
Annotating Search Results from
Web Databases

Yiyao Lu, Hai He, Hongkun Zhao, Weiyi Meng, Member, IEEE, and

Clement Yu, Senior Member, IEEE

Abstract—An increasing number of databases have become web accessible through HTML form-based search interfaces. The data

units returned from the underlying database are usually encoded into the result pages dynamically for human browsing. For the

encoded data units to be machine processable, which is essential for many applications such as deep web data collection and Internet

comparison shopping, they need to be extracted out and assigned meaningful labels. In this paper, we present an automatic

annotation approach that first aligns the data units on a result page into different groups such that the data in the same group have the

same semantic. Then, for each group we annotate it from different aspects and aggregate the different annotations to predict a final

annotation label for it. An annotation wrapper for the search site is automatically constructed and can be used to annotate new result

pages from the same web database. Our experiments indicate that the proposed approach is highly effective.

Index Terms—Data alignment, data annotation, web database, wrapper generation

Ç

1 INTRODUCTION

Alarge portion of the deep web is database based, i.e., for
many search engines, data encoded in the returned

result pages come from the underlying structured data-
bases. Such type of search engines is often referred as Web
databases (WDB). A typical result page returned from a WDB
has multiple search result records (SRRs). Each SRR contains
multiple data units each of which describes one aspect of a
real-world entity. Fig. 1 shows three SRRs on a result page
from a book WDB. Each SRR represents one book with
several data units, e.g., the first book record in Fig. 1 has
data units “Talking Back to the Machine: Computers and
Human Aspiration,” “Peter J. Denning,” etc.

In this paper, a data unit is a piece of text that semantically
represents one concept of an entity. It corresponds to the
value of a record under an attribute. It is different from a text
node which refers to a sequence of text surrounded by a pair
of HTML tags. Section 3.1 describes the relationships
between text nodes and data units in detail. In this paper,
we perform data unit level annotation.

There is a high demand for collecting data of interest from
multiple WDBs. For example, once a book comparison
shopping system collects multiple result records from
different book sites, it needs to determine whether any two
SRRs refer to the same book. The ISBNs can be compared to

achieve this. If ISBNs are not available, their titles and
authors could be compared. The system also needs to list the
prices offered by each site. Thus, the system needs to know
the semantic of each data unit. Unfortunately, the semantic
labels of data units are often not provided in result pages.
For instance, in Fig. 1, no semantic labels for the values of
title, author, publisher, etc., are given. Having semantic
labels for data units is not only important for the above record
linkage task, but also for storing collected SRRs into a
database table (e.g., Deep web crawlers [23]) for later
analysis. Early applications require tremendous human
efforts to annotate data units manually, which severely limit
their scalability. In this paper, we consider how to auto-
matically assign labels to the data units within the SRRs
returned from WDBs.

Given a set of SRRs that have been extracted from a result
page returned from a WDB, our automatic annotation
solution consists of three phases as illustrated in Fig. 2. Let
dji denote the data unit belonging to the ith SRR of concept j.
The SRRs on a result page can be represented in a table
format (Fig. 2a) with each row representing an SRR. Phase 1
is the alignment phase. In this phase, we first identify all data
units in the SRRs and then organize them into different
groups with each group corresponding to a different
concept (e.g., all titles are grouped together). Fig. 2b shows
the result of this phase with each column containing data
units of the same concept across all SRRs. Grouping data
units of the same semantic can help identify the common
patterns and features among these data units. These
common features are the basis of our annotators. In Phase 2
(the annotation phase), we introduce multiple basic annota-
tors with each exploiting one type of features. Every basic
annotator is used to produce a label for the units within their
group holistically, and a probability model is adopted to
determine the most appropriate label for each group. Fig. 2c
shows that at the end of this phase, a semantic label Lj is
assigned to each column. In Phase 3 (the annotation wrapper
generation phase), as shown in Fig. 2d, for each identified

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

. Y. Lu and W. Meng are with the Department of Computer Science,
Binghamton University, Binghamton, NY 13902.
E-mail: luyiyao@gmail.com, meng@cs.binghamton.edu.

. H. He is with Morningstar, Inc., Chicago, IL 60602.
E-mail: hai.he@morningstar.com.

. H. Zhao is with Bloomberg L.P., Princeton, NJ 08858.
E-mail: hkzhao@gmail.com.

. C. Yu is with the Department of Computer Science, University of Illinois at
Chicago, Chicago, IL 60607. E-mail: cyu@uic.edu.

Manuscript received 3 Aug. 2010; revised 25 July 2011; accepted 31 July
2011; published online 5 Aug. 2011.
Recommended for acceptance by S. Sudarshan.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-08-0428.
Digital Object Identifier no. 10.1109/TKDE.2011.175.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

concept, we generate an annotation rule Rj that describes

how to extract the data units of this concept in the result

page and what the appropriate semantic label should be.

The rules for all aligned groups, collectively, form the

annotation wrapper for the corresponding WDB, which can

be used to directly annotate the data retrieved from the

same WDB in response to new queries without the need to

perform the alignment and annotation phases again. As

such, annotation wrappers can perform annotation quickly,

which is essential for online applications.
This paper has the following contributions:

1. While most existing approaches simply assign labels
to each HTML text node, we thoroughly analyze the
relationships between text nodes and data units. We
perform data unit level annotation.

2. We propose a clustering-based shifting technique to
align data units into different groups so that the
data units inside the same group have the same
semantic. Instead of using only the DOM tree or
other HTML tag tree structures of the SRRs to align
the data units (like most current methods do), our
approach also considers other important features
shared among data units, such as their data types
(DT), data contents (DC), presentation styles (PS),
and adjacency (AD) information.

3. We utilize the integrated interface schema (IIS) over
multiple WDBs in the same domain to enhance data
unit annotation. To the best of our knowledge, we
are the first to utilize IIS for annotating SRRs.

4. We employ six basic annotators; each annotator can
independently assign labels to data units based on
certain features of the data units. We also employ a
probabilistic model to combine the results from
different annotators into a single label. This model
is highly flexible so that the existing basic annota-
tors may be modified and new annotators may be
added easily without affecting the operation of
other annotators.

5. We construct an annotation wrapper for any given
WDB. The wrapper can be applied to efficiently
annotating the SRRs retrieved from the same WDB
with new queries.

The rest of this paper is organized as follows: Section 2
reviews related works. Section 3 analyzes the relationships
between data units and text nodes, and describes the data
unit features we use. Section 4 introduces our data alignment
algorithm. Our multiannotator approach is presented in
Section 5. In Section 6, we propose our wrapper generation
method. Section 7 reports our experimental results and
Section 8 concludes the paper.

2 RELATED WORK

Web information extraction and annotation has been an
active research area in recent years. Many systems [18],
[20] rely on human users to mark the desired information
on sample pages and label the marked data at the same
time, and then the system can induce a series of rules
(wrapper) to extract the same set of information on
webpages from the same source. These systems are often
referred as a wrapper induction system. Because of the
supervised training and learning process, these systems
can usually achieve high extraction accuracy. However,
they suffer from poor scalability and are not suitable for
applications [24], [31] that need to extract information from
a large number of web sources.

Embley et al. [8] utilize ontologies together with several
heuristics to automatically extract data in multirecord
documents and label them. However, ontologies for differ-
ent domains must be constructed manually. Mukherjee et al.
[25] exploit the presentation styles and the spatial locality
of semantically related items, but its learning process
for annotation is domain dependent. Moreover, a seed of
instances of semantic concepts in a set of HTML documents
needs to be hand labeled. These methods are not fully
automatic.

The efforts to automatically construct wrappers are [1],
[5], [21], but the wrappers are used for data extraction only
(not for annotation). We are aware of several works [2], [28],
[30], [36] which aim at automatically assigning meaningful
labels to the data units in SRRs. Arlotta et al. [2] basically
annotate data units with the closest labels on result pages.
This method has limited applicability because many WDBs
do not encode data units with their labels on result pages. In
ODE system [28], ontologies are first constructed using
query interfaces and result pages from WDBs in the same

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 515

Fig. 2. Illustration of our three-phase annotation solution.

