
invite multiple friends to watch the same video, and exchange
text messages while watching. The group of friends watching
the same video is referred to as a session. The mobile user
who initiates a session is the host of the session. We present
the architecture of CloudMoV and the detailed designs of the
different modules in the following.

A. Key Modules

Fig. 1 gives an overview of the architecture of CloudMoV.
A surrogate (i.e., a virtual machine (VM) instance), or a VM
surrogate equivalently, is created for each online mobile user
in an IaaS cloud infrastructure. The surrogate acts as a proxy
between the mobile device and the video sources, providing
transcoding services as well as segmenting the streaming
traffic for burst transmission to the user. Besides, they are also
responsible for handling frequently exchanged social messages
among their corresponding users in a timely and efficient
manner, shielding mobile devices from unnecessary traffic
and enabling battery efficient, spontaneous social interactions.
The surrogates exchange social messages via a back-end PaaS
cloud, which adds scalability and robustness to the system.
There is a gateway server in CloudMoV that keeps track of
participating users and their VM surrogates, which can be
implemented by a standalone server or VMs in the IaaS cloud.

The design of CloudMoV can be divided into the following
major functional modules.
B Transcoder. It resides in each surrogate, and is respon-

sible for dynamically deciding how to encode the video
stream from the video source in the appropriate format,
dimension, and bit rate. Before delivery to the user,
the video stream is further encapsulated into a proper
transport stream. In our implementation, each video is



4

exported as MPEG-2 transport streams, which is the de
facto standard nowadays to deliver digital video and audio
streams over lossy medium.

B Reshaper. The reshaper in each surrogate receives the
encoded transport stream from the transcoder, chops it
into segments, and then sends each segment in a burst to
the mobile device upon its request (i.e., a burst transmis-
sion mechanism), to achieve the best power efficiency
of the device. The burst size, i.e., the amount of data
in each burst, is carefully decided according to the 3G
technologies implemented by the corresponding carrier.

B Social Cloud. The social cloud is built on top of any
general PaaS cloud services with BigTable-like data store
to yield better economies of scale without being locked
down to any specific proprietary platforms. Despite its
implementation on Google App Engine (GAE) as a proof
of concept, our prototype can be readily ported to other
platforms. It stores all the social data in the system,
including the online statuses of all users, records of
the existing sessions, and messages (invitations and chat
histories) in each session. The social data are catego-
rized into different kinds and split into different entities
(in analogy to tables and rows in traditional relational
database, respectively) [23]. The social cloud is queried
from time to time by the VM surrogates.

B Messenger. It is the client side of the social cloud, resid-
ing in each surrogate in the IaaS cloud. The Messenger
periodically queries the social cloud for the social data
on behalf of the mobile user and pre-processes the data
into a light-weighted format (plain text files), at a much
lower frequency. The plain text files (in XML formats) are
asynchronously delivered from the surrogate to the user
in a traffic-friendly manner, i.e., little traffic is incurred.
In the reverse direction, the messenger disseminates this
user’s messages (invitations and chat messages) to other
users via the data store of the social cloud.

B Syncer. The syncer on a surrogate guarantees that view-
ing progress of this user is within a time window of
other users in the same session (if the user chooses to
synchronize with others). To achieve this, the syncer
periodically retrieves the current playback progress of
the session host and instructs its mobile user to adjust
its playback position. In this way, friends can enjoy the
“sitting together” viewing experience. Different from the
design of communication among messagers, syncers on
different VM surrogates communicate directly with each
other as only limited amounts of traffic are involved.

B Mobile Client. The mobile client is not required to install
any specific client software in order to use CloudMoV,
as long as it has an HTML5 compatible browser (e.g.,
Mobile Safari, Chrome, etc.) and supports the HTTP Live
Streaming protocol [24]. Both are widely supported on
most state-of-the-art smartphones.

B Gateway. The gateway provides authentication services
for users to log in to the CloudMoV system, and stores
users’ credentials in a permanent table of a MySQL
database it has installed. It also stores information of
the pool of currently available VMs in the IaaS cloud

in another in-memory table. After a user successfully
logs in to the system, a VM surrogate will be assigned
from the pool to the user. The in-memory table is used
to guarantee small query latencies, since the VM pool is
updated frequently as the gateway reserves and destroys
VM instances according to the current workload. In
addition, the gateway also stores each user’s friend list in
a plain text file (in XML formats), which is immediately
uploaded to the surrogate after it is assigned to the user.

We describe the key designs in CloudMov in the following.

