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Secure Mining of Association Rules in
Horizontally Distributed Databases

Tamir Tassa

Abstract—We propose a protocol for secure mining of association rules in horizontally distributed databases. The current leading
protocol is that of Kantarcioglu and Clifton [18]. Our protocol, like theirs, is based on the Fast Distributed Mining (FDM) algorithm of
Cheung et al. [8], which is an unsecured distributed version of the Apriori algorithm. The main ingredients in our protocol are two novel
secure multi-party algorithms — one that computes the union of private subsets that each of the interacting players hold, and another
that tests the inclusion of an element held by one player in a subset held by another. Our protocol offers enhanced privacy with respect
to the protocol in [18]. In addition, it is simpler and is significantly more efficient in terms of communication rounds, communication cost
and computational cost.

Index Terms—Privacy Preserving Data Mining; Distributed Computation; Frequent Itemsets; Association Rules.
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1 INTRODUCTION

We study here the problem of secure mining of association

rules in horizontally partitioned databases. In that setting, there

are several sites (or players) that hold homogeneous databases,

i.e., databases that share the same schema but hold information

on different entities. The goal is to find all association rules

with support at least s and confidence at least c, for some

given minimal support size s and confidence level c, that

hold in the unified database, while minimizing the information

disclosed about the private databases held by those players.

The information that we would like to protect in this context is

not only individual transactions in the different databases, but

also more global information such as what association rules

are supported locally in each of those databases.

That goal defines a problem of secure multi-party com-

putation. In such problems, there are M players that hold

private inputs, x1, . . . , xM , and they wish to securely compute

y = f(x1, . . . , xM ) for some public function f . If there

existed a trusted third party, the players could surrender to him

their inputs and he would perform the function evaluation and

send to them the resulting output. In the absence of such a

trusted third party, it is needed to devise a protocol that the

players can run on their own in order to arrive at the required

output y. Such a protocol is considered perfectly secure if

no player can learn from his view of the protocol more than

what he would have learnt in the idealized setting where the

computation is carried out by a trusted third party. Yao [32]

was the first to propose a generic solution for this problem

in the case of two players. Other generic solutions, for the

multi-party case, were later proposed in [3], [5], [15].

In our problem, the inputs are the partial databases, and

the required output is the list of association rules that hold in

the unified database with support and confidence no smaller
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than the given thresholds s and c, respectively. As the above

mentioned generic solutions rely upon a description of the

function f as a Boolean circuit, they can be applied only

to small inputs and functions which are realizable by simple

circuits. In more complex settings, such as ours, other methods

are required for carrying out this computation. In such cases,

some relaxations of the notion of perfect security might be

inevitable when looking for practical protocols, provided that

the excess information is deemed benign (see examples of such

protocols in e.g. [18], [28], [29], [31], [34]).

Kantarcioglu and Clifton studied that problem in [18] and

devised a protocol for its solution. The main part of the proto-

col is a sub-protocol for the secure computation of the union

of private subsets that are held by the different players. (The

private subset of a given player, as we explain below, includes

the itemsets that are s-frequent in his partial database.) That

is the most costly part of the protocol and its implementation

relies upon cryptographic primitives such as commutative

encryption, oblivious transfer, and hash functions. This is also

the only part in the protocol in which the players may extract

from their view of the protocol information on other databases,

beyond what is implied by the final output and their own input.

While such leakage of information renders the protocol not

perfectly secure, the perimeter of the excess information is

explicitly bounded in [18] and it is argued there that such

information leakage is innocuous, whence acceptable from a

practical point of view.

Herein we propose an alternative protocol for the secure

computation of the union of private subsets. The proposed

protocol improves upon that in [18] in terms of simplicity and

efficiency as well as privacy. In particular, our protocol does

not depend on commutative encryption and oblivious transfer

(what simplifies it significantly and contributes towards much

reduced communication and computational costs). While our

solution is still not perfectly secure, it leaks excess information

only to a small number (three) of possible coalitions, unlike the

protocol of [18] that discloses information also to some single

players. In addition, we claim that the excess information
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that our protocol may leak is less sensitive than the excess

information leaked by the protocol of [18].

The protocol that we propose here computes a parameter-

ized family of functions, which we call threshold functions,

in which the two extreme cases correspond to the problems

of computing the union and intersection of private subsets.

Those are in fact general-purpose protocols that can be used

in other contexts as well. Another problem of secure multi-

party computation that we solve here as part of our discussion

is the set inclusion problem; namely, the problem where Alice

holds a private subset of some ground set, and Bob holds an

element in the ground set, and they wish to determine whether

Bob’s element is within Alice’s subset, without revealing to

either of them information about the other party’s input beyond

the above described inclusion.

1.1 Preliminaries
1.1.1 Definitions and notations
Let D be a transaction database. As in [18], we view D as a

binary matrix of N rows and L columns, where each row is

a transaction over some set of items, A = {a1, . . . , aL}, and

each column represents one of the items in A. (In other words,

the (i, j)th entry of D equals 1 if the ith transaction includes

the item aj , and 0 otherwise.) The database D is partitioned

horizontally between M players, denoted P1, . . . , PM . Player

Pm holds the partial database Dm that contains Nm = |Dm|
of the transactions in D, 1 ≤ m ≤ M . The unified database

is D = D1 ∪ · · · ∪ DM , and it includes N :=
∑M

m=1 Nm

transactions.

An itemset X is a subset of A. Its global support, supp(X),
is the number of transactions in D that contain it. Its local

support, suppm(X), is the number of transactions in Dm that

contain it. Clearly, supp(X) =
∑M

m=1 suppm(X). Let s be a

real number between 0 and 1 that stands for a required support

threshold. An itemset X is called s-frequent if supp(X) ≥
sN . It is called locally s-frequent at Dm if suppm(X) ≥
sNm.

For each 1 ≤ k ≤ L, let F k
s denote the set of all k-itemsets

(namely, itemsets of size k) that are s-frequent, and F k,m
s be

the set of all k-itemsets that are locally s-frequent at Dm,

1 ≤ m ≤ M . Our main computational goal is to find, for a

given threshold support 0 < s ≤ 1, the set of all s-frequent

itemsets, Fs :=
⋃L

k=1 F
k
s . We may then continue to find all

(s, c)-association rules, i.e., all association rules of support at

least sN and confidence at least c. (Recall that if X and Y
are two disjoint subsets of A, the support of the corresponding

association rule X ⇒ Y is supp(X ∪ Y ) and its confidence

is supp(X ∪ Y )/supp(X).)

1.1.2 The Fast Distributed Mining algorithm
The protocol of [18], as well as ours, are based on the

Fast Distributed Mining (FDM) algorithm of Cheung et al.

[8], which is an unsecured distributed version of the Apriori

algorithm. Its main idea is that any s-frequent itemset must

be also locally s-frequent in at least one of the sites. Hence,

in order to find all globally s-frequent itemsets, each player

reveals his locally s-frequent itemsets and then the players

check each of them to see if they are s-frequent also globally.

The FDM algorithm proceeds as follows:

(1) Initialization: It is assumed that the players have already

jointly calculated F k−1
s . The goal is to proceed and

calculate F k
s .

(2) Candidate Sets Generation: Each player Pm computes

the set of all (k − 1)-itemsets that are locally frequent in

his site and also globally frequent; namely, Pm computes

the set F k−1,m
s ∩ F k−1

s . He then applies on that set the

Apriori algorithm in order to generate the set Bk,m
s of

candidate k-itemsets.

(3) Local Pruning: For each X ∈ Bk,m
s , Pm computes

suppm(X). He then retains only those itemsets that are

locally s-frequent. We denote this collection of itemsets

by Ck,m
s .

(4) Unifying the candidate itemsets: Each player broad-

casts his Ck,m
s and then all players compute Ck

s :=⋃M
m=1 C

k,m
s .

(5) Computing local supports. All players compute the local

supports of all itemsets in Ck
s .

(6) Broadcast Mining Results: Each player broadcasts the

local supports that he computed. From that, everyone can

compute the global support of every itemset in Ck
s . Finally,

F k
s is the subset of Ck

s that consists of all globally s-

frequent k-itemsets.

In the first iteration, when k = 1, the set C1,m
s that the mth

player computes (Steps 2-3) is just F 1,m
s , namely, the set of

single items that are s-frequent in Dm. The complete FDM

algorithm starts by finding all single items that are globally

s-frequent. It then proceeds to find all 2-itemsets that are

globally s-frequent, and so forth, until it finds the longest

globally s-frequent itemsets. If the length of such itemsets is

K, then in the (K +1)th iteration of the FDM it will find no

(K + 1)-itemsets that are globally s-frequent, in which case

it terminates.

