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Abstract—Anomaly detection has been an important research topic in data mining and machine learning. Many real-world

applications such as intrusion or credit card fraud detection require an effective and efficient framework to identify deviated data

instances. However, most anomaly detection methods are typically implemented in batch mode, and thus cannot be easily extended to

large-scale problems without sacrificing computation and memory requirements. In this paper, we propose an online oversampling

principal component analysis (osPCA) algorithm to address this problem, and we aim at detecting the presence of outliers from a large

amount of data via an online updating technique. Unlike prior principal component analysis (PCA)-based approaches, we do not store

the entire data matrix or covariance matrix, and thus our approach is especially of interest in online or large-scale problems. By

oversampling the target instance and extracting the principal direction of the data, the proposed osPCA allows us to determine the

anomaly of the target instance according to the variation of the resulting dominant eigenvector. Since our osPCA need not perform

eigen analysis explicitly, the proposed framework is favored for online applications which have computation or memory limitations.

Compared with the well-known power method for PCA and other popular anomaly detection algorithms, our experimental results verify

the feasibility of our proposed method in terms of both accuracy and efficiency.

Index Terms—Anomaly detection, online updating, least squares, oversampling, principal component analysis

Ç

1 INTRODUCTION

ANOMALY (or outlier) detection aims to identify a small
group of instances which deviate remarkably from the

existing data. A well-known definition of “outlier” is given
in [1]: “an observation which deviates so much from other
observations as to arouse suspicions that it was generated
by a different mechanism,” which gives the general idea of
an outlier and motivates many anomaly detection methods
[1], [2], [3], [4], [5], [6], [7]. Practically, anomaly detection
can be found in applications such as homeland security,
credit card fraud detection, intrusion and insider threat
detection in cyber-security, fault detection, or malignant
diagnosis [3], [4], [6], [8], [9]. However, since only a limited
amount of labeled data are available in the above real-
world applications, how to determine anomaly of unseen
data (or events) draws attention from the researchers in
data mining and machine learning communities [1], [2], [3],
[4], [5], [6], [7].

Despite the rareness of the deviated data, its presence
might enormously affect the solution model such as the
distribution or principal directions of the data. For example,

the calculation of data mean or the least squares solution of
the associated linear regression model is both sensitive to
outliers. As a result, anomaly detection needs to solve an
unsupervised yet unbalanced data learning problem.
Similarly, we observe that removing (or adding) an
abnormal data instance will affect the principal direction
of the resulting data than removing (or adding) a normal
one does. Using the above “leave one out” (LOO) strategy,
we can calculate the principal direction of the data set
without the target instance present and that of the original
data set. Thus, the outlierness (or anomaly) of the data
instance can be determined by the variation of the resulting
principal directions. More precisely, the difference between
these two eigenvectors will indicate the anomaly of the
target instance. By ranking the difference scores of all data
points, one can identify the outlier data by a predefined
threshold or a predetermined portion of the data.

We note that the above framework can be considered as a
decremental PCA (dPCA)-based approach for anomaly
detection. While it works well for applications with
moderate data set size, the variation of principal directions
might not be significant when the size of the data set is large.
In real-world anomaly detection problems dealing with a
large amount of data, adding or removing one target
instance only produces negligible difference in the resulting
eigenvectors, and one cannot simply apply the dPCA
technique for anomaly detection. To address this practical
problem, we advance the “oversampling” strategy to
duplicate the target instance, and we perform an over-
sampling PCA (osPCA) on such an oversampled data set. It
is obvious that the effect of an outlier instance will be
amplified due to its duplicates present in the principal
component analysis (PCA) formulation, and this makes the
detection of outlier data easier. However, this LOO anomaly
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detection procedure with an oversampling strategy will
markedly increase the computational load. For each target
instance, one always needs to create a dense covariance
matrix and solves the associated PCA problem. This will
prohibit the use of our proposed framework for real-world
large-scale applications. Although the well known power
method is able to produce approximated PCA solutions, it
requires the storage of the covariance matrix and cannot be
easily extended to applications with streaming data or
online settings. Therefore, we present an online updating
technique for our osPCA. This updating technique allows us
to efficiently calculate the approximated dominant eigen-
vector without performing eigen analysis or storing the data
covariance matrix. Compared to the power method or other
popular anomaly detection algorithms, the required com-
putational costs and memory requirements are significantly
reduced, and thus our method is especially preferable in
online, streaming data, or large-scale problems. Detailed
derivations and discussions of the osPCA with our
proposed online updating technique will be presented in
Section 4.

The remaining of this paper is organized as follows:
Section 2 reviews prior anomaly detection methods. The
osPCA for anomaly detection in Section 3. Section 4 details
the proposed online updating technique for osPCA, and
explains why this technique is computationally preferable
to prior anomaly detection methods. Section 5 presents the
experimental results, including comparisons with prior
approaches. Finally, Section 6 concludes this paper.

2 RELATED WORK

In the past, many outlier detection methods have been
proposed [1], [2], [5], [10], [11], [12], [13], [14], [15].
Typically, these existing approaches can be divided into
three categories: distribution (statistical), distance and
density-based methods. Statistical approaches [1], [11]
assume that the data follows some standard or predeter-
mined distributions, and this type of approach aims to find
the outliers which deviate form such distributions. How-
ever, most distribution models are assumed univariate, and
thus the lack of robustness for multidimensional data is a
concern. Moreover, since these methods are typically
implemented in the original data space directly, their
solution models might suffer from the noise present in
the data. Nevertheless, the assumption or the prior knowl-
edge of the data distribution is not easily determined for
practical problems.

