
1

Dynamic Personalized Recommendation on
Sparse Data

Xiangyu Tang and Jie Zhou, Senior Member, IEEE

Abstract—Recommendation techniques are very important in the fields of E-commerce and other Web-based services. One of the
main difficulties is dynamically providing high-quality recommendation on sparse data. In this paper, a novel dynamic personalized
recommendation algorithm is proposed, in which information contained in both ratings and profile contents are utilized by exploring
latent relations between ratings, a set of dynamic features are designed to describe user preferences in multiple phases, and finally
a recommendation is made by adaptively weighting the features. Experimental results on public datasets show that the proposed
algorithm has satisfying performance.

Index Terms—dynamic recommendation, dynamic features, multiple phases of interest.

�

1 INTRODUCTION

Nowadays the internet has become an indispensable part of

our lives, and it provides a platform for enterprises to deliver

information about products and services to the customers

conveniently. As the amount of this kind of information is

increasing rapidly, one great challenge is ensuring that proper

content can be delivered quickly to the appropriate customers.

Personalized recommendation is a desirable way to improve

customer satisfaction and retention [1], [2].

There are mainly three approaches to recommendation en-

gines based on different data analysis methods, i.e., rule-based,

content-based and collaborative filtering [3], [4]. Among them,

collaborative filtering (CF) requires only data about past user

behavior like ratings, and its two main approaches are the

neighborhood methods and latent factor models. The neigh-

borhood methods can be user-oriented or item-oriented. They

try to find like-minded users or similar items on the basis

of co-ratings, and predict based on ratings of the nearest

neighbors [5], [6], [7]. Latent factor models try to learn latent

factors from the pattern of ratings using techniques like matrix

factorization [8] and use the factors to compute the usefulness

of items to users. CF has made great success and been

proved to perform well in scenarios where user preferences

are relatively static.

In most dynamic scenarios, there are mainly two issues that

prevent accurate prediction of ratings – the sparsity [3] and

the dynamic nature. Since a user could only rate a very small

proportion of all items, the U × I rating matrix is quite sparse

and the amount of information for estimating a candidate

rating is far from enough. While latent factor models involve

most ratings to capture the general taste of users, they still

have difficulties in catching up with the drifting signal in

dynamic recommendation because of sparsity, and it is hard to

physically explain the reason of the involving. The dynamic

• Xiangyu Tang and Jie Zhou are with the Department of Automation,
Tsinghua University, Beijing, China, 100084.
E-mail: tangxy03@mails.thu.edu.cn, jzhou@tsinghua.edu.cn

nature decides that users’ preferences may drift over time in

dynamic recommendation, resulting in different taste to the

items in different phases of interest, but it is not well studied

in previous studies [9]. In our experiences, the interest cycle

differs from user to user, and the pattern how user preferences

changes cannot be precisely described by several simple decay

functions. Moreover, CF approaches usually accounter the

cold-start problem which is amplified in the dynamic scenario

since the rate of new users and new items would be high.

Some researchers have previously attempted to solve the

above problems. Hybrid approaches which combine content-

based and collaborative filtering in different ways were pro-

posed to alleviate the sparsity problem [3], [10], where more

information were mined than just in each of them. Prassas

et al. [11] classified items into many categories using content

information and chose recent categories to perform Item-Based

Collaborative Filtering (IBCF). Kim and Li [10] introduced

group similarity by clustering and used it to modify origi-

nal item-item similarity matrix. The principle of utilization

of rating data in these algorithms is shown in Fig. 1.(a).

Some approaches emphasize utilization of time information

to deal with the dynamic nature. Koren [4] proposed to model

temporal dynamics to separate transient factors from lasting

ones. Rendle et al. [12] brought matrix factorization and

Markov chains together to form a factorized personalized MC

model. Xia and Jiang [13] proposed a dynamic IBCF with

users’ implicit feedback by using time decay functions in the

calculation of the similarities.

