
1

TrustedDB: A Trusted Hardware based
Database with Privacy and Data Confidentiality

Sumeet Bajaj, Radu Sion

Abstract—Traditionally, as soon as confidentiality becomes a concern, data is encrypted before outsourcing to a service provider.
Any software-based cryptographic constructs then deployed, for server-side query processing on the encrypted data, inherently limit
query expressiveness. Here, we introduce TrustedDB, an outsourced database prototype that allows clients to execute SQL queries
with privacy and under regulatory compliance constraints by leveraging server-hosted, tamper-proof trusted hardware in critical query
processing stages, thereby removing any limitations on the type of supported queries. Despite the cost overhead and performance
limitations of trusted hardware, we show that the costs per query are orders of magnitude lower than any (existing or) potential future
software-only mechanisms. TrustedDB is built and runs on actual hardware, and its performance and costs are evaluated here.

Index Terms—Database architectures, security, Privacy, Special-purpose Hardware.

✦

1 INTRODUCTION
Although the benefits of outsourcing and clouds are well
known [41], significant challenges yet lie in the path
of large-scale adoption since such services often require
their customers to inherently trust the provider with full
access to the outsourced datasets. Numerous instances
of illicit insider behavior or data leaks have left clients
reluctant to place sensitive data under the control of
a remote, third-party provider, without practical assur-
ances of privacy and confidentiality, especially in business,
healthcare and government frameworks. Moreover, to-
day’s privacy guarantees for such services are at best
declarative and subject customers to unreasonable fine-
print clauses. E.g., allowing the server operator to use
customer behavior and content for commercial profiling
or governmental surveillance purposes.
Existing research addresses several such security as-

pects, including access privacy and searches on en-
crypted data. In most of these efforts data is encrypted
before outsourcing. Once encrypted however, inherent
limitations in the types of primitive operations that can
be performed on encrypted data lead to fundamental
expressiveness and practicality constraints.
Recent theoretical cryptography results provide hope

by proving the existence of universal homomorphisms,
i.e., encryption mechanisms that allow computation of
arbitrary functions without decrypting the inputs [43].
Unfortunately actual instances of such mechanisms seem
to be decades away from being practical [17].
Ideas have also been proposed to leverage tamper-

proof hardware to privately process data server-side,

• Sumeet Bajaj is with the Computer Science Department at Stony Brook
University, Stony Brook, NY. E-mail: sbajaj@cs.stonybrook.edu..

• Radu Sion is with the Computer Science Department at Stony Brook
University, Stony Brook, NY. E-mail: sion@cs.stonybrook.edu..

ranging from smart-card deployment [25] in healthcare,
to more general database operations [23], [32], [26].
Yet, common wisdom so far has been that trusted

hardware is generally impractical due to its performance
limitations and higher acquisition costs. As a result, with
very few exceptions [25], these efforts have stopped
short of proposing or building full - fledged database
processing engines.
However, recent insights [9] into the cost-performance

trade-off seem to suggest that things stand somewhat
differently. Specifically, at scale, in outsourced contexts,
computation inside secure processors is orders of mag-
nitude cheaper than any equivalent cryptographic op-
eration performed on the provider’s unsecured server
hardware, despite the overall greater acquisition cost of
secure hardware.
This is so because the overheads for cryptography that

allows some processing by the server on encrypted data
are extremely high even for simple operations. This fact
is rooted not in cipher implementation inefficiencies but
rather in fundamental cryptographic hardness assump-
tions and constructs, such as trapdoor functions. More-
over, this is unlikely to change anytime soon as none
of the current primitives have, in the past half-century.
New mathematical hardness problems will need to be
discovered to allow hope of more efficient cryptography.
As a result, we posit that a full-fledged, privacy

enabling secure database leveraging server-side trusted
hardware can be built and run at a fraction of the cost
of any (existing or future) cryptography-enabled private
data processing on common server hardware. We vali-
date this by designing and building TrustedDB, a SQL
database processing engine that makes use of tamper-
proof cryptographic coprocessors such as the IBM 4764
[3] in close proximity to the outsourced data.
Tamper resistant designs however are significantly

constrained in both computational ability and mem-
ory capacity which makes implementing fully featured

Digital Object Indentifier 10.1109/TKDE.2013.38 1041-4347/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

database solutions using secure coprocessors (SCPUs)
very challenging. TrustedDB achieves this by utilizing
common unsecured server resources to the maximum ex-
tent possible. E.g., TrustedDB enables the SCPU to trans-
parently access external storage while preserving data
confidentiality with on-the-fly encryption. This elimi-
nates the limitations on the size of databases that can be
supported. Moreover, client queries are pre-processed to
identify sensitive components to be run inside the SCPU.
Non-sensitive operations are off-loaded to the untrusted
host server. This greatly improves performance and re-
duces the cost of transactions.
Overall, despite the overheads and performance lim-

itations of trusted hardware, the costs of running
TrustedDB are orders of magnitude lower than any
(existing or) potential future cryptography-only mecha-
nisms. Moreover, it does not limit query expressiveness.
The contributions of this paper are threefold: (i) the in-

troduction of new cost models and insights that explain
and quantify the advantages of deploying trusted hard-
ware for data processing, (ii) the design, development,
and evaluation of TrustedDB, a trusted hardware based
relational database with full data confidentiality, and
(iii) detailed query optimization techniques in a trusted
hardware-based query execution model.

2 THE REAL COSTS OF SECURITY
As soon as confidentiality becomes a concern, data needs
to be encrypted before outsourcing. Once encrypted,
solutions can be envisioned that: (A) straightforwardly
transfer data back to the client where it can be decrypted
and queried, (B) deploy cryptographic constructs server-
side to process encrypted data, and (C) process en-
crypted data server-side inside tamper-proof enclosures
of trusted hardware.
In this section we will compare the per-transaction

costs of each of these cases. This is possible in view of
novel results of Chen et al. [9] that allow such quantifica-
tion. We will show that, at scale, in outsourced contexts,
(C) computation inside secure hardware processors is
orders of magnitude cheaper than any equivalent cryp-
tographic operation performed on the provider’s unse-
cured common server hardware (B). Moreover, due to
the extremely high cost of networking as compared with
computation, the overhead of transferring even a small
subset of the data back to the client for decryption and
processing in (A) is overall significantly more expensive
than (C).
The main intuition behind this has to do with the

amortized cost of CPU cycles in both trusted and com-
mon hardware, as well as the cost of data transfer. Due
to economies of scale, provider-hosted CPU cycles are
1-2 orders of magnitude cheaper than that of clients and
of trusted hardware. The cost of a CPU cycle in trusted
hardware (56+ picocents1, discussed below) becomes

1. 1 US picocent = 10−14 USD

thus of the same order as the cost of a traditional client
CPU cycle at (e.g., 14-27 picocents for small businesses)
including acquisition and operating costs.
Additionally, when data is hosted far from its access-

ing clients, the extremely expensive network traffic often
dominates. E.g, transferring a single bit of data over a
network costs upwards of 3500 picocents [9].
Finally, cryptography that would allow processing on

encrypted data demands extremely large numbers of
cycles even for very simple operations such as addition.
This limitation is rooted in fundamental cryptographic
hardness assumptions and constructs, such as crypto-
graphic trapdoors, the cheapest we have so far being at
least as expensive as modular multiplication [31], which
comes at a price-tag of upwards of tens of thousands of
picocents per operation [9].
The above insights lead to (C) being a significantly

more cost-efficient solution than (A) and (B). We now
detail.

2.1 Cost of Primitives

Compute Cycles and Networks. In [9] Chen et
al. derived the cost of compute cycles for a set of
environments ranging from individual homes with
a few PCs (H) to large enterprises and compute
clouds (L) (M,L=medium,large sized business). These
costs include a number of factors, such as hardware
(server, networking), building (floor space leasing), en-
ergy (electricity), service (personnel, maintenance) etc.
Fig. 1. CPU cycle costs
(picocent).
H S M L
5 14-27 2 <0.5

Their main thesis is that, due to
economies of scale and favorable
operating parameters, per-cycle
costs decrease dramatically when

run in large compute providers’ infrastructures.
The resulting cpu cycle costs (figure 1) range from 27

picocents for a small business environment to less than
half of a picocent for large cloud providers. Network
service costs range from a few hundred picocents per
bit for non-dedicated service to thousands of picocents in
the case of medium sized businesses. Detailed numbers
are available in [39], [9], [40].
Also, the work in [39], [9] derives the cost of x86-

equivalent CPU cycles inside cloud-hosted SCPUs such
as the IBM 4764 to be ≈56 picocents. We note that while
this is indeed much higher than the < 0.5 picocent cost of
a cycle on commodity hardware, it is comparable to the
cost of cycles in CPUs hosted in small sized enterprises
(14-27 picocents).