For distance-based methods [10], [13], [14], the distances
between each data point of interest and its neighbors are
calculated. If the result is above some predetermined
threshold, the target instance will be considered as an
outlier. While no prior knowledge on data distribution is
needed, these approaches might encounter problems when
the data distribution is complex (e.g., multi-clustered
structure). In such cases, this type of approach will result
in determining improper neighbors, and thus outliers
cannot be correctly identified.

To alleviate the aforementioned problem, density-based
methods are proposed [2], [12]. One of the representatives
of this type of approach is to use a density-based local

outlier factor (LOF) to measure the outlierness of each data
instance [2]. Based on the local density of each data
instance, the LOF determines the degree of outlierness,
which provides suspicious ranking scores for all samples.
The most important property of the LOF is the ability to
estimate local data structure via density estimation. This
allows users to identify outliers which are sheltered under a
global data structure. However, it is worth noting that the
estimation of local data density for each instance is very
computationally expensive, especially when the size of the
data set is large.

Besides the above work, some anomaly detection
approaches are recently proposed [5], [15], [16]. Among
them, the angle-based outlier detection (ABOD) method [5]
is very unique. Simply speaking, ABOD calculates the
variation of the angles between each target instance and the
remaining data points, since it is observed that an outlier
will produce a smaller angle variance than the normal ones
do. It is not surprising that the major concern of ABOD is
the computation complexity due a huge amount of instance
pairs to be considered. Consequently, a fast ABOD
algorithm is proposed to generate an approximation of
the original ABOD solution. The difference between the
standard and the fast ABOD approaches is that the latter
only considers the variance of the angles between the target
instance and its k nearest neighbors. However, the search of
the nearest neighbors still prohibits its extension to large-
scale problems (batch or online modes), since the user will
need to keep all data instances to calculate the required
angle information.

It is worth noting that the above methods are typically
implemented in batch mode, and thus they cannot be easily
extended to anomaly detection problems with streaming
data or online settings. While some online or incremental-
based anomaly detection methods have been recently
proposed [17], [18], we found that their computational cost
or memory requirements might not always satisfy online
detection scenarios. For example, while the incremental
LOF in [17] is able to update the LOFs when receiving a
new target instance, this incremental method needs to
maintain a preferred (or filtered) data subset. Thus, the
memory requirement for the incremental LOF is OðnpÞ [17],
[18], where n and p are the size and dimensionality of the
data subset of interest, respectively. In [18], Ahmed
proposed an online kernel density estimation for anomlay
detection, but the proposed algorithm requires at least
Oðnp2 þ n2Þ for computation complexity [18]. In online
settings or large-scale data problems, the aforementioned
methods might not meet the online requirement, in which
both computation complexity and memory requirement are
as low as possible. In this paper, the use of the osPCA with
our proposed online updating technique is favored for such
problems, since we only require OðpÞ for both computation
and memory costs (see Section 4 for detailed discussions).

3 ANOMALY DETECTION VIA PCA

We first briefly review the PCA algorithm in Section 3.1.
Based on the LOO strategy, Section 3.2 presents our study
on the effect of outliers on the derived principal directions.
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3.1 Principal Component Analysis

PCA is a well known unsupervised dimension reduction

method, which determines the principal directions of the

data distribution. To obtain these principal directions,

one needs to construct the data covariance matrix and

calculate its dominant eigenvectors. These eigenvectors will

be the most informative among the vectors in the original

data space, and are thus considered as the principal

directions. Let A ¼ ½x>1 ; x>2 ; . . . ; x>n � 2 IRn�p, where each

row xi represents a data instance in a p dimensional space,

and n is the number of the instances. Typically, PCA is

formulated as the following optimization problem

max
U2IRp�k;kUk¼I

Xn
i¼1

U>ðxi � �Þðxi � �Þ>U; ð1Þ

where U is a matrix consisting of k dominant eigenvectors.

From this formulation, one can see that the standard PCA

can be viewed as a task of determining a subspace where

the projected data has the largest variation.
Alternatively, one can approach the PCA problem as

minimizing the data reconstruction error, i.e.

min
U2IRp�k;kUk¼I

JðUÞ ¼
Xn
i¼1

kðxi � �Þ �UU>ðxi � �Þk2; ð2Þ

where U>ðxi � �Þ determines the optimal coefficients to

weight each principal directions when reconstructing the

approximated version of (xi � �). Generally, the problem in

either (1) or (2) can be solved by deriving an eigenvalue

decomposition problem of the covariance data matrix, i.e.

��AU ¼ U�; ð3Þ

where

��A ¼
1

n

Xn
i¼i
ðxi � �Þðxi � �Þ> ð4Þ

is the covariance matrix, � is the global mean. Each column

of U represents an eigenvector of ��A, and the correspond-

ing diagonal entry in � is the associated eigenvalue. For the

purpose of dimension reduction, the last few eigenvectors

will be discarded due to their negligible contribution to the

data distribution.
While PCA requires the calculation of global mean and

data covariance matrix, we found that both of them are

sensitive to the presence of outliers. As shown in [19], if

there are outliers present in the data, dominant eigenvectors

produced by PCA will be remarkably affected by them, and

thus this will produce a significant variation of the resulting

principal directions.
We will further discuss this issue in the following

sections, and explain how we advance this property for

anomaly detection.

3.2 The Use of PCA for Anomaly Detection

In this section, we study the variation of principal

directions when we remove or add a data instance, and

how we utilize this property to determine the outlierness of

the target data point.