1.1.3 A running example
Let D be a database of N = 18 itemsets over a set of L = 5
items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3
players, and the corresponding partial databases are:

D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24}
D2 = {1234, 134, 23, 234, 2345}
D3 = {1234, 124, 134, 23} .

For example, D1 includes N1 = 9 transactions, the third of

which (in lexicographic order) consists of 3 items — 1, 2 and

4.

Setting s = 1/3, an itemset is s-frequent in D if it is

supported by at least 6 = sN of its transactions. In this case,

F 1
s = {1, 2, 3, 4}

F 2
s = {12, 14, 23, 24, 34}

F 3
s = {124}

F 4
s = F 5

s = ∅ ,
and Fs = F 1

s ∪F 2
s ∪F 3

s . For example, the itemset 34 is indeed

globally s-frequent since it is contained in 7 transactions of

D. However, it is locally s-frequent only in D2 and D3.
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In the first round of the FDM algorithm, the three players

compute the sets C1,m
s of all 1-itemsets that are locally

frequent at their partial databases:

C1,1
s = {1, 2, 4, 5} , C1,2

s = {1, 2, 3, 4} , C1,3
s = {1, 2, 3, 4} .

Hence, C1
s = {1, 2, 3, 4, 5}. Consequently, all 1-itemsets

have to be checked for being globally frequent; that check

reveals that the subset of globally s-frequent 1-itemsets is

F 1
s = {1, 2, 3, 4}.
In the second round, the candidate itemsets are:

C2,1
s = {12, 14, 24}

C2,2
s = {13, 14, 23, 24, 34}

C2,3
s = {12, 13, 14, 23, 24, 34} .

(Note that 15, 25, 45 are locally s-frequent at D1 but they

are not included in C2,1
s since 5 was already found to be

globally infrequent.) Hence, C2
s = {12, 13, 14, 23, 24, 34}.

Then, after veryfing global frequency, we are left with F 2
s =

{12, 14, 23, 24, 34}.
In the third round, the candidate itemsets are:

C3,1
s = {124} , C3,2

s = {234} , C3,3
s = {124} .

So, C3
s = {124, 234} and, then, F 3

s = {124}. There are no

more frequent itemsets.

1.2 Overview and organization of the paper
The FDM algorithm violates privacy in two stages: In Step

4, where the players broadcast the itemsets that are locally

frequent in their private databases, and in Step 6, where they

broadcast the sizes of the local supports of candidate itemsets.

Kantarcioglu and Clifton [18] proposed secure implementa-

tions of those two steps. Our improvement is with regard

to the secure implementation of Step 4, which is the more

costly stage of the protocol, and the one in which the protocol

of [18] leaks excess information. In Section 2 we describe

Kantarcioglu and Clifton’s secure implementation of Step 4.

We then describe our alternative implementation and proceed

to analyze the two implementations in terms of privacy and

efficiency and compare them. We show that our protocol offers

better privacy and that it is simpler and is significantly more

efficient in terms of communication rounds, communication

cost and computational cost.

In Sections 3 and 4 we discuss the implementation of

the two remaining steps of the distributed protocol: The

identification of those candidate itemsets that are globally s-

frequent, and then the derivation of all (s, c)-association rules.

In Section 5 we describe shortly an alternative protocol, that

was already considered in [9], [18], which offers full secu-

rity at enhanced costs. Section 6 describes our experimental

evaluation which illustrates the significant advantages of our

protocol in terms of communication and computational costs.

Section 7 includes a review of related work. We conclude the

paper in Section 8.

Like in [18], we assume that the players are semi-honest;

namely, they follow the protocol but try to extract as much

information as possible from their own view. (See [17], [26],

[34] for a discussion and justification of that assumption.) We

too, like [18], assume that M > 2. (The case M = 2 is

discussed in [18, Section 5]; the conclusion is that the problem

of secure computation of frequent itemsets and association

rules in the two-party case is unlikely to be of any use.)

2 SECURE COMPUTATION OF ALL LOCALLY
FREQUENT ITEMSETS

Here we discuss the secure implementation of Step 4 in

the FDM algorithm, namely, the secure computation of the

union Ck
s =

⋃M
m=1 C

k,m
s . We describe the protocol of [18]

(Section 2.1) and then our protocol (Sections 2.2–2.3). We

analyze the privacy of the two protocols in Section 2.4, their

communication cost in Section 2.5, and their computational

cost in Section 2.6.

2.1 The protocol of Kantarcioglu and Clifton for the
secure computation of all locally frequent itemsets
2.1.1 Overview
Protocol 1 is the protocol that was suggested by Kantarcioglu

and Clifton [18] for computing the unified list of all locally

frequent itemsets, Ck
s =

⋃M
m=1 C

k,m
s , without disclosing the

sizes of the subsets Ck,m
s nor their contents. The protocol is

applied when the players already know F k−1
s — the set of all

(k−1)-itemsets that are globally s-frequent, and they wish to

proceed and compute F k
s . We refer to it hereinafter as Protocol

UNIFI-KC (Unifying lists of locally Frequent Itemsets —

Kantarcioglu and Clifton).

The input that each player Pm has at the beginning of

Protocol UNIFI-KC is the collection Ck,m
s , as defined in Steps

2-3 of the FDM algorithm. Let Ap(F k−1
s ) denote the set of all

candidate k-itemsets that the Apriori algorithm generates from

F k−1
s . Then, as implied by the definition of Ck,m

s (see Section

1.1.2), Ck,m
s , 1 ≤ m ≤M , are all subsets of Ap(F k−1

s ). The

output of the protocol is the union Ck
s =

⋃M
m=1 C

k,m
s . In

the first iteration of this computation k = 1, and the players

compute all s-frequent 1-itemsets (here F 0
s = {∅}). In the

next iteration they compute all s-frequent 2-itemsets, and so

forth, until the first k ≤ L in which they find no s-frequent

k-itemsets.

After computing that union, the players proceed to extract

from Ck
s the subset F k

s that consists of all k-itemsets that

are globally s-frequent; this is done using the protocol that

we describe later on in Section 3. Finally, by applying the

above described procedure from k = 1 until the first value of

k ≤ L for which the resulting set F k
s is empty, the players may

recover the full set Fs :=
⋃L

k=1 F
k
s of all globally s-frequent

itemsets.

Protocol UNIFI-KC works as follows: First, each player

adds to his private subset Ck,m
s fake itemsets, in order to hide

its size. Then, the players jointly compute the encryption of

their private subsets by applying on those subsets a commuta-

tive encryption1, where each player adds, in his turn, his own

layer of encryption using his private secret key. At the end

of that stage, every itemset in each subset is encrypted by all

1. An encryption algorithm is called commutative if EK1 ◦EK2 = EK2 ◦
EK1

for any pair of keys K1 and K2.
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of the players; the usage of a commutative encryption scheme

ensures that all itemsets are, eventually, encrypted in the same

manner. Then, they compute the union of those subsets in their

encrypted form. Finally, they decrypt the union set and remove

from it itemsets which are identified as fake. We now proceed

to describe the protocol in detail.

(Notation agreement: Since all protocols that we present

herein involve cyclic communication rounds, the index M +1
always means 1, while the index 0 always means M .)

2.1.2 Detailed description

• In Phase 0 (Steps 2-4), the players select the needed

cryptographic primitives: They jointly select a commutative

cipher, and each player selects a corresponding private random

key. In addition, they select a hash function h to apply on all

itemsets prior to encryption. It is essential that h will not expe-

rience collisions on Ap(F k−1
s ) in order to make it invertible

on Ap(F k−1
s ). Hence, if such collusions occur (an event of

a very small probability), a different hash function must be

selected. At the end, the players compute a lookup table with

the hash values of all candidate itemsets in Ap(F k−1
s ); that

table will be used later on to find the preimage of a given hash

value.

• In Phase 1 (Steps 6-19), all players compute a composite

encryption of the hashed sets Ck,m
s , 1 ≤ m ≤ M . First

(Steps 6-12), each player Pm hashes all itemsets in Ck,m
s and

then encrypts them using the key Km. (Hashing is needed

in order to prevent leakage of algebraic relations between

itemsets, see [18, Appendix].) Then, he adds to the resulting

set faked itemsets until its size becomes |Ap(F k−1
s )|, in order

to hide the number of locally frequent itemsets that he has.

(Since Ck,m
s ⊆ Ap(F k−1

s ), the size of Ck,m
s is bounded by

|Ap(F k−1
s )|, for all 1 ≤ m ≤ M .) We denote the resulting

set by Xm. Then (Steps 13-19), the players start a loop

of M − 1 cycles, where in each cycle they perform the

following operation: Player Pm sends a permutation of Xm

to the next player Pm+1; Player Pm receives from Pm−1 a

permutation of the set Xm−1 and then computes a new Xm

as Xm = EKm
(Xm−1). At the end of this loop, Pm holds

an encryption of the hashed Ck,m+1
s using all M keys. Due

to the commutative property of the selected cipher, Player Pm

holds the set {EM (· · · (E2(E1(h(x)))) · · · ) : x ∈ Ck,m+1
s }.