B. Loosely Coupled Interfaces
Similar in spirit to web services, the interfaces between

different modules in CloudMov, i.e., mobile users, VM sur-
rogates, and the social cloud, are based on HTTP, a univer-
sal standard for all Internet-connected devices or platforms.
Thanks to the loose coupling between users and the infras-
tructure, almost any mobile device is ready to gain access
to the CloudMoV services, as long as it is installed with an
HTTP browser. The VM surrogates provisioned in the IaaS
cloud cooperate with the social cloud implemented on a PaaS
cloud service via HTTP as well, with no knowledge of the
inner components and underlying technologies of each other,
which contributes significantly to the portability and easy
maintenance of the system.

For social message exchanges among friends, CloudMoV
employs asynchronous communication. All the exchanged
messages are routed via the surrogates to the social cloud,
which efficiently organizes and stores the large volumes of
data in a BigTable-like data store. The VM surrogates query
the social cloud frequently and processes the retrieved data
into XML files, for later retrieval by users in an asynchronous
fashion. Such a design effectively separates the mobile users
from the social cloud to significantly simplify the architecture,
while the extra delay introduced at the VM surrogates is
ignorable, as shown in Sec. V.

C. Pipelined Video Processing
Both live streaming of realtime contents and on-demand

streaming of stored contents are supported in CloudMoV.
Video processing in each surrogate is designed to work on
the fly, i.e., the transcoder conducts realtime encoding from
the video source, the encoded video is fed immediately into
the reshaper for segmentation and transmission, and a mobile
user can start viewing the video as soon as the first segment
is received. To support dynamic bit rate switch, the transcoder
launches multiple threads to transcode the video into multiple
bit rates once the connection speed between the surrogate and
the mobile user changes. The IaaS cloud where the surrogates
are deployed, represents an ideal platform for implementing
such computation intensive jobs.

D. Burst Transmissions
1) 3G power states: Different from Wi-Fi which is more

similar to the LANed Internet access, 3G cellular services
suffer from the limited radio resources, and therefore each user
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equipment (UE) needs to be regulated by a Radio Resource
Control (RRC) state machine [25]. Different 3G carriers
may customize and deploy complex states in their respective
cellular networks. Different states indicate different levels of
allocated radio resources, and hence different levels of energy
consumptions. For ease of implementation, we consider three
basic states in our design, which are commonly employed
by many carriers, namely CELL DCH (a dedicated physical
channel is allocated to the UE in both the uplink and the
downlink), CELL FACH (no dedicated channel is allocated
but the UE is assigned a default common transport channel
in the uplink), and IDLE, in decreasing order of power levels
[25]. Contrary to intuition, the energy consumption for data
transmission depends largely on the state a UE is working in,
but has little to do with the volume of data transmitted, i.e.,
a UE may stay at a high-power state (CELL DCH) for data
transmission even the data rate is very low [25] (this has also
been verified in our experiments in Sec. V).

A 3G carrier may commonly transfer a UE from a high-
power state to a low-power state (state demotion), for releasing
radio channels allocated to this UE to other users. For example,
if a UE working at a high-power state does not incur any
data traffic for a pre-configured period of time (measured by a
critical inactivity timer), the state of the UE will be transferred
to a low-power one; when the volume of data traffic rises,
the UE “wakes up” from a low-power state and moves to a
high-power one. Timeouts of the critical inactivity timers for
state transitions are properly set by the carrier to guarantee
performance in both delay and energy consumption, since
extra delay and energy consumption are potentially incurred
for acquiring new radio channels when the UE transits from a
low-power state to a high-power one later (state promotion).

2) Transmission mechanism: In CloudMoV, we aim at
maximum conservation of the battery capacity of the mobile
device, and design a burst transmission mechanism for stream-
ing between the surrogate and the device. Using the HTTP live
streaming protocol [24], the mobile device sends out requests
for the next segment of the video stream from time to time.
The surrogate divides the video into segments, and sends each
segment in a burst transmission to the mobile device, upon
such a request. When the mobile device is receiving a segment,
it operates in the high-power state (CELL DCH); when there
is nothing to receive, it transfers to the low-power state (IDLE)
via the intermediate state (CELL FACH), and remains there
until the next burst (segment) arrives.

3) Burst size: To decide the burst size, i.e., the size of
the segment transmitted in one burst, we need to take into
consideration characteristics of mobile streaming and energy
consumption during state transitions. For video streaming
using a fixed device without power concerns, it is desirable
to download as much of a video as what the connection
bandwidth allows; however, for streaming over a cellular
network, we should avoid downloading more than what is
being watched for one main reason: users may switch among
channels from time to time and those prefetched contents are
probably never watched, leading to a waste of the battery
power and the cellular data fee due to their download. Hence,
the bursty size should be kept small, to minimize battery
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Fig. 2. Power consumption over time.
consumption and traffic charges. On the other hand, state
transitions introduce latency and energy overheads, so the burst
should be large enough to avoid frequent state transitions;
otherwise, such overheads may diminish the energy saving
achieved by an intelligent state transition mechanism. We next
derive a lower bound on the burst size, which guarantees
positive energy saving by such intelligent state transition.