Fig. 1. Example search results from Bookpool.com.

domain. The domain ontology is then used to assign labels to
each data unit on result page. After labeling, the data values
with the same label are naturally aligned. This method
is sensitive to the quality and completeness of the ontologies
generated. DeLa [30] first uses HTML tags to align data units
by filling them into a table through a regular expression-
based data tree algorithm. Then, it employs four heuristics to
select a label for each aligned table column. The approach in
[36] performs attributes extraction and labeling simulta-
neously. However, the label set is predefined and contains
only a small number of values.

We align data units and annotate the ones within the same
semantic group holistically. Data alignment is an important
step in achieving accurate annotation and it is also used in
[25] and [30]. Most existing automatic data alignment
techniques are based on one or very few features. The most
frequently used feature is HTML tag paths (TP) [33]. The
assumption is that the subtrees corresponding to two data
units in different SRRs but with the same concept usually
have the same tag structure. However, this assumption is not
always correct as the tag tree is very sensitive to even minor
differences, which may be caused by the need to emphasize
certain data units or erroneous coding. ViDIE [21] uses visual
features on result pages to perform alignment and it also
generates an alignment wrapper. But its alignment is only at
text node level, not data unit level. The method in [7] first
splits each SRR into text segments. The most common
number of segments is determined to be the number of
aligned columns (attributes). The SRR with more segments
are then resplit using the common number. For each SRR
with fewer segments than the common number, each
segment is assigned to the most similar aligned column.

Our data alignment approach differs from the previous
works in the following aspects. First, our approach handles
all types of relationships between text nodes and data units
(see Section 3.1), while existing approaches consider only
some of the types (i.e., one-to-one [25] or one-to-many [7],
[30]). Second, we use a variety of features together, including
the ones used in existing approaches, while existing
approaches use significantly fewer features (e.g., HTML
tag in [30] and [33], visual features in [21]). All the features
that we use can be automatically obtained from the result
page and do not need any domain specific ontology or
knowledge. Third, we introduce a new clustering-based
shifting algorithm to perform alignment.

Among all existing researches, DeLa [30] is the most
similar to our work. But our approach is significantly
different from DeLa’s approach. First, DeLa’s alignment
method is purely based on HTML tags, while ours uses
other important features such as data type, text content, and
adjacency information. Second, our method handles all
types of relationships between text nodes and data units,
whereas DeLa deals with only two of them (i.e., one-to-one
and one-to-many). Third, DeLa and our approach utilize
different search interfaces of WDBs for annotation. Ours
uses an IIS of multiple WDBs in the same domain, whereas
DeLa uses only the local interface schema (LIS) of each
individual WDB. Our analysis shows that utilizing IISs has
several benefits, including significantly alleviating the local
interface schema inadequacy problem and the inconsistent label
problem (see Section 5.1 for more details). Fourth, we
significantly enhanced DeLa’s annotation method. Specifi-
cally, among the six basic annotators in our method, two

(i.e., schema value annotator (SA) and frequency-based
annotator (FA)) are new (i.e., not used is DeLa), three (table
annotator (TA), query-based annotator (QA) and common
knowledge annotator (CA)) have better implementations
than the corresponding annotation heuristics in DeLa, and
one (in-text prefix/suffix annotator (IA)) is the same as a
heuristic in DeLa. For each of the three annotators that have
different implementations, the specific difference and the
motivation for using a different implementation will be
given in Section 5.2. Furthermore, it is not clear how DeLa
combines its annotation heuristics to produce a single label
for an attribute, while we employ a probabilistic model to
combine the results of different annotators. Finally, DeLa
builds wrapper for each WDB just for data unit extraction.
In our approach, we construct an annotation wrapper
describing the rules not only for extraction but also for
assigning labels.

To enable fully automatic annotation, the result pages
have to be automatically obtained and the SRRs need to be
automatically extracted. In a metasearch context, result
pages are retrieved by queries submitted by users (some
reformatting may be needed when the queries are dis-
patched to individual WDBs). In the deep web crawling
context, result pages are retrieved by queries automatically
generated by the Deep Web Crawler. We employ ViNTs [34]
to extract SRRs from result pages in this work. Each SRR is
stored in a tree structure with a single root and each node in
the tree corresponds to an HTML tag or a piece of text in the
original page. With this structure, it becomes easy to locate
each node in the original HTML page. The physical position
information of each node on the rendered page, including its
coordinates and area size, can also be obtained using ViNTs.

This paper is an extension of our previous work [22]. The
following summarizes the main improvements of this paper
over [22]. First, a significantly more comprehensive discus-
sion about the relationships between text nodes and data
units is provided. Specifically, this paper identifies four
relationship types and provides analysis of each type, while
only two of the four types (i.e., one-to-one and one-to-many)
were very briefly mentioned in [22]. Second, the alignment
algorithm is significantly improved. A new step is added to
handle the many-to-one relationship between text nodes and
data units. In addition, a clustering-shift algorithm is
introduced in this paper to explicitly handle the one-to-
nothing relationship between text nodes and data units
while the previous version has a pure clustering algorithm.
With these two improvements, the new alignment algorithm
takes all four types of relationships into consideration. Third,
the experiment section (Section 7) is significantly different
from the previous version. The data set used for experiments
has been expanded by one domain (from six to seven) and by
22 WDBs (from 91 to 112). Moreover, the experiments on
alignment and annotation have been redone based on the
new data set and the improved alignment algorithm. Fourth,
several related papers that were published recently have
been reviewed and compared in this paper.

3 FUNDAMENTALS

3.1 Data Unit and Text Node

Each SRR extracted by ViNTs has a tag structure that
determines how the contents of the SRRs are displayed on a
web browser. Each node in such a tag structure is either a tag

516 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

node or a text node. A tag node corresponds to an HTML tag

surrounded by “<” and “>” in HTML source, while a text

node is the text outside the “<” and “>.” Text nodes are the

visible elements on the webpage and data units are located

in the text nodes. However, as we can see from Fig. 1, text

nodes are not always identical to data units. Since our

annotation is at the data unit level, we need to identify data

units from text nodes.
Depending on how many data units a text node may

contain, we identify the following four types of relationships

between data unit (U) and text node (T):

. One-to-One Relationship (denoted as T ¼ U). In this
type, each text node contains exactly one data unit,
i.e., the text of this node contains the value of a single
attribute. This is the most frequently seen case. For
example, in Fig. 1, each text node surrounded by the
pair of tags <A> and is a value of the Title
attribute. We refer to such kind of text nodes as
atomic text nodes. An atomic text node is equivalent to
a data unit.

. One-to-Many Relationship (denoted as T � U). In this
type, multiple data units are encoded in one text
node. For example, in Fig. 1, part of the second line of
each SRR (e.g., “Springer-Verlag/1999/0387984135/
0.06667” in the first record) is a single text node. It
consists of four semantic data units: Publisher,
Publication Date, ISBN, and Relevance Score. Since the
text of such kind of nodes can be considered as a
composition of the texts of multiple data units, we
call it a composite text node. An important observation
that can be made is: if the data units of attributes
A1 . . .Ak in one SRR are encoded as a composite text
node, it is usually true that the data units of the same
attributes in other SRRs returned by the same WDB
are also encoded as composite text nodes, and those
embedded data units always appear in the same
order. This observation is valid in general because
SRRs are generated by template programs. We need
to split each composite text node to obtain real data
units and annotate them. Section 4 describes our
splitting algorithm.

. Many-to-One Relationship (denoted as T � U). In this
case, multiple text nodes together form a data unit.
Fig. 3 shows an example of this case. The value of the
Author attribute is contained in multiple text nodes
with each embedded inside a separate pair of (<A>,
) HTML tags. As another example, the tags
and surrounding the keyword “Java” split the
title string into three text nodes. It is a general

practice that webpage designers use special HTML
tags to embellish certain information. Zhao et al. [35]
call this kind of tags as decorative tags because they are
used mainly for changing the appearance of part of
the text nodes. For the purpose of extraction and
annotation, we need to identify and remove these
tags inside SRRs so that the wholeness of each split
data unit can be restored. The first step of our
alignment algorithm handles this case specifically
(see Section 4 for details).

. One-To-Nothing Relationship (denoted as T 6¼ U). The
text nodes belonging to this category are not part of
any data unit inside SRRs. For example, in Fig. 3, text
nodes like “Author” and “Publisher” are not data
units, but are instead the semantic labels describing
the meanings of the corresponding data units.
Further observations indicate that these text nodes
are usually displayed in a certain pattern across all
SRRs. Thus, we call them template text nodes. We
employ a frequency-based annotator (see Section 5.2)
to identify template text nodes.

