1012

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

Towards Online Shortest Path Computation

Leong Hou U, Hong Jun Zhao, Man Lung Yiu, Yuhong Li, and Zhiguo Gong

Abstract—The online shortest path problem aims at computing the shortest path based on live traffic circumstances. This is very
important in modern car navigation systems as it helps drivers to make sensible decisions. To our best knowledge, there is no efficient
system/solution that can offer affordable costs at both client and server sides for online shortest path computation. Unfortunately, the
conventional client-server architecture scales poorly with the number of clients. A promising approach is to let the server collect live
traffic information and then broadcast them over radio or wireless network. This approach has excellent scalability with the number of
clients. Thus, we develop a new framework called live traffic index (LTI) which enables drivers to quickly and effectively collect the live
traffic information on the broadcasting channel. An impressive result is that the driver can compute/update their shortest path result by
receiving only a small fraction of the index. Our experimental study shows that LTI is robust to various parameters and it offers relatively
short tune-in cost (at client side), fast query response time (at client side), small broadcast size (at server side), and light maintenance

time (at server side) for online shortest path problem.

Index Terms—Shortest path, air index, broadcasting

1 INTRODUCTION

HORTEST path computation is an important function in

modern car navigation systems and has been extensively
studied in [1], [2], [3], [4], [5], [6], [7], [8]. This function helps
a driver to figure out the best route from his current position
to destination. Typically, the shortest path is computed by
offline data pre-stored in the navigation systems and the
weight (travel time) of the road edges is estimated by the
road distance or historical data. Unfortunately, road traffic
circumstances change over time. Without live traffic circum-
stances, the route returned by the navigation system is no
longer guaranteed an accurate result. We demonstrate this
by an example in Fig. 1. Suppose that we are driving from
Lord & Taylor (label A) to Mt Vernon Hotel Museum
(label B) in Manhattan, NY. Those old navigation systems
would suggest a route based on the pre-stored distance
information as shown in Fig. 1a. Note that this route passes
through four road maintenance operations (indicated by
maintenance icons) and one traffic congested road (indi-
cated by a red line). In fact, if we take traffic circumstances
into account, then we prefer the route in Fig. 1b rather than
the route in Fig. 1a.

Nowadays, several online services provide live traffic
data (by analyzing collected data from road sensors, traffic
cameras, and crowdsourcing techniques), such as Google-
Map [9], Navteq [10], INRIX Traffic Information Provider
[11], and TomTom NV [12], etc. These systems can calculate
the snapshot shortest path queries based on current live

e LH. .U H]J. Zhao, Y.H. Li, and Z. Gong are with the Department of Com-
puter and Information Science, University of Macau, Av. Padre Tomds
Pereira, Taipa, Macau, China.

E-mail: {ryanlhu, ma86569, yb27407, fstzgg/@umac.mo.

o M.L. Yiu is with the Department of Computing, Hong Kong Polytechnic

University, Hong Kong. E-mail: csmlyiu@comp.polyu.edu.hk.

Manuscript received 6 Feb. 2013; revised 25 June 2013; accepted 5 Nov. 2013;
date of publication 2 Dec. 2013; date of current version 18 Mar. 2014.
Recommended for acceptance by J—Pei.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2013.176

traffic data; however, they do not report routes to drivers
continuously due to high operating costs. Answering the
shortest paths on the live traffic data can be viewed as a con-
tinuous monitoring problem in spatial databases, which is
termed online shortest paths computation (OSP) in this work.
To the best of our knowledge, this problem has not received
much attention and the costs of answering such continuous
queries vary hugely in different system architectures.

Typical client-server architecture can be used to answer
shortest path queries on live traffic data. In this case, the
navigation system typically sends the shortest path query
to the service provider and waits the result back from the
provider (called result transmission model). However, given
the rapid growth of mobile devices and services, this
model is facing scalability limitations in terms of network
bandwidth and server loading. According to the Cisco
Visual Networking Index forecast [13], global mobile traf-
fic in 2010 was 237 petabytes per month and it grew by
2.6-fold in 2010, nearly tripling for the third year in a row.
Based on a telecommunication expert [14], the world’s cel-
lular networks need to provide 100 times the capacity in
2015 when compared to the networks in 2011. Further-
more, live traffic are updated frequently as these data can
be collected by using crowdsourcing techniques (e.g.,
anonymous traffic data from Google map users on certain
mobile devices). As such, huge communication cost will
be spent on sending result paths on the this model. Obvi-
ously, the client-server architecture will soon become
impractical in dealing with massive live traffic in near
future. Ku et al. [15] raise the same concern in their work
which processes spatial queries in wireless broadcast envi-
ronments based on Euclidean distance metric.