Let B be the average available bandwidth over a wireless
connection, S be the burst size in the CELL DCH state, and b
be the video playback rate at the mobile user. PDCH , PFACH ,
and PIDLE denote the power levels at states CELL DCH,
CELL FACH, and IDLE, respectively. tDCH!FACH is the
timeout of the critical inactivity timer (the transition time)
for state transition from CELL DCH to CELL FACH, and
tFACH!IDLE is the timeout of the inactivity timer for state
transition from CELL FACH to IDLE. Let PIDLE!FACH ,
PFACH!DCH , and PIDLE!DCH be the energy needed for
state promotion denoted by the respective subscript. We ignore
the delay overhead in the state promotion from a low-power
state to a high-power state, since its value is small—less than
one second—based on our real-life measurements as reported
in Sec. V. We consider two cases: (1) transmission of a video
according to our burst transmission mechanism, with Pburst(t)
being the power level at time t during the transmission; (2)
continuous transmission of the video stream whenever there
are transcoded contents ready, with Pcont(t) being the power
level at time t during the transmission. An illustration of
power consumption in both cases is given in Fig. 2. The
burst transmission operates at state CELL DCH to send a
total amount of data S for a duration of S

B ; then it transits
to state IDLE via state CELL FACH, and remains there for
duration S

b �
S
B�tDCH!FACH�tFACH!IDLE (Sb is the time

taken for the mobile user to play the segment of size S). Note
that the power consumption level during transition periods
tDCH!FACH and tFACH!IDLE , remains at PDCH and
PFACH , respectively, although no data is transmitted then. The
continuous transmission always operates at the high-power
state CELL DCH with power level Pcont(t) = PDCH . We
calculate the overall energy saving (�E) by burst transmission
of the video over the time span T (multiples of S

b ), as
compared to the continuous transmission, as follows:

�E =
R T

0 (Pcont(t)� Pburst(t))dt

=
R S

b

0 (Pcont(t)� Pburst(t))dt⇥ T
S/b

= T⇥b
S

R S
b � S

B

0 (Pcont(t)� Pburst(t))dt
= T⇥b

S ⇥ ((PDCH � PFACH)⇥ tFACH!IDLE

+(PDCH � PIDLE)⇥ (Sb � S
B � tFACH!IDLE

�tDCH!FACH)� PIDLE!FACH � PFACH!DCH).
(1)
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The burst size S should be chosen such that positive energy
saving, �E > 0, can be achieved. A lower bound of the burst
size can be decided using �E > 0. We also see that the
larger S is, the more energy saving we can achieve using burst
transmission. However, with a large S, a user has to wait for a
long time before the first segment is transcoded and delivered,
and there is also the risk that it may download contents it will
never watch. We evaluate the tradeoffs in selecting different
values of S in our experiments in Sec. V.

IV. CLOUDMOV: PROTOTYPE IMPLEMENTATION

Following the design guidelines in Sec. III, we have imple-
mented a real-world mobile social TV system, and deployed it
on the Google App Engine (GAE) and Amazon EC2 clouds,
which are the two most widely used public PaaS and IaaS
cloud platforms.

GAE, as a PaaS cloud, provides rich services on top of
Google’s data centers and enables rapid deployment of Java-
based and Python-based applications. Data store, a thin layer
built on top of Google’s famous BigTable [26], handles “big”
data queries well with linear and modular scalability even
for high-throughput usage scenarios. Hence, GAE is an ideal
platform for implementing our social cloud, which dynami-
cally handles large volumes of messages. On the other hand,
GAE imposes many constraints on application deployment,
e.g., lack of support for multi-threading, file storage, etc.,
which may hinder both computation-intensive jobs and content
distribution applications.

Amazon EC2 [27] is a representative IaaS cloud, offering
raw hardware resources including CPU, storage, and networks
to users. Most EC2 VM instances are launched with Linux
kernels, and are Xen-para-virtualized as domU guests on top
of dom0, which run directly on the bare-metal hardware
upon booting. As the leading virtualization technology in the
Linux community together with KVM [28], Xen supports para-
virtualization on almost all hardware with Linux drivers, and
hence gives close-to-native performance, especially for CPU
virtualization and I/O virtualization, as has been verified by ex-
tensive measurements including ours. Comparing to a common
PaaS cloud, EC2 is an appropriate platform for computation-
intensive tasks in CloudMoV, i.e., those the surrogates carry
out.