3.2 Data Unit and Text Node Features

We identify and use five common features shared by the
data units belonging to the same concept across all SRRs,
and all of them can be automatically obtained. It is not
difficult to see that all these features are applicable to text
nodes, including composite text nodes involving the same
set of concepts, and template text nodes.

3.2.1 Data Content (DC)

The data units or text nodes with the same concept often
share certain keywords. This is true for two reasons. First, the
data units corresponding to the search field where the user
enters a search condition usually contain the search key-
words. For example, in Fig. 1, the sample result page is
returned for the search on the title field with keyword
“machine.” We can see that all the titles have this keyword.
Second, web designers sometimes put some leading label in
front of certain data unit within the same text node to make it
easier for users to understand the data. Text nodes that
contain data units of the same concept usually have the same
leading label. For example, in Fig. 1, the price of every book
has leading words “Our Price” in the same text node.

3.2.2 Presentation Style (PS)

This feature describes how a data unit is displayed on a
webpage. It consists of six style features: font face, font size,
font color, font weight, text decoration (underline, strike, etc.),
and whether it is italic. Data units of the same concept in
different SRRs are usually displayed in the same style. For
example, in Fig. 1, all the availability information is
displayed in the exactly same presentation style.

3.2.3 Data Type (DT)

Each data unit has its own semantic type although it is just a
text string in the HTML code. The following basic data types
are currently considered in our approach: Date, Time,
Currency, Integer, Decimal, Percentage, Symbol, and String.
String type is further defined in All-Capitalized-String, First-
Letter-Capitalized-String, and Ordinary String. The data type of

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 517

Fig. 3. An example illustrating the Many-to-One relationship.

a composite text node is the concatenation of the data types of
all its data units. For example, the data type of the text node
“Premier Press/2002/1931841616/0.06667” in Fig. 1 is
<First-Letter-Capitalized-String> <Symbol> <Integer>
<Symbol> <Integer> <Symbol> <Decimal>. Consecutive
terms with the same data type are treated as a single term
and only one of them will be kept. Each type except Ordinary
String has certain pattern(s) so that it can be easily identified.
The data units of the same concept or text nodes involving the
same set of concepts usually have the same data type.

3.2.4 Tag Path (TP)

A tag path of a text node is a sequence of tags traversing from
the root of the SRR to the corresponding node in the tag tree.
Since we use ViNTs for SRR extraction, we adopt the same
tag path expression as in [34]. Each node in the expression
contains two parts, one is the tag name, and the other is the
direction indicating whether the next node is the next sibling
(denoted as “S”) or the first child (denoted as “C”). Text node
is simply represented as <#TEXT>. For example, in Fig. 1b,
the tag path of the text node “Springer-Verlag/1999/
0387984135/0.06667” is <FORM>C<A>C
S<#TEXT>S
C<T>C. An observation is that the tag paths of the
text nodes with the same set of concepts have very similar
tag paths, though in many cases, not exactly the same.

3.2.5 Adjacency (AD)

For a given data unit d in an SRR, let dp and ds denote the data
units immediately before and after d in the SRR, respectively.
We refer dp and ds as the preceding and succeeding data
units of d, respectively. Consider two data units d1 and d2

from two separate SRRs. It can be observed that if dp1 and dp2
belong to the same concept and/or ds1 and ds2 belong to the
same concept, then it is more likely that d1 and d2 also belong
to the same concept.

We note that none of the above five features is guaranteed
to be true for any particular pair of data units (or text nodes)
with the same concept. For example, in Fig. 1, “Springer-
Verlag” and “McGraw-Hill” are both publishers but they do
not share any content words. However, such data units
usually share some other features. As a result, our alignment
algorithm (Section 4) can still work well even in the presence
of some violation of these features. This is confirmed by our
experimental results in Section 7.

4 DATA ALIGNMENT

4.1 Data Unit Similarity

The purpose of data alignment is to put the data units of the
same concept into one group so that they can be annotated
holistically. Whether two data units belong to the same
concept is determined by how similar they are based on the
features described in Section 3.2. In this paper, the similarity
between two data units (or two text nodes) d1 and d2 is a
weighted sum of the similarities of the five features between
them, i.e.:

Simðd1; d2Þ ¼ w1 � SimCðd1; d2Þ þ w2 � SimP ðd1; d2Þ
þ w3 � SimDðd1; d2Þ þ w4 � SimT ðd1; d2Þ
þ w5 � SimAðd1; d2Þ:

ð1Þ

The weights in the above formula are obtained using a
genetic algorithm based method [10] and the trained weights
are given in Section 7.2. The similarity for each individual
feature is defined as follows:

. Data content similarity (SimC). It is the Cosine
similarity [27] between the term frequency vectors of
d1 and d2:

SimCðd1; d2Þ ¼
Vd1
� Vd2

Vd1k k � Vd2k k ; ð2Þ

where Vd is the frequency vector of the terms inside
data unit d, jjVdjj is the length of Vd, and the
numerator is the inner product of two vectors.

. Presentation style similarity (SimP). It is the
average of the style feature scores (FS) over all six
presentation style features (F) between d1 and d2:

SimP ðd1; d2Þ ¼
X6

i¼1

FSi=6; ð3Þ

where FSi is the score of the ith style feature and it is
defined by FSi ¼ 1 if Fd1

i ¼ F
d2
i and FSi ¼ 0 other-

wise, and Fd
i is the ith style feature of data unit d.

. Data type similarity (SimD). It is determined by the
common sequence of the component data types
between two data units. The longest common
sequence (LCS) cannot be longer than the number
of component data types in these two data units.
Thus, let t1 and t2 be the sequences of the data types of
d1 and d2, respectively, and TLen(t) represent the
number of component types of data type t, the data
type similarity between data units d1 and d2 is

SimDðd1; d2Þ ¼
LCSðt1; t2Þ

MaxðTlenðt1Þ; T lenðt2ÞÞ
: ð4Þ

. Tag path similarity (SimT). This is the edit distance
(EDT) between the tag paths of two data units. The
edit distance here refers to the number of insertions
and deletions of tags needed to transform one tag
path into the other. It can be seen that the maximum
number of possible operations needed is the total
number of tags in the two tag paths. Let p1 and p2 be
the tag paths of d1 and d2, respectively, and PLen(p)
denote the number of tags in tag path p, the tag path
similarity between d1 and d2 is

SimT ðd1; d2Þ ¼ 1� EDT ðp1; p2Þ
PLenðp1Þ þ PLenðp2Þ

: ð5Þ

Note that in our edit distance calculation, a
substitution is considered as a deletion followed
by an insertion, requiring two operations. The
rationale is that two attributes of the same concept
tend to be encoded in the same subtree in DOM
(relative to the root of their SRRs) even though
some decorative tags may appear in one SRR but
not in the other. For example, consider two pairs
of tag paths (<T1><T2><T3>, <T1> <T3>) and
(<T1><T2><T3>, <T1><T4><T3>). The two tag

518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

paths in the first pair are more likely to point to
the attributes of the same concept as T2 might be a
decorative tag. Based on our method, the first pair
has edit distance 1 (insertion of T2) while the
second pair has edit distance 2 (deletion of T2 plus
insertion of T4). In other words, the first pair has a
higher similarity.

. Adjacency similarity (SimA). The adjacency simi-
larity between two data units d1 and d2 is the average
of the similarity between dp1 and dp2 and the similarity
between ds1 and ds2, that is

SimA
�
d1; d2

�
¼
�
Sim0

�
dp1; d

p
2

�
þ Sim0

�
ds1; d

s
2

��
=2: ð6Þ

When computing the similarities (Sim0) between the
preceding/succeeding units, only the first four
features are used. The weight for adjacency feature
(w5) is proportionally distributed to other four
weights.

Our alignment algorithm also needs the similarity
between two data unit groups where each group is a
collection of data units. We define the similarity between
groups G1 and G2 to be the average of the similarities
between every data unit in G1 and every data unit in G2.