2.2 Comparison
Given these data points we now compare the A, B and C
alternatives discussed above. We consider the following
simple scenario. A client outsources a encrypted dataset
composed of integers to a provider. The encrypted data
is then subjected to a simple aggregation (SUM) query
in which the server is to add all the integers without

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

106

107

108

109

1010

1011

1012

1013

1 101 102 103 104 105 106

C
os

t (
pi

co
ce

nt
s)

Database Size (KB)

Costunencrypted
Costtransfer

Costhomomorphic
Costscpu

Fig. 2. Comparison of outsourced aggregation query solutions.

decryption and return the result to the client. We chose
this mechanism not only for its illustrative simplicity but
also because SUM aggregation is one of the very few
types of queries for which non-hardware solutions have
been proposed. This allows us to directly compare with
existing work. Later in section 2.3 we also generalize for
arbitrary queries. Figure 2 summarizes the cost analysis
that follows.

Querying un-encrypted data. No confidentiality. As a
baseline consider the most prevalent scenario today, in
which the client’s data is stored un-encrypted with the
service provider. Client queries are executed entirely on
the provider’s side and only the results are transferred
back. Although this is the most cost - effective solution
it offers no data confidentiality. The lower bound cost of
query execution in this case is as follows2:

Costunencrypted = 2 ·D · Cbit transmit+(
N

D
− 1

)
· Ccycle server · ηaddition

(1)

where N is the size of the entire database in bits, D = 32
(32 bit integers), Ccycle server is the cost of one CPU cycle
on server hardware, ηaddition = 1 is the average number
of CPU cycles required for an addition operation [22].
Cbit transmit is the cost of transmitting 1 bit of data from
the service provider to the client.

(A) Transferring encrypted data to client. The first
baseline solution for data confidentiality works by trans-
ferring the entire database to the client. The client then
decrypts and aggregates the data. The cost of this alter-
native becomes

Costtransfer = N · (Cbit transmit + Cbit decryption)+(
N

D
− 1

)
· Ccycle client · ηaddition

(2)

Where Cbit decryption = 8 picocents is the normalized cost
of decrypting one bit with AES-128 and Ccycle client = 2
picocents is the cost of a single client CPU cycle respec-
tively in medium-sized (M) enterprises. Naturally we
observe that here the cost of transferring the database
to the client dominates.

2. The cost of reading data from storage into main memory is a
common factor in all solutions and thus not included here

(B) Cryptography. Traditional additive homomorphisms
[33], [28], [29] have been used in existing work [19],
[42], to allow servers to run aggregation queries over
encrypted data. These allow the computation of the
encryption of the sum of a set of encrypted values
without requiring their decryption in the process.
Existing homomorphisms require the equivalent work

of at least a modular multiplication in performing their
corresponding operation, such as addition. Moreover,
for security, this modular multiplication needs to be
performed in fields with a large modulus. For efficiency
[42] goes one step further and proposes to perform ag-
gregation in parallel by simultaneously adding multiple
32-bit integer values. They achieve this by adding two
1024-bit chunks of encrypted data at a time. Due to
the properties of the Paillier cryptosystem, each such
addition involves one 2048-bit modular multiplication3.
The server then computes the encrypted sum of all

such large integers, which is equivalent to a single mod-
ular multiplication of the encrypted values modulo 2048,
and returns the result to the client. The client decrypts
the 2048 bit result into a 1024 bit plain-text, splits this
into 32 integers of 32 bits each, and computes their sum.
The cost of this scheme is given by

Costhomomorphic =
Bh

D
·

((
N

Bh

− 1

)
· Cmodular mul+

2 ·Bh · Cbit transmit + Chomomorphic dec+(
Bh

D
− 1

)
· Ccycle client · ηaddition

)

(3)

where Bh = 1024 is the plain-text block size
and Cmodular mul is the cost of performing a single
modular multiplication modulo 2048 on the server.
Chomomorphic dec is the cost of performing the single de-
cryption on client and involves modular multiplication
and exponentiation.
(C) SCPUs. A possible use of a SCPU is to perform
the aggregation fully within it. The result can then be
re-encrypted and transmitted back to the client.
In addition to the core CPU processing costs (which

can be computed directly from the cost of SCPU cy-
cles), data transfer overheads are incurred i.e., to bring
encrypted data into the SCPU and then transfer the
encrypted results back to the host server. The total cost
of the solution becomes
Costscpu =

⌈
N

Bs

⌉
· (δsrv · Ccycle srv + δscpu · Ccycle scpu)+

N · Cbit decryption scpu+(
N

D
− 1

)
· Ccycle scpu · ηaddition scpu+

Bc · Cbit encryption scpu +Bc · Cbit transmit+

Bc · Cbit decyption client

(4)
Where δsrv and δscpu are the server and SCPU cycles

used to setup data transfer and include the cost of setting

3. To process n-bit plain-texts, Paillier operates in n
2 = 2048 bit

fields for 1024 bit plain-texts. Cipher-texts are 2048 bit.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

105

1010

1015

1020

1025

1030

100 101 102 103 104 105 106 107 108 109 1010 1011 1012

C
os

t (
pi

co
ce

nt
s)

Database size (items)

Cryptography based (SELECT query)
Cryptography based (JOIN query)

SCPU (SELECT query)
SCPU (JOIN query)

Fig. 3. SCPU is 1-3 orders of magnitude cheaper than cryp-
tography.
up and handling DMA interrupts. Ccycle scpu is the cost
of a SCPU cycle. Bs = 64KB is the block size of data
transmitted between the server and the SCPU in one
round and Bc is the cipher block size (128 bits for AES).
ηaddition scpu = 2 is the number of cycles per addition
operation in the SCPU for 64 bit addition (on a 32 bit
architecture).
Figure 2 shows the cost relationship between the

solutions. It can be seen that for any data set sizes
Costscpu < Costhomomorphic and Costscpu < Costtransfer .
We also note that for data sets of size < 100KB, the
cost of client-side homomorphic decryptions (which in-
volves modular exponentiation) dominates and exceeds
the data transmission cost in Costtransfer . Overall, the
use of SCPUs is the most efficient from a cost-centric
point of view, by more than an order of magnitude when
compared with cryptographic alternatives.

2.3 Generalized Argument
Recall that current cryptographic constructs are based
on trapdoor functions [18]. Currently viable trapdoors
are based on modular exponentiation in large fields
(e.g., 2048 bit modular operations) and viable homomor-
phisms involve a trapdoor for computing the cipher-
texts. Additionally, the homomorphic operation itself in-
volves processing these encrypted values at the server in
large fields, while respecting the underlying encryption
trapdoor, incurring at least the cost of a modular multi-
plication [33], [28], [29]. This fundamental cryptography
has not improved in efficiency in decades and would
require the invention of new mathematical tools before
such improvements are possible.
Thus, overall, for large scale, efficient deployments,

(e.g., clouds) where CPU cycles are extremely cheap (e.g.,
0.45 picocents/cycle), performing the cheapest, least se-
cure homomorphic operations (modular multiplication)
comes at a price-tag of at least 30,000 picocents [9] even
for values as small as 32-bit (e.g., salaries, zip-codes).
Thus, even if we assume that in future developments

homomorphisms will be invented that can allow full
Turing Machine languages to be run under the encryp-
tion envelope, unless new trapdoor math is discovered

each operation will yet cost at least 30,000 picocents
when run on efficient servers. By comparison, SCPUs
process data at a cost of 56 picocents/cycle. This is a
difference of several orders of magnitude in cost. We
also note that, while ECC signatures (e.g., even the weak
ECC-192) may be faster, ECC-based trapdoors would be
even more expensive, as they would require two point
multiplications, coming at a price-tag of least 780,000
cycles ([11] page 402).
Yet, this is not entirely accurate, as we also need to

account for the fact that SCPUs need to read data in
before processing. The SCPUs considered here feature
a decryption throughput of about 10-14 MB/second for
AES decryption [3], confirmed also by our benchmarks.
This limits the ability to process data. E.g, comparing
two 32-bit integers as in a JOIN operation becomes
dominated not by the single-cycle conditional JUMP
CPU operation but by the cost of decryption. At 166-
200 megacycles/second this results in the SCPU having
to idly wait anywhere between 47 and 80 cycles for
decryption to happen in the crypto engine module before
it can process the data. This in effect results in an
amortized SCPU cost of between 2632 and 4480 picocents
(3556 picocents on average) for each operation which
reduces the above 3 orders of magnitude difference to
only one order of magnitude, still in favor of SCPUs 4.
The above holds even for the case when the SCPU

has only enough memory for the two compared values.
Further, in the presence of significantly higher, realistic
amounts of SCPU memory (e.g., M = 32MB for 4764-
001), optimizations can be achieved for certain types of
queries such as relational JOINs. The SCPU can read
in and decrypt entire data pages instead of single data
items and run the JOIN query over as many of the
decrypted data pages as would fit in memory at one
time. This results in significant savings. To illustrate,
consider a page size of P 32-bit words and a simple
JOIN algorithm for two tables of size N 32-bit integers
each (we’re just concerned with the join attribute). Then
the SCPU will perform a number of (N/P)2 + (N/P)
page fetches each involving also a page data decryption
at a cost of P · 3556 picocents. Thus we get a total cost
of (N