We will show that a hybrid of the IaaS cloud, working as the
computing unit, and the PaaS cloud, as the back-end NoSQL
data store, serves as a perfect substrate in CloudMoV.

A. Client Use of CloudMov
All mobile devices installed with HTML5 compatible

browsers can use CloudMoV services, as long as the HTTP
Live Streaming (HLS) [24] protocol is supported. The user
first connects to the login page of CloudMoV, as illustrated in
the top left corner of Fig. 3. After the user successfully logs
in through the gateway, he is assigned a VM surrogate from
the VM pool (the hostnames of available VMs, e.g., ec2-50-
16-xx-xx.compute-1.amazonaws.com, are maintained in an in-
memory table of a MySQL database deployed in the gateway).
Then the user is automatically redirected to the assigned VM

Fig. 3. Client UI of CloudMoV.

surrogate, and welcomed by a portal page as shown on the
right-hand side of Fig. 3. Upon user login, the portal collects
the device configuration information by examining the “User-
Agent” header values, and this information will be sent to its
surrogate for decision making of the video encoding formats.
The user can enter the URL of the video or live broadcast he
wishes to watch, on the “Subscribe” tab of the portal; after he
clicks the “Subscribe” button, the address of the video is sent
to the VM surrogate, which downloads the stream on the user’s
behalf, transcodes and sends properly encoded segments to the
user. From the surrogate to the mobile device, the video stream
delivered using HLS is always divided into multiple segments,
with a playlist file (.m3u8) giving the indices. When the mobile
client subscribes to a video, the playlist is first downloaded
and individual segments are requested by the client in the
following. A playlist file may become outdated if new contents
are generated, e.g., in case of a live broadcast. In that case,
the mobile client needs to download the playlist again to keep
the indices updated. The client starts to play the video as soon
as the first segment is received.

When watching a video, the user can check out his friends’
status (online or offline, which video they are currently watch-
ing) on the “Friends” tab (a snapshot is given in Fig. 4(a)),
and invite one or more friends to join him in watching the
video. When a user receives an invitation from a friend (profile
pictures of those friends who have sent invitations will be
highlighted on the “Friends” tab) and decides to join the
session, he can choose to watch from the start, or catch up with
the viewing progresses of others by clicking the “Sync” button,
which triggers the Syncer functionality in the surrogate. Users
in the same session can exchange opinions and comments
on the “Chat” tab (a snapshot is given in Fig. 4(b)), where
new chat messages can be entered and the chat history of the
session is shown. The “Info” tab shows an abstract of the
video, as edited by the session host.

All the data (.xml files) updates are delivered in an asyn-
chronous manner based on AJAX techniques without the need
of reloading the portal page, as has been introduced in Sec. III.

B. VM Surrogates

All the VM surrogates are provisioned from Amazon EC2
web services and tracked by the gateway. We create our own
AMI (ami-b6f220df) based on Linux kernel 2.6.35.14, the
default image Amazon provides [27]. Due to the intensive
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(a) “Friend tab” (b) “Chat tab”

Fig. 4. “Friend” and “Chat” tabs.

computation involved, we propose to implement all the video
processing related tasks using ANSI C, to guarantee the per-
formance. In particular, we install FFmpeg together with libav-
codec as the groundsill library [29] to develop the transcoding,
segmentation and reshaping modules on the VM surrogates.
We have also installed a Tomcat web server (version 6.5) to
serve as a Servlet container and a file server on each surrogate.
Both FFmpeg and Tomcat are open source projects. Once
a VM surrogate receives a video subscription request from
the user, it downloads the video from the source URL, and
processes the video stream by transcoding and segmentation,
based on the collected device configurations by the portal.
For example, in our experiments, the downloaded stream is
transcoded into a high-quality stream and a low-quality stream
in real time with H264/AAC codecs. The high-quality stream
has a “480x272” resolution with 24 frames per second, while
the low-quality one has a “240x136” resolution with 10 frames
per second. A mobile user dynamically requests segments of
these two different video streams, according to his current
network connection speed. The transcoded stream is further
exported to an MPEG-2 transporting stream (.ts), which is
segmented for burst transmission to the user. The burst sizes
depend on both the network bandwidth and video bit rate. We
evaluate the impact of different burst sizes on the streaming
quality and energy consumption in details in Sec. V. Fig. 5
shows the streaming architecture in our customized VM image.
Here, the modules on social message exchanges are omitted,
which will be presented in Fig. 6.