In this paper, we present a novel hybrid dynamic recommen-

dation approach. Firstly, in order to utilize more information

while keeping data consistency, we use user profile and item

content to extend the co-rate relation between ratings through

each attribute, as shown in Fig. 1.(b). The involved ratings can

reflect similar users’ preferences and provide useful informa-

tion for recommendation. Correspondingly, in order to enable

the algorithm to catch up with the changing of signals quickly

and to be updated conveniently, a set of dynamic features

are proposed based on time series analysis (TSA) technique,

and relevant ratings in each phase of interest are added up

Digital Object Indentifier 10.1109/TKDE.2012.229 1041-4347/12/$26.00 © 2012 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

by applying TSA to describe users’ preferences and items’

reputations. Then we propose a personalized recommendation

algorithm by adaptively weighting the features according to

the amount of utilized rating data. The experimental results

show that the proposed algorithm is effective with dynamic

data and significantly outperforms previous algorithms.

(a) Common Hybrid filtering[10] (b) The proposed approach

Fig. 1. Ratings associated in different methods, where �,
� and × represent destination rating, involved rating and
uninvolved rating, respectively. In the U × I plane, ratings
along a horizontal line are from the same user and ratings
along a vertical line are of the same item. “Similar” here
means “identical or close in some attribute of the profiles”.

The main contributions of this paper can be summarized as

follows: (a) More information can be used for recommender

systems by investigating the similar relation among related

user profile and item content. Compared with the previous

works such as [4], [12], [10], we utilize the similarity among

content in each profile attribute so that more content informa-

tion is used, especially content in those attributes which are

hard to be quantified. (b) A novel set of dynamic features is

proposed to describe users’ preferences, which is more flexible

and convenient to model the impacts of preferences in different

phases of interest compared with dynamic methods used in

previous works, since the features are designed according to

periodic characteristics of users’ interest and a linear model of

the features can catch up with changes in user preferences. (c)

An adaptive weighting algorithm is designed to combine the

dynamic features for personalized recommendation, in which

time and data density factors are considered to adapt with

dynamic recommendation on sparse data.

2 THE PROPOSED METHOD

In most cases, the drifting of users’ preferences or items’ rep-

utations is not too rapid, which makes it possible to describe

temporal state of them by using some features. In this section,

firstly we introduce a way to make use of profiles to extend

the co-rating relation, and then we propose a set of dynamic

features to reflect users’ preferences or items’ reputations in

multiple phases of interest, and after that we propose an

adaptive algorithm for dynamic personalized recommendation.

2.1 Relation mining of rating data
For the sparsity of recommendation data, the main difficulty

of capturing users’ dynamic preferences is the lack of useful

information, which may come from three sources - user

profiles, item profiles and historical rating records. Traditional

algorithms heavily rely on the co-rate relation (to the same

item by different users or to different items by the same

user), which is rare when the data is sparse. Useful ratings

are discovered using the co-rate relation, which is simple,

intuitional and physically significant when we go one or two

steps along, but it strongly limits the amount of data used in

each prediction.

Instead of searching neighboring nodes along co-rate edges

in the U×I plane, we try to find a different way to find useful

ratings. We notice that when considering the factors which

affect a rating r(u, i), we may focus more on some attributes

of u and i in their profiles, instead of the user himself or the

item itself. For example, if the movie “Gone with the Wind”

is given high ratings by middle-aged people and lower ratings

by teenagers with no doubt, we would primarily check on the

age attribute in a user’s profile when predicting probable rating

the user would give to the movie, instead of other descriptions

of the user or how the user has rated other movies. As is

evident, it may not be necessary to stick only to the co-rate

relation, and we introduce the semi-co-rate relation between

ratings whose corresponding user profiles or item contents

have similar or identical content in one or more attributes.