• In Phase 2 (Steps 21-26), the players merge the lists of

encrypted itemsets. At the completion of this stage P1 holds

the union set Ck
s =

⋃M
m=1 C

k,m
s hashed and then encrypted by

all encryption keys, together with some fake itemsets that were

used for the sake of hiding the sizes of the sets Ck,m
s ; those

fake itemsets are not needed anymore and will be removed

after decryption in the next phase.

The merging is done in two stages, where in the first stage

the odd and even lists are merged separately. As explained

in [18, Section 3.2.1], not all lists are merged at once since

if they were, then the player who did the merging (say P1)

would be able to identify all of his own encrypted itemsets

(as he would get them from PM ) and then learn in which of

the other sites they are also locally frequent.

Protocol 1 (UNIFI-KC) Unifying lists of locally Frequent

Itemsets — Kantarcioglu and Clifton

Input: Each player Pm has an input set Ck,m
s ⊆ Ap(F k−1

s ),
1 ≤ m ≤M .

Output: Ck
s =

⋃M
m=1 C

k,m
s .

1: Phase 0: Getting started
2: The players decide on a commutative cipher and each

player Pm, 1 ≤ m ≤ M , selects a random secret

encryption key Km.

3: The players select a hash function h and compute h(x)
for all x ∈ Ap(F k−1

s ).
4: Build a lookup table T = {(x, h(x)) : x ∈ Ap(F k−1

s )}.
5: Phase 1: Encryption of all itemsets
6: for all Player Pm, 1 ≤ m ≤M , do
7: Set Xm = ∅.
8: for all x ∈ Ck,m

s do
9: Player Pm computes EKm

(h(x)) and adds it to Xm.

10: end for
11: Player Pm adds to Xm faked itemsets until its size

becomes |Ap(F k−1
s )|.

12: end for
13: for i = 2 to M do
14: for all 1 ≤ m ≤M do
15: Pm sends a permutation of Xm to Pm+1.

16: Pm receives from Pm−1 the permuted Xm−1.

17: Pm computes a new Xm as the encryption of the

permuted Xm−1 using the key Km.

18: end for
19: end for
20: Phase 2: Merging itemsets
21: Each odd player sends his encrypted set to player P1.

22: Each even player sends his encrypted set to player P2.

23: P1 unifies all sets that were sent by the odd players and

removes duplicates.

24: P2 unifies all sets that were sent by the even players and

removes duplicates.

25: P2 sends his permuted list of itemsets to P1.

26: P1 unifies his list of itemsets and the list received from P2

and then removes duplicates from the unified list. Denote

the final list by ECk
s .

27: Phase 3: Decryption
28: for m = 1 to M − 1 do
29: Pm decrypts all itemsets in ECk

s using Km.

30: Pm sends the permuted (and Km-decrypted) ECk
s to

Pm+1.

31: end for
32: PM decrypts all itemsets in ECk

s using KM ; denote the

resulting set by Ck
s .

33: PM uses the lookup table T to replace hashed values

with the actual itemsets, and to identify and remove faked

itemsets.

34: PM broadcasts Ck
s .

• In Phase 3 (Steps 28-34), a similar round of decryptions

is initiated. At the end, the last player who performs the last

decryption uses the lookup table T that was constructed in
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Step 4 in order to identify and remove the fake itemsets and

then to recover Ck
s . Finally, he broadcasts Ck

s to all his peers.

Going back to the running example in Section 1.1.3, the set

F 2
s , consisting of all 2-itemsets that are globally s-frequent,

includes the itemsets {12, 14, 23, 24, 34}. Applying on it the

Apriori algorithm, we find that Ap(F 2
s ) = {124, 234}. There-

fore, each of the three players proceed to look for 3-itemsets

from Ap(F 2
s ) that are locally s-frequent in his partial database.

Since C3,1
s = {124}, P1 will hash and encrypt the itemset 124

and will add to it one fake itemset, since |Ap(F 2
s )| = 2. As

C3,2
s = {234} and C3,3

s = {124}, also P2 and P3 will each

use one fake itemset. At the completion of the protocol, the

three players will conclude that C3
s = {124, 234}. Then, by

applying the protocol in Section 3, they will find out that only

the first of these two candidate itemsets is globally frequent,

whence F 3
s = {124}.

2.2 A secure multiparty protocol for computing the
OR of private binary vectors

Protocol UNIFI-KC securely computes of the union of private

subsets of some publicly known ground set (Ap(F k−1
s )). Such

a problem is equivalent to the problem of computing the OR of

private vectors. Indeed, if the ground set is Ω = {ω1, . . . , ωn},
then any subset B of Ω may be described by the characteristic

binary vector b = (b1, . . . , bn) ∈ Z
n
2 where bi = 1 if and only

if ωi ∈ B. Let bm be the binary vector that characterizes the

private subset held by player Pm, 1 ≤ m ≤ M . Then the

union of the private subsets is described by the OR of those

private vectors, b :=
∨M

m=1 bm.

Such a simple function can be evaluated securely by the

generic solutions suggested in [3], [5], [15]. We present here

a protocol for computing that function which is much simpler

to understand and program and much more efficient than those

generic solutions. It is also much simpler than Protocol UNIFI-

KC and employs less cryptographic primitives. Our protocol

(Protocol 2) computes a wider range of functions, which we

call threshold functions.

Definition 2.1. Let b1, . . . , bM be M bits and 1 ≤ t ≤M be
an integer. Then

Tt(b1, . . . , bM ) =

⎧⎨
⎩

1 if
∑M

m=1 bm ≥ t

0 if
∑M

m=1 bm < t

(1)

is called the t-threshold function. Given binary vectors
bm = (bm(1), . . . , bm(n)) ∈ Z

n
2 , 1 ≤ m ≤ M , we let

Tt(b1, . . . ,bM ) denote the binary vector in which the ith
component equals Tt(b1(i), . . . , bM (i)), 1 ≤ i ≤ n.

The OR and AND functions are the 1- and M -threshold

functions, respectively; i.e.,

M∨
m=1

bm = T1(b1, . . . ,bM ) ,

M∧
m=1

bm = TM (b1, . . . ,bM ) .

Those special cases may be used, as we show in Section

2.3, to compute in a privacy-preserving manner unions and

intersections of private subsets.

Let P1, . . . , PM be M players where Pm has an input binary

vector bm ∈ Z
n
2 , 1 ≤ m ≤M . Protocol 2 (to which we refer

as THRESHOLD henceforth) computes, in a secure manner, the

output vector b := Tt(b1, . . . ,bM ), for some 1 ≤ t ≤M . Let

a = (a(1), . . . , a(M)) :=
∑M

m=1 bm be the sum of the input

binary vectors. Since a(m) ∈ ZM+1 = {0, 1, . . . ,M}, for all

1 ≤ m ≤ M , the sum vector a may be seen as a vector in

Z
n
M+1. The main idea behind the protocol is to use the secure

summation protocol of [6] in order to compute shares of the

sum vector a and then use those shares to securely verify the

threshold conditions in each component.

Since a ∈ Z
n
M+1, each player starts by creating random

shares in Z
n
M+1 of his input vector (Step 1); namely, Pm

selects M random vectors in Z
n
M+1 that add up to bm,

1 ≤ m ≤ M . In Step 2, all players send to all other players

the corresponding shares in their input vector. Then (Step 3),

player P�, 1 ≤ � ≤ M , adds the shares that he got and

arrives at his share, s�, in the sum vector a :=
∑M

m=1 bm.

Namely, a =
∑M

�=1 s� mod (M + 1) and, furthermore,

any M − 1 vectors out of {s1, . . . , sM} do not reveal any

information on the sum a. In Steps 4-5, all players, apart

from the last one, send their shares to P1 who adds them up

to get the share s. Now, players P1 and PM hold additive

shares of the sum vector a: P1 has s, PM has sM , and

a = (s + sM ) mod (M + 1). It is now needed to check for

each component 1 ≤ i ≤ n whether

(s(i) + sM (i)) mod (M + 1) < t . (2)

Whenever inequality (2) holds, we set b(i) = 0; otherwise, we

set b(i) = 1 (Steps 6-8).