4.2 Alignment Algorithm

Our data alignment algorithm is based on the assumption
that attributes appear in the same order across all SRRs on
the same result page, although the SRRs may contain
different sets of attributes (due to missing values). This is
true in general because the SRRs from the same WDB are
normally generated by the same template program. Thus, we
can conceptually consider the SRRs on a result page in a table
format where each row represents one SRR and each cell
holds a data unit (or empty if the data unit is not available).
Each table column, in our work, is referred to as an alignment
group, containing at most one data unit from each SRR. If an
alignment group contains all the data units of one concept
and no data unit from other concepts, we call this group well-
aligned. The goal of alignment is to move the data units in the
table so that every alignment group is well aligned, while the
order of the data units within every SRR is preserved.

Our data alignment method consists of the following
four steps. The detail of each step will be provided later.

Step 1: Merge text nodes. This step detects and removes
decorative tags from each SRR to allow the text nodes
corresponding to the same attribute (separated by decorative
tags) to be merged into a single text node.

Step 2: Align text nodes. This step aligns text nodes into
groups so that eventually each group contains the text
nodes with the same concept (for atomic nodes) or the same
set of concepts (for composite nodes).

Step 3: Split (composite) text nodes. This step aims to split
the “values” in composite text nodes into individual data
units. This step is carried out based on the text nodes in the
same group holistically. A group whose “values” need to be
split is called a composite group.

Step 4: Align data units. This step is to separate each
composite group into multiple aligned groups with each
containing the data units of the same concept.

As we discussed in Section 3.1, the Many-to-One
relationship between text nodes and data units usually

occurs because of the decorative tags. We need to remove
them to restore the integrity of data unit. In Step 1, we use a
modified method in [35] to detect the decorative tags. For
every HTML tag, its statistical scores of a set of predefined
features are collected across all SRRs, including the distance
to its leaf descendants, the number of occurrences, and the
first and last occurring positions in every SRRs, etc. Each
individual feature score is normalized between 0 and 1, and
all normalized feature scores are then averaged into a single
score s. A tag is identified as a decorative tag if s � PðP ¼
0:5 is used in this work, following [35]). To remove
decorative tags, we do the breadth-first traversal over the
DOM tree of each SRR. If the traversed node is identified as
a decorative tag, its immediate child nodes are moved up as
the right siblings of this node, and then the node is deleted
from the tree.

In Step 2, as shown in ALIGN in Fig. 4, text nodes are

initially aligned into alignment groups based on their

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 519

Fig. 4. Alignment algorithm.

positions within SRRs so that group Gj contains the jth text
node from each SRR (lines 3-4). Since a particular SRR may
have no value(s) for certain attribute(s) (e.g., a book would
not have discount price if it is not on sale), Gj may contain the
elements of different concepts. We apply the agglomerative
clustering algorithm [17] to cluster the text nodes inside this
group (line 7 and CLUSTERING). Initially, each text node
forms a separate cluster of its own. We then repeatedly
merge two clusters that have the highest similarity value
until no two clusters have similarity above a threshold T .
After clustering, we obtain a set of clusters V and each cluster
contains the elements of the same concept only.

Recall that attributes are assumed to be encoded in the
same order across all SRRs. Suppose an attribute Aj is
missing in an SRR. Since we are initially aligned by position,
the element of attribute Ak, where k > j is put into groupGj.
This element must have certain commonalities with some
other elements of the same concept in the groups following
Gj, which should be reflected by higher similarity values.
Thus, if we get multiple clusters from the above step, the one
having the least similarity (V[c]) with the groups following
Gj should belong to attributeAj (lines 9-13). Finally in Step 2,
for each element in the clusters other than V[c], shift it (and
all elements after it) to the next group. Lines 14-16 show that
we achieve this by inserting an NIL element at position j in
the corresponding SRRs. This process is repeated for
position jþ 1 (line 17) until all the text nodes are considered
(lines 5-6).

Example 1. In Fig. 5, after initial alignment, there are three
alignment groups. The first group G1 is clustered into two
clusters {{a1, b1}, {c1}}. Suppose {a1, b1} is the least similar
to G2 and G3, we then shift c1 one position to the right. The
figure on the right depicts all groups after shifting.

After the text nodes are grouped using the above
procedure, we need to determine whether a group needs to
be further split to obtain the actual data units (Step 3). First,
we identify groups whose text nodes are not “split-able.”
Each such a group satisfies one of the following conditions:

1. each of its text nodes is a hyperlink (a hyperlink is
assumed to already represent a single semantic unit);

2. the texts of all the nodes in the group are the same;
3. all the nodes in the group have the same nonstring

data type; and
4. the group is not a merged group from Step 1.

Next, we try to split each group that does not satisfy any of
the above conditions. To do the splitting correctly, we need
to identify the right separators. We observe that the same
separator is usually used to separate the data units of a given
pair of attributes across all SRRs retrieved from the same

WDB although it is possible that different separators are
used for data units of different attribute pairs. Based on this
observation, in this step, we first scan the text strings of every

text node in the group and select the symbol(s) (nonletter,
nondigit, noncurrency, nonparenthesis, and nonhyphen)
that occur in most strings in consistent positions. Second,
for each text node in the group, its text is split into several

small pieces using the separator(s), each of which becomes a
real data unit. As an example, in “Springer-Verlag/1999/
0387984135 /0.06667,” “/” is the separator and it splits the
composite text node into four data units.

The data units in a composite group are not always
aligned after splitting because some attributes may have
missing values in the composite text node. Our solution is
to apply the same alignment algorithm in Step 2 here, i.e.,

initially align based on each data unit’s natural position and
then apply the clustering-based shifting method. The only
difference is that, in Step 4, since all data units to be aligned
are split from the same composite text node, they share the

same presentation style and tag path. Thus, in this case,
these two features are not used for calculating similarity for
aligning data units. Their feature weights are proportionally

distributed to the three features used.
DeLa [30] also detects the separators inside composite text

nodes and uses them to separate the data units. However, in
DeLa, the separated pieces are simply aligned by their natural
order and missing attribute values are not considered.

5 ASSIGNING LABELS

5.1 Local versus Integrated Interface Schemas

For a WDB, its search interface often contains some attributes
of the underlying data. We denote a LIS as Si ¼ fA1; A2;

. . . ; Akg, where each Aj is an attribute. When a query is

submitted against the search interface, the entities in the
returned results also have a certain hidden schema, denoted
as Se ¼ fa1; a2; . . . ; ang, where each aj (j ¼ 1 . . .n) is an
attribute to be discovered. The schema of the retrieved data

and the LIS usually share a significant number of attributes
[29]. This observation provides the basis for some of our
basic annotators (see Section 5.2). If an attribute at in the

search results has a matched attribute At in the LIS, all the
data units identified with at can be labeled by the name ofAt.

However, it is quite often that Se is not entirely contained
in Si because some attributes of the underlying database are
not suitable or needed for specifying query conditions as

determined by the developer of the WDB, and these
attributes would not be included in Si. This phenomenon
raises a problem called local interface schema inadequacy

problem. Specifically, it is possible that a hidden attribute
discovered in the search result schema Se does not have a
matching attribute At in the LIS Si. In this case, there will be
no label in the search interface that can be assigned to the

discovered data units of this attribute.
Another potential problem associated with using LISs for

annotation is the inconsistent label problem, i.e., different labels
are assigned to semantically identical data units returned

from different WDBs because different LISs may give
different names to the same attribute. This can cause problem

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

Fig. 5. An example illustrating Step 2 of the alignment algorithm.

when using the annotated data collected from different

WDBs, e.g., for data integration applications.
In our approach, for each used domain, we use WISE-

Integrator [14]) to build an IIS over multiple WDBs in that

domain. The generated IIS combines all the attributes of the

LISs. For matched attributes from different LISs, their

values in the local interfaces (e.g., values in selection list)

are combined as the values of the integrated global attribute

[14]. Each global attribute has a unique global name and an

attribute-mapping table is created to establish the mapping

between the name of each LIS attribute and its correspond-

ing name in the IIS. In this paper, for attribute A in an LIS,

we use gn(A) to denote the name of A’s corresponding

attribute (i.e., the global attribute) in the IIS.
For each WDB in a given domain, our annotation method

uses both the LIS of the WDB and the IIS of the domain to

annotate the retrieved data from this WDB. Using IISs has

two major advantages. First, it has the potential to increase

the annotation recall. Since the IIS contains the attributes in

all the LISs, it has a better chance that an attribute discovered

from the returned results has a matching attribute in the IIS

even though it has no matching attribute in the LIS. Second,

when an annotator discovers a label for a group of data units,

the label will be replaced by its corresponding global

attribute name (if any) in the IIS by looking up the

attribute-mapping table so that the data units of the same

concept across different WDBs will have the same label.
We should point out that even though using the IIS can

significantly alleviate both the local interface schema inade-

quacy problem and the inconsistent label problem, it cannot solve

them completely. For the first problem, it is still possible that

some attributes of the underlying entities do not appear in

any local interface, and as a result, such attributes will not

appear in the IIS. As to the second problem, for example, in

Fig. 1, “$17.50” is annotated by “Our Price,” but at another

site a price may be displayed as “You Pay: $50.50” (i.e.,

“$50.50” is annotated by “You Pay”). If one or more of these

annotations are not local attribute names in the attribute-

mapping table for this domain, then using the IIS cannot

solve the problem and new techniques are needed.