Since semi-co-rate is much less constrained, we extend the

co-rate relation to it using user profile and item content, and

propose a new way of finding useful ratings for dynamic

personalized recommendation.

Fig. 2. Finding neighboring ratings in the new relation

Let U = {uj}mj=1 be the entire user set with |U| = m,

I = {ik}nk=1 be the entire item set with |I| = n, R be a

m × n matrix such that its element Rj,k refers to the rating

user uj gave to item ik, and T be the corresponding time

matrix such that Tj,k denotes the timestamp of Rj,k. We note

the set whose ratings is semi-co-rate related with the candidate

rating via the p-th attribute in user profile as RU
p , and similarly

we define RI
q , as shown in Fig. 2. If we note the set whose

rating is co-rate related with the candidate rating via user as

RU
0 and similarly we define RI

0, we have RU
0 = (

⋂
p R

U
p) and

RI
0 = (

⋂
q R

I
q). Clearly the semi-co-rate is much looser than

the co-rate relation, and now that we have found much more

related ratings via the relation instead of co-rate, we take only

one step neighboring nodes, (
⋃

p R
U
p)

⋃
(
⋃

q R
I
q) in this newly

defined graph to keep consistency of utilized data.

To avoid overwhelming computation in finding RU
p (p =

1, 2, ...) and RI
q (q = 1, 2, ...) for all candidate ratings and

to solve the difficulty in quantification of some contents,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

classification and clustering are performed as the content

of each attribute in profiles of users and items, and R is

then separated into rating subsets RU,c
p (c = 1, 2, ...) or

RI,c
q (c = 1, 2, ...) accordingly in actual implementation and

c is the class number. For example, suppose “Age” is the

p-th attribute in user description, then R could be divided

into six disjoint subsets for this attribute. By using clustering

techniques like K-Means [14] on content of “Age”, we divide

user age values into several disjoint ranges based on relevant

users’ ages of all ratings in R. Then for candidate rating

Rj,k, we could conveniently find its neighboring ratings in

our algorithm by reaching relevant subsets, which is done by

matching each attribute content of uj and ik to the nearest

subsets. These subsets are representative and can be directly

used to extract the dynamic features. We limit the size of each

separated subset in online calculation, and the earliest ratings

would be removed from the rating subset when new ratings

are added in. Through these techniques, we have introduced

a more general relation between ratings and an extended way

of information mining in personalized recommendation.

2.2 Dynamic feature extraction

Users’ preferences or items’ reputations are drifting, thus

we have to deal with the dynamic nature of data to en-

hance the precision of recommendation algorithms, and recent

ratings and remote ratings should have different weights in

the prediction. Three kinds of methods were proposed in

concept drift [15] to deal with the drifting problem as instance
selection, time-window (usually time decay function) and

ensemble learning. Koren [4] also proposed an algorithm to

isolate transient noise in data using temporal dynamics to

help recommendation. These methods help to make progress

in precision of dynamic recommendation, but they also have

their weaknesses: decay functions cannot precisely describe

the evolution of user preferences and only isolating transient

noise cannot catch up with the change in data.

So we propose a set of dynamic features to describe users’

multi-phase preferences in consideration of computation, flex-

ibility and accuracy. It is impossible to learn weights of all

ratings for each user, but it is possible to learn the general

weights of ratings in the user’s different phases of interest

if the phases include ranges of time that are long enough.

For convenience of notation, we relabel all subsets RU,c
p and

RI,c
q acquired through the extended information mining as

Rs (s = 1, 2, ...).
To enable the features to describe users’ preferences in

multiple phases of interest, we divide each rating subset Rs

into several disjoint secondary subsets Rd
s (d = 1, 2, ...) using

the time distances between each rating in Rs and the candidate

rating Rj,k, where each secondary subset is manually assigned

with a range of time-distance (corresponding to multiple

phases of interest), and then we calculate the features on each

secondary subsets using some basic algorithms such as time
series analysis (TSA).