We proceed now to discuss the secure verification of in-

equality (2). That inequality is equivalent to the following set

inclusion:

(s(i) + sM (i)) mod (M + 1) ∈ {j : 0 ≤ j ≤ t− 1} . (3)

The inclusion in (3) is equivalent to

s(i) ∈ Θ(i) := {(j − sM (i)) mod (M + 1) : 0 ≤ j ≤ t− 1} .
(4)

The value of s(i) is known only to P1 while the set Θ(i) is

known only to PM . The problem of verifying the set inclusion

in Eq. (4) can be seen as a simplified version of the privacy-
preserving keyword search, which was solved by Freedman et.

al. [13]. In the case of the OR function, t = 1, which is the

case relevant for us, the set Θ(i) is of size 1, and therefore it

is the problem of oblivious string comparison, a problem that

was solved in e.g. [12]. However, we claim that, since M > 2,

there is no need to invoke neither of the secure protocols of

[13] or [12]. Indeed, as M > 2, the existence of other semi-

honest players can be used to verify the inclusion in Eq. (4)

much more easily. This is done in Protocol 3 (SETINC) which

we proceed to describe next.

Protocol SETINC involves three players: P1 has a vector

s = (s(1), . . . , s(n)) of elements in some ground set Ω; PM ,

on the other hand, has a vector Θ = (Θ(1), . . . ,Θ(n)) of

subsets of that ground set. The required output is a vector

b = (b(1), . . . , b(n)) that describes the corresponding set

inclusions in the following manner: b(i) = 0 if s(i) ∈ Θ(i)
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Protocol 2 (THRESHOLD) Secure computation of the t-
threshold function
Input: Each player Pm has an input binary vector bm ∈ Z

n
2 ,

1 ≤ m ≤M .

Output: b := Tt(b1, . . . ,bM ).
1: Each Pm selects M random share vectors bm,� ∈ Z

n
M+1,

1 ≤ � ≤M , such that
∑M

�=1 bm,� = bm mod (M + 1).
2: Each Pm sends bm,� to P� for all 1 ≤ � 
= m ≤M .

3: Each P� computes s� = (s�(1), . . . , s�(n)) :=∑M
m=1 bm,� mod (M + 1).

4: Players P�, 2 ≤ � ≤M − 1, send s� to P1.

5: P1 computes s = (s(1), . . . , s(n)) :=∑M−1
�=1 s� mod (M + 1).

6: for i = 1, . . . , n do
7: If (s(i) + sM (i)) mod (M + 1) < t set b(i) = 0

otherwise set b(i) = 1.

8: end for
9: Output b = (b(1), . . . , b(n)).

and b(i) = 1 if s(i) /∈ Θ(i), 1 ≤ i ≤ n. The computation

in the protocol involves a third player P2. (When Protocol

SETINC is called from Protocol THRESHOLD, the ground set

is Ω = ZM+1 and the inputs s(i) and Θ(i) of the two players

are as in Eq. (4), 1 ≤ i ≤ n.)

The protocol starts with players P1 and PM agree-

ing on a keyed hash function hK(·) (e.g., HMAC [4]),

and a corresponding secret key K (Step 1). Consequently

(Steps 2-3), P1 converts his sequence of elements s =
(s(1), . . . , s(n)) into a sequence of corresponding “signatures”

s′ = (s′(1), . . . , s′(n)), where s′(i) = hK(i, s(i)) and PM

does a similar conversions to the subsets that he holds. Then,

in Steps 4-5, P1 sends s′ to P2, and PM sends to P2 the subsets

Θ′(i), 1 ≤ i ≤ n, where the elements within each subset

are randomly permuted. Finally (Steps 6-7), P2 performs the

relevant inclusion verifications on the signature values. If he

finds out that for a given 1 ≤ i ≤ n, s′(i) ∈ Θ′(i), he may

infer, with high probability, that s(i) ∈ Θ(i) (see more on

that below), whence he sets b(i) = 0. If, on the other hand,

s′(i) /∈ Θ′(i), then, with certainty, s(i) /∈ Θ(i), and thus he

sets b(i) = 1.

Two comments are in order:

(1) If the index i had not been part of the input to the hash

function (Steps 2-3), then two equal components in P1’s

input vector, say s(i) = s(j), would have been mapped

to two equal signatures, s′(i) = s′(j). Hence, in that case

player P2 would have learnt that in P1’s input vector the

ith and jth components are equal. To prevent such leakage

of information, we include the index i in the input to the

hash function.

(2) An event in which s′(i) ∈ Θ′(i) while s(i) /∈ Θ(i)
indicates a collusion; specifically, it implies that there exist

θ′ ∈ Θ(i) and θ′′ ∈ Ω \ Θ(i) for which hK(i, θ′) =
hK(i, θ′′). Hash functions are designed so that the prob-

ability of such collusions is negligible, whence the risk

of a collusion can be ignored. However, it is possible

for player PM to check upfront the selected random key

K in order to verify that for all 1 ≤ i ≤ n, the sets

Θ′(i) = {hK(i, θ) : θ ∈ Θ(i)} and Θ′′(i) = {hK(i, θ) :
θ ∈ Ω \Θ(i)} are disjoint.

Protocol 3 (SETINC) Set Inclusion computation

Input: P1 has a vector s = (s(1), . . . , s(n)) and PM has a

vector Θ = (Θ(1), . . . ,Θ(n)), where for all 1 ≤ i ≤ n,

s(i) ∈ Ω and Θ(i) ⊆ Ω for some ground set Ω.

Output: The vector b = (b(1), . . . , b(n)) where b(i) = 0 if

s(i) ∈ Θ(i) and b(i) = 1 otherwise, 1 ≤ i ≤ n.

1: P1 and PM agree on a keyed-hash function hK(·) and on

a secret key K.

2: P1 computes s′ = (s′(1), . . . , s′(n)), where s′(i) =
hK(i, s(i)), 1 ≤ i ≤ n.

3: PM computes Θ′ = (Θ′(1), . . . ,Θ′(n)), where Θ′(i) =
{hK(i, θ) : θ ∈ Θ(i)}, 1 ≤ i ≤ n.

4: P1 sends to P2 the vector s′.
5: PM sends to P2 the vector Θ′ in which each Θ(i) is

randomly permuted.

6: For all 1 ≤ i ≤ n, P2 sets b(i) = 0 if s′(i) ∈ Θ′(i) and

b(i) = 1 otherwise.

7: P2 broadcasts the vector b = (b(1), . . . , b(n)).

We refer hereinafter to the combination of Protocols

THRESHOLD and SETINC as Protocol THRESHOLD-C;

namely, it is Protocol THRESHOLD where the verifications

of the inequalities in Steps 6-8, which are equivalent to the

verification of the set inclusions in Eq. (4), are carried out by

Protocol SETINC. Then our claims are as follows:

Theorem 2.2. Protocol THRESHOLD-C is correct, i.e., it
computes the threshold function.

Proof. Protocol THRESHOLD operates correctly if the in-

equality verifications in Step 7 are carried out correctly, since

(s(i) + sM (i)) mod (M + 1) equals the ith component a(i)
in the sum vector a =

∑M
m=1 bm. The inequality verification

is correct if Protocol SETINC is correct. The latter protocol is

indeed correct if the randomly selected key K is such that for

all 1 ≤ i ≤ n, the sets Θ′(i) = {hK(i, θ) : θ ∈ Θ(i)} and

Θ′′(i) = {hK(i, θ) : θ ∈ Ω \Θ(i)} are disjoint. As discussed

earlier, such a verification can be carried out upfront, and most

all selections of K are expected to pass that test. �

Theorem 2.3. Assume that the M > 2 players are semi-
honest. Let C ⊂ {P1, P2, . . . , PM} be a coalition of players.
(a) If P2 /∈ C and at least one of P1 and PM is not in C

either, then Protocol THRESHOLD-C is perfectly private
with respect to C.

(b) If P2 ∈ C but P1, PM /∈ C, the protocol is computation-
ally private with respect to C.

(c) Otherwise, the coalition C includes at least two of the
three players P1, P2, PM . In such cases, it may learn the
sum a =

∑M
m=1 bm, but no information on the private

vectors bm, 1 ≤ m ≤M , beyond what is implied by that
sum and the coalition’s input vectors.

(A multiparty computation is perfectly private with respect

to a subset of players if it does not enable those players to
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learn information on the inputs of other players beyond what

is implied by the final output and their own inputs, even if

they are computationally unbounded. Such a computation is

computationally private if it achieves the same goal when the

players are polynomially-bounded.)

Proof. The view of each single player P� consists of bm,�

for all 1 ≤ m 
= � ≤M , where bm,� is P�’s additive share in

an M -out-of-M secret sharing scheme for Pm’s private input

bm. In addition, P1’s view includes s2, . . . , sM−1 (Step 4 in

Protocol THRESHOLD), which are additive shares in an M -

out-of-M secret sharing for the sum a; and P2’s view includes

the signatures s′ and Θ′ (Steps 4 and 5 in Protocol SETINC).