We use Fig. 1 to illustrate the above observation. We note
that the clustered blue circles in Fig. 1 represent normal
data instances, the red square denotes an outlier, and the
green arrow is the dominant principal direction. From
Fig. 1, we see that the principal direction is deviated when
an outlier instance is added. More specifically, the presence
of such an outlier instance produces a large angle between
the resulting and the original principal directions. On the
other hand, this angle will be small when a normal data
point is added. Therefore, we will use this property to
determine the outlierness of the target data point using the
LOO strategy.

We now present the idea of combining PCA and the
LOO strategy for anomaly detection. Given a data set A

with n data instances, we first extract the dominant
principal direction u from it. If the target instance is xt,
we next compute the leading principal direction ~ut without
xt present. To identify the outliers in a data set, we simply
repeat this procedure n times with the LOO strategy (one
for each target instance)

�� ~A~ut ¼ �~ut; ð5Þ

where ~A ¼ A n fxtg. We note that ~�~� is the mean of ~A, and
thus

�� ~A ¼
1

n� 1

X
xi2A=fxtg

ðxi � ~�~�Þðxi � ~�~�Þ>: ð6Þ

Once these eigenvectors ~ut are obtained, we use the
absolute value of cosine similarity to measure the variation
of the principal directions, i.e.

st ¼ 1� h~ut;ui
k~utkkuk

����
����: ð7Þ

This st can be considered as a “score of outlierness,” which
indicates the anomaly of the target instance xt. We note that
st can be also viewed as the influence of the target instance
in the resulting principal direction, and a higher st score
(closer to 1) means that the target instance is more likely to
be an outlier. For a target instance, if its st is above some
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instance on the principal directions.



threshold, we then identify this instance as an outlier. We
refer to this process as a decremental PCA with LOO scheme
for anomaly detection.

In contrast with decremental PCA with the LOO
strategy, we also consider the use of adding/duplicating a
data instance of interest when applying PCA for outlier
detection. This setting is especially practical for streaming
data anomaly detection problems. To be more precise, when
receiving a new target instance xt, we solve the following
PCA problem

�� ~A~ut ¼ �~ut; ð8Þ

where ~A ¼ A [ fxtg. Again, ~� is the mean of ~A, and the
covariance matrix can be calculated as

�� ~A ¼
1

nþ 1

X
xi2A

ðxi � ~�~�Þðxi � ~�~�Þ>

þ 1

nþ 1
ðxt � ~�~�Þðxt � ~�~�Þ>:

ð9Þ

After deriving the principal direction ~ut of ~A, we apply (7)
and calculate the score st, and the outlierness of that target
instance can be determined accordingly. This strategy is
also preferable for online anomaly detection applications, in
which we need to determine whether a newly received data
instance (viewed as a target instance) is an outlier. If the
recently received data points are normal ones, adding such
instances will not significantly affect the principal directions
(and vice versa). While one might argue that it might not be
sufficient to simply use the variation of the principal
direction to evaluate the anomaly of the data, we will
explain in the next section why our oversampling PCA
alleviates this problem and makes the online anomaly
detection problem solvable.

It is worth noting that if an outlier instance is far away
from the data cloud (of normal data instances) but along the
direction of its dominant eigenvector, our method will not
be able to identify such anomaly. It is worth pointing out
that, such an outlier actually indicates the anomaly in most
(if not all) of the feature attributes. This means that, most of
the feature attributes of this instance are way beyond the
normal range/distribution (in the same scale) of each
feature variable. As a result, the anomaly of such a data
input can be easily detected by simple outlier detection
methods such as single feature variable thresholding. For
example, one can calculate the mean and standard devia-
tion of the normal data instances projected onto the
dominant eigenvector. For an input data point, if its
projected coefficient onto this eigenvector is beyond two
or three times of the standard deviation (i.e., away from
95.45 or 99.73 percent of normal data instances), it will be
flagged as an outlier.

We would also like to point out that, such an outlier
instance might not be presented in practical outlier
detection scenarios due to the violation of system limita-
tions. Taking network traffic/behavior anomaly detection
for example, one might consider power, bandwidth,
capacity (data rates), and other parameters of a router/
switch as the features to be observed. If a data instance is far
away from the normal data cloud but along its principal
direction, we will have most of these router parameters
simultaneously above their normal ranges, while some of

them might even exceed their physical limitations. There-
fore, the anomaly of this input will be easily detected by
system designs and does not require a more advanced
outlier detection method like ours.

4 OVERSAMPLING PCA FOR ANOMALY DETECTION

For practical anomaly detection problems, the size of the
data set is typically large, and thus it might not be easy to
observe the variation of principal directions caused by the
presence of a single outlier. Furthermore, in the above PCA
framework for anomaly detection, we need to perform
n PCA analysis for a data set with n data instances in a
p-dimensional space, which is not computationally feasible
for large-scale and online problems. Our proposed over-
sampling PCA (osPCA) together with an online updating
strategy will address the above issues, as we now discuss.

In Section 4.1, we introduce our osPCA, and discuss how
and why we are able to detect the presence of abnormal
data instances according to the associated principal direc-
tions, even when the size of data is large. In Section 4.2, the
well-known power method [20] is applied to determine the
principal direction without the need to solve each eigenva-
lue decomposition problem. While this power method
alleviates the computation cost in determining the principal
direction as verified in our previous work in [19], we will
discuss its limitations and explain why the use of power
method is not practical in online settings. In Section 4.3, we
present a least squares approximation of our osPCA,
followed by the proposed online updating algorithm which
is able to solve the online osPCA efficiently.