Since each secondary subset is naturally an array of ratings

arranged by time order, and TSA technique [16] is a most

widely used and effective method dealing with such data, we

choose TSA as the basic feature extraction method. In fact,

methods for concept drift [15] and Koren’s method [4] are

also variants of TSA algorithms in the angle of prediction.

More importantly, since the results of TSA are generally

representative and predictive of the utilized data in relevant

time ranges, we could conveniently use and update the results

as features and “expectations” of certain phases of interest for

further analysis.

In the theory of time series analysis, earlier ratings should

impact the predictive features less, and thus they should

have lower weights. So if we perform TSA algorithm on a

secondary subset of R (i.e. Rd
s) to get a feature feas,d, there

would be an uniform formulation as:

feas,d =
o∑

l=1

wl

w
Rd

s,l, (1)

where #Rd
s = o, Rd

s,l(l = 1, 2, ..., o) are the rating values

which are from the subset Rd
s and listed in reversed time

order. And positive weight parameters wl, (l = 1, 2, ..., o)
and normalization factor w should satisfy

⎧⎪⎨
⎪⎩

w =
o∑

l=1

wl,

wl1 ≥ wl2 if l1 < l2.

(2)

Since the subsets are updated frequently, index smoothing

[16], which is a classic TSA algorithms, is chosen as the basic

TSA algorithm:

⎧⎪⎨
⎪⎩

Rd
s = {Rj′,k′ |Rj′,k′ ∈ Rs and Tj,k − Tj′,k′ ≥ Td},

feas,d =
o∑

l=1

μ(1− μ)l−1Rd
s,l,

(3)

where Rd
s (d = 1, 2, ...) are the secondary subsets, Td (d =

1, 2, ...) are a sequence of time differences manually set,

Rd
s,l (l = 1, 2, ..., o) are the rating values listed in reversed

order in the subset, μ is the forgetting factor for index

smoothing. We have tested different values for mu in the

experiments and set μ = 0.95 empirically.

All feas,d (d = 1, 2, ...) and the sizes of Rd
s (d = 1, 2, ...)

are recorded as dynamic features. With the dynamic features,

we only have to optimize their weights to get the best

estimation of the candidate rating, and in this way we have

transformed the training of a recommendation model into

weight learning across different secondary rating subsets. Now

that the features are related to phases of interest and latent

relations between ratings, we would see how the preferences

differ with each other in impacting the candidate rating by

analyzing optimal weights of the features. We can also see

in Eq(3) that the feature extraction does not need heavy

computation. Finding all Rd
s needs only comparison in time

one by one, and the computation of feas,d is very efficient. In

this way we have proposed a flexible way of feature extraction,

where weights in TSA can be different for different rating

subsets and the weights for different phases of interest can be

variable and learned from the data. The proposed algorithm is

termed as Multiple Phase Division (MPD).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

2.3 Adaptive weighting algorithm
As features like feas,d (s = 1, 2, ..., d = 1, 2, ...) gained

by applying Multiple Phase Division are all normalized rating

values, in other words, as content of user and item profiles have

been quantified in the feature extraction, it is convenient for

us to organize them for accurate rating estimation by adaptive

weighting. Sizes of the relevant subsets are also recorded in

MPD and could reflect data density.

We incorporate these features for recommendation with a

linear model since they are homogeneous and it is efficient to

learn their weights. R̂j,k is used to note the estimated rating

that user uj could give to item ik at time point Tj,k, and the

adaptive linear model can be formulated as:

R̂j,k =
∑
s

∑
d

(αs,d + β(#Rd
s))buj (s)bik(s)feas,d,

with : αs,d ≥ 0, β ≥ 0,

(4)

where sizes of relevant subsets are used as prior information in

weighting the features to improve recommendation accuracy,

feas,d (s = 1, 2, ..., d = 1, 2, ...) are the features calculated

in Eq.(3), Rd
s (s = 1, 2, ..., d = 1, 2, ...) denote their relevant

secondary rating subsets, buj and bik are binary functions

denoting the relating state of candidate rating and relevant

subset and αs,d and β are weighting parameters which should

balance the weights of features and data density, or, balance

the affection of data consistency and quantity of information.