(a) If the coalition C does not include P2 and, in addition,

it does not include at least one of P1 and PM , then C’s collab-

orative view consists of incomplete sets of additive shares in

b1, . . . ,bM and a. As the M -out-of-M secret sharing scheme

is perfect, those additive shares are independent and each one

is a uniformly distributed random vector in Z
n
M+1. Hence, the

coalition C may simulate its view during the protocol, whence

the protocol is perfectly private with respect to C.

(b) If P2 ∈ C and P1, PM /∈ C, we may repeat the

same arguments as before, since P2’s additional view of s′

and Θ′ can also be simulated by independent and uniformly

distributed random vectors; indeed, assuming that the hash

function h is secure and that the key K is chosen uniformly

at random, then s′ and Θ′ are indistinguishable from vectors

chosen uniformly at random from Hn and (Ht)n, respectively,

where H is the hash range.

However, while the coalitions discussed above in (a) cannot

learn any information about the inputs of other players, even

if their members are computationally unbounded, here the

privacy guarantee assumes that P2 is polynomially bounded. If

P2 is computationally unbounded, he may scan the exponential

number of possible keys K in order to find what key P1

and PM used. To do so, he will compute for each possible

K the hashed values hK(i, θ) for all 1 ≤ i ≤ n and

θ ∈ Ω = {0, 1, . . . ,M}. Then, he will check whether the

signature values that he got from P1 and PM (namely, s′ and

Θ′) are consistent with the values which he computed. After

finding the true K (assuming that it is the only one that will

pass the check), P2 will be able to recover s(i) from s′(i), and

Θ(i) from Θ′(i), for all 1 ≤ i ≤ n. Since Θ(i) reveals sM (i)
(see Eq. (4)), P2 may proceed to compute a(i) = s(i)+sM (i),
1 ≤ i ≤ n. Hence, if P2 is computationally unbounded, he

may be able to deduce the value of the sum a. (If during his

check, P2 finds more than one possible K, he will compute

the vector a that corresponds to each of them, and then infer

that the true a is one of those vectors.)

(c) If P1, PM ∈ C, then by adding s (known to P1) and

sM (known to PM ), they will get the sum a. No further

information on the input vectors b1, . . . ,bM may be deduced

from the inputs of the players in such a coalition; specifically,

every set of vectors b1, . . . ,bM that is consistent with the

sum a is equally likely. (Put differently, such a coalition may

simulate its view by selecting at random any set of vectors

b1, . . . ,bM whose sum equals a and then generate for each

such vector random additive shares.)

Coalitions C that include either P1 and P2 or P2 and PM

can also recover the vector a. Indeed, P2 knows s′ and Θ′,
while P1 or PM knows hK , and K. Hence, if P2 colludes

with either P1 or PM , he may recover from s′ and Θ′ the

preimages s and Θ. Thus, such a coalition can recover s and

sM , and consequently, it can recover a. As argued before, the

shares available for such coalitions do not reveal any further

information about the input vectors b1, . . . ,bM . �

The susceptibility of Protocol THRESHOLD-C to coalitions

is not very significant because of two reasons:

• The entries of the sum vector a do not reveal information

about specific input vectors. Namely, knowing that a(i) =
p only indicates that p out of the M bits bm(i), 1 ≤ m ≤
M , equal 1, but it reveals no information regarding which

of the M bits are those.

• There are only three players that can collude in order

to learn information beyond the intention of the protocol.

Such a situation is far less severe than a situation in which

any player may participate in a coalition, since if it is

revealed that a collusion took place, there is a small set

of suspects.

2.3 An improved protocol for the secure computa-
tion of all locally frequent itemsets

As before, we denote by F k−1
s the set of all globally frequent

(k − 1)-itemsets, and by Ap(F k−1
s ) the set of k-itemsets that

the Apriori algorithm generates when applied on F k−1
s . All

players can compute the set Ap(F k−1
s ) and decide on an order-

ing of it. (Since all itemsets are subsets of A = {a1, . . . , aL},
they may be viewed as binary vectors in {0, 1}L and, as

such, they may be ordered lexicographically.) Then, since the

sets of locally frequent k-itemsets, Ck,m
s , 1 ≤ m ≤ M , are

subsets of Ap(F k−1
s ), they may be encoded as binary vectors

of length nk := |Ap(F k−1
s )|. The binary vector that encodes

the union Ck
s :=

⋃M
m=1 C

k,m
s is the OR of the vectors that

encode the sets Ck,m
s , 1 ≤ m ≤ M . Hence, the players can

compute the union by invoking Protocol THRESHOLD-C on

their binary input vectors. This approach is summarized in

Protocol 4 (UNIFI).

Protocol 4 (UNIFI) Unifying lists of locally Frequent Itemsets

Input: Each player Pm has an input subset Ck,m
s ⊆

Ap(F k−1
s ), 1 ≤ m ≤M .

Output: Ck
s =

⋃M
m=1 C

k,m
s .

1: Each player Pm encodes his subset Ck,m
s as a binary

vector bm of length nk = |Ap(F k−1
s )|, in accord with

the agreed ordering of Ap(F k−1
s ).

2: The players invoke Protocol THRESHOLD-C to compute

b = T1(b1, . . . ,bM ) =
∨M

m=1 bm.

3: Ck
s is the subset of Ap(F k−1

s ) that is described by b.

In the running example in Section 1.1.3, F 2
s =

{12, 14, 23, 24, 34} and Ap(F 2
s ) = {124, 234}. The private

sets of locally frequent itemsets are C3,1
s = {124}, C3,2

s =
{234}, and C3,3

s = {124}. Those private sets will be encoded

as b1 = (1, 0), b2 = (0, 1), and b3 = (1, 0). The OR of these

vectors is b = (1, 1) and, therefore, C3
s = {124, 234}.
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Comment. Replacing T1 with TM in Step 2 of Protocol 4

will result in computing the intersection of the private subsets

rather than their union.

2.4 Privacy
We begin by analyzing the privacy offered by Protocol UNIFI-

KC. That protocol does not respect perfect privacy since it

reveals to the players information that is not implied by their

own input and the final output. In Step 11 of Phase 1 of the

protocol, each player augments the set Xm by fake itemsets.

To avoid unnecessary hash and encryption computations, those

fake itemsets are random strings in the ciphertext domain

of the chosen commutative cipher. The probability of two

players selecting random strings that will become equal at

the end of Phase 1 is negligible; so is the probability of

Player Pm to select a random string that equals EKm(h(x))
for a true itemset x ∈ Ap(F k−1

s ). Hence, every encrypted

itemset that appears in two different lists indicates with high

probability a true itemset that is locally s-frequent in both

of the corresponding sites. Therefore, Protocol UNIFI-KC

reveals the following excess information:

(1) P1 may deduce for any subset of the odd players, the

number of itemsets that are locally supported by all of

them.

(2) P2 may deduce for any subset of the even players, the

number of itemsets that are locally supported by all of

them.

(3) P1 may deduce the number of itemsets that are supported

by at least one odd player and at least one even player.

(4) If P1 and P2 collude, they reveal for any subset of the

players the number of itemsets that are locally supported

by all of them.

As for the privacy offered by Protocol UNIFI, we consider

two cases: If there are no collusions, then, by Theorem 2.3,

Protocol UNIFI offers perfect privacy with respect to all

players Pm, m 
= 2, and computational privacy with respect

to P2. This is a privacy guarantee better than that offered

by Protocol UNIFI-KC, since the latter protocol does reveal

information to P1 and P2 even if they do not collude with any

other player.

If there are collusions, both Protocols UNIFI-KC and

UNIFI allow the colluding parties to learn forbidden infor-

mation. In both cases, the number of “suspects” is small —

in Protocol UNIFI-KC only P1 and P2 may benefit from

a collusion while in Protocol UNIFI only P1, P2 and PM

can extract additional information if two of them collude (see

Theorem 2.3). In Protocol UNIFI-KC, the excess information

which may be extracted by P1 and P2 is about the number of

common frequent itemsets among any subset of the players.

Namely, they may learn that, say, P2 and P3 have many

itemsets that are frequent in both of their databases (but not

which itemsets), while P2 and P4 have very few itemsets

that are frequent in their corresponding databases. The excess

information in Protocol UNIFI is different: If any two out

of P1, P2 and PM collude, they can learn the sum of all

private vectors. That sum reveals for each specific itemset

in Ap(F k−1
s ) the number of sites in which it is frequent,

but not which sites. Hence, while the colluding players in

Protocol UNIFI-KC can distinguish between the different

players and learn about the similarity or dissimilarity between

them, Protocol UNIFI leaves the partial databases totally

indistinguishable, as the excess information that it leaks is

with regard to the itemsets only.