5.2 Basic Annotators

In a returned result page containing multiple SRRs, the data

units corresponding to the same concept (attribute) often

share special common features. And such common features

are usually associated with the data units on the result page

in certain patterns. Based on this observation, we define six

basic annotators to label data units, with each of them

considering a special type of patterns/features. Four of these

annotators (i.e., table annotator, query-based annotator, in-

text prefix/suffix annotator, and common knowledge

annotator) are similar to the annotation heuristics used by

DeLa [30] but we have different implementations for three of

them (i.e., table annotator, query-based annotator, and

common knowledge annotator). Details of the differences

and the advantages of our implementations for these three

annotators will be provided when these annotators are

introduced below.

5.2.1 Table Annotator (TA)

Many WDBs use a table to organize the returned SRRs. In the
table, each row represents an SRR. The table header, which
indicates the meaning of each column, is usually located at
the top of the table. Fig. 6 shows an example of SRRs
presented in a table format. Usually, the data units of the
same concepts are well aligned with its corresponding
column header. This special feature of the table layout can be
utilized to annotate the SRRs.

Since the physical position information of each data unit is
obtained during SRR extraction, we can utilize the informa-
tion to associate each data unit with its corresponding
header. Our Table Annotator works as follows: First, it
identifies all the column headers of the table. Second, for
each SRR, it takes a data unit in a cell and selects the column
header whose area (determined by coordinates) has the
maximum vertical overlap (i.e., based on the x-axis) with the
cell. This unit is then assigned with this column header and
labeled by the header text A (actually by its corresponding
global name gn(A) if gn(A) exists). The remaining data units
are processed similarly. In case that the table header is not
provided or is not successfully extracted by ViNTs [34], the
Table Annotator will not be applied.

DeLa [30] also searches for table header texts as the
possible labels for the data units listed in table format.
However, DeLa only relies on HTML tag <TH> and
<THEAD> for this purpose. But many HTML tables do not
use <TH> or <THEAD> to encode their headers, which limits
the applicability of DeLa’s approach. In the test data set we
collected, 11 WDBs have SRRs in table format, but only three
use <TH> or <THEAD>. In contrast, our table annotator does
not have this limitation.

5.2.2 Query-Based Annotator (QA)

The basic idea of this annotator is that the returned SRRs from
a WDB are always related to the specified query. Specifically,
the query terms entered in the search attributes on the local
search interface of the WDB will most likely appear in some
retrieved SRRs. For example, in Fig. 1, query term “machine”
is submitted through the Title field on the search interface of
the WDB and all three titles of the returned SRRs contain this
query term. Thus, we can use the name of search field Title to
annotate the title values of these SRRs. In general, query
terms against an attribute may be entered to a textbox or
chosen from a selection list on the local search interface.

Our Query-based Annotator works as follows: Given a
query with a set of query terms submitted against an
attribute A on the local search interface, first find the group
that has the largest total occurrences of these query terms and
then assign gn(A) as the label to the group.

As mentioned in Section 5.1, the LIS of a WDB usually
does not have all the attributes of the underlying database.

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 521

Fig. 6. SRRs in table format.

As a result, the query-based annotator by itself cannot
completely annotate the SRRs.

DeLa [30] also uses query terms to match the data unit
texts and use the name of the queried form element as the
label. However, DeLa uses only local schema element names,
not element names in the IIS.

5.2.3 Schema Value Annotator (SA)

Many attributes on a search interface have predefined values
on the interface. For example, the attribute Publishers may
have a set of predefined values (i.e., publishers) in its
selection list. More attributes in the IIS tend to have
predefined values and these attributes are likely to have
more such values than those in LISs, because when attributes
from multiple interfaces are integrated, their values are also
combined [14]. Our schema value annotator utilizes the
combined value set to perform annotation.

Given a group of data units Gi ¼ fd1; . . . ; dng, the
schema value annotator is to discover the best matched
attribute to the group from the IIS. Let Aj be an attribute
containing a list of values fv1; . . . ; vmg in the IIS. For each
data unit dk, this annotator first computes the Cosine
similarities between dk and all values in Aj to find the value
(say vt) with the highest similarity. Then, the data fusion
function CombMNZ [19] is applied to the similarities for all
the data units. More specifically, the annotator sums up the
similarities and multiplies the sum by the number of
nonzero similarities. This final value is treated as the
matching score between Gi and Aj.

The schema value annotator first identifies the attribute
Aj that has the highest matching score among all attributes
and then uses gn(Aj) to annotate the group Gi. Note that
multiplying the above sum by the number of nonzero
similarities is to give preference to attributes that have more
matches (i.e., having nonzero similarities) over those that
have fewer matches. This is found to be very effective in
improving the retrieval effectiveness of combination systems
in information retrieval [4].

5.2.4 Frequency-Based Annotator (FA)

In Fig. 1, “Our Price” appears in the three records and the
followed price values are all different in these records. In
other words, the adjacent units have different occurrence
frequencies. As argued in [1], the data units with the higher
frequency are likely to be attribute names, as part of the
template program for generating records, while the data
units with the lower frequency most probably come from
databases as embedded values. Following this argument,
“Our Price” can be recognized as the label of the value
immediately following it. The phenomenon described in this
example is widely observable on result pages returned by
many WDBs and our frequency-based annotator is designed
to exploit this phenomenon.

Consider a group Gi whose data units have a lower
frequency. The frequency-based annotator intends to find
common preceding units shared by all the data units of the
group Gi. This can be easily conducted by following their
preceding chains recursively until the encountered data units
are different. All found preceding units are concatenated to
form the label for the group Gi.

Example 2. In Fig. 1, during the data alignment step, a group
is formed for {“$17.50,” “$18.95,” “$20.50”}. Clearly the

data units in this group have different values. These
values share the same preceding unit “Our Price,” which
occurs in all SRRs. Furthermore, “Our Price” does not

have preceding data units because it is the first unit in this
line. Therefore, the frequency-based annotator will assign
label “Our Price” to this group.

5.2.5 In-Text Prefix/Suffix Annotator (IA)

In some cases, a piece of data is encoded with its label to
form a single unit without any obvious separator between

the label and the value, but it contains both the label and the
value. Such nodes may occur in all or multiple SRRs. After
data alignment, all such nodes would be aligned together to

form a group. For example, in Fig. 1, after alignment, one
group may contain three data units, {“You Save $9.50,”
“You Save $11.04,” “You Save $4.45”}.

The in-text prefix/suffix annotator checks whether all
data units in the aligned group share the same prefix or
suffix. If the same prefix is confirmed and it is not a

delimiter, then it is removed from all the data units in the
group and is used as the label to annotate values following
it. If the same suffix is identified and if the number of data

units having the same suffix match the number of data units
inside the next group, the suffix is used to annotate the data

units inside the next group. In the above example, the label
“You save” will be assigned to the group of prices. Any
group whose data unit texts are completely identical is not

considered by this annotator.