In detail, buj (s) = 1 if Rj,k is semi-co-rate related with all

ratings in secondary subset Rs through attribute of the user uj

denoted by s, else buj (s) = 0, bik(s) = 1 if Rj,k is semi-co-
rate related with all ratings in secondary subset Rs through

attribute of the item ik also denoted by s, else bik(s) = 0.

It is difficult to solve all parameters in Eq.(4) at once, hence

we use sequential optimization. Let

δs,d = αs,d + β(#Rd
s), (5)

in Eq.(4) and we first solve for the combined weights δs,d (s =
1, 2, ..., d = 1, 2, ...) by minimizing the differences between

prediction results of the recommendation algorithm and the

real rating values in the training set, where RLS algorithm

[17] could be used for optimization, i.e.,

E =
∑

Rj,k∈RTrain

(R̂j,k −Rj,k))
2, (6)

where RTrain is the training set or known rating set. But we

notice that a user’s preferences or an item’s reputations are

commonly affected by only a few principle factors, indicating

that using more features might also bring noise into the recom-

mendation. So we changed the destination of the optimization

and limited the quantity of the features by regularization, and

the training problem can be formulated as:

min
δ

:
∑

Rj,k∈RTrain

(R̂j,k −Rj,k))
2 + λ||δ||1,

with : 0 ≤ δs,d ≤ 1 and
∑
s

∑
d

δs,d = 1.
(7)

This is a typical LASSO optimization problem which can be

solved via ADMM [18].

Provided the δs are solved, we turn to the second step of

the sequential optimization: to solve αs and β. To deal with

the uncertainty in solving αs and β from Eq.(5), we introduce

the generalization error like in SVM [19]. Here the general-

ization error is max(
∑

s

∑
d α

2
s,d,

∑
s

∑
d β

2(#Rd
s)

2), and

we minimize it to gain satisfying performance as:

min
α,β

: max(
∑
s

∑
d

α2
s,d,

∑
s

∑
d

β2(#Rd
s)

2),

with : ∀s, d, αs,d + β(#Rd
s) = δs,d, αs,d ≥ 0, β ≥ 0.

(8)

This optimization problem has explicit solution as:
⎧⎨
⎩

β =

∑
s

∑
d δs,d

2
∑

s

∑
d(#Rd

s)
,

αs,d = δs,d − β(#Rd
s) for all s, d.

(9)

Now we have a practical way of solving all the parameters.

Firstly we solve δs from Eq.(7) using Lasso algorithm, then

use Eq.(8) and Eq.(9) to compute αs and β.

3 EXPERIMENTS

3.1 Datasets
MovieLens 100k data1 and Netflix Competition data2 are two

datasets in studying personalized recommendation which were

collected from online movie recommender services [1], [8].

These two datasets contain abundant rating records which last

in a reasonable time, and they are different in composition and

dynamic nature of data. We use them for our case study. Time

distances between the target rating and historical ratings are

defined as time of interest, and we manually assigned 6 time

intervals to classify times of interest into multiple phases, i.e.,

within 1 day, 1 to 7 days, 1 to 4 weeks, 1 to 3 months, 3 to

12 months and more than a year.