4.1 Oversampling Principal Components Analysis
(osPCA)

As mentioned earlier, when the size of the data set is large,
adding (or removing) a single outlier instance will not
significantly affect the resulting principal direction of the
data. Therefore, we advance the oversampling strategy and
present an oversampling PCA (osPCA) algorithm for large-
scale anomaly detection problems.

The proposed osPCA scheme will duplicate the target
instance multiple times, and the idea is to amplify the effect
of outlier rather than that of normal data. While it might not
be sufficient to perform anomaly detection simply based on
the most dominant eigenvector and ignore the remaining
ones, our online osPCA method aims to efficiently
determine the anomaly of each target instance without
sacrificing computation and memory efficiency. More
specifically, if the target instance is an outlier, this over-
sampling scheme allows us to overemphasize its effect on
the most dominant eigenvector, and thus we can focus on
extracting and approximating the dominant principal
direction in an online fashion, instead of calculating
multiple eigenvectors carefully.

We now give the detailed formulation of the osPCA.
Suppose that we oversample the target instance ~n times, the
associated PCA can be formulated as follows

�� ~A~ut ¼ �~ut; ð10Þ

where ~A ¼ A [ fxt; . . . ;xtg 2 IRðnþ~nÞ�p. The mean of ~A is ~�~�,
and thus
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�� ~A ¼
1

nþ ~n

X
xi2A

xix
>
i þ

1

nþ ~n

X~n

i¼1

xtx
>
t � ~�~��~�~��>

¼ 1

1þ r
AA>

n
þ r

1þ rxtx
>
t � ~�~�~�~�~�~�~�~�>:

ð11Þ

In this osPCA framework, we will duplicate the target
instance ~n times (e.g., 10 percent of the size of the original
data set), and we will compute the score of outlierness st of
that target instance, as defined in (7). If this score is above
some predetermined threshold, we will consider this
instance as an outlier. With this oversampling strategy, if
the target instance is a normal data (see Fig. 2 a for
example), we will observe negligible changes in the
principal directions and the mean of the data. The case of
oversampling an abnormal instance is shown in Fig. 2b. It is
worth noting that the use of osPCA not only determines
outliers from the existing data, it can be applied to anomaly
detection problems with streaming data or those with
online requirements, as we discuss later.

Clearly, the major concern is the computation cost of

calculating or updating the principal directions in large-
scale problems. We will discuss this issue and propose our
solutions in the following sections.

4.2 Effects of the Oversampling Ratio on osPCA

Using the proposed osPCA for anomaly detection, the

oversampling ratio r in (11) will be the parameter for the
user to be determined. We note that, since there is no

training or validation data for practical anomaly detection
problems, one cannot perform cross-validation or similar

strategies to determine this parameter in advance.
When applying our osPCA to detect the presence of

outliers, calculating the principal direction of the updated

data matrix (with oversampled data introduced) can be
considered as the task of eigenvalue decomposition of the
perturbed covariance matrix. Theoretically, the degree of

perturbation is dependent on the oversampling ratio r, and

the sensitivity of deriving the associated dominant eigen-
vector can be studied as follows:

To discuss such perturbation effects, let A ¼ ½x>1 ;
x>2 ; . . . ; x>n � 2 IRn�p as the data matrix, where each row
represents a data instance in a p dimensional space, and n is
the number of the instances. For at target instance xt
oversampled ~n times, we can derive the resulting covar-
iance matrix. Let � ¼ ~n

nþ~n , we calculate the perturbed data
covariance matrix �� as

�� ¼
1

nþ ~n

(Xn
i¼1

ðxi � ���Þðxi � ���Þ
>

þ
X~n

i¼1

ðxt � ���Þðxt � ���Þ
>
)

¼ 1

nþ ~n

(Xn
i¼1

ðxi � ��Þðxi � ��Þ>

þ
X~n

i¼1

ðxt � ��Þðxt � ��Þ>
)
þOð�2Þ

¼ ð1� �Þ�þ ��xt þOð�2Þ:

ð12Þ

Note that k��� � ��k ¼ �kxt � ��k ¼ Oð�Þ and kð��� � ��Þð��� �
��Þ>k ¼ Oð�2Þ. Based on (12), we can observe that a normal
data instance (i.e., close to �) would make �! 0 and
k�xtk ! 0, and thus the perturbed covariance matrix �� will
not be remarkably different from the original one �. On the
other hand, if an outlier instance (i.e., far away from �) is a
target input to be oversampled, �� will be significantly
affected by �xt (due to a larger �), and thus the derived
principal direction will also be remarkably different from
the one without noteworthy perturbation. More details of
this study, which focuses on the effects of the perturbed
data on the resulting covariance matrix, can be found in [21]
(see Lemma 2.1 in [21]).

The above theoretical analysis supports our use of the
variation of the dominant eigenvector for anomaly detec-
tion. Using (12), while we can theoretically estimate the
perturbed eigenvector u� with a residual for an over-
sampled target instance, such an estimation is associated
with the residual term Oð�2Þ, and � is a function of ~n (and
thus a function of the oversampling ratio r). Based on (12),
while a larger r values will more significantly affect the
resulting principal direction, the presence of the residual
term prevents us from performing further theoretical
evaluation or comparisons (e.g., threshold determination).
Nevertheless, one can expect to detect an outlier instance
using the above strategy. No matter how larger the
oversampling ratio r is, the presence of outlier data will
affect more on the dominant eigenvector than a normal
instance does. In practice, we also find that our anomaly
detection performance is not sensitive to the choice of the
oversampling ratio r (see Section 5.3).