2

P + N) · 3556 + N2 · 56. For reasonable sizes, e.g.,
P = M/2/4 = 4 million, this cost becomes 3+ orders
of magnitude lower than the N2 · 30000 picocent cost
incurred in the cryptography-based case.

Cost vs. Performance. Given these 3+ orders of magni-
tude cost advantages of the SCPU over cryptography-
based mechanisms, we expect that for the above dis-
cussed aggregation query mechanism [42], the SCPU’s
overall performance will also be at least comparable if
not better despite the CPU speed handicap. We ex-
perimentally evaluated this hypothesis and achieved a
throughput of about 1.07 million tuples/second for the

4. The cost can be reduced further by up to 50% if instead of AES, a
cipher is built using a faster cryptographic hash as a pseudo-random
function [6].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

(a) TrustedDB architecture. (b) Query Plan for Q6. (c) Query Plan for Q3.
Fig. 4. TrustedDB architecture and query plans. Green and Red indicate public & private attributes respectively.

SCPU. By contrast, in [42] best-case scenario throughputs
range between 0.58 and 0.92 million tuples/second and
at much higher overall cost.

Conclusion Summary. Figure 3 compares SCPU based
query processing with the most ideal cryptography
based mechanisms employing a single modular multi-
plication. Note that such idealistic crypto mechanisms
have not been invented yet, but even if they were as
Figure 3 illustrates, for linear processing queries (e.g.,
SELECT) the SCPU is roughly one+ order of magnitude
cheaper. For JOIN queries, the SCPU costs drop even
further even when assuming no available memory. Fi-
nally, in the presence of realistic amounts of memory,
due to increased overhead amortization, the SCPU is
multiple orders of magnitude cheaper than software-
only cryptographic solutions on legacy hardware.
We note that the above conclusion may not apply

to targeted niche scenarios. E.g., it is entirely possible
that by maintaining client pre-computed data server-
side, processing only a pre-defined set of queries or by
supporting minimal query classes (such as only range
queries) specifically designed niche solutions may turn
out to be cheaper than general-purpose full-fledged
SCPU-backed databases like TrustedDB.

3 ARCHITECTURE
Figure 4(a) depicts the TrustedDB architecture. In the
following we discuss some of the key elements.
Overview. To overcome SCPU storage limitations, the
outsourced data is stored at the host provider’s site.
Query processing engines are run on both the server
and in the SCPU. Attributes in the database are classified
as being either public or private. Private attributes are
encrypted and can only be decrypted by the client or by
the SCPU.
Since the entire database resides outside the SCPU, its

size is not bound by SCPU memory limitations. Pages

that need to be accessed by the SCPU-side query pro-
cessing are pulled in on demand by the Paging Module.
Query execution entails a set of stages. (0) In the first

stage a client defines a database schema and partially
populates it. Sensitive attributes are marked using the
SENSITIVE keyword which the client layer transparently
processes by encrypting the corresponding attributes:

CREATE TABLE customer(ID integer primary key,
Name char(72) SENSITIVE, Address char(120) SENSITIVE);

(1) Later, a client sends a query request to the host
server through a standard SQL interface. The query is
transparently encrypted at the client site using the public
key of the SCPU. The host server thus cannot decrypt
the query. (2) The host server forwards the encrypted
query to the Request Handler inside the SCPU. (3) The
Request Handler decrypts the query and forwards it to
the Query Parser. The query is parsed generating a set of
plans. Each plan is constructed by rewriting the original
client query into a set of sub-queries, and, according to
their target data set classification, each sub-query in the
plan is identified as being either public or private. (4)
The Query Optimizer then estimates the execution costs
of each of the plans and selects the best plan (one with
least cost) for execution forwarding it to the dispatcher.
(5) The Query Dispatcher forwards the public queries
to the host server and the private queries to the SCPU
database engine while handling dependencies. The net
result is that the maximum possible work is run on the
host server’s cheap cycles. (6) The final query result
is assembled, encrypted, digitally signed by the SCPU
Query Dispatcher, and sent to the client.
Query Parsing and Execution. Sensitive attributes can
occur anywhere within a query, e.g., in SELECT, WHERE
or GROUP-BY clauses, in aggregation operators, or
within sub-queries. The Query Parser’s job is then.
(a) To ensure that any processing involving private at-
tributes is done within the SCPU. All private attributes
are encrypted using a shared data encryption keys be-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

tween the client and the SCPU, hence the host server
cannot decipher these attributes (section 5).
(b) To optimize the rewrite of the client query such that
most of the work is performed on the host server.
To exemplify how public and private queries are

generated from the original client query we use exam-
ples from the TPC-H benchmark [2]. TPC-H does not
specify any classification of attributes based on security.
Therefore, we define a attribute set classification into
private (encrypted) and public (non-encrypted). In brief,
all attributes that convey identifying information about
customers, suppliers and parts are considered private.
The resulting query plans, including rewrites into main
CPU and SCPU components for TPC-H queries Q3 and
Q6 are illustrated in Figure 4.
For queries that have WHERE clause conditions on

public attributes, the server can first SELECT all the
tuples that meet the criteria. The private attributes’
queries are then performed inside the SCPU on these
intermediate results, to yield the final result. E.g., query
Q6 of the TPC-H benchmark is processed as shown
in Figure 4(b). The host server first executes a public
query that filters all tuples which fall within the desired
ship date and quantity range, both of these being public
attributes. The result from this public query is then used
by the SCPU to perform the aggregation on the private
attributes extended price and discount. While perform-
ing the aggregation the private attributes are decrypted
inside the SCPU. Since the aggregation operation results
in a new attribute composing of private attributes it is re-
encrypted within the SCPU before sending to the client.
Note that the execution of private queries depends on

the results from the execution of public queries and vice-
a-versa even though they execute in separate database
engines. This is made possible by the TrustedDB Query
Dispatcher in conjunction with the Paging Module.
Data manipulation queries (INSERT, UPDATE) also

undergo a rewrite. Moreover, any new generated
attribute values are re-encrypted within the SCPU
before updating the database. For illustration, con-
sider the query UPDATE EMPLOYEES SET SALARY =
SALARY + 2000 WHERE ZIP = 98239. If SALARY is
a private attribute then the query works by first decrypt-
ing the SALARY attribute, performing the addition and
then re-encrypting the updated values and is executed
within the SCPU. On the other hand if SALARY is a
public attribute then the query will be executed entirely
by the host server.
We refer the reader to [39] for more detailed explana-

tion of query processing including group by and nested
queries. In this work we focus on query optimization
techniques in a trusted hardware model.

3.1 Query Optimization
3.1.1 Model
As per section 3, due to the un-availability of storage
within the SCPU the entire database is stored at the

server. However, the attribute classification into pub-
lic (non-encrypted) and private (encrypted) introduces
a strict vertical partitioning (although logical) of the
database between the server and the SCPU. The require-
ment to be adhered to is that any processing on private
attributes must be done within the confinements of the
SCPU. This partitioning of data resembles a federated
database rather than a stand alone DBMS. Since this
partitioning is dictated by the security requirements of
the application and all data resides on the server existing
techniques [35], [14] are ruled out. The following sections
describe query optimization in TrustedDB within the
scope of this logical partitioning.