3.2 Evaluation
The frequently used accuracy indicator for predictive algo-

rithms, Root-mean-square error (RMSE), is used to evaluate

the proposed recommendation algorithm. In previous studies

[1], [4], [12], the training and testing data are randomly chosen

for the experiments. But this is unsuitable for the evaluation of

dynamic recommendation. With respect to general causality, it

is a critical fact in dynamic recommendation that we can use

only historical data but not future data for current prediction

in real applications. Unfortunately, the fact is often ignored

in previous studies. In traditional RMSE evaluations (even for

the Netflix competition), training and testing data are randomly

sampled and the train and test split is not based on time. This

would produce current prediction based on future data. Even if

it is guaranteed that testing instances of each user/item come

later than its training instances, the aforementioned issue still

exists in algorithms like IBCF and latent factor models due to

the utilization of other users’ future ratings.

Replay-match evaluation has been proposed to address this

issue by Li et al. [20], whose evaluation is like replaying a

1. http://www.grouplens.org/node/73

2. http://www.netflixprize.com

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

match from the beginning to the end. Its evaluation results

are more stable for dynamic recommendation compared with

results of traditional evaluation. Accordingly, so as to provide

a better simulation of practical recommendation systems’

working in evaluation, we split training and testing data based

on time in the same way and evaluate the accuracies of

dynamic recommendation algorithms as follows:

1) Sort the entire dataset in normal time order, use a certain

training ratio to determine its splitting.

2) Use the earlier part as the training set to adjust all

parameters in the recommendation algorithm.

3) Run algorithm on testing set, generate estimated rating

for each user-item pair in testing set.

4) Compare estimated ratings and real ratings in the testing

set, and calculate RMSE.

5) Use different ratios and repeat last four steps.

3.3 Experiment setup
We compared the proposed algorithm with some representative

and widely-used dynamic recommendation algorithms. In the

comparisons, all the competing algorithms were in online-

updating forms and their parameters were set to their empiri-

cally best. Here we briefly introduce them.

TimeSVD++ [4] is extended from SVD++ [21] by account-

ing for temporal dynamics. TimeIBCF is extended from IBCF

by accounting for temporal dynamics as in [4]. Factorized

Personalized Markov Chain (FPMC) [12] combines matrix
factorization and markov chain together to handle both the

sparsity and the dynamic nature of dynamic personalized

recommendation. IBCF with time decay [13] weights the simi-

larities of CF by time decay functions to deal with the dynamic

problems. Hierarchy CF [11] is a hybrid of content-based

and collaborative filtering methods using category information

in items’ content. ICHM [10] introduces group similarity by

clustering to modify similarities in IBCF, and K-Means is

adopted for the clustering of item content.

In the experiments, the MovieLens 100k dataset was split as

described above with different training ratios (#Trainingset
#Dataset) –

from 50% to 80% stepped by %5, and Netflix Competition was

split with different time points – from 4/1/2005 to 10/1/2005

stepped by one month for the amount of its ratings. The

former parts of the sorted-by-time datasets are used as the

training sets while the latter parts are used as relevant testing

sets. We ran almost all algorithms on MovieLens 100k and

Netflix Competition for comparison, but we did not perform

Hierarchy CF and ICHM on Netflix Competition because these

two algorithms require fertile and well-quantified content in

item profiles, which is not satisfied by Netflix Competition.

3.4 Comparison results
In Fig. 3 the performances of the algorithms on MovieLens

100k and Netflix Competition are reported. The proposed

algorithm significantly outperforms the other algorithms in

accuracy on MovieLens 100k and has comparable performance

with timeSVD++ on Netflix Competition. On MovieLens

100k, the RMSE of the proposed algorithm is consistently

the lowest, and the average RMSE of the proposed method

is about 10%-15% lower than other algorithms. On Netflix

Competition, the accuracy of the proposed algorithm is com-

parable with timeSVD++, due to the lack of user profiles and

lack of information in item profiles. The experimental results

also show that the proposed algorithm and timeIBCF are robust

with time evolving, indicating that the proportion of ratings by

new users or of new items does not change a lot.