C. Data Models in the Social Cloud

We use GAE mainly as the back-end data store to keep
the transient states and data of CloudMoV, including users’
online presence status, social messages (invitation and chat
messages) in all the sessions. With Jetty as the underlying
Servlet container, most Java-based applications can be easily
migrated to GAE, under limited usage constraints, where no
platform-specific APIs are enforced for the deployment. GAE
provides both its Java Persistence API (JPA 1.0, part of JSR
220) adapter and a set of proprietary low-level APIs to map the
relational data. We choose to use the former only in CloudMoV
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Fig. 5. Streaming architecture in each customized VM image (ami-b6f220df).
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Fig. 6. Social message exchanges via Google App Engine.

such that CloudMoV can be easily migrated to other PaaS
clouds as well.

Once a user logs in to the system and enters the URL of a
video to watch, a session ID is generated for the new session
(corresponding to viewing of this video), by combining the
user’s “username” in the system with the time stamp when
the session is created. The gateway delivers an HTTP request
to a Servlet listener running on GAE, to notify it that an entry
for the newly joined user should be added, with the user’s
“username” as the key and other information (URL of the
subscribed video, the session ID, etc.) as the value. This entry
will then be periodically retrieved through a public Servlet
interface by surrogates representing the user’s friends, in order
to learn the updated status of the user over time. The default
interval for retrieving updates of friends’ online status is five
minutes. When the user goes offline, the user online status
record will be deleted. .

Whenever a user decides to join a session hosted by his
friend upon invitation, his VM surrogate switches to download
the video of the session, and at the same time sends an HTTP
request to the social cloud, for updating the session ID in this
user’s entry to the new one. If the user wishes to synchronize
his playback progress with that of the session host, his VM
surrogate synchronizes with the session host to maintain the
playback “currenttime” value (HTML5 property).

The social cloud maintains a “Logs” entry for each existing
session in CloudMoV, with the session ID as the primary key
and an array list as the value, which corresponds to individual
messages in this session. When a user in a session posts a



8

comment, this message is first sent to his VM surrogate, which
further injects the message into the social cloud via another
Servlet listener. The message is stored as a “Message” entry
in the social cloud, with the message content as the value,
and an auto-generated integer as the key. Entries “Logs” and
“Message” are annotated by a @OneToMany relationship, to
facilitate the data management. VM surrogates of users in
the same session send periodical HTTP query requests to the
social cloud for the latest comments from others. The default
interval for retrieval of new comments is 10 seconds. The
retrieved messages are stored and updated on the surrogates,
which process them into well-formed XML formats for ef-
ficient parsing at the user devices. The user devices retrieve
the XML files from the surrogates at a lower frequency (with
default interval 1 minute), in order to minimize the power
consumption and the traffic. Fig. 6 presents social message
exchanges among a mobile user, his VM surrogate, and the
GAE.

A large number of entries in the social cloud becomes
outdated very soon, since users may switch from one session
to another, quit the system, and so on. We launch a cron job
behind the scene every 10 minutes to clear those outdated
entries. For example, for sessions of which everybody has left,
their “Logs” entries and all the associated “Message” entries
are deleted in a single transaction.

V. REAL-WORLD EXPERIMENTS

We carry out both unit tests and performance evaluations
of CloudMoV deployed on Amazon EC2 and Google App
Engine, using a number of iPhone 4S smart phones (iOS
5.01) as the mobile clients, which have been registered on
the Apple developer site. The gateway is implemented on a
Virtual Private Server (VPS) hosted by Bluehost [30]. Unless
stated otherwise, the experiments are conducted over the 3G
cellular network of 3HK [31], which is one of the largest
Telecom operators in Hong Kong.

A. Measuring the RRC States
We first design measurement experiments to discover the

timeout values of the critical inactivity timers employed in
3HK’s 3G network, as discussed in Sec. III-D. We enable
logging functions on an fully charged iPhone 4S and use the
Mobile Safari (the HTML5-compatible browser on iPhone) to
watch a YouTube video using CloudMoV services. The battery
consumption traces on the phone are profiled by “Instruments”,
a powerful tool of Xcode [32]. The playback rate of the video
on the phone is about 254 Kbps.

Fig. 7 shows the power consumption levels on the phone
over time, in terms of portions of the highest device power
level. The red vertical lines represent the starting points of
playback periods when the Safari runs in the foreground, and
the green lines represent the finish times of playback periods
when the Safari is suspended in the background. We can see
that our state transition model in Fig. 2 is verified by these
real-world measurements: when there is data transmission,
the device operates at the high power mode; when data
transmission stops, the transmission power of the device first
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Fig. 7. Power consumption over time on an iPhone 4S

decreases to an intermediate level, and then to a very low
level. We also find out that timeouts of the inactivity timers
tDCH!FACH and tFACH!IDLE are approximately 14 and
16 seconds, respectively. It shows that the interval between the
finish of one burst transmission to the start of the next burst
transmission should be at least 30 seconds, to allow the phone
to enter a low-power mode. Following these measurement
results, in our following experiments conducted over 3HK 3G
network, we set the default burst transmission interval to 60
seconds, the time from the start of one burst transmission to
the start of the next burst transmission, corresponding to the
playback time of one burst segment, S

b , where S is the burst
size.