To summarize, given that Protocol UNIFI reveals no excess

information when there are no collusions, and, in addition,

when there are collusions, the excess information still leaves

the partial databases indistinguishable, it offers enhanced pri-

vacy preservation in comparison to Protocol UNIFI-KC.

2.5 Communication cost
Here and in the next section we analyze the communication

and computational costs of Protocols UNIFI-KC and UNIFI.

In doing so, we use the following notations and terms:

• K = Ks is the size of the longest s-frequent itemset in

D.

• The kth iteration refers to the iteration in which F k
s

is computed from F k−1
s . Both protocols have K + 1

iterations (where in the last iteration, the players find that

FK+1
s = ∅ and consequently terminate the protocol).

• nk is the number of candidate itemsets of size k in the

kth iteration. n1 = L and nk := |Ap(F k−1
s )| for all

1 < k ≤ K + 1.

• n :=
∑K+1

k=1 nk.

• �k is the number of k-itemsets that were s-frequent in at

least one of the sites.

• � :=
∑K+1

k=1 �k.

• B is the size in bits of representing one frequent itemset.

(We use the same notation for frequent itemsets of any

length for simplicity. In practice, the length of frequent

itemsets is typically a small number.)

In evaluating the communication cost, we consider three

parameters: Total number of communication rounds, total

number of messages sent, and the overall size of the messages

sent. For example, in Step 15 of Protocol UNIFI-KC, every

player Pm sends a message to Pm+1. Those M messages are

sent simultaneously. Hence, each time this step is executed,

the counter of communication rounds is increased by 1, the

number of messages sent is increased by M , and the total

message size is increased by the sum of sizes of those

messages.

2.5.1 Communication cost of Protocol UNIFI-KC
Let t denote the number of bits required to represent an

itemset. Clearly, t must be at least log2 nk for all 1 ≤ k ≤ L.

However, as Protocol UNIFI-KC hashes the itemsets and

then encrypts them, t should be at least the recommended

ciphertext length in commutative ciphers. RSA [25], Pohlig-

Hellman [24] and ElGamal [10] ciphers are examples of

commutative encryption schemes. As the recommended length

of the modulus in all of them is at least 1024 bits, we take

t = 1024.

We begin by analyzing the communication costs of Protocol

UNIFI-KC in each of the K + 1 iterations separately. Each

iteration, consists of four phases.
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During Phase 1 of Protocol UNIFI-KC, there are M − 1
rounds of communication. In each such round, each of the M
players sends to the next player a message; the length of that

message in the kth iteration is tnk. Hence, the communication

cost of this phase in the kth iteration is (M − 1)M messages

of total size of (M − 1)Mtnk bits.

During Phase 2 of the protocol all odd players send their

encrypted itemsets to P1 and all even players send their

encrypted itemsets to P2. Then P2 unifies the itemsets he

got and sends them to P1. Hence, this phase takes two more

rounds. The communication cost, in the kth iteration, of the

first of those two rounds is M − 2 messages of total size of

(M − 2)tnk. The communication cost of the second round is

a single message whose size is μ1tnk where μ1 ∈ [1,M/2].
(The size of the unified list will equal the lower bound in that

range, i.e. tnk bits, if all lists of all even players coincide; it

will equal the upper bound of Mtnk/2 if all those lists are

pairwise disjoint.)

In Phase 3, a similar round of decryptions is initiated. The

unified list of all encrypted true and fake itemsets may contain

in the kth iteration at least nk itemsets but no more than

Mnk itemsets. Hence, that phase involves M −1 rounds with

communication cost of M − 1 messages with a total size of

μ2(M − 1)tnk, where μ2 ∈ [1,M ].
Finally, in Step 34, PM broadcasts Ck

s to all other players.

That step adds one more communication round with M − 1
messages of total size of (M − 1)�kB, where �k = |Ck

s |.
Adding up the above costs over all iterations, 1 ≤ k ≤

K + 1, we find that Protocol UNIFI-KC entails:

• (2M + 1)(K + 1) communication rounds.

• (M2 + 2M − 3)(K + 1) messages.

• g(M)tn+ (M − 1)B� bits of communication, where

M2 +M − 2 ≤ g(M) ≤ 2M2 − M

2
− 2 . (5)

2.5.2 Communication cost of Protocol UNIFI
Protocol UNIFI consists of four communication rounds (in

each of the iterations): One for Step 2 of Protocol THRESHOLD

that it invokes; one for Step 4 of that protocol; one for Steps

4-5 in Protocol SETINC which is used for the inequality

verifications in Protocol THRESHOLD; and one for Step 7 in

Protocol SETINC.

In the kth iteration, the length of the vectors in Protocol

THRESHOLD is nk; each entry in those vectors represents a

number between 0 and M − 1, whence it may be encoded by

log2 M bits. Therefore:

• The communication cost of Step 2 in Protocol THRESH-

OLD is (M − 1)M messages of total size of (M −
1)M(log2 M)nk bits. (Since each of the M players sends

a vector of size (log2 M)nk bits to each of the other

M − 1 players.)

• The communication cost of Step 4 in Protocol THRESH-

OLD is M − 2 messages of total size of (M −
2)(log2 M)nk bits.

• The communication cost of Step 4 in Protocol SETINC

is a single message of size |h|nk, where |h| is the size

in bits of the hash function’s output. The communication

cost of Step 5 in that protocol is also a single message

of size |h|nk; indeed, when Protocol SETINC is called

from Protocol THRESHOLD-C, the size of the sets Θ(i)
and Θ′(i) is t = 1 (see Eq. (4)), because the OR function

corresponds to t = 1.

• The communication cost of Step 7 in Protocol SETINC

is M − 1 messages of total size of (M − 1)�kB, since

P2 can send to all his peers the actual �k k-itemsets that

were s-frequent in at least one of the sites.

Adding up the above costs over all iterations, 1 ≤ k ≤
K + 1, we find that Protocol UNIFI entails:

• 4(K + 1) communication rounds.

• (M2 +M − 1)(K + 1) messages.

• (M2 − 2)(log2 M)n+ 2n|h|+ (M − 1)B� bits of com-

munication.

2.5.3 Comparison
Comparing the costs of the two protocols as derived in

Sections 2.5.1 and 2.5.2 we find that Protocol UNIFI reduces

the number of rounds by a factor of (2M +1)/4 with respect

to Protocol UNIFI-KC. The number of messages in the two

protocols is roughly the same. As for the bit communication

cost, Protocol UNIFI offers a significant improvement. The

improvement factor in the bit communication cost, as offered

by Protocol UNIFI with respect to Protocol UNIFI-KC, is

g(M)tn+ (M − 1)B�

(M2 − 2)(log2 M)n+ 2n|h|+ (M − 1)B�
(6)

where the range of possible values of g(M) is given in Eq.

(5). The communication cost of the fourth phase, which is

(M − 1)B� in both protocols, may be neglected, as validated

in our experimental evaluation. The reason for this is that it

depends on � (the overall number of itemsets that were s-

frequent in at least one site), which is much smaller than n
(the overall number of Apriori-generated candidate itemsets),

and, in addition, it depends on M − 1 rather than Θ(M2)
as the other costs. Therefore, the ratio in Eq. (6) may be

approximated by

g(M)t

(M2 − 2)(log2 M) + 2|h|
As discussed earlier, a plausible setting of t would be t =
1024. A typical value of |h| is 160. Hence, For M = 4 we get

an improvement factor that ranges between 53 and 82, while

for M = 8 we get an improvement factor that ranges between

142 and 247.

2.6 Computational cost
In Protocol UNIFI-KC each of the players needs to perform

hash evaluations as well as encryptions and decryptions. As

the cost of hash evaluations is significantly smaller than the

cost of commutative encryption, we focus on the cost of the

latter operations. In Steps 8-10 of the protocol, player Pm

performs |Ck,m
s | ≤ nk = |Ap(F k−1

s )| encryptions (in the kth

iteration). Then, in Steps 13-19, each player performs M − 1
encryptions of sets that include nk items. Hence, in Phase 1

in the kth iteration, each player performs between (M − 1)nk
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and Mnk encryptions. In Phase 3, each player decrypts the

set of items ECk
s . ECk

s is the union of the encrypted sets

from all M players, where each of those sets has nk items

— true and fake ones. Clearly, the size of ECk
s is at least

nk. On the other hand, since most of the items in the M sets

are expected to be fake ones, and the probability of collusions

between fake items is negligible, it is expected that the size of

ECk
s would be close to Mnk. So, in all its iterations (1 ≤ k ≤

K + 1), Protocol UNIFI-KC requires each player to perform

an overall number of close to 2Mn (but no less than Mn)

encryptions or decryptions, where, as before n =
∑K+1

k=1 nk.