3.1.2 Overview
At a high level query optimization in a database system
works as follows.
(i) The Query Plan Generator constructs possibly multiple
plans for the client query.
(ii) For each constructed plan the Query Cost Estimator
computes an estimate of the execution cost of that plan.
(iii) The best plan i.e., one with the least cost, is then
selected and passed on to the Query Plan Interpretor for
execution.
The query optimization process in TrustedDB works

similarly with key differences in the Query Cost Estimator
due to the logical partitioning of data mentioned above.
However, we note that all optimizations possible in a
traditional DBMS with no private attributes are still
applicable to public sub-queries executed on the server.
We refer the reader to [24] for details of these existing
optimizations.
In the following sections we only discuss cases which

are unique to TrustedDB and trusted hardware based
designs alike.
Metric. The key in query optimization is estimating the
costs of various logical query plans. A common metric
utilized in comparing query plan costs has been disk
I/O [38], [36] which is justified since disk access is the
most expensive operation and should be minimized. In
the trusted hardware model of TrustedDB an additional
significant I/O cost is introduced i.e., the server↔SCPU
data transfer. Moreover, disk access on the server and the
Server↔SCPU communication have different costs. In
addition we also need to consider the disparity between
the computational abilities of the server and the SCPU.
To combine all these factors we use execution time as
the metric for cost estimation. Note that from this point
onwards any reference to the cost of a query plan refers
to its execution time.
Also, the goal of the Query Optimizer is not to measure

query execution times with high accuracy but only to
correctly compare query plans based on an estimation.
To clarify, assume that a query Q has two valid execution
plans PA and PB . Then, if the real execution times of PA

and PB are such that ET real(PA) >ET real(PB), then it
suffices for the Query Optimizer to estimate ET est(PA)
>ET est(PB) although the values for ET real(Pi) and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

ET est(Pi) may not be close.
Approach. To illustrate the query optimization in
TrustedDB we take the following approach for each case.
(1) First, we present two alternative plans for the case.
(2) Next, we estimate the execution times (ET) for each
of the two plans.
(3) We analyze the estimations of step (2) for selection
of the best plan.
Then, in section 4 we experimentally verify query

optimization techniques.
Note that in the running system multiple (>2) plans

could be considered. We limit ourselves to only two here,
for brevity. Also, steps (1-3) from above are performed
by the TrustedDB Query Optimizer (figure 4(a)).

3.1.3 System Catalog

Fig. 5. System Configuration parameters.

Server SCPU
CPU ηs 3.4 GHz ηt 233 MHz
Memory Υs 4 GB Υt 32 MB

Any query
plan is
composed
of multiple
individual execution steps. To estimate the cost of
the entire plan it is essential to estimate the cost
of individual steps and aggregate them. In order to
estimate these costs the Query Cost Estimator needs
access to some key information. E.g., the availability of
an index or the knowledge of possible distinct values
of an attribute. These sets of information are collected
and stored in the System Catalog. Most available DBMS
today have some form of periodically updated System
Catalog. Figures 5-6 and tables 1-3 give a partial view of
the System Catalog maintained by TrustedDB. Later, in
section 3.1.5 we will see how this information is used in
estimating plan execution times. System Catalog content
is categorized as follows.
(a) System Configuration (Figure 5).
These are the available compute capacities of the
system hardware. This information is unlikely to change
frequently and is configured during setup.
(b) Benchmarked Parameters (Table 1).
As part of query execution many basic operations are
performed which add to the overall execution time.
Benchmarks are employed to determine the average
execution times for these operations to aid in query
cost estimation. Unless changes occur in the system
configuration this information need not be updated.
Fig. 6. Database Configuration.

Database Parameters
DB Page Size ρ 32KB
Server Cache Size μs 32768
SCPU Cache Size μt 1024
B+-Tree Order θ 100

(c) Database Configura-
tion (Figure 6).
These parameters are
directly set on the database
to improve performance.

The server DBMS is an off the shelf industrial quality
database system (section 4) which provides large range
of configuration parameters. With the TrustedDB design
this host DBMS can be configured independently.
(d) Data Statistics (Table 2).
A data scan is employed to collect statistics about the
actual data. This scan is configured to run periodically.
The statistics on public attributes are collected server

side. However, private attributes are scanned via the
SCPU, decrypted and then analyzed. Note that since
the collection process involves scan of the database it
is a time consuming task and needs to be scheduled
accordingly (e.g. nightly or weekends).

TABLE 1
Benchmarked parameters.
Benchmarked Parameters

Disk Read φs 0.02 ms Avg time to read 32 KB blk from
server disk

Server↔SCPU λ 5.26 ms Avg time to transfer a 32 KB blk
between server and SCPU

Cycles / aggrega-
tion

δg 3 number of cpu cycles per aggre-
gate operation (e.g. group by)

Cycles / addition δa 1 number of cpu cycles per addition
Cycles / compari-
son

δc 1 number of cpu cycles per compar-
ison between two values

Crypto εa 0.012 μs Time to encrypt/decrypt a single
(32 byte) attribute in SCPU

TABLE 2
Collected data statistics.

lineitem
Attribute Values Max Size
l shipdate υlsd

= 2526 ϑlsd
κlsd

= 4
l shipmode υlsm = 7 κlsm = 10
l linestatus υlls

= 2 κlls
= 16

l quantity κlqt = 4
l discount υldc

= 11 κldc
= 16

l orderkey κlok
= 4

l linenumber κlln
= 4

Indexes
Table Attribute(s) Type Organization
lineitem l orderkey,

l linenumber
B+-Tree clustered

lineitem l shipdate B+-Tree non-clustered

TABLE 3
Collected relation level statistics.

lineitem orders part
Number of tuples ϕl 6 M ϕo 1.5 M ϕp 200 K
Tuple size τl 120 τo 100 τp 160
Tuples per page (ρτ) ωl 273 ωo 328 ωp 203

3.1.4 Analysis of Basic Query Operations
The cost of a plan is the aggregate of the cost of the
steps that comprise it. In this section we present how
execution times for a certain set of basic query plan steps
are estimated. These steps are re-used in multiple plans
and hence we group their analysis here.
(i) Index-based lookup.
Consider the selection query Q = σl shipdate=10/01/1998.
As per the System Catalog (table 2) there is a B+-Tree
index available on the attribute l shipdate. Hence the
expected execution time to locate the first leaf page
containing the result tuples will be

ET (Q) = logθ ϕl · φs (5)
Here, logθ ϕl is number of index pages read while φs is
the time to read a single page from disk on server.
(ii) Selection.
Estimating the execution time of selection queries re-
quires estimation of the number of tuples that would
comprise the query result. For this, we first define the
following from [24].
Definition 1: Values: The Values of an attribute A,

V alues(A) or υA is the number of distinct values of A.
Definition 2: Reduction Factor: The Reduction Factor of

a condition C, Reduction(C) or ΘC is the reduction

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

(a) Case I: Group By on public attribute. (b) Case II: Order By on public and private attributes.

(c) Case III: Distinct clause on public and private attribute. (d) Case IV: Projections.
Fig. 7. Query optimization plans for cases I - IV of section 3.1.5. Green and Red indicate public & private attributes respectively.

in size of the relation caused by the execution of a
selection clause with that condition.
E.g.

Reduction(l shipdate = 10/01/1998) =
1

V alues(l shipdate)

OR

Θl shipdate=10/01/1998 =
1

υlsd

(6)

Further,
Θl shipdate>10/01/1998 =

ϑlsd
−

′ 10/01/1998′

υlsd

(7)

Note, that the above definitions assume a uniform dis-
tribution of attribute values i.e. each distinct attribute
value is equally likely to occur in a relation.
Now, consider the selection query

σl shipdate>10/01/1998. In its execution, the index on
l shipdate is used to locate the first leaf page containing
the result. Then, subsequent leaf pages are scanned
to gather all tuples comprising the result. Hence the
estimated execution time is logθ ϕl ·φs+

Θlsd
·ϕl

ωl
·φs. Here

the term Θlsd
·ϕl

ωl
estimates the number of leaf pages

containing all tuples that satisfy the query.
(iii) Server↔SCPU data transfer.
The intermediate results from query plan execution are
often transferred between the server and the SCPU.
This data transfer occurs in fixed sized pages in a
synchronous fashion. If the data to be transferred is B
bytes then the total transfer time is � B

ρ∗1024� · λ. Here, ρ

is the page size and hence � B
ρ∗1024� gives the number of

pages needed to transfer B bytes. λ is the time required
to transfer a single page of size ρ (see table 1 and
figure 6 for values). Suppose that we need to transfer the
results of the query Πsum(l quantity)(σl shipdate>10/01/1998

and l linestatus=‘O′). Then we can estimate the intermedi-
ate query result size by multiplying the number of tuples
in the query result with the total size of the projection
operation. The size of the projection is simply the sum
of the sizes of the individual attributes l linestatus and
l quantity. Hence, the total data transfer time for this
query is estimated as

(κlls
+κlqt)·Θlsd

·ϕl

ρ∗1024 · λ.
(iv) External Sorting.
Since database relations can require large amount of
storage space external sorting is employed whenever the
relation(s) to be sorted cannot fit in memory. External
sorting has been studied extensively [24] and the I/O
cost for an external merge sort is given as 2 ·F · logM−1F ,
where F is the total number of relation pages and M is
the number of pages that can be stored in memory (M
<<F). Using this we can estimate the execution time for
sorting a relation r on the server as

2 ·
ϕr · τr

1024 · ρ
·

(
logΥs·1024

ρ
−1

ϕr · τr

1024 · ρ

)
· φs (8)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

TABLE 4
Cost computations for query plans shown in figures 7(a), 7(b) corresponding to cases I-II.