4.3 The Power Method for osPCA

Typically, the solution to PCA is determined by solving an
eigenvalue decomposition problem. In the LOO scenario,
one will need to solve the PCA and to calculate the principal
directions n times for a data set with n instances. This is
very computationally expensive, and prohibits the practical
use of such a framework for anomaly detection.
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Fig. 2. The effect of an oversampled normal data or outlier instance on
the principal direction.



It can be observed that, in the PCA formulation with the
LOO setting, it is not necessary to recompute the covariance
matrices for each PCA. This is because when we duplicate a
data point of interest, the difference between the updated
covariance matrix and the original one can be easily
determined. Let Q ¼ AA>

n be the outer product matrix and
xt be the target instance (to be oversampled), we use the
following technique to update the mean ~�~� and the
covariance matrix � ~A

~�~� ¼ ��þ r � xt
1þ r ; ð13Þ

and

�� ~A ¼
1

1þ rQþ r

1þ rxtx
>
t � ~�~�~�~�>; ð14Þ

where r < 1 is the parameter controlling the size when
oversampling xt. From (14), we can see that one only needs
to keep the matrix Q when calculating �� ~A, and there is no
need to re-compute the entire covariance matrix in this
LOO framework.

Once the update covariance matrix �� ~A is obtained, the
principal directions can be obtained by solving the
eigenvalue decomposition problem of each of the matrices
�� ~A. To alleviate this computation load, we apply the well-
known power method [20], which is a simple iterative
algorithm and does not compute matrix decomposition.
This method starts with an initial normalized vector u0,
which could be an approximation of the dominant
eigenvector or a nonzero random vector. Next, the new
ukþ1 (a better approximated version of the dominant
eigenvector) is updated by

ukþ1 ¼
�� ~Auk
k�� ~Aukk

: ð15Þ

The sequence {uk} converges under the assumption that the
dominant eigenvalue of �� ~A is markedly larger than others.
From (15), it is clear that the power method only requires
matrix multiplications, not decompositions; therefore, the
use of the power method can alleviate the computation cost
in calculating the dominant principal direction.

We note that, to avoid keeping the data covariance
matrix �� ~A 2 IRp�p during the entire updating process, we
can first compute y ¼ Auk�1 and then calculate uk ¼ y>A.
As a result, when applying this technique for the power
method, we do not need to compute and store the
covariance matrix. However, as can be seen from the above
process, we still need to keep the data matrix A (with the
memory cost Oðn� pÞ) for the matrix-vector multiplication.
Moreover, this multiplication needs to be performed for
each iteration of the power method.

In our anomaly detection framework, we only consider
the first principal component and evaluate its variation in
computing the score of outlierness of each sample. One
could use the deflation process [20] if other principal
directions besides the dominant one need to be determined.

4.4 Least Squares Approximation and Online
Updating for osPCA

In the previous section, we apply a matrix update technique
in (14) and the power method to solve our oversampling

PCA for outlier detection. However, the major concern of
the power method is that it does not guarantee a fast
convergence, even if we use prior principal directions as its
initial solutions. Moreover, the use of power method still
requires the user to keep the entire covariance matrix,
which prohibits the problems with high-dimensional data
or with limited memory resources. Inspired by [22], [23], we
propose an online updating algorithm to calculate the
dominant eigenvector when oversampling a target instance.
We now discuss the details of our proposed algorithm.

Recall that, in Section 3, PCA can be considered as a
problem to minimize the reconstruction error

min
U2IRp�k;U>U¼I

JðUÞ ¼
Xn
i¼1

k�xi �UU>�xik2; ð16Þ

where �xi is (xi � �), U is the matrix consisting of
k dominant eigenvectors, and UU>�xi is the reconstructed
version of �xi using the eigenvectors in U. The above
reconstruction error function can be further approximated
by a least squares form [24]

min
U2IRp�k;U>U¼I

JlsðUÞ ¼
Xn
i¼1

k�xi �UU0>�xik2

¼
Xn
i¼1

k�xi �Uyik2;

ð17Þ

where U0 is the approximation of U, and thus yi ¼ U0>�xi 2
IRk is the approximation of the projected data U>�xi in the
lower k dimensional space. Based on this formulation, the
reconstruction error has a quadratic form and is a function
of U, which can be computed by solving a least squares
problem. The trick for this least squares problem is the
approximation of U>�xi by yi ¼ U0>�xi. In an online setting,
we approximate each U>i �xi by its previous solution U>i�1�xi
as follows

min
Ut2IRp�k;U>U¼I

JlsðUtÞ ¼
Xt
i¼1

k�xi �Uiyik2; ð18Þ

where yi ¼ U>i�1�xi. This projection approximation provides
a fast calculation of principle directions in our oversam-
pling PCA. Linking this least squares form to our online
oversampling strategy, we have

min
~U2IRp�k;U>U¼I

Jlsð ~UÞ �
Xn
i¼1

k�xi � ~Uyik2 þ k�xt � ~Uytk2: ð19Þ

In (19), yi and yt are approximated by U>�xi and U>�xt,
respectively, where U is the solution of the original PCA
(which can be calculated in advance), and �xt is the target
instance. When oversampling the target instance ~n times,
we approximate the solution ~U by solving the following
optimization problem

min
~U2IRp�k;U>U¼I

Jlsð ~UÞ �
Xn
i¼1

k�xi � ~Uyik2 þ ~nk�xt � ~Uytk2:

ð20Þ

Equivalently, we convert the above problem into the
following form
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min
~U2IRp�k;U>U¼I

Jlsð ~UÞ � �
Xn
i¼1

k�xi � ~Uyik2

 !
þ k�xt � ~Uytk2;

ð21Þ

where � can be regarded as a weighting factor to suppress
the information from existing data. Note that the relation
between � and the oversampled number ~n is � ¼ 1

~n ¼ 1
nr ,

where r is the ratio of the oversampled number over the
size of the original data set. To improve the convergence
rate, we use the solution of the original PCA (without
oversampling data) as the initial projection matrix in (21). If
only the dominant principal direction (i.e., k ¼ 1) is of
concern, we calculate the solution of ~u by taking the
derivative of (21) with respect to ~u, and thus we have

~u ¼ �ð
Pn

i¼1 yi�xiÞ þ yt�xt
�ð
Pn

i¼1 y
2
i Þ þ y2

t

: ð22Þ

Compared with (10) and (15), (22) provides an effective
and efficient updating technique for osPCA, which allows us
to determine the principal direction of the data. This
updating process makes anomaly detection in online or
streaming data settings feasible. More importantly, since we
only need to calculate the solution of the original PCA offline,
we do not need to keep the entire covariance or outer matrix
in the entire updating process. Once the final principal
direction is determined, we use the cosine similarity to
determine the difference between the current solution and
the original one (without oversampling), and thus the score
of outlierness for the target instance can be determined
accordingly (as discussed in Section 3.2). The pseudocode of
our online osPCA with the LOO strategy for outlier detection
is described in Algorithm 1. It is worth noting that we only
need to compute xproj and y once in Algorithm 1, and thus we
can further reduce the computation time when calculating ~u.

Algorithm 1. Anomaly Detection via Online Oversampling

PCA

Require: The data matrix A ¼ ½x>1 ; x>2 ; . . . ; x>n � and the

weight �.
Ensure: Score of outlierness s ¼ ½s1s2 . . . sn�. If si is higher

than a threshold, xi is an outlier.

Compute first principal direction u by using (18);

Keep �xproj ¼
Pn

j¼1 yj�xj and y ¼
Pn

j¼1 y
2
j in (22);

for i ¼ 1 to n do

~u ��xprojþyi�xi
�yþy2

i

by (18)

si  1� j h ~w;wik~ukkuk j by (7)

end for

Table 1 compares computation complexity and memory
requirements of several anomaly detection methods,

including fast ABOD [5], LOF [2], our previous osPCA
using power method [19], and the proposed online osPCA.
In this table, we list computation and memory costs of each
method when determining the outlierness of a newly
received data instance (i.e., in a streaming data fashion).
For ABOD and LOF, the memory requirements are both
OðnpÞ since they need to store the entire data matrix for the
k nearest neighbor search (recall that n and p are the size
and dimensionality of the data, respectively). The time
complexities for ABOD and LOF are Oðn2pþ k2pÞ and
Oðn2pþ kÞ, in which Oðn2pÞ is required for finding
k nearest neighbors and thus is the bottleneck of the
computation complexity.

As for the power method, it needs to perform (15)
iteratively with m times, its time complexity in the online
detection procedure for outlier detection is Oðnp2 þmp2Þ
(we haveOðnp2Þ for deriving the updated covariance matrix,
and Oðmp2Þ for the implementation of the power method).
Practically, we reduce the above complexity to Oðmp2Þ by
applying the covariance update trick in (14). As discussed in
Section 4.3, the time complexity might be OðmnpÞ if we
choose to store the data matrix instead of keeping the
covariance matrix during the updating process. As a result,
the associated memory requirement will be reduced from
Oðp2Þ to OðnpÞ. Finally, when using our online updating
technique for osPCA, we simply update the principal
direction by (22) and result in OðpÞ for both computation
complexity and memory requirement, respectively.

5 EXPERIMENTAL RESULTS

5.1 Anomaly Detection on Synthetic and Real-World
Data

5.1.1 Two-Dimensional Synthetic Data Set

To verify the feasibility of our proposed algorithm, we
conduct experiments on both synthetic and real data sets.
We first generate a two-dimensional synthetic data, which
consists of 190 normal instances (shown in blue dots in
Fig. 3a) and 10 deviated instances (red stars in Fig. 3a).
The normal data points are sampled from the following
multivariate normal distribution

x � Nð��;��Þ; ð23Þ

where

��½ � ¼ �1

�2

� �
¼ 0

0

� �
and �� ¼ 5 2

2 1

� �
:

We note that each deviated data point is sampled from a
different multivariate normal distribution Nð��d;��Þ, where
��d ¼ ½�d1; �d2�

>, �d1 and �d2 are randomly sampled from the
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TABLE 1
Comparisons of Our Proposed osPCA (with Power Method and the Proposed Online Updating Technique), Fast ABOD, and LOF

for Online Anomaly Detection in Terms of Computational Complexity and Memory Requirements

Note that n and p are the size and dimensionality of data, respectively. The power method requires the number of iterations m, and the number of
nearest neighbors k is used in both ABOD and LOF.



range ½�5; 5�. We apply our online osPCA algorithm on the
entire data set, and rank the score of outlierness (i.e., st in
Section 3.2) accordingly. We aim to identify the top 5 percent
of the data as deviated data, since this number is consistent
with the number of outliers we generated. The scores of
outlierness of all 200 data points are shown in Fig. 3b. It is
clear that the scores of the deviated data (shown in red) are
clearly different from those of normal data, and thus all
outliers are detected by setting a proper threshold to filter
the top 5 percent of the data. Note that we mark the filtered
data points with black circles in Fig. 3a. This initial result on
a simple synthetic data set shows the effectiveness of our
proposed algorithm.