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.95

1

1.05

1.1

1.15

Training / All

O
ve

ra
ll

R
M

S
E

 C
om

pa
ris

on
 in

 M
ov

ie
Le

ns
 1

00
k

timeIBCF [1,4]
CF with Time Decay [13]
Hierarchy CF [11]
ICHM [10]
timeSVD++ [4]
FPMC [12]
The Proposed Algorithm

(a)

0 20 40 60 80 100 120 140 160
1

1.05

1.1

1.15

Days since 4/1/2005

O
ve

ra
ll

R
M

S
E

 C
om

pa
ris

on
 in

 N
et

fli
x

C
om

pe
tit

io
n

timeIBCF [1,4]
CF with Time Decay [13]
timeSVD++ [4]
FPMC [12]
The Proposed Algorithm

(b)

Fig. 3. Accuracy comparison (a)MovieLens 100k and
(b)Netflix Competition

Comparing Fig. 3(a) and Fig. 3(b), we can infer that (i)

the accuracies of algorithms would be enhanced when data,

especially recent data, gets dense, and (ii) the utilization of

profile content in the proposed algorithm is effective and

helps improve the quality of recommendation. Compared to

timeSVD++ and timeIBCF, in which only rating information

is utilized, hybrid approaches make use of more information

and may achieve better recommendation accuracies if the

information mined is sufficient and the dynamic nature of data

is well handled. The experimental results also show that users’

preferences could be well described and learned by the MPD-

based features.
As the efficiency of common IBCF is high in all recommen-

dation algorithms [1], [3], we listed the computational time

cost of the proposed algorithm and IBCF on the dataset of

MovieLens 100k in Table 1 to illustrate its efficiency. All

experiments are performed on a workstation with an Intel

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Core2 Q8300 CPU and 8GB RAM. We can see that the

proposed approach has a comparable computational cost with

IBCF. As the size of the testing set increases, the difference of

time consumed between two algorithms decreases. indicating

that the proposed approach has satisfying performance and can

handle larger datasets.

TABLE 1
Computational cost of the proposed algorithm and IBCF

[1] on MovieLens 100k

#Test Set Common IBCF [1] Proposed Approach
50000 1.8 s 1.8 s
40000 1.5 s 1.5 s
30000 1.2 s 1.3 s
20000 0.8 s 1.0 s

We also conducted experiments to test the robustness of

the proposed algorithm on different phases of historical data.

We applied the proposed algorithm on the data in each single

phase defined before, and the RMSEs are calculated separately

according to the definition of users’ multiple phases of interest.

In Fig. 4, we presented the RMSEs of the proposed recom-

mendation algorithms using the data in different phases of

interest at different training ratios. It is clear that the proposed

algorithm is quite robust in the phases, and we found it is not

true that the more recent ratings should have heavier weights

across the whole time, which illustrates the advantages of the

features – light computation, flexibility and high accuracy.

within 1 1 to 7 7 to 30 30 to 90 90 to 365 more than 365
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Interest Time / Day(s)

R
M

S
E

 o
f t

he
 p

ro
po

se
d

al
go

rit
hm

 o
n

in
te

re
st

 o
f d

iff
er

en
t t

im
e

in
te

rv
al

s

TR = 0.5
TR = 0.6
TR = 0.7

Fig. 4. Accuracy of the proposed algorithm on different
phases of interest. TR means training ratio.

Comparing Fig. 4 with Fig. 3(a), we can see that the pro-

posed algorithm has better performances than other algorithms

even when it uses only the data in some single phases. We can

see that the accuracies become higher when we use all the data,

which illustrated that mining and making use of more related

data can provide more useful information.

4 CONCLUSION

In this paper, we proposed a novel dynamic personalized

recommendation algorithm for sparse data, in which more

rating data is utilized in one prediction by involving more

neighboring ratings through each attribute in user and item

profiles. A set of dynamic features are designed to describe the

preference information based on TSA technique, and finally a

recommendation is made by adaptively weighting the features

using information in multiple phases of interest. Experimental

results on public MovieLens 100k and Netflix Competition

data indicate that the proposed algorithm is effective, and its

computational cost is also acceptable.