Case Plan Step Execution Time (ET) Total ET (s)

A

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.57(ii). Server → SCPU transfer
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·ϕl

ρ∗1024

⌉
· λ

(iii). σDECRY PT (l linestatus=‘O′) Θlsd
· ϕl · εa

(I) Group By on (iv). Server ← SCPU transfer
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·Θlls

·ϕl

ρ·1024

⌉
· λ

public attribute (v). l shipmodeχsum(l quantity) (Θlsd
· ϕl · δg + Θlsd

· Θlls
· ϕl · δa) ·

1000
ηs

B

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.78(ii). Server → SCPU transfer
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·ϕl

ρ∗1024

⌉
· λ

(iii). σDECRY PT (l linestatus=‘O′) Θlsd
· ϕl · εa

(iv). l shipmodeχsum(l quantity) 2 · F · logμt−1F · λ, F =
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·ϕl

ρ∗1024

⌉
(iv). Server ← SCPU transfer

⌈ (κlqt
+κlsm

)·υlsm
ρ·1024

⌉
· λ

A

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.68
(ii). Server → SCPU transfer

⌈ (κldc
+κlsm

+κlls
)·Θlsd

·ϕl

ρ∗1024

⌉
· λ

(iii). σDECRY PT (l linestatus)=‘O′) Θlsd
· ϕl · εa

(iv). Server ← SCPU transfer
⌈ (κldc

+κlsm
)·Θlsd

·Θlls
·ϕl

ρ∗1024

⌉
· λ

(II) Order By on (v). l shipmodeτ
Θlsd

·Θlls
·ϕl·1000

ηs
· δc

Public and Pri-
vate

(vi). DECRY PT (l discount)τ 2 · F · logμt−1F · λ, F =
⌈ (κldc

+κlsm
)·Θlsd

·Θlls
·ϕl

ρ∗1024

⌉

attributes

B

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

1.29
(ii). Server → SCPU transfer

⌈ (κldc
+κlsm

+κlls
)·Θlsd

·ϕl

ρ·1024

⌉
· λ

(iii). σDECRY PT (l linestatus)=‘O′) Θlsd
· ϕl · εa

(iv). Server ← SCPU transfer
⌈ (κldc

+κlsm
)·Θlsd

·Θlls
·ϕl

ρ∗1024

⌉
· λ

(v). l shipmode,DECRY PT(l discount)τ 2 · F · logμt−1F · λ, F =
⌈ (κldc

+κlsm
)·Θlsd

·Θlls
·ϕl

ρ∗1024

⌉
and the time for the same sort from within the SCPU as

2 ·
ϕr · τr

1024 · ρ
·

(
logΥt·1024

ρ
−1

ϕr · τr

1024 · ρ

)
· (φs + λ) (9)

Here, ϕr is the total number of tuples in r and τr is the
size of an individual tuple.

3.1.5 Plan Evaluations

Case I: Group-By on Public Attribute.
Figure 7(a) shows two alternative plans for a Group-By
operation on the public attribute l shipmode. The
difference between the two plans (A & B) is whether the
grouping is performed by the server or the SCPU. If it
is performed by the server, then the cheap server cycles
are utilized. However, if done within the SCPU the
SCPU→Server data transfer is reduced, the reduction
depending upon the number of distinct values of
l shipmode. Table 4 shows the computation of the
execution times of both plans A & B and the actual
estimation. It is observed that under the parameters and
System catalog data from figures 5-6 and tables 1-3 it is
more efficient to perform the Group By on the server.
This is because the selection on l shipdate has high
selectivity and minimizes the data transfer cost. If this
selection operation had low selectivity then aggregation
within the SCPU would be less expensive.
Case II: Order-By on Public and Private Attributes.
If an Order-By clause has a public attribute followed
by a private attribute the server can first order the
intermediate results on the public attribute leaving the
private ordering to the SCPU (figure 7(b) - Plan A).

Or, the SCPU can process the entire Order-By clause
(figure 7(b) - Plan B). Under the specific data statistics
Plan A is preferred. The reason for this is that in Plan
A at one time the SCPU has to order tuples having the
same value for the attribute l shipmode. The size of
this intermediate result being small the sort operation
is more efficient. Note that the SCPU employs external
sorting. Hence, any reduction in the size of intermediate
results directly lowers the Server↔SCPU transfer cost.
Case III: Distinct clause on Public and Private
Attributes.
A distinct clause can be processed either by using a hash
table or by first sorting the input [24]. Here we analyze
the later approach. Similar to the Order-By case the
first option (figure 7(c) - Plan A) here is for the server
to sort the intermediate results on the public attribute
l shipmode and then have the SCPU process the distinct
clause. The second option (figure 7(c) - Plan B) is for the
SCPU to sort and process the distinct entirely. As seen
from table 5 the optimizer prefers Plan A. The number
of distinct values of l shipmode play a critical role in
plan selection here. In the dataset l shipmode has a
high number of distinct values which means that after
the sort on server, the SCPU only operates on a small
portion of data at a time. A small number of unique
l shipmode values instead, would favor plan B since
the advantage of sorting on the server will be reduced.
Case IV: Projections.
When the number of projected attributes in a query is
high the server need not transfer all these attributes to
the SCPU for evaluation of private selection operations
(figure 7(d) - Plan B). The alternative (figure 7(d) - Plan

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

TABLE 5
Cost computations for query plans shown in figures 7(c) and 7(d) corresponding to cases III-IV.

Case Plan Step Execution Time (ET) Total ET (s)

A

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.23(III) Distinct on (i). l shipmodeτ 2 ·
ϕl·Θlsd

·τl

1024·ρ ·

(
logΥs·1024

ρ
−1

ϕl·Θlsd
·τl

1024·ρ

)
· φs

Public and Pri-
vate

(iii). Distinctl shipmode,DECRY PT (l discount) υlsm · 2 · F · logμt−1F · λ, F =
⌈κldc

·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉

attributes (iv). Server ← SCPU transfer
⌈ (κlsm

+κldc
)·υlsm

·υldc
ρ·1024

⌉
· λ

B

(i). l shipmode,DECRY PT(l discount)τ 2 ·
ϕl·τl
1024·ρ ·

(
logΥt·1024

ρ
−1

ϕl·τl
1024·ρ

)
· (φs + λ)

0.20
(iii). Distinctl shipmode,DECRY PT (l discount) 2 · F · logμt−1F · λ, F =

⌈ (κldc
+κlsm

)·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉
(iii). Server ← SCPU transfer

⌈ (κlsm
+κldc

)·υlsm
·υldc

ρ·1024

⌉
· λ

A

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.81(ii). Server → SCPU transfer
⌈ (κlqt

+κldc
+κlsm

+κlsd
+κlls

)·Θlsd
·ϕl

ρ·1024

⌉
· λ

(iii). σDECRY PT (llinestatus=‘O′) Θlsd
· ϕl · εa

(IV) Projections (iv). Server ← SCPU transfer
⌈ (κlqt

+κldc
+κlsm

+κlsd
+κlls

)·Θlsd
·Θlls

·ϕl

ρ·1024

⌉
· λ

B

(i). σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.32
(ii). Server → SCPU transfer

⌈ (κlls
+κlok

+κlln
)·Θlsd

·ϕl

ρ·1024

⌉
· λ

(iii). σDECRY PT (l linestatus=‘O′) Θlsd
· ϕl · εa

(iv). Server ← SCPU transfer
⌈ (κlok

+κlln
)·Θlsd

·ϕl

ρ·1024

⌉
· λ

(v). ��l orderkey=okey,l linenumber=lnum

(
(2 · F · logμt−1F) +

Θlls
·ϕl

ωl

)
· φs, F =⌈ (κlok

+κlln
)·Θlsd

·ϕl

ρ·1024

⌉
A) is to pass all attributes to the SCPU and then back to
the server after the selection operation within the SCPU
is performed. However, in Plan B the server needs to
perform additional lookups to locate the corresponding
projected attributes for each tuple in the result set. To
optimize the final lookup join, the server first sorts
the intermediate results received from the SCPU on
the tuple primary key. This greatly reduces the disk
operations thereby making plan B more efficient.