5.1.2 Real-World Data Sets

Next, we evaluate the proposed method on six real data
sets. The detailed information for each data set is presented
in Table 2. The pendigits , pima, and adult data sets are
from the UCI repository of machine learning data archive
[25]. The splice and cod-rna are available at http://
www.csie.ntu.edu.tw/cjlin/libsvmtools/data sets/, and the
KDD intrusion detection data set is available at http://
kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. To
compare the anomaly detection results of our proposed
method with other methods, we implement decremental

PCA with the LOO strategy, osPCA with power method
[19], LOF [2] and fast ABOD [5]. We use the area under the
ROC curve (AUC) [26] to evaluate the detection perfor-
mance (i.e., the larger the AUC value, the better the
detection performance). For the pendigits data set, we
consider the digit “0” as the normal data instances (a total of
780 instances) and use other digits “1” to “9” (20 data
samples randomly chosen for each category) as the outliers
to be detected. For other data sets for binary classification in
Table 2, we consider the data from the majority class as
normal data and randomly select 1 percent data instances
from the minority class as outlier samples. In all our
experiments, we repeat the procedure with 5 random trials.
We present the average AUC score and runtime estimates
for each data set, as shown in Tables 3, 4, and 5. We note
that, for osPCA with power method or our online updating
technique, we vary the oversampling ratio r for the target
instance from 0.1 to 0.2 and report the best performance; for
LOF and fast ABOD, we choose the parameter k (number of
nearest neighbors) which produces the best performances
for fair comparisons.

From these three tables, we observe that our proposed
online osPCA consistently achieved better or comparable
results, while ours is the most computationally efficient one
among the methods considered. By comparing the first and
the second (or third) columns in Tables 3 and 4, it is
interesting to note that the AUC score of osPCA is
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Fig. 3. Outlier detection results with the two-dimensional synthetic data.

TABLE 2
Description of Data Sets

TABLE 3
AUC Scores of Decremental PCA (dPCA), Oversampling PCA (osPCA) with Power Method, Our osPCA with Online Updating

Algorithm, Fast ABOD, and LOF on the pendigits data set

TABLE 4
AUC Scores of dPCA, osPCA with Power Method, Our osPCA with Online Updating Algorithm, Fast ABOD, and LOF on pima,

splice, adult, and cod-rna Data Sets



significantly better than that of dPCA (without oversam-
pling strategy). This confirms that the oversampling
strategy indeed increases the outlierness of rare but
abnormal data, and thus this strategy makes anomaly
detection in large-scale problems easier. Comparing the
second and the third columns, we note that the performance
of our proposed online osPCA is comparable to that of
osPCA with power method. This observation is consistent
with our discussion in Section 4 that using the proposed
online approximation technique, our online osPCA is able to
produce the approximated version of the principal direction
without sacrificing computation and memory requirements.

For the KDD intrusion detection data set, there are four
categories of attacks to be considered as outliers:

. DOS: denial-of-service.

. R2L: unauthorized access from a remote machine.

. U2R: unauthorized access to local superuser (root)
privileges.

. Probe: surveillance and other probing.

We use binary and continuous features (38 features) and
focus on the 10 percent training subset under the tcp
protocol. The size of normal data is 76,813. In this
experiment, data points from four different attacks are
considered as outliers. Table 6 shows detection performance
(in terms of AUC) and the numbers of test samples of each
attack category. Only LOF is used for comparison, since it is
shown to outperform the ABOD method in Tables 3 and 4.
From this table, we see that our online osPCA again
achieved comparable performance with LOF, while the LOF
required significant longer computation time. Nevertheless,
the effectiveness of our online osPCA is verified by the
experiments conducted in this section, and it is clear that
our approach is the most computationally efficient one
among the methods we considered for comparison.

5.2 Online Anomaly Detection For Practical
Scenario

For online anomaly detection applications such as spam
mail filtering, one typically designs an initial classifier using
the training normal data, and this classifier is updated by
the newly received normal or outlier data accordingly.

However, in practical scenarios, even the training normal
data collected in advance can be contaminated by noise or
incorrect data labeling. To construct a simple yet effective
model for online detection, one should disregard these
potentially deviated data instances from the training set of
normal data (it is not practical to collect training outlier data
anyway). The flowchart of our online detection procedure is
shown in Fig. 4. As can be seen in Fig. 4, there are two
phases required in this framework: Data cleaning and online
detection. In the data cleaning phase, our goal is to filter out
the most deviated data using our osPCA before performing
online anomaly detection. This data cleaning phase is done
offline, and the percentage of the training normal data to be
disregarded can be determined by the user. In our
implementation, we choose to disregard 5 percent of the
training normal data after this data cleaning process, and we
use the smallest score of outlierness (i.e., st) of the remaining
training data instances as the threshold for outlier detection.
More specifically, in the second phase of online detection,
we use this threshold to determine the anomaly of each
received data point. If st of a newly received data instance is
above the threshold, it will be identified as an outlier;
otherwise, it will be considered as a normal data point, and
we will update our osPCA model accordingly.

In the online detection phase, we use the dominant
principal direction of the filtered training normal data

1468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 7, JULY 2013

TABLE 6
Outlier Detection Results on the KDD Intrusion Detection Data Set

Note that we did not report the standard deviation of AUC score for the u2r case because the total number of instances in u2r attacks is 49, which is
not enough to perform five random trials.