Since commutative encryption is typically based on modular

exponentiation, the overall computational cost of the protocol

is Θ(Mt3n) bit operations per player.

In Protocol THRESHOLD, which Protocol UNIFI calls, each

player needs to generate (M−1)n (pseudo)random (log2 M)-
bit numbers (Step 1). Then, each player performs (M − 1)n
additions of such numbers in Step 1 as well as in Step

3. Player P1 has to perform also (M − 2)n additions in

Step 5. Therefore, the computational cost for each player

is Θ(Mn log2 M) bit operations. In addition, Players 1 and

M need to perform n hash evaluations. Compared to a

computational cost of Θ(Mt3n) bit operations per player, we

see that Protocol UNIFI offers a significant improvement with

respect to Protocol UNIFI-KC also in terms of computational

cost.

3 IDENTIFYING THE GLOBALLY s-FREQUENT
ITEMSETS
Protocols UNIFI-KC and UNIFI yield the set Ck

s that consists

of all itemsets that are locally s-frequent in at least one

site. Those are the k-itemsets that have potential to be also

globally s-frequent. In order to reveal which of those itemsets

is globally s-frequent there is a need to securely compute the

support of each of those itemsets. That computation must not

reveal the local support in any of the sites. Let x be one of

the candidate itemsets in Ck
s . Then x is globally s-frequent if

and only if

Δ(x) := supp(x)− sN =
M∑

m=1

(suppm(x)− sNm) ≥ 0 . (7)

We describe here the solution that was proposed by Kantar-

cioglu and Clifton. They considered two possible settings. If

the required output includes all globally s-frequent itemsets,

as well as the sizes of their supports, then the values of Δ(x)
can be revealed for all x ∈ Ck

s . In such a case, those values

may be computed using a secure summation protocol (e.g.

[6]), where the private addend of Pm is suppm(x) − sNm.

The more interesting setting, however, is the one where the

support sizes are not part of the required output. We proceed

to discuss it.

As |Δ(x)| ≤ N , an itemset x ∈ Ck
s is s-frequent if and

only if Δ(x) mod q ≤ N , for q = 2N + 1. The idea

is to verify that inequality by starting an implementation of

the secure summation protocol of [6] on the private inputs

Δm(x) := suppm(x) − sNm, modulo q. In that protocol, all

players jointly compute random additive shares of the required

sum Δ(x) and then, by sending all shares to, say, P1, he may

add them and reveal the sum. If, however, PM withholds his

share of the sum, then P1 will have one random share, s1(x),
of Δ(x), and PM will have a corresponding share, sM (x);
namely, s1(x)+sM (x) = Δ(x) mod q. It is then proposed that

the two players execute the generic secure circuit evaluation

of [32] in order to verify whether

(s1(x) + sM (x)) mod q ≤ N . (8)

Those circuit evaluations may be parallelized for all x ∈ Ck
s .

We observe that inequality (8) holds if and only if

s1(x) ∈ Θ(x) := {(j − sM (x)) mod q : 0 ≤ j ≤ N} . (9)

As s1(x) is known only to P1 while Θ(x) is known only

to PM , the verification of the set inclusion in (9) can also

be carried out by means of Protocol SETINC. However, the

ground set Ω in this case is Zq=2N+1, which is typically a

large set. (Recall that when Protocol SETINC is invoked from

UNIFI, the ground set Ω is ZM+1, which is usually a small

set.) Hence, Protocol SETINC is not useful in this case, and,

consequently, Yao’s generic protocol remains, for the moment,

the protocol of choice to securely verify inequality (8). Yao’s

protocol is designed for the two-party case. In our setting,

as M > 2, there exist additional semi-honest players. An

interesting question which arises in this context is whether

the existence of such additional semi-honest players may be

used to verify inequalities like (8), even when the modulus is

large, without resorting to costly protocols such as oblivious

transfer.

4 IDENTIFYING ALL (s, c)-ASSOCIATION
RULES

Once the set Fs of all s-frequent itemsets is found, we may

proceed to look for all (s, c)-association rules (rules with

support at least sN and confidence at least c), as described in

[18]. For X,Y ∈ Fs, where X ∩ Y = ∅, the corresponding

association rule X ⇒ Y has confidence at least c if and only

if supp(X ∪ Y )/supp(X) ≥ c, or, equivalently,

CX,Y :=
M∑

m=1

(suppm(X ∪ Y )− c · suppm(X)) ≥ 0 . (10)

Since |CX,Y | ≤ N , then by taking q = 2N+1, the players can

verify inequality (10), in parallel, for all candidate association

rules, as described in Section 3.

In order to derive from Fs all (s, c)-association rules in an

efficient manner we rely upon the following straightforward

lemma.

Lemma 4.1. If X ⇒ Y is an (s, c)-rule and Y ′ ⊂ Y , then
X ⇒ Y ′ is also an (s, c)-rule.

Proof: The rule X ⇒ Y ′ has the required support count

since supp(X ∪ Y ′) ≥ supp(X ∪ Y ) ≥ sN . It is also c-

confident since
supp(X∪Y ′)

supp(X) ≥ supp(X∪Y )
supp(X) ≥ c. Hence, it is an

(s, c)-rule too.

We first find all (s, c)-rules with 1-consequents; namely, all

(s, c)-rules X ⇒ Y with a consequent (right hand side) Y
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of size 1. To that end, we scan all itemsets Z ∈ Fs of size

|Z| ≥ 2, and for each such itemset we scan all |Z| partitions

Z = X ∪ Y where |Y | = 1 and X = Z \ Y . The association

rule X ⇒ Y that corresponds to such a given partition Z =
X ∪ Y is tested to see whether it satisfies inequality (10). We

may test all those candidate rules in parallel and at the end

we get the full list of all (s, c)-rules with 1-consequents.

We then proceed by induction; assume that we found all

(s, c)-rules with j-consequents for all 1 ≤ j ≤ �− 1. To find

all (s, c)-rules with �-consequents, we rely upon Lemma 4.1.

Namely, if Z ∈ Fs and Z = X ∪ Y where X ∩ Y = ∅ and

|Y | = �, then X ⇒ Y is an (s, c)-rule only if X ⇒ Y ′ were

found to be (s, c)-rules for all Y ′ ⊂ Y . Hence, we may create

all candidate rules with �-consequents and test them against

inequality (10) in parallel.

It should be noted that in practice, one usually aims at

finding association rules of the form X ⇒ Y where |Y | = 1,

or at least |Y | ≤ � for some small constant �. However,

the above procedure may be continued until all candidate

association rules, with no upper bounds on the consequent

size, are found.

5 A FULLY SECURE PROTOCOL

As noted in [18, Section 6], the players may dispense the local

pruning and union computation in the FDM algorithm (Steps

2-4) and, instead, test all candidate itemsets in Ap(F k−1
s ) to

see which of them are globally s-frequent. Such a protocol is

fully secure, as it reveals only the set of globally s-frequent

itemsets but no further information about the partial databases.

However, as discussed in [18], such a protocol would be much

more costly since it requires each player to compute the local

support of |Ap(F k−1
s )| itemsets (in the kth round) instead of

only |Ck
s | itemsets (where Ck

s =
⋃M

m=1 C
k,m
s ). In addition, the

players will have to execute the secure comparison protocol of

[32] to verify inequality (8) for |Ap(F k−1
s )| rather than only

|Ck
s | itemsets. Both types of added operations are very costly:

the time to compute the support size depends linearly on the

size of the database, while the secure comparison protocol

entails a costly oblivious transfer sub-protocol. Since, as

shown in [9], |Ap(F k−1
s )| is much larger than |Ck

s |, the added

computing time in such a protocol is expected to dominate

the cost of the secure computation of the union of all locally

s-frequent itemsets. Hence, the enhanced security offered by

such a protocol is accompanied by increased implementation

costs.

6 EXPERIMENTAL EVALUATION

In Section 6.1 we describe the synthetic database that we

used for our experimentation. In Section 6.2 we explain how

the database was split horizontally into partial databases. In

Section 6.3 we describe the experiments that we conducted.

The results are given in Section 6.4.

6.1 Synthetic database generation
The databases that we used in our experimental evaluation

are synthetic databases that were generated using the same

techniques that were introduced in [1] and then used also in

subsequent studies such as [8], [18], [23]. Table 1 gives the

parameter values that were used in generating the synthetic

database. The reader is referred to [8], [18], [23] for a de-

scription of the synthetic generation method and the meaning

of each of those parameters. The parameter values that we

used here are similar to those used in [8], [18], [23].