4 EXPERIMENTS
Setup. The SCPU of choice is the IBM 4764-001 PCI-X
with the 3.30.05 release toolkit featuring 32MB of RAM
and a PowerPC 405GPr at 233 MHz. The SCPU sits on
the PCI-X bus of an Intel Xeon 3.4 GHz, 4GB RAM
Linux box (kernel 2.6.18). The server DBMS is a standard
MySQL 14.12 Distrib 5.0.45 engine. The SCPU DBMS is
a heavily modified SQLite custom port to the PowerPC.
The entire TrustedDB stack (figure 4(a)) is written in C.

TPC-H Query Load. To evaluate the runtime of gener-
alized queries, we chose several queries from the TPC-H
set [2] of varying degrees of difficulty and privacy. The
TPC-H scale factor is 1 i.e, the database size is 1GB.
Figure 8(a) shows the execution times compared to

a simple un-encrypted MySQL setup. Figure 8(b) also
depicts the breakdown of times spent in execution of the
public and private sub-queries. The execution times of
private queries include the time required for encryption
and decryption operations inside the SCPU. The public
queries executed on the host server also include the
processing times to interface the TrustedDB stack with
the server database engine and output the final results.

As can be seen, when compared with the com-
pletely unsecured baseline scenario, security does not
come cheap with execution times being higher by fac-
tors between 1.03 and 10. These factors benefit from
TrustedDB’s leveraging of the untrusted server’s CPU
for non-sensitive query portions. However, recall from
section 2 that the actual costs are orders of magnitude
lower than any solution based on software-only cryptog-
raphy on legacy server hardware.

Updates. Figure 8(c) shows the latencies for insert and
update statements. The reported times are for a random
insert/update of a single tuple in the lineitems relation
averaged over ten runs.

Query Optimization. In section 3.1 we presented
different query plans, analyzed their execution and
showed how the optimizer computed their execution
times. Tables 4 and 5 summarized the theoretical costs
and estimated execution times. To verify whether the
plans selected in each of the cases is indeed the best
plan we executed each of the plans on the TPC-H dataset
and measured their execution times. The results are in
figure 9(a). We find that in each of the cases (I-IV) the
following holds. If ET est(PA) >ET est(PB) in table 4
or 5 then ET real(PA) >ET real(PB) in figure 9(a). For
a more detailed evaluation, we compare the estimated
and measured times for varying selectivity of the public
attribute l shipdate in case I. Note that this selectivity
directly influences the amount of Server↔SCPU data
transfer and thus the overall processing costs. As seen in
figure 9(b) the optimizer correctly estimates which plan
would have lower execution time for most of the cases.
Figure 9(c) shows the results for very low selectivity of
l shipdate. At low selectivity the accuracy of estimation
lowers. There are two reasons for this (a) The measured

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q13 Q14 Q16 Q17 Q18 Q19 Q21 Q22

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

MySQL - No Encryption
TrustedDB

(a) TPC-H query execution times.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q13 Q14 Q16 Q17 Q18 Q19 Q21 Q22

%
 o

f t
ot

al
 q

ue
ry

 e
xe

cu
tio

n
tim

e

SCPU encryption operations
SCPU decryption operations

Private Query Processing on SCPU
Public Query Processing on host server

(b) Query time profiles.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

insert update

La
te

nc
y

(m
s)

MySQL
TrustedDB

(c) DML ops.

Fig. 8. TPC-H query execution times, time profiles and latencies for DML operations. Qi = ith query from TPC-H [2].

 0

 5

 10

 15

 20

 25

I II III IV

to
ta

l q
ue

ry
 e

xe
cu

tio
n

tim
e

(s
)

Plan A

Plan B

(a) Optimization Cases I - IV.

 4

 6

 8

 10

 12

 14

 16

 18

 20

10-4 10-3 10-2 10-1 0.6 7 100

E
xe

cu
tio

n
Ti

m
e

(m
s)

 2
x

Selectivity(%) l_shipdate (log)

Estimated (Plan A)
Estimated (Plan B)
Measured (Plan A)
Measured (Plan B)

(b) Varying selectivity for case I.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

10-4 8.10-4 10-3 3.10-3 4.10-3 6.10-3 10-2

E
xe

cu
tio

n
Ti

m
e

(m
s)

Selectivity(%) l_shipdate (log)

Estimated (Plan A)
Estimated (Plan B)
Measured (Plan A)
Measured (Plan B)

(c) Low selectivity for case I.

Fig. 9. Measured execution times for optimization cases I-IV from section 3.1 and with varied selectivity for Case I.
times vary by +3.5ms between runs. Thus when the
estimated times for two plans differ by <3.5ms they
are practically equivalent. (b) The optimizer assumes a
uniform distribution of attribute values. For the TPC-
H data this does not hold especially at low selectivity.
The accuracy of estimation in this case can be increased
by simply populating the System Catalog with more
accurate information.

5 DISCUSSION
Security. Data Encryption is only one of the links in
a chain of trust that ensures the security of TrustedDB.
The other aspects of encryption granularity and custom-
cipher design are discussed in prior work [39]. In ad-
dition, several other assurances are necessary. Clients
need to be confident that (i) the remote SCPU was not
tampered with, (ii) the SCPU runs the correct TrustedDB
code stack, OS and firmware, and (iii) the client-SCPU
communication is secure.
(i) is assured by the tamper-resistant construction of

the SCPU which meets the FIPS 140-2 level 4 [1] physical
security requirements. In the event of SCPU tamper de-
tection, sensitive memory areas containing critical secrets
are automatically erased. (ii) is ensured by deploying the
SCPU Outbound Authentication (OA) [37] mechanisms.
(iii) is achieved by deploying public-private key cryp-
tography in key messaging stages. Both, client and the
SCPU possess a public-private key pair (Figure 4(a)).
Not unlike HTTPS/SSL communication, messages sent

between the client and the SCPU are encrypted. Thus,
despite acting as a communication conduit between the
client and the SCPU, the server cannot perform man-
in-the-middle attacks and gain access to sensitive data.
Since full details are significantly more complex and out
of scope, we refer the reader to [37], [39] for the detailed
OA concepts.
Scalability. In an outsourced environment it is often
desired that multiple clients access the database simul-
taneously. We note that a single SCPU is not sufficient
to handle the workload in such a scenario. However,
the extension of TrustedDB to utilize multiple SCPUs
is straightforward using the following steps. (a) Phys-
ical installation of additional SCPUs along with the
TrustedDB codebase, and (b) Importing the database
schema and encryption keys securely in to the new SCPU
from an existing SCPU or client.
Secure SCPU↔SCPU or client↔SCPU channels

needed by step (b) can be easily setup using the
Outbound Authentication mechanisms illustrated in
[39]. Steps (a) and (b) are sufficient since they cover the
entire information required by an SCPU to provide the
desired functionality. Note that no changes are required
to the data stored on the host server. Also, a single
SCPU serves multiple clients without compromising
security since the entire code stack within the SCPU
(firmware to TrustedDB application) is verifiable by
clients (at any time) using the OA mechanism [39].
Key Management. So far we have considered a single

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

data encryption key shared between the SCPU and
client(s). In a multi-client scenario it may be desired
to have multiple distinct client-SCPU keys for either
access control or increased security in case one or more
clients are compromised. The extensions to handle such
a scenario are also simple. The data stored on host
server disk can be encrypted using a single master
encryption key known only to the SCPU. Since all
update/insert operations are performed by the SCPU
the master key is stored within the SCPU and is never
communicated to the outside. Now, all decryptions
required as part of query processing use the master
key. Only when a sensitive attribute value is to be
communicated to the client the SCPU encrypts it using
the specific client-SCPU encryption key. This way only
the authorized client can access the data. This design is
possible since the SCPU has specialized battery backed
memory dedicated for the purpose of key storage. The
available space (128 KB for the 4764) enables the storage
of up to 8K keys assuming a 128 bit key size. For larger
key space client keys can be generated from the master
encryption key using techniques similar to the key
construction in [39].
Data Compression. Although at first glance, using com-
pression along with encryption may seem promising,
in the case of TrustedDB compression does not offer
any advantages. This is because TrustedDB uses very
fine grained attribute level encryption. Since individual
attributes (ids, names, etc) are inherently small in size
the compressed data will likely be the same size as un-
compressed data thereby undermining the advantages of
using compression. Instead, if record or page level com-
pression is used then processing over public attributes
can no longer be done server-side thereby degrading
performance.
Limitations. The TrustedDB query parser does not yet
support parsing of multi-level nested sub-queries and
user defined views.