B. Impact of Burst Size on Power Consumption
The technique of video segmentation is widely employed

in video streaming applications, but mostly for ease of dis-
tribution and not for battery efficiency at potential mobile
users. Apple Inc., which proposed the HTTP Live Streaming
protocol [24], suggests 10-second-playback segments, which
has been followed in many streaming applications. We find
this segment size is problematic and can drain the battery of
a mobile device quickly. In Fig. 8, we compare the power
consumption levels when burst transmission intervals of 10
seconds and 60 seconds are used, respectively, for the iPhone
4S to stream a 10-minute YouTube flash video (.flv). We note
that, iOS devices can not play flash videos, but CloudMoV
helps transcode the flash to the H264/AAC stream, which is
compatible with our iPhone 4S.

We observe that the device remains at the high power mode
(CELL DCH) if the 10-second segmentation is used, since
the state transition takes at least 30 seconds, as given in
Sec. V-A. On the other hand, using 60-second burst trans-
mission intervals, CloudMoV may transfer the device to the
low power mode (IDLE) via the intermediate power mode
(CELL FACH) from time to time. In this way, CloudMoV can
achieve approximately 29.1% power saving. We also observe
some unexpected behavior of the power levels around 400
seconds, where the power does not drop. After checking
Tomcat server logs on the VM surrogate, we find that the
device requested the play list file (.m3u8) twice around that
time, possibly due to packet loss, and the tiny traffic of the
playlist (about 4 KB) deprived the device from a “sleep”
chance.

To verify whether such playback list updates may always
prohibit the device’s power level from dropping, we have
further conducted tests by creating a live broadcast stream
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Fig. 8. Power consumption over time with different burst transmission sizes.
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Fig. 9. Average user sign-in latencies over time.

from the same flash video and deploy it on CloudMoV. We
find that regardless of the burst transmission intervals we set,
the device’s power level does not drop due to frequent play
list update in a live streaming. We omit the plots of the results
since they are similar to the red curve in Fig. 8. Different
browsers may configure different update frequencies, since the
value is not specified in the HTTP Live Streaming protocol.
This value should be carefully set, for potentially increasing
battery lifetime at the mobile users.

C. Sign-in Latency into the System
When a user signs into the CloudMoV system via the login

gateway shown in Fig. 3 and gets identified, the gateway
will request a virtual machine instance from the IaaS cloud
to be the user’s surrogate. The sign-in process finishes when
the surrogate is initialized and the user is connected to the
surrogate. In this experiment, five mobile users repeatedly join
the system and log off as soon as the respective surrogate
is initialized. We inject JavaScript snippets into the client of
CloudMov on the mobile device to record the timestamps
during the sign-in process. Fig. 9 shows the average sign-
in latencies experienced by these clients during a 4.5-hour
span. The “Front-end” latency consists of both the sign-in
request/response and identification delays, while the “Back-
end” latency is the surrogate VM provisioning delay from
the IaaS cloud (Amazon EC2). We can see that most of
the latencies are caused by the latter. The delay can be
significantly reduced if a VM pool is maintained wherein idle
surrogates are initialized before hand (based on estimated user
numbers), ready for immediate allocation when new users sign
in.

D. Startup Latency of Video Playback
We evaluate the transcoding performance on the surrogates

in CloudMoV, first by measuring the playback startup latency
on the surrogates, from the time when the video subscription
request is received from the mobile user to the time when the

TABLE I
CONFIGURATIONS OF VM INSTANCES

Type CPU Memory Zone
Micro Up to 2 ECUs 613MB east-1-c
Small 1 ECU 1.7 GB east-1-c

Medium 5 ECUs (2 cores) 1.7 GB east-1-c
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Fig. 10. Startup latency at different burst sizes.

first transcoded burst segment is generated. We deploy the VM
surrogates (ami-b6f220df) on three types of instances provided
by Amazon EC2, with the detailed configurations shown in
Table. I. For fair comparison, all the instances are deployed in
the zone “east-1-c”, and they transcode the same flash video
used in experiments of Sec. V-B. Fig. 10 shows the playback
startup latencies when different VM instances are used as the
surrogate for an iPhone 4S, and different burst transmission
intervals are employed.