ACKNOWLEDGMENT
This work is supported by National Natural Science Founda-

tion of China (No.61021063, No.61020106004). The authors

would like to thank Dr. Brandon Norick, Dr. Jianjiang Feng

and Mr. Quanquan Gu for their help in revising this paper.

REFERENCES
[1] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, Item-based collabora-

tive filtering recommendation algorithms, in: WWW, 2001, pp. 285–295.
[2] P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.), The Adaptive Web, Methods

and Strategies of Web Personalization, Lecture Notes in Computer
Science, Springer, 2007.

[3] G. Adomavicius, A. Tuzhilin, Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions,
IEEE Trans. Knowl. Data Eng. 17 (6) (2005) 734–749.

[4] Y. Koren, Collaborative filtering with temporal dynamics, Communica-
tions of the ACM 53 (4) (2010) 89–97.

[5] L. Candillier, F. Meyer, M. Boullé, Comparing state-of-the-art collabo-
rative filtering systems, in: P. Perner (Ed.), MLDM, Vol. 4571 of Lecture
Notes in Computer Science, Springer, 2007, pp. 548–562.

[6] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, H. Kriegel, Probabilistic
memory-based collaborative filtering, IEEE Transactions on Knowledge
and Data Engineering 16 (1) (2004) 56–69.

[7] F. Fouss, A. Pirotte, J. Renders, M. Saerens, Random-walk computation
of similarities between nodes of a graph with application to collaborative
recommendation, IEEE TKDE 19 (3) (2007) 355–369.

[8] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for
recommender systems, Computer 42 (8) (2009) 30–37.

[9] S. Boutemedjet, D. Ziou, Long-term relevance feedback and feature se-
lection for adaptive content based image suggestion, Pattern Recognition
43 (12) (2010) 3925–3937.

[10] B. M. Kim, Q. Li, C. S. Park, S. G. Kim, J. Y. Kim, A new approach
for combining content-based and collaborative filters, J. Intell. Inf. Syst.
27 (1) (2006) 79–91.

[11] G. Prassas, K. C. Pramataris, O. Papaemmanouil, Dynamic recommen-
dations in internet retailing, in: ECIS, 2001.

[12] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personal-
ized markov chains for next-basket recommendation, in: Proceedings of
the 19th WWW, ACM, 2010, pp. 811–820.

[13] C. Xia, X. Jiang, S. Liu, Z. Luo, Z. Yu, Dynamic item-based recommen-
dation algorithm with time decay, in: ICNC, IEEE, 2010, pp. 242–247.

[14] J. Lai, T. Huang, Y. Liaw, A fast k-means clustering algorithm using
cluster center displacement, PR 42 (11) (2009) 2551–2556.

[15] A. Tsymbal, The problem of concept drift: definitions and related work,
Computer Science Department, Trinity College Dublin.

[16] X. Tang, C. Yang, J. Zhou, Stock price forecasting by combining news
mining and time series analysis, in: Web Intelligence, IEEE, 2009, pp.
279–282.

[17] J. Mohammed, Real-time implementation of an efficient rls algorithm
based on iir filter for acoustic echo cancellation, in: IEEE/ACS ICCSA,
IEEE, 2008, pp. 489–494.

[18] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression,
The Annals of statistics 32 (2) (2004) 407–499.

[19] B. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal
margin classifiers, in: Proceedings of the fifth annual workshop on
Computational learning theory, ACM, 1992, pp. 144–152.

[20] L. Li, W. Chu, J. Langford, X. Wang, Unbiased offline evaluation of
contextual-bandit-based news article recommendation algorithms, in:
Proceedings of the fourth ACM international conference on Web search
and data mining, ACM, 2011, pp. 297–306.

[21] Y. Koren, Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, in: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
ACM, 2008, pp. 426–434.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