6 RELATED WORK

Queries on Encrypted Data. Hacigumus et al. [20]
propose division of data into secret partitions and re-
writing of range queries over the original data in terms
of the resulting partition identifiers. This balances a
trade-off between client and server-side processing, as
a function of the data segment size. In [21] the authors
explore optimal bucket sizes for range queries.
[12] proposes using tuple-level encryption and indexes

on the encrypted tuples to support equality predicates.
The main contribution here is the analysis of attribute
exposure caused by query processing leading to two
insights. (a) the attribute exposure increases with the
number of attributes used in an index, and (b) the
exposure decreases with the increase in database size.
Range queries are processed by encrypting individual
B+ − Tree nodes and having the client, in each query
processing step, retrieve a desired encrypted B+ − Tree

node from the server, decrypt and process it. However,
this leads to minimal utilization of server resources
thereby undermining the benefits of outsourcing. More-
over, transfer of entire B+ − Tree nodes to the client
results in significant network costs.
[44] employs Order Preserving encryption for query-

ing encrypted xml databases. In addition, a technique
referred to as splitting and scaling is used to differ the
frequency distribution of encrypted data from that of the
plain-text data. Here, each plain-text value is encrypted
using multiple distinct keys. Then, corresponding val-
ues are replicated to ensure that all encrypted values
occur with the same frequency thereby thwarting any
frequency-based attacks.
[45] uses a salted version of IDA scheme to split en-

crypted tuple data amongst multiple servers. In addition,
a secure B+ − Tree is built on the key attribute. The
client utilizes the B+ − Tree index to determine the
IDA matrix columns that need to be accessed for data
retrieval. To speed up client-side processing and reduce
network overheads it is suggested to cache parts of the
B+ − Tree index client-side.
Vertical partitioning of relations amongst multiple un-

trusted servers is employed in [15]. Here, the privacy
goal is to prevent access of a subset of attributes by any
single server. E.g., {Name, Address} can be a privacy
sensitive access-pair and query processing needs to en-
sure that they are not jointly visible to any single server.
The client query is split into multiple queries wherein
each sub-query fetches the relevant data from a server
and the client combines results from multiple servers. [4]
also uses vertical partitioning in a similar manner and
for the same privacy goal, but differs in partitioning and
optimization algorithms. TrustedDB is equivalent to both
[15], [4] when the size of the privacy subset is one and
hence a single server suffices. In this case each attribute
column needs encryption to ensure privacy [10]. Hence
[15], [4] can utilize TrustedDB to optimize for querying
encrypted columns since otherwise they rely on client-
side decryption and processing.
[10] introduces the concept of logical fragments to

achieve the same partitioning effect as in [15], [4] on
a single server. A fragment here is simply a relation
wherein attributes not desired to be visible in that frag-
ment are encrypted. TrustedDB (and other solutions) are
in effect concrete mechanisms to efficiently query any
individual fragment from [10]. [10] on the other hand
can be used to determine the set of attributes that should
be encrypted in TrustedDB.
Ge et al. [16] propose an encryption scheme in a

trusted-server model to ensure privacy of data residing
on disk. The FCE scheme designed here is equivalently
secure as a block cipher, however, with increased effi-
ciency. [30], like [16] only ensures privacy of data re-
siding on disk. In order to increase query functionality a
layered encryption scheme is used and then dynamically
adjusted (by revealing key to the server) according to
client queries. TrustedDB on the other hand operates

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

in an un-trusted server model, where sensitive data is
protected, both on disk and during processing.
Data that is encrypted on disk but processed in clear

(in server memory) as in [16], [30] compromises privacy
during the processing interval. In [8] the disclosure
risks in such solutions are analyzed. [8] also proposes
a new query optimizer that takes into account both
performance and disclosure risk for sensitive data. Indi-
vidual data pages are encrypted by secret keys that are
managed by a trusted hardware module. The decryption
of the data pages and subsequent processing is done in
server memory. Hence the goal is to minimize the life-
time of sensitive data and keys in server memory after
decryption. In TrustedDB there is no such disclosure risk
since decryptions are performed only within the SCPU.
Aggregation queries over relational databases is pro-

vided in [19] by making use of homomorphic encryption
based on Privacy Homomorphism [33]. The authors
in [13] have suggested that this scheme is vulnerable
to a cipher text only attack. Instead [13] proposes an
alternative scheme to perform aggregation queries based
on bucketization [20]. Here the data owner precomputes
aggregate values such as SUM and COUNT for parti-
tions and stores them encrypted at the server. Although
this makes processing of certain queries faster it does not
significantly reduce client side processing.
Ge et al. [42] discuss executing aggregation queries

with confidentiality on an untrusted server. Due to the
use of extremely expensive homomorphisms [28], [29]
this scheme leads to impractically large costs by com-
parison, for any reasonable security parameter choices.
This is discussed in more detail in section 2.
Above solutions are specialized for certain types of

query operations on encrypted data. [12] for equality
predicates, [20], [45], [44] for range predicates and [19],
[42] for aggregation. In TrustedDB, all decryptions are
performed within the secure confinements of the SCPU,
thereby processing is done on plain-text data. This re-
moves any limitation on the nature of predicates that
can now be employed on encrypted attributes including
arbitrary user defined functions. We note that certain
solutions designed for a very specific set of predicates
can be more efficient albeit at the loss of functionality.
Trusted Hardware. In [5] SCPUs are used to retrieve

X509 certificates from a database. However, this only
supports key based lookup. Each record has a unique
key and a client can query for a record by specifying
the key. [34] uses multiple SCPUs to provide key based
search. The entire database is scanned by the SCPUs to
return matching records.
[32] implements arbitrary joins by reading the entire

database through the SCPU. Such as approach is clearly
not practical for real implementations since it is lower
bounded by the Server↔SCPU bandwidth (10 MBps in
our setup).
Chip-Secured Data Access [25] uses a smart card for

query processing and for enforcing access rights. The
client query is split such that the server performs ma-

jority of the computation. The solution is limited by the
fact that the client query executing within the smart card
cannot generate any intermediate results since there is
no storage available on the card. In follow-up work,
GhostDB [27] proposes to embed a database inside a USB
key equipped with a CPU. It allows linking of private
data carried on the USB Key and public data available
on a server. GhostDB ensures that the only information
revealed to a potential spy is the query issued and the
public data accessed.
Both [25] and [27] are subject to the storage limitations

of trusted hardware which in turn limits the size of the
database and the queries that can processed. In con-
trast TrustedDB uses external storage to store the entire
database and reads information into the trusted hard-
ware as needed which enables it to be used with large
databases. Moreover, database pages can be swapped
out of the trusted hardware to external storage during
query processing.
In [7] a database engine is proposed inside a SCPU

for data sharing and mining. The SCPU fetches data
from external sources using secure jdbc connections. The
entire data is treated as private with queries completely
executed inside the coprocessor. We find that using the
IBM 4764 for processing queries entirely within the
trusted hardware module, without utilizing server cpu
cycles, is up to 40x slower than traditional server query
processing. This is so even when the trusted hardware
has access to the local server file system using our Paging
Module (section 3). Hence using jdbc connections as in [7]
can only have higher processing overheads.

7 CONCLUSIONS
This paper’s contributions are threefold: (i) the introduc-
tion of new cost models and insights that explain and
quantify the advantages of deploying trusted hardware
for data processing, (ii) the design and development of
TrustedDB, a trusted hardware based relational database
with full data confidentiality and no limitations on query
expressiveness, and (iii) detailed query optimization
techniques in a trusted hardware-based query execution
model.
This work’s inherent thesis is that, at scale, in out-

sourced contexts, computation inside secure hardware
processors is orders of magnitude cheaper than equiv-
alent cryptography performed on provider’s unsecured
server hardware, despite the overall greater acquisition
cost of secure hardware. We thus propose to make
trusted hardware a first-class citizen in the secure data
management arena. Moreover, we hope that cost-centric
insights and architectural paradigms will fundamentally
change the way systems and algorithms are designed.