Parameter Interpretation Value
N Number of transactions in the whole database 500,000
L Number of items 1000
At Transaction average size 10
Af Average size of maximal potentially large itemsets 4
Nf Number of maximal potentially large itemsets 2000
CS Clustering size 5
PS Pool size 60
Cor Correlation level 0.5
MF Multiplying factor 1800

TABLE 1
Parameters for generating the synthetic database

6.2 Distributing the database
Given a generated synthetic database D of N transactions and

a number of players M , we create an artificial split of D into

M partial databases, Dm, 1 ≤ m ≤ M , in the following

manner: For each 1 ≤ m ≤ M we draw a random number

wm from a normal distribution with mean 1 and variance

0.1, where numbers outside the interval [0.1, 1.9] are ignored.

Then, we normalize those numbers so that
∑M

m=1 wm = 1.

Finally, we randomly split D into m partial databases of

expected sizes of wmN , 1 ≤ m ≤ M , as follows: Each

transaction t ∈ D is assigned at random to one of the partial

databases, so that Pr(t ∈ Dm) = wm, 1 ≤ m ≤M .

6.3 Experimental settup
We compared the performance of two secure implementations

of the FDM algorithm (Section 1.1.2). In the first imple-

mentation (denoted FDM-KC), we executed the unification

step (Step 4 in FDM) using Protocol UNIFI-KC, where the

commutative cipher was 1024-bit RSA [25]; in the second

implementation (denoted FDM) we used our Protocol UNIFI,

where the keyed-hash function was HMAC [4]. In both imple-

mentations, we implemented Step 5 of the FDM algorithm in

the secure manner that was described in Section 3. We tested

the two implementations with respect to three measures:

1) Total computation time of the complete protocols (FDM-

KC and FDM) over all players. That measure includes

the Apriori computation time, and the time to identify

the globally s-frequent itemsets, as described in Section

3. (The latter two procedures are implemented in the same

way in both Protocols FDM-KC and FDM.)

2) Total computation time of the unification protocols only

(UNIFI-KC and UNIFI) over all players.

3) Total message size.

We ran three experiment sets, where each set tested the

dependence of the above measures on a different parameter:

• N — the number of transactions in the unified database,
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• M — the number of players, and

• s — the threshold support size.

In our basic configuration, we took N = 500, 000, M = 10,

and s = 0.1. In the first experiment set, we kept M and s fixed

and tested several values of N . In the second experiment set,

we kept N and s fixed and varied M . In the third set, we kept

N and M fixed and varied s. The results in each of those

experiment sets are shown in Section 6.4.

All experiments were implemented in C# (.net 4) and

were executed on an Intel(R) Core(TM)i7-2620M personal

computer with a 2.7GHz CPU, 8 GB of RAM, and the 64-bit

operating system Windows 7 Professional SP1.

6.4 Experimental results

Figure 1 shows the values of the three measures that were

listed in Section 6.3 as a function of N . In all of those

experiments, the value of M and s remained unchanged —

M = 10 and s = 0.1. Figure 2 shows the values of the three

measures as a function of M ; here, N = 500, 000 and s = 0.1.

Figure 3 shows the values of the three measures as a function

of s; here, N = 500, 000 and M = 10.

From the first set of experiments, we can see that N
has little effect on the runtime of the unification protocols,

UNIFI-KC and UNIFI, nor on the bit communication cost.

However, since the time to identify the globally s-frequent

itemsets (see Section 3) does grow linearly with N , and that

procedure is carried out in the same manner in FDM-KC

and FDM, the advantage of Protocol FDM over FDM-KC in

terms of runtime decreases with N . While for N = 100, 000,

Protocol FDM is 22 times faster than Protocol FDM-KC, for

N = 500, 000 it is five times faster. (The total computation

times for larger values of N retain the same pattern that

emerges from Figure 1; for example, with N = 106 the

total computation times for FDM-KC and FDM were 744.1

and 238.5 seconds, respectively, which gives an improvement

factor of 3.1.)

The second set of experiments shows how the computation

and communication costs increase with M . In particular, the

improvement factor in the bit communication cost, as offered

by Protocol UNIFI with respect to Protocol UNIFI-KC, is

in accord with our analysis in Section 2.5.3. Finally, the

third set of experiments shows that higher support thresholds

entail smaller computation and communication costs since the

number of frequent itemsets decreases.

7 RELATED WORK

Previous work in privacy preserving data mining has consid-

ered two related settings. One, in which the data owner and

the data miner are two different entities, and another, in which

the data is distributed among several parties who aim to jointly

perform data mining on the unified corpus of data that they

hold.

In the first setting, the goal is to protect the data records

from the data miner. Hence, the data owner aims at anonymiz-

ing the data prior to its release. The main approach in this

context is to apply data perturbation [2], [11]. The idea is that

Fig. 1. Computation and communication costs versus the number of
transactions N

the perturbed data can be used to infer general trends in the

data, without revealing original record information.

In the second setting, the goal is to perform data mining

while protecting the data records of each of the data owners

from the other data owners. This is a problem of secure multi-

party computation. The usual approach here is cryptographic

rather than probabilistic. Lindell and Pinkas [22] showed how

to securely build an ID3 decision tree when the training set

is distributed horizontally. Lin et al. [21] discussed secure

clustering using the EM algorithm over horizontally distributed

data. The problem of distributed association rule mining was

studied in [19], [31], [33] in the vertical setting, where

each party holds a different set of attributes, and in [18]

in the horizontal setting. Also the work of [26] considered

this problem in the horizontal setting, but they considered

large-scale systems in which, on top of the parties that hold

the data records (resources) there are also managers which
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Fig. 2. Computation and communication costs versus the number of
players M

are computers that assist the resources to decrypt messages;

another assumption made in [26] that distinguishes it from

[18] and the present study is that no collusions occur between

the different network nodes — resources or managers.

The problem of secure multiparty computation of the union

of private sets was studied in [7], [14], [20], as well as

in [18]. Freedman et al. [14] present a privacy-preserving

protocol for set intersections. It may be used to compute also

set unions through set complements, since A ∪ B = A ∩B.

Kissner and Song [20] present a method for representing sets

as polynomials, and give several privacy-preserving protocols

for set operations using these representations. They consider

the threshold set union problem, which is closely related to

the threshold function (Definition 2.1). The communication

overhead of the solutions in those two works, as well as in

[18]’s and in our solutions, depends linearly on the size of

Fig. 3. Computation and communication costs versus the support
threshold s

the ground set. However, as the protocols in [14], [20] use

homomorphic encryption, while that of [18] uses commutative

encryption, their computational costs are significantly higher

than ours. The work of Brickell and Shmatikov [7] is an

exception, as their solution entails a communication overhead

that is logarithmic in the size of the ground set. However, they

considered only the case of two players, and the logarithmic

communication overhead occurs only when the size of the

intersection of the two sets is bounded by a constant.

The problem of set inclusion can be seen as a simplified

version of the privacy-preserving keyword search. In that

problem, the server holds a set of pairs {(xi, pi)}ni=1, where

xi are distinct “keywords”, and the client holds a single value

w. If w is one of the server’s keywords, i.e., w = xi for

some 1 ≤ i ≤ n, the client should get the corresponding pi.
In case w differs from all xi, the client should get notified
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of that. The privacy requirements are that the server gets no

information about w and that the client gets no information

about other pairs in the server’s database. This problem was

solved by Freedman et. al. [13]. If we take all pi to be the

empty string, then the only information the client gets is

whether or not w is in the set {x1, . . . , xn}. Hence, in that case

the privacy-preserving keyword search problem reduces to the

set inclusion problem. Another solution for the set inclusion

problem was recently proposed in [30], using a protocol for

oblivious polynomial evaluation.

8 CONCLUSION
We proposed a protocol for secure mining of association

rules in horizontally distributed databases that improves sig-

nificantly upon the current leading protocol [18] in terms of

privacy and efficiency. One of the main ingredients in our

proposed protocol is a novel secure multi-party protocol for

computing the union (or intersection) of private subsets that

each of the interacting players hold. Another ingredient is a

protocol that tests the inclusion of an element held by one

player in a subset held by another. Those protocols exploit the

fact that the underlying problem is of interest only when the

number of players is greater than two.

One research problem that this study suggests was described

in Section 3; namely, to devise an efficient protocol for

inequality verifications that uses the existence of a semi-

honest third party. Such a protocol might enable to further

improve upon the communication and computational costs

of the second and third stages of the protocol of [18], as

described in Sections 3 and 4. Other research problems that

this study suggests is the implementation of the techniques

presented here to the problem of distributed association rule

mining in the vertical setting [31], [33], the problem of

mining generalized association rules [27], and the problem

of subgroup discovery in horizontally partitioned data [16].
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