Fig. 4. The framework of our online anomaly detection.

TABLE 5
Average CPU Time (in seconds) for Anomaly Detection Using dPCA, osPCA with Power Method, Our osPCA

with Online Updating Algorithm, Fast ABOD, and LOF



extracted in the data cleaning phase to detect each arriving
target instance. We note that, during the entire online
detection phase, we only need to keep this p-dimensional
eigenvector, and thus the memory requirement is only OðpÞ.
To determine the outlierness of a newly received instance,
we apply the osPCA with the proposed online updating
technique to evaluate the variation of the updated principal
direction (as discussed in Section 4.3). If the resulting st in
(7) is above the threshold determined previously, the target
instance will be detected as an outlier; otherwise, we will
consider this input as a normal data instance and update
the principal direction accordingly (also in the same online
updating fashion).

We now our proposed osPCA for online anomaly
detection using the KDD data set. We first extract 2,000
normal instances points from the data set for training. In the
data cleaning phase, we filter the top 5 percent (100 points)
to avoid noisy training data or those with incorrect class
labels. Next, we extract the dominant principal direction
using our online osPCA, and we use this principal direction
to calculate the score of outlierness of each receiving test
input. In this online testing phase, the numbers of normal
data and attacks from each category are 2,000 and 25 (i.e.,
100 attacks in total), respectively. Since the threshold for
anomaly detection is determined by the data cleaning
phase, we use threshold and report the true and false
positive rates on the receiving test data instances.

To verify the effectiveness of online osPCA with the
proposed online updating technique in such online detection
problems, we compared our online osPCA with osPCA with
power method (i.e., the osPCA which receives a target
instance will recalculate the principal direction, and use the
above threshold to perform anomaly detection). We note
that, we do expect that the latter case will provide marginally
better detection results, since it will store the entire data and
update the mean accordingly. However, the latter would
require higher computational and memory costs, and the
online version of the proposed osPCA is much more efficient
in terms of both requirements.

Table 7 lists the performance of online anomaly detection
using our previous osPCA with power method [19] and the
proposed online osPCA. We see that at (about) the same
true positive rate at 91.3 percent, our online osPCA
achieved a slightly larger false positive rate at 6.9 percent
(versus 4.2 percent); moreover, the proposed online osPCA
performs at least 1,000 times faster than that using power
method. This again confirms that our online osPCA
approximates the solution of osPCA well while significantly
reducing the computation time. Therefore, our proposed
method is preferable to online anomaly detection problems.
It is worth noting that we do not explicitly compare our
online osPCA to the incremental version of LOF [17], since
Section 5.2 already verifies that the osPCA indeed achieves

better or comparable performance with significantly less
computation time than methods like standard LOF and fast
ABOD. While the incremental LOF can at most produce
comparable performances as the standard LOF does, LOF-
based methods have been shown to be less efficient than
osPCA in prior discussions. Finally, we conclude that the
above observations not only confirm the effectiveness and
efficiency of our online osPCA, they also imply that our
approach outperforms incremental versions of LOF or
ABOD methods in terms of both detection performance
and computation time.

5.3 Sensitivity Tests of the Oversampling Ratio

In the above experiments, we varied the oversampling ratio
r between 0.1 and 0.2 for the target instance, and the best
results with the smallest rwere presented. To verify that this
choice will not significantly affect the performance of
anomaly detection, we perform additional experiments with
different r values in the range between 0.01 and 0.6 for each
data set. We present the AUC values with different ratios for
all data sets in Fig. 5 for comparisons. From this figure, we
see that the AUC results were comparable for different
oversampling ratios for most cases. From these observa-
tions, we do not find that the choice of r will remarkably
affect the use of osPCA for anomaly detection. Therefore, a
smaller r (e.g., r between 0.1 and 0.2 as suggested) is
typically preferable due to its computational efficiency.

6 CONCLUSION

In this paper, we proposed an online anomaly detection
method based on oversample PCA. We showed that the
osPCA with LOO strategy will amplify the effect of outliers,
and thus we can successfully use the variation of the
dominant principal direction to identify the presence of rare
but abnormal data. When oversampling a data instance, our
proposed online updating technique enables the osPCA to
efficiently update the principal direction without solving
eigenvalue decomposition problems. Furthermore, our
method does not need to keep the entire covariance or data
matrices during the online detection process. Therefore,
compared with other anomaly detection methods, our
approach is able to achieve satisfactory results while
significantly reducing computational costs and memory
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TABLE 7
Online Anomaly Detection Results on the KDD Intrusion

Detection Data Set

Note that TP and FP indicate true and false positive rates, respectively.
The runtime estimate reports the testing time in determining the anomaly
of a newly received target instance.

Fig. 5. Effects of the oversampling ratio r on the AUC performance for
different data sets.



requirements. Thus, our online osPCA is preferable for
online large-scale or streaming data problems.

Future research will be directed to the following anomaly
detection scenarios: normal data with multiclustering
structure, and data in a extremely high dimensional space.
For the former case, it is typically not easy to use linear
models such as PCA to estimate the data distribution if there
exists multiple data clusters. Moreover, many learning
algorithms encounter the “curse of dimensionality” problem
in a extremely high-dimensional space. In our proposed
method, although we are able to handle high-dimensional
data since we do not need to compute or to keep the
covariance matrix, PCA might not be preferable in estimat-
ing the principal directions for such kind of data. Therefore,
we will pursue the study of these issues in our future work.
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