REFERENCES
[1] FIPS PUB 140-2, Security Requirements for Cryptographic

Modules. Online at http://csrc.nist.gov/groups/STM/cmvp/
standards.html#02.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

[2] TPC-H Benchmark. Online at http://www.tpc.org/tpch/.
[3] IBM 4764 PCI-X Cryptographic Coprocessor. Online at http://

www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml,
2007.

[4] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hec-
tor Garcia-Molina, Krishnaram Kenthapadi, Rajeev Motwani,
Utkarsh Srivastava, Dilys Thomas, and Ying Xu 0002. Two
can keep a secret: A distributed architecture for secure database
services. In CIDR, pages 186–199, 2005.

[5] Alexander Iliev and Sean W Smith. Protecting Client Privacy with
Trusted Computing at the Server. IEEE, Security and Privacy, 3(2),
Apr 2005.

[6] Mihir Bellare. New proofs for nmac and hmac: Security without
collision-resistance. pages 602–619. Springer-Verlag, 2006.

[7] Bishwaranjan Bhattacharjee, Naoki Abe, Kenneth Goldman,
Bianca Zadrozny, Chid Apte, Vamsavardhana R. Chillakuru and
Marysabel del Carpio. Using secure coprocessors for privacy
preserving collaborative data mining and analysis. In Proceedings
of DaMoN, 2006.

[8] Mustafa Canim, Murat Kantarcioglu, Bijit Hore, and Sharad
Mehrotra. Building disclosure risk aware query optimizers for
relational databases. Proc. VLDB Endow., 3(1-2):13–24, September
2010.

[9] Yao Chen and Radu Sion. To cloud or not to cloud?: musings on
costs and viability. In Proceedings of SOCC, pages 29:1–29:7. ACM,
2011.

[10] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Com-
bining fragmentation and encryption to protect privacy in data
storage. ACM Trans. Inf. Syst. Secur., 13(3):22:1–22:33, July 2010.

[11] Tom Denis. Cryptography for Developers. Syngress.
[12] Damiani E., Vimercati C., Jajodia S., Paraboschi S., and Samarati

P. Balancing confidentiality and efficiency in untrusted relational
dbmss. In Proceedings of ACM CCS, 2003.

[13] Einar Mykletun and Gene Tsudik. Aggregation Queries in the
Database-As-a-Service Model. Data and Applications Security, 4127,
2006.

[14] Foto N. Afrati and Vinayak Borkar and Michael Carey and
Neoklis Polyzotis and Jeffrey D. Ullman. Map-reduce extensions
and recursive queries. In Proceedings of EDBT, pages 1–8. ACM,
2011.

[15] Vignesh Ganapathy, Dilys Thomas, Tomas Feder, Hector Garcia-
Molina, and Rajeev Motwani. Distributing data for secure
database services. In Proceedings of PAIS, pages 8:1–8:10, New
York, NY, USA, 2011. ACM.

[16] Tingjian Ge and Stan Zdonik. Fast, secure encryption for indexing
in a column-oriented dbms. In ICDE, 2007.

[17] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: Outsourcing computation to untrusted
workers. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 465–482. Springer, 2010.

[18] O. Goldreich. Foundations of Cryptography I. Cambridge University
Press, 2001.

[19] Bala Iyer Hakan Hacigumus and Sharad Mehrotra. Efficient exe-
cution of aggregation queries over encrypted relational databases.
In Database Systems for Advanced Applications, volume 2973, pages
633–650, 2004.

[20] Hakan Hacigumus, Bala Iyer, Chen Li and Sharad Mehrotra.
Executing SQL over Encrypted Data in the Database-Service-
Provider Model. In Proceedings of SIGMOD, pages 216–227, 2002.

[21] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index
for range queries. In Proceedings of ACM SIGMOD, 2004.

[22] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
2008.

[23] Murat Kantarcioglu and Chris Clifton. Security issues in querying
encrypted data. In Sushil Jajodia and Duminda Wijesekera,
editors, DBSec, volume 3654 of Lecture Notes in Computer Science,
pages 325–337. Springer, 2005.

[24] Philip Lewis, Arthur Bernstein, and Michael Kifer. Databases and
Transaction Processing. Addison-wesley, 2002.

[25] Luc Bouganim and Philippe Pucheral. Chip-secured data access:
confidential data on untrusted server. In Proceedings of VLDB,
pages 131–141. VLDB Endowment, 2002.

[26] Einar Mykletun and Gene Tsudik. Incorporating a secure copro-
cessor in the database-as-a-service model. In Proceedings of IWIA,
pages 38–44, Washington, DC, USA, 2005. IEEE Computer Society.

[27] Nicolas Anciaux, Mehdi Benzine, Luc Bouganim, Philippe
Pucheral and Dennis Shasha. GhostDB: Querying Visible and
Hidden Data Without Leaks. In Proceedings of SIGMOD, 2007.

[28] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Proceedings of EuroCrypt, 1999.

[29] Pascal Paillier. A trapdoor permutation equivalent to factoring.
In Proceedings of PKC, pages 219–222. Springer-Verlag, 1999.

[30] Raluca Ada Popa, Catherine Redfield, and Nickolai Zeldovich.
Cryptdb: protecting confidentiality with encrypted query process-
ing. In Proceedings of SOSP, 2011.

[31] M. O. Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Technical report, 1979.

[32] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu, Yaping Li.
Sovereign Joins. In Proceedings of the 22nd International Conference
on Data Engineering, page 26. IEEE Computer Society, 2006.

[33] Ronald Rivest, Len Adleman and Michael Dertouzos. On data
banks and privacy homomorphisms. Foundations of Secure Com-
putation, 1978.

[34] S. W. Smith and D. Safford. Practical server privacy with secure
coprocessors. IBM SYSTEMS JOURNAL, 40(3), 2001.

[35] Sai Wu and Feng Li and Sharad Mehrotra and Beng Chin Ooi.
Query optimization for massively parallel data processing. In
Proceedings of CCS , page Article 12. ACM, 2011.

[36] Sanjay Agrawal and Vivek Narasayya and Beverly Yang. Integrat-
ing vertical and horizontal partitioning into automated physical
database design. In Proceedings of SIGMOD, pages 359 – 370.
ACM, 2004.

[37] Sean W. Smith. Outbound authentication for programmable
secure coprocessors. Online at http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.58.4066.

[38] Shahram Ghandeharizadeh and David J. DeWitt. Hybrid-Range
Partitioning Strategy: A New Declustering Strategy for Multipro-
cessor Database Machines. In Proceedings of VLDB, pages 481 –
492. Morgan Kaufmann Publishers Inc., 1990.

[39] Sumeet Bajaj and Radu Sion. TrustedDB: A Trusted Hardware
based Database with Privacy and Data Confidentiality. In Pro-
ceedings SIGMOD, pages 205–216. ACM, 2011.

[40] Sumeet Bajaj and Radu Sion. TrustedDB: A Trusted Hardware
based Outsourced Database Engine. VLDB, DEMO, 2011.

[41] Alexander Thomson and Daniel J. Abadi. The case for determin-
ism in database systems. PVLDB, 3(1):70–80, 2010.

[42] Tingjian Ge and Stan Zdonik. Answering Aggregation Queries in
a Secure System Model. In Proceedings of VLDB, pages 519–530.
VLDB Endowment, 2007.

[43] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In
Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes
in Computer Science, pages 24–43. Springer, 2010.

[44] Hui Wang and Laks V.S. Lakshmanan. Efficient secure query
evaluation over encrypted xml databases. In VLDB, 2006.

[45] Shiyuan Wang, Divyakant Agrawal, and Amr El Abbadi. A com-
prehensive framework for secure query processing on relational
data in the cloud. In Secure Data Management, pages 52–69, 2011.

Sumeet Bajaj is a PhD student at Stony Brook
University. He received his Masters from Stony
Brook University in 2006 and his Bachelors
from Pune Institute of Computer Technology in
2003. His industry experience involves building
cloud services, financial trading & ERP systems.
His research interests include Network Secu-
rity, Databases, Distributed and Concurrent Sys-
tems.

Radu Sion is an Associate Professor in Com-
puter Science in Stony Brook University. His
research interests include Cyber Security and
Efficient Computing. He builds systems mainly,
but enjoys elegance and foundations, especially
if of the very rare practical variety. Sponsors and
collaborators include NSF, US Army, Northrop
Grumman, IBM, Microsoft, Motorola, NOKIA,
and Xerox.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