In our experiments, we tested the network connection band-
width between the Amazon EC2 instances and the YouTube
website, and found that video downloading from YouTube
website to the instances is very fast. Therefore, the startup
latency depends mainly on the burst interval setting and the
transcoding speed at the VM surrogate. Fig. 10 shows that in
general, the longer the burst interval is, the larger the segment
of video to transcode is, and thus the longer the startup latency
is. We can see the medium instance achieves better transcoding
performance with larger computation capacity, as compared
to the small instance. The latency with the micro instance is
unexpectedly large when the burst interval is longer than 60
seconds, and as such we need not collect the latencies for even
longer burst intervals. However, the micro instance performs
even better than the small instance with smaller burst intervals
due to more CPU power (Amazon claims the micro instance
has “UP to 2 ECUs”.) The reason lies in memory thrashing
on the micro instance (it has a smaller memory than other
instances), when burst transmission intervals are longer than
60 seconds, when memory becomes the bottleneck. In case
of the medium instance, we also find that the startup latency
with 100-second burst intervals is smaller than that with 90-
second bursts. We believe that it is caused by the overheads
of load balancing between its two cores. This shows that the
performance can be improved by a more efficient transcoding
algorithm targeting at multi-core platforms, which will be part
of our future work.

E. Dynamic Bit Rate Switch
We next evaluate whether CloudMoV can effectively

transcode a video stream to different bit rates when the
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Fig. 11. Streaming rate with variation of the connection bandwidth.

connection bandwidth changes. We use a 1-hour-36-minute
long movie produced by Pixar, in the original bit rate of 1017
Kbps and .avi format with the XviD codec. The movie is
stored on an Apache web server isolated from the CloudMoV
system. The format of the movie can not be directly played on
an iPhone. CloudMoV dynamically transcodes this movie into
two H264/AAC streams of different bit rates: a high-quality
stream with a bit rate up to 515 Kbps and a low-quality stream
at 261 Kbps. When the phone’s wireless connection bandwidth
is lower than 900 Kbps, CloudMoV directs the low-quality
stream to it; otherwise, it transmits the high-quality stream.

To make the experiment reproducible and controllable, we
test it over WiFi by connecting the phone to a TP-LINK
WR741ND wireless router, instead of using a 3G connection
(given that the cellular signal strength is hard to control).
We believe this is a reasonable choice, for unit testing of
the dynamic transcoding functionality only. By installing DD-
WRT (v24-sp2 version 18007) on the router, we can have
full control over the bandwidth limit through “tc” scripts. In
our experiment, the maximum bandwidth (Bmax) allowed at
the wireless interface is updated every 90 seconds by setting
Bmax = 300+ rand()⇥ 900 (Kbps) (Bmax thus ranges from
300 Kbps to 1200 Kbps). Tomcat server logs can capture
each request for the video segments, which tells whether
the high-quality or the low-quality stream is fetched. By
synchronizing the timestamps of both the bandwidth variation
sequence controlled by our bash script and the bit rate switch
activity captured by the Tomcat logs, we plot in Fig. 11 the
instantaneous bandwidths at the mobile phone over time. The
red curve represents variation of the maximal bandwidth Bmax

and the blue one represents the streaming bit rate at the user.
We can see that the streaming rates are effectively adjusted to
adapt to the current connection bandwidth levels.

F. Jitters
By “Jitters”, we mean the discontinuous video playback

experienced by mobile users who have to wait for segments
to be buffered, due to the dynamically varying download
bandwidths. Following the same experiment settings as in
Sec. V-E, we emulate a highly unstable 3G cellular network
and measure the occurrence and stall duration of jitters when a
mobile client is viewing the movie. We examine the download
completion time for each segment: if this time is later than the
playback deadline of the segment, a jitter is captured and the
stall duration is estimated as the difference between the two.
Fig. 12 compares the results of CloudMoV and the case where
the movie is directly streamed to the mobile user without
dynamic transcoding nor burst transmission mechanisms, i.e.,
the case of “Normal Streaming”. A line segment is plotted
when a jitter happens at the corresponding time in the x
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Fig. 12. Jitters and the stall durations.

axis, and the length of the line segment represents the stall
duration. We can see that CloudMoV incurs no jitter while
“Normal Streaming” suffers a total of 716 seconds of playback
stall. This again verifies the excellent streaming playback
performance of CloudMov clients.
G. Social Interaction Latencies

The service latency of Google App Engine is critical to the
overall performance of CloudMoV. In this set of experiments,
we launch a VM surrogate in each of four different regions
(corresponding to four mobile users), i.e., “east-1-a”, “east-
1-b”, “east-1-c” and “east-1-d”, all of which join the same
session. Each surrogate keeps posting a short chat message
every second and retrieves its own message immediately. We
evaluate two critical latencies: one is the post latency to the
GAE, i.e., the time from when a message is sent out from
a surrogate to the time when it receives confirmation from
GAE that the message is successfully recorded in the social
cloud; the other is the query latency, i.e., the time from when
a query is sent out from a surrogate to the time when the
queried message is received at the surrogate.