5.2.6 Common Knowledge Annotator (CA)

Some data units on the result page are self-explanatory

because of the common knowledge shared by human beings.
For example, “in stock” and “out of stock” occur in many
SRRs from e-commerce sites. Human users understand that

it is about the availability of the product because this is
common knowledge. So our common knowledge annotator
tries to exploit this situation by using some predefined

common concepts.
Each common concept contains a label and a set of

patterns or values. For example, a country concept has a

label “country” and a set of values such as “U.S.A.,”
“Canada,” and so on. As another example, the e-mail
address (assume all lower cases) concept has the pattern

½a-z0� 9: %þ�� þ@ð½a-z0� 9�� þ n:Þ þ ½a-z�f2; 4g. Given a
group of data units from the alignment step, if all the data

units match the pattern or value of a concept, the label of this
concept is assigned to the data units of this group.

DeLa [30] also uses some conventions to annotate data
units. However, it only considers certain patterns. Our

Common knowledge annotator considers both patterns and
certain value sets such as the set of countries.

It should be pointed out that our common concepts are

different from the ontologies that are widely used in some
works in Semantic Web (e.g., [6], [11], [12], [16], [26]). First,
our common concepts are domain independent. Second,

they can be obtained from existing information resources
with little additional human effort.

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

5.3 Combining Annotators

Our analysis indicates that no single annotator is capable of
fully labeling all the data units on different result pages. The
applicability of an annotator is the percentage of the attributes
to which the annotator can be applied. For example, if out of
10 attributes, four appear in tables, then the applicability of
the table annotator is 40 percent. Table 1 shows the average
applicability of each basic annotator across all testing
domains in our data set. This indicates that the results of
different basic annotators should be combined in order to
annotate a higher percentage of data units. Moreover,
different annotators may produce different labels for a given
group of data units. Therefore, we need a method to select the
most suitable one for the group.

Our annotators are fairly independent from each other
since each exploits an independent feature. Based on this
characteristic, we employ a simple probabilistic method to
combine different annotators. For a given annotator L, let
P ðLÞ be the probability that L is correct in identifying a
correct label for a group of data units when L is applicable.
P ðLÞ is essentially the success rate of L. Specifically, suppose
L is applicable to N cases and among these cases M are
annotated correctly, then P ðLÞ ¼M=N . If k independent
annotators Li, i ¼ 1; . . . ; k, identify the same label for a
group of data units, then the combined probability that at
least one of the annotators is correct is

1�
Yk

i¼1

ð1� P ðLiÞÞ: ð7Þ

To obtain the success rate of an annotator, we use the
annotator to annotate every result page in a training data set
(DS1 in Section 7.1). The training result is listed in Table 1. It
can be seen that the table annotator is 100 percent correct
when applicable. The query-based annotator also has very
high success rate while the schema value annotator is the
least accurate.

An important issue DeLa did not address is what if
multiple heuristics can be applied to a data unit. In our
solution, if multiple labels are predicted for a group of data
units by different annotators, we compute the combined
probability for each label based on the annotators that
identified the label, and select the label with the largest
combined probability.

One advantage of this model is its high flexibility in the
sense that when an existing annotator is modified or a new

annotator is added in, all we need is to obtain the

applicability and success rate of this new/revised annotator

while keeping all remaining annotators unchanged. We also

note that no domain-specific training is needed to obtain the

applicability and success rate of each annotator.

6 ANNOTATION WRAPPER

Once the data units on a result page have been annotated,

we use these annotated data units to construct an annota-

tion wrapper for the WDB so that the new SRRs retrieved

from the same WDB can be annotated using this wrapper

quickly without reapplying the entire annotation process.

We now describe our method for constructing such a

wrapper below.
Each annotated group of data units corresponds to an

attribute in the SRRs. The annotation wrapper is a descrip-

tion of the annotation rules for all the attributes on the result

page. After the data unit groups are annotated, they are

organized based on the order of its data units in the original

SRRs. Consider the ith group Gi. Every SRR has a tag-node

sequence like Fig. 1b that consists of only HTML tag names

and texts. For each data unit inGi, we scan the sequence both

backward and forward to obtain the prefix and suffix of the

data unit. The scan stops when an encountered unit is a valid

data unit with a meaningful label assigned. Then, we

compare the prefixes of all the data units in Gi to obtain

the common prefix shared by these data units. Similarly, the

common suffix is obtained by comparing all the suffixes of

these data units. For example, the data unit for book title in

Fig. 1b has “<FORM><A>” as its prefix and “
” as

its suffix. If a data unit is generated by splitting from a

composite text node, then its prefix and suffix are the same

as those of its parent data unit. This wrapper is similar to the

LR wrapper in [18]. Here, we use prefix as the left delimiter,

and suffix as the right delimiter to identify data units.

However, the LR wrapper has difficulties to extract data

units packed inside composite text nodes due to the fact that

there is no HTML tag within a text node. To overcome this

limitation, besides the prefix and suffix, we also record the

separators used for splitting the composite text node as well

as its position index in the split unit vector. Thus, the

annotation rule for each attribute consists of five compo-

nents, expressed as: attributei ¼ <labeli; prefixi; suffixi;
separatorsi; unitindexi>. The annotation wrapper for the

site is simply a collection of the annotation rules for all the

attributes identified on the result page with order corre-

sponding to the ordered data unit groups.
To use the wrapper to annotate a new result page, for each

data unit in an SRR, the annotation rules are applied on it one

by one based on the order they appear in the wrapper. If this

data unit has the same prefix and suffix as specified in the

rule, the rule is matched and the unit is labeled with the given

label in the rule. If the separators are specified, they are used

to split the unit, and labeli is assigned to the unit at the

position unitindexi.

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 523

TABLE 1
Applicabilities and Success Rates of Annotators

7 EXPERIMENTS

7.1 Data Sets and Performance Measure

Our experiments are based on 112 WDBs selected from seven
domains: book, movie, music, game, job, electronics, and auto. For
each WDB, its LIS is constructed automatically using WISE-
iExtractor [15]. For each domain, WISE-Integrator [14] is
used to build the IIS automatically. These collected WDBs are
randomly divided into two disjoint groups. The first group
contains 22 WDBs and is used for training, and the second
group has 90 WDBs and is used for testing. Data set DS1 is
formed by obtaining one sample result page from each
training site. Two testing data sets DS2 and DS3 are
generated by collecting two sample result pages from each
testing site using different queries. We note that we largely
recollected the result pages from WDBs used in our previous
study [22]. We have noticed that result pages have become
more complex in general as web developers try to make their
pages fancier.

Each testing data set contains one page from each WDB.
Some general terms are manually selected as the query
keywords to obtain the sample result pages. The query terms
are selected in such a way that they yield result pages with
many SRRs from all WDBs of the same domain, for example,
“Java” for Title, “James” for Author, etc. The query terms and
the form element each query is submitted to are also stored
together with each LIS for use by the Query-based Annotator.

Data set DS1 is used for learning the weights of the data
unit features and clustering threshold T in the alignment
step (See Section 4), and determining the success rate of
each basic annotator (See Section 5). For each result page in
this data set, the data units are manually extracted, aligned
in groups, and assigned labels by a human expert. We use a
genetic algorithm based method [10] to obtain the best
combination of feature weights and clustering threshold T

that leads to the best performance over the training data set.
DS2 is used to test the performance of our alignment and

annotation methods based on the parameter values and
statistics obtained from DS1. At the same time, the annota-
tion wrapper for each site will be generated. DS3 is used to
test the quality of the generated wrappers. The correctness of
data unit extraction, alignment, and annotation is again
manually verified by the same human expert for perfor-
mance evaluation purpose.

We adopt the precision and recall measures from informa-
tion retrieval to evaluate the performance of our methods.
For alignment, the precision is defined as the percentage of the
correctly aligned data units over all the aligned units by the
system; recall is the percentage of the data units that are
correctly aligned by the system over all manually aligned
data units by the expert. A result data unit is counted as
“incorrect” if it is mistakenly extracted (e.g., failed to be split
from composite text node). For annotation, the precision is
the percentage of the correctly annotated units over all
the data units annotated by the system and the recall is the
percentage of the data units correctly annotated by the
system over all the manually annotated units. A data unit is
said to be correctly annotated if its system-assigned label has
the same meaning as its manually assigned label.

7.2 Experimental Results

The optimal feature weights obtained through our genetic
training method (See Section 4) over DS1 are {0.64, 0.81, 1.0,
0.48, 0.56} for SimC, SimP, SimD, SimT, and SimA,
respectively, and 0.59 for clustering threshold T . The
average alignment precision and recall are converged at
about 97 percent. The learning result shows that the data
type and the presentation style are the most important
features in our alignment method. Then, we apply our
annotation method on DS1 to determine the success rate of
each annotator (see Section 5.3).