Fig. 13 and Fig. 14 show the average values of the two
types of latencies among surrogates in all regions, during a
155-second run of the experiments. Our results are mostly
consistent with the 978-ms post latency and 106-ms query
latency, given as the processing delays in the dashboard of
GAE [33] (our latencies additionally include a round-trip time
between a surrogate and the GAE). The query latency is
relatively stable over time, while the post latency becomes
larger after 70 seconds of the run. We reckon the reason to be
either due to limitations imposed by Google on our free GAE
account, or based on a side effect of the automatic scaling
in GAE: given the large volumes of requests, i.e., more than
16, 000 requests per minute (we used up our free GAE quota
of 0.05-million requests within three minutes), GAE may well
have distributed the newly posted messages to different geo-
distributed data centers of Google. Confirming the detailed
reason is part of our future work.

For further demonstration, we have also injected JavaScript
snippets into the CloudMov client to capture the textual
latencies, from the time a message is successfully posted by a
client (stored into GAE) to the time the other clients receive
the message. The results are given in Fig. 15. We can see all
latencies that we have measured are short enough for realtime
CloudMoV services.
H. Scalability

To evaluate the scalability of CloudMoV, we investigate the
workload at the host of a session. As compared to a regular
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Fig. 15. Message retrieval latency at mobile clients.

participant in a session, the surrogate of a session host is
additionally responsible for maintaining the session group and
carrying out synchronization for “co-viewing” experiences, be-
sides its own transcoding tasks, which may potentially become
a performance bottleneck in the system when the number of
participants in the session is large. In this experiment, 200
users dynamically join and leave a session over a 100-minute
interval, with dynamical session size given in Fig. 16(a). We
also apply an extremely aggressive synchronization interval,
i.e., every participant synchronizes with the session host in
every second, and assign a low-end “Micro”-type VM instance
as the surrogate of the session host. Fig. 16(b) illustrates the
workload on the surrogate of the session host, calculated as the
percentage of busy time of the VM in each single second, when
it is either handling the transcoding or the synchronization
tasks. The surrogate of a session host is idling when it has
finished these tasks. We can see that even under such an
extreme setting, the surrogate of the session host can still finish
all the computation and communication tasks within 70�80%
of its time, which again verifies the excellent scalability of
our system, thanks mainly to the fully distributed design of
surrogates.

VI. CONCLUDING REMARKS AND FUTURE WORK

This paper presents our view of what might become a
trend for mobile TV, i.e., mobile social TV based on agile
resource supports and rich functionalities of cloud computing
services. We introduce a generic and portable mobile social
TV framework, CloudMoV, that makes use of both an IaaS
cloud and a PaaS cloud. The framework provides efficient
transcoding services for most platforms under various network
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Fig. 16. Session size and the workload on the surrogate of the session host
over time.

conditions and supports for co-viewing experiences through
timely chat exchanges among the viewing users. By employing
one surrogate VM for each mobile user, we achieve ultimate
scalability of the system. Through an in-depth investigation of
the power states in commercial 3G cellular networks, we then
propose an energy-efficient burst transmission mechanism that
can effectively increase the battery lifetime of user devices.

We have implemented a realistic prototype of CloudMoV,
deployed on Amazon EC2 and Google App Engine, where
EC2 instances serve as the mobile users’ surrogates and
GAE as the social cloud to handle the large volumes of
social message exchanges. We conducted carefully designed
experiments on iPhone 4S platforms. The experimental results
prove the superior performance of CloudMoV, in terms of
transcoding efficiency, power saving, timely social interaction,
and scalability. The experiments also highlight the drawbacks
of the current HTTP Live Streaming protocol implementation
on mobile devices [24] as compared to our proposed burst
transmission mechanism which achieves a 29.1 % increase of
battery lifetime.

Much more, however, can be done to enhance CloudMoV
to have product-level performance. In the current prototype,
we do not enable sharing of encoded streams (in the same
format/bit rate) among surrogates of different users. In our
future work, such sharing can be enabled and carried out in
a peer-to-peer fashion, e.g., the surrogate of a newly joined
user may fetch the transcoded streams directly from other
surrogates, if they are encoded in the format/bit rate that the
new user wants.

For implementing social interactions, most BigTable-like
data stores (including GAE) support memcache [34] which
is a highly efficient secondary storage on the data stores.
We seek to integrate memcache support into CloudMoV, by
possibly memcaching the data (e.g., chat histories) of sessions
where friends chat actively, so as to further improve the query
performance. To sustain the portability of the system, we will
stick to standard API interfaces, i.e., JCache (JSR 107), in our
system.
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