Table 2 shows the performance of our data alignment
algorithm for all 90 pages in DS2. The precision and recall
for every domain are above 95 percent, and the average
precision and recall across all domains are above 98 percent.
The performance is consistent with that obtained over the
training set. The errors usually happen in the following
cases. First, some composite text nodes failed to be split into
correct data units when no explicit separators can be
identified. For example, the data units in some composite
text nodes are separated by blank spaces created by
consecutive HTML entities like “ ” or some format-
ting HTML tags such as . Second, the data units of
the same attribute across different SRRs may sometimes
vary a lot in terms of appearance or layout. For example, the
promotion price information often has color or font type
different from that for the regular price information. Note
that in this case, such two price data units have low
similarity on content, presentation style, and the tag path.
Even though they share the same data type, the overall

524 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

TABLE 2
Performance of Data Alignment

TABLE 3
Performance of Annotation

similarity between them would still be low. Finally, the
decorative tag detection (Step 1 of the alignment algorithm)
is not perfect (accuracy about 90 percent), which results in
some tags to be falsely detected as decorative tags, leading
to incorrect merging of the values of different attributes. We
will address these issues in the future.

Table 3 lists the results of our annotation performance
over DS2. We can see that the overall precision and recall are
very high, which shows that our annotation method is very
effective. Moreover, high precision and recall are achieved
for every domain, which indicates that our annotation
method is domain independent. We notice that the overall
recall is a little bit higher than precision, mostly because
some data units are not correctly separated in the alignment
step. We also found that in a few cases some texts are not
assigned labels by any of our basic annotators. One reason is
that some texts are for cosmetic or navigating purposes.
These texts do not represent any attributes of the real-world
entity and they are not the labels of any data unit, which
belong to our One-To-Nothing relationship type. It is also
possible that some of these texts are indeed data units but
none of our current basic annotators are applicable to them.

For each webpage in DS2, once its SRRs have been
annotated, an annotation wrapper is built, and it is applied
to the corresponding page in DS3. In terms of processing
speed, the time needed to annotate one result page drops
from 10-20 seconds without using wrapper to 1-2 seconds
using wrapper depending on the complexity of the page.
The reason is that wrapper based approach directly extracts
all data units specified by the tag path(s) for each attribute
and assigns the label specified in the rule to those data
units. In contrast, the nonwrapper-based approach needs to
go through some time-consuming steps such as result page
rendering, data unit similarity matrix computation, etc., for
each result page.

In terms of precision and recall, the wrapper-based
approach reduces the precision by 2.7 percentage points
and recall by 4.6 percentage points, as can be seen from the
results in Tables 3 and 4. The reason is that our wrapper
only used tag path for text node extraction and alignment,
and the composite text node splitting is solely based on the
data unit position. In the future, we will investigate how to
incorporate other features in the wrapper to increase the
performance. Another reason is that in this experiment,
we used only one page for each site in DS2 to build the

wrapper. As a result, it is possible that some attributes that
appear on the page in DS3 do not appear on the training
page in DS2 (so they do not appear in the wrapper
expression). For example, some WDBs only allow queries
that use only one attribute at a time (these attributes are
called exclusive attributes in [15]). In this case, if the query
term is based on Title, then the data units for attribute
Author may not be correctly identified and annotated
because the query-based annotator is the main technique
used for attributes that have a textbox on the search
interface. One possible solution to remedy this problem is to
combine multiple result pages based on different queries to
build a more robust wrapper.

We also conducted experiments to evaluate the signifi-
cance of each feature on the performance of our alignment
algorithm. For this purpose, we compare the performance
when a feature is used with that when it is not used. Each time
one feature is selected not to be used, and its weight is
proportionally distributed to other features based on the
ratios of their weights to the total weight of the used features.
The alignment process then uses the new parameters to run
on DS2. Fig. 7 shows the results. It can be seen that when any
one of these features is not used, both the precision and recall
decrease, indicating that all the features in our approach are
valid and useful. We can also see that the data type and
the presentation style are the most important features
because when they are not used, the precision and recall
drop the most (around 28 and 23 percentage points for
precision, and 31 and 25 percentage points for recall,
respectively). This result is consistent with our training result
where the data type and the presentation style have the
highest feature weights. The adjacency and tag path feature

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 525

TABLE 4
Performance of Annotation with Wrapper

Fig. 7. Evaluation of alignment features.

Fig. 8. Evaluation of basic annotators.

are less significant comparatively, but without either of them,
the precision and recall drop more than 15 percentage points.

We use a similar method as the above to evaluate the
significance of each basic annotator. Each time, one
annotator is removed and the remaining annotators
are used to annotate the pages in DS2. Fig. 8 shows the
results. It shows that omitting any annotator causes both
precision and recall to drop, i.e., every annotator contributes
positively to the overall performance. Among the six
annotators considered, the query-based annotator and the
frequency-based annotator are the most significant. Another
observation is that when an annotator is removed, the recall
decreases more dramatically than precision. This indicates
that each of our annotators is fairly independent in terms of
describing the attributes. Each annotator describes one
aspect of the attribute which, to a large extent, is not
applicable to other annotators.

Finally, we conducted experiments to study the effect of
using LISs versus using the IIS in annotation. We run the
annotation process on DS2 again but this time, instead of
using the IIS built for each domain, we use the LIS of each
WDB. The results are shown in Table 5. By comparing the
results in Table 5 with those in Table 3 where the IIS is used,
we can see that using the LIS has a relatively small impact on
precision, but significant effect on recall (the overall average
recall is reduced by more than 6 percentage points) because
of the local interface schema inadequacy problem as
described in Section 5.1. And it also shows that using the
integrated interface schema can indeed increase the annota-
tion performance.

As reported in [30], only three domains (Book, Job, and
Car) were used to evaluate DeLa and for each domain, only
nine sites were selected. The overall precision and recall of
DeLa’s annotation method using this data set are around
80 percent. In contrast, the precision and recall of our
annotation method for these three domains are well above
95 percent (see Table 3), although different sets of sites for
these domains are used in the two works.

8 CONCLUSION

In this paper, we studied the data annotation problem and
proposed a multiannotator approach to automatically con-
structing an annotation wrapper for annotating the search
result records retrieved from any given web database. This
approach consists of six basic annotators and a probabilistic

method to combine the basic annotators. Each of these
annotators exploits one type of features for annotation and
our experimental results show that each of the annotators is
useful and they together are capable of generating high-
quality annotation. A special feature of our method is that,
when annotating the results retrieved from a web database, it
utilizes both the LIS of the web database and the IIS of
multiple web databases in the same domain. We also
explained how the use of the IIS can help alleviate the local
interface schema inadequacy problem and the inconsistent
label problem.

In this paper, we also studied the automatic data
alignment problem. Accurate alignment is critical to achiev-
ing holistic and accurate annotation. Our method is a
clustering based shifting method utilizing richer yet auto-
matically obtainable features. This method is capable of
handling a variety of relationships between HTML text
nodes and data units, including one-to-one, one-to-many,
many-to-one, and one-to-nothing. Our experimental results
show that the precision and recall of this method are both
above 98 percent. There is still room for improvement in
several areas as mentioned in Section 7.2. For example, we
need to enhance our method to split composite text node
when there are no explicit separators. We would also like to
try using different machine learning techniques and using
more sample pages from each training site to obtain the
feature weights so that we can identify the best technique to
the data alignment problem.

ACKNOWLEDGMENTS

This work is supported in part by the following US National
Science Foundation (NSF) grants: IIS-0414981, IIS-0414939,
CNS-0454298, and CNS-0958501. The authors would also
like to express their gratitude to the anonymous reviewers
for providing very constructive suggestions to improve the
manuscript.

REFERENCES

[1] A. Arasu and H. Garcia-Molina, “Extracting Structured Data from
Web Pages,” Proc. SIGMOD Int’l Conf. Management of Data, 2003.

[2] L. Arlotta, V. Crescenzi, G. Mecca, and P. Merialdo, “Automatic
Annotation of Data Extracted from Large Web Sites,” Proc. Sixth
Int’l Workshop the Web and Databases (WebDB), 2003.

[3] P. Chan and S. Stolfo, “Experiments on Multistrategy Learning by
Meta-Learning,” Proc. Second Int’l Conf. Information and Knowledge
Management (CIKM), 1993.

[4] W. Bruce Croft, “Combining Approaches for Information Retrie-
val,” Advances in Information Retrieval: Recent Research from the
Center for Intelligent Information Retrieval, Kluwer Academic, 2000.

[5] V. Crescenzi, G. Mecca, and P. Merialdo, “RoadRUNNER:
Towards Automatic Data Extraction from Large Web Sites,” Proc.
Very Large Data Bases (VLDB) Conf., 2001.

[6] S. Dill et al., “SemTag and Seeker: Bootstrapping the Semantic
Web via Automated Semantic Annotation,” Proc. 12th Int’l Conf.
World Wide Web (WWW) Conf., 2003.

[7] H. Elmeleegy, J. Madhavan, and A. Halevy, “Harvesting
Relational Tables from Lists on the Web,” Proc. Very Large
Databases (VLDB) Conf., 2009.

[8] D. Embley, D. Campbell, Y. Jiang, S. Liddle, D. Lonsdale, Y. Ng,
and R. Smith, “Conceptual-Model-Based Data Extraction from
Multiple-Record Web Pages,” Data and Knowledge Eng., vol. 31,
no. 3, pp. 227-251, 1999.

[9] D. Freitag, “Multistrategy Learning for Information Extraction,”
Proc. 15th Int’l Conf. Machine Learning (ICML), 1998.

[10] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, 1989.

526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

TABLE 5
Performance Using Local Interface Schema

[11] S. Handschuh, S. Staab, and R. Volz, “On Deep Annotation,” Proc.
12th Int’l Conf. World Wide Web (WWW), 2003.

[12] S. Handschuh and S. Staab, “Authoring and Annotation of Web
Pages in CREAM,” Proc. 11th Int’l Conf. World Wide Web (WWW),
2003.

[13] B. He and K. Chang, “Statistical Schema Matching Across Web
Query Interfaces,” Proc. SIGMOD Int’l Conf. Management of Data,
2003.

[14] H. He, W. Meng, C. Yu, and Z. Wu, “Automatic Integration of
Web Search Interfaces with WISE-Integrator,” VLDB J., vol. 13,
no. 3, pp. 256-273, Sept. 2004.

[15] H. He, W. Meng, C. Yu, and Z. Wu, “Constructing Interface
Schemas for Search Interfaces of Web Databases,” Proc. Web
Information Systems Eng. (WISE) Conf., 2005.

[16] J. Heflin and J. Hendler, “Searching the Web with SHOE,” Proc.
AAAI Workshop, 2000.

[17] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[18] N. Krushmerick, D. Weld, and R. Doorenbos, “Wrapper Induction
for Information Extraction,” Proc. Int’l Joint Conf. Artificial
Intelligence (IJCAI), 1997.

[19] J. Lee, “Analyses of Multiple Evidence Combination,” Proc. 20th
Ann. Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval, 1997.

[20] L. Liu, C. Pu, and W. Han, “XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources,” Proc. IEEE
16th Int’l Conf. Data Eng. (ICDE), 2001.

[21] W. Liu, X. Meng, and W. Meng, “ViDE: A Vision-Based Approach
for Deep Web Data Extraction,” IEEE Trans. Knowledge and Data
Eng., vol. 22, no. 3, pp. 447-460, Mar. 2010.

[22] Y. Lu, H. He, H. Zhao, W. Meng, and C. Yu, “Annotating
Structured Data of the Deep Web,” Proc. IEEE 23rd Int’l Conf. Data
Eng. (ICDE), 2007.

[23] J. Madhavan, D. Ko, L. Lot, V. Ganapathy, A. Rasmussen, and
A.Y. Halevy, “Google’s Deep Web Crawl,” Proc. VLDB Endow-
ment, vol. 1, no. 2, pp. 1241-1252, 2008.

[24] W. Meng, C. Yu, and K. Liu, “Building Efficient and Effective
Metasearch Engines,” ACM Computing Surveys, vol. 34, no. 1,
pp. 48-89, 2002.

[25] S. Mukherjee, I.V. Ramakrishnan, and A. Singh, “Bootstrapping
Semantic Annotation for Content-Rich HTML Documents,” Proc.
IEEE Int’l Conf. Data Eng. (ICDE), 2005.

[26] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and
M. Goranov, “KIM - Semantic Annotation Platform,” Proc. Int’l
Semantic Web Conf. (ISWC), 2003.

[27] G. Salton and M. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[28] W. Su, J. Wang, and F.H. Lochovsky, “ODE: Ontology-Assisted
Data Extraction,” ACM Trans. Database Systems, vol. 34, no. 2,
article 12, June 2009.

[29] J. Wang, J. Wen, F. Lochovsky, and W. Ma, “Instance-Based
Schema Matching for Web Databases by Domain-Specific Query
Probing,” Proc. Very Large Databases (VLDB) Conf., 2004.

[30] J. Wang and F.H. Lochovsky, “Data Extraction and Label
Assignment for Web Databases,” Proc. 12th Int’l Conf. World Wide
Web (WWW), 2003.

[31] Z. Wu et al., “Towards Automatic Incorporation of Search Engines
into a Large-Scale Metasearch Engine,” Proc. IEEE/WIC Int’l Conf.
Web Intelligence (WI ’03), 2003.

[32] O. Zamir and O. Etzioni, “Web Document Clustering: A
Feasibility Demonstration,” Proc. ACM 21st Int’l SIGIR Conf.
Research Information Retrieval, 1998.

[33] Y. Zhai and B. Liu, “Web Data Extraction Based on Partial Tree
Alignment,” Proc. 14th Int’l Conf. World Wide Web (WWW ’05),
2005.

[34] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully
Automatic Wrapper Generation for Search Engines,” Proc. Int’l
Conf. World Wide Web (WWW), 2005.

[35] H. Zhao, W. Meng, and C. Yu, “Mining Templates form Search
Result Records of Search Engines,” Proc. ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, 2007.

[36] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W.-Y. Ma, “Simultaneous
Record Detection and Attribute Labeling in Web Data Extraction,”
Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, 2006.

Yiyao Lu received the PhD degree in computer
science from the State University of New York at
Binghamton in 2011. He currently works for
Bloomberg. His research interests include web
information systems, metasearch engine, and
information extraction.

Hai He received the PhD degree in computer
science from State University of New York at
Binghamton in 2005. He currently works for
Morningstar. His research interests include web
database integration systems, search interface
extraction and integration.

Hongkun Zhao received the PhD degree in
computer science from State University of New
York at Binghamton in 2007. He currently works
for Bloomberg. His research interests include
metasearch engine, web information extraction,
and automatic wrapper generation.

Weiyi Meng received the BS degree in mathe-
matics from Sichuan University, China, in 1982,
and the MS and PhD degrees in computer
science from the University of Illinois at Chicago,
in 1988 and 1992, respectively. He is currently a
professor in the Department of Computer
Science at the State University of New York at
Binghamton. His research interests include web-
based information retrieval, metasearch engines,
and web database integration. He is a coauthor

of three books Principles of Database Query Processing for Advanced
Applications, Advanced Metasearch Engine Technology, and Deep Web
Query Interface Understanding and Integration. He has published more
than 120 technical papers. He is a member of the IEEE.

Clement Yu received the BS degree in applied
mathematics from Columbia University in 1970
and the PhD degree in computer science from
Cornell University in 1973. He is a professor in
the Department of Computer Science at the
University of Illinois at Chicago. His areas of
interest include search engines and multimedia
retrieval. He has published in various journals
such as the IEEE Transactions on Knowledge
and Data Engineering, ACM Transactions on

Database Systems, and Journal of the ACM and in various conferences
such as VLDB, ACM SIGMOD, ACM SIGIR, and ACM Multimedia. He
previously served as chairman of the ACM Special Interest Group on
Information Retrieval and as a member of the advisory committee to the
US National Science Foundation (NSF). He was/is a member of the
editorial board of the IEEE Transactions on Knowledge and Data
Engineering, the International Journal of Software Engineering and
Knowledge Engineering, Distributed and Parallel Databases, and World
Wide Web Journal. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 527

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