Malviya et al. [16] developed a client-server system for
continuous monitoring of registered shortest path queries.
For each registered query (s, t), the server first precomputes
K different candidate paths from s to t. Then, the server
periodically updates the travel times on these K paths
based on the latest traffic, and reports the current best path
to the corresponding user. Since this system adopts the

1041-4347 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

phawthorne
Cross-Out

phawthorne
Inserted Text
X. Zhou

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

(a) Shortest route using pre-stored (b) Shortest route using live traffic (by
weights LTD

Fig. 1. Two alternative shortest paths in Manhattan, NY.

client-server architecture, it cannot scale well with a large
number of users, as discussed above. In addition, the
reported paths are approximate results and the system does
not provide any accuracy guarantee.

An alternative solution is to broadcast live traffic data over
wireless network (e.g., 3G, LTE, Mobile WiMAX, etc.). The
navigation system receives the live traffic data from the
broadcast channel and executes the computation locally
(called raw transmission model). The traffic data are broad-
casted by a sequence of packets for each broadcast cycle. To
answer shortest path queries based on live traffic circumstan-
ces, the navigation system must fetch those updated packets
for each broadcast cycle. However, as we will analyze an
example in Section 2.2, the probability of a packet being
affected by 1% edge updates is 98.77%. This means that cli-
ents almost fetch all broadcast packets in a broadcast cycle.

The main challenge on answering /ive shortest paths is
scalability, in terms of the number of clients and the amount
of live traffic updates. A new and promising solution to the
shortest path computation is to broadcast an air index over
the wireless network (called index transmission model) [17],
[18]. The main advantages of this model are that the net-
work overhead is independent of the number of clients and
every client only downloads a portion of the entire road
map according to the index information. For instance, the
proposed index in [17] constitutes a set of pairwise mini-
mum and maximum traveling costs between every two sub-
partitions of the road map. However, these methods only
solve the scalability issue for the number of clients but not
for the amount of live traffic updates. As reported in [17],
the re-computation time of the index takes 2 hours for the
San Francisco (CA) road map. It is prohibitively expensive
to update the index for OSP, in order to keep up with live
traffic circumstances.

Motivated by the lack of off-the-shelf solution for OSP, in
this paper we present a new solution based on the index
transmission model by introducing live traffic index (LTI) as
the core technique. LTI is expected to provide relatively
short tune-in cost (at client side), fast query response time
(at client side), small broadcast size (at server side), and
light maintenance time (at server side) for OSP. We summa-
rize LTI features as follows.

e The index structure of LTI is optimized by two novel
techniques, graph partitioning and stochastic-based
construction, after conducting a thorough analysis

1013

on the hierarchical index techniques [19], [20], [21].
To the best of our knowledge, this is the first work to
give a thorough cost analysis on the hierarchical
index techniques and apply stochastic process to
optimize the index hierarchical structure. (Section 4)

e LTI efficiently maintains the index for live traffic
circumstances by incorporating Dynamic Shortest
Path Tree (DSPT) [22] into hierarchial index tech-
niques. In addition, a bounded version of DSPT is
proposed to further reduce the broadcast over-
head. (Section 6)

e By incorporating the above features, LTI reduces the
tune-in cost up to an order of magnitude as com-
pared to the state-of-the-art competitors; while it
still provides competitive query response time,
broadcast size, and maintenance time. To the best of
our knowledge, we are the first work that attempts
to minimize all these performance factors for OSP.

The rest of the paper is organized as follows. We first

introduce four main performance factors for evaluating
OSP and overview the state-of-the-art shortest path compu-
tation methods in Section 2. The system overview and objec-
tives of our live traffic index are introduced in Section 3. The
LTI construction, LTI transmission, and LTI maintenance
are subsequently discussed in Sections 4, 5 and 6, respec-
tively. We summarize our complete framework in Section 7
and evaluate LTI thoroughly in Section 8. Finally, our work
is concluded in Section 9.

2 PRELIMINARY

2.1 Performance Factors
The main performance factors involved in OSP are: (i) tune-
in cost (at client side), (ii) broadcast size (at server side), and
(iif) maintenance time (at server side), and (iv) query
response time (at client side).

In this work, we prioritize the tune-in cost as the main
optimized factor since it affects the duration of client
receivers into active mode and power consumption is essen-
tially determined by the tuning cost (i.e., number of packets
received) [17], [23]. In addition, shortening the duration of
active mode enables the clients to receive more services
simultaneously by selective tuning [24]. These services may
include providing live weather information, delivering lat-
est promotions in surrounding area, and monitoring avail-
ability of parking slots at destination. If we minimize the
tune-in cost of one service, then we reserve more resources
for other services.

The index maintenance time and broadcast size relate to
the freshness of the live traffic information. The mainte-
nance time is the time required to update the index accord-
ing to live traffic information. The broadcast size is relevant
to the latency of receiving the latest index information. As
the freshness is one of our main design criteria, we must
provide reasonable costs for these two factors.

The last factor is the response time at client side. Given
a proper index structure, the response time of shortest
path computation can be very fast (i.e., few milliseconds
on large road maps) which is negligible compared to
access latency for current wireless network speed. The
computation also consumes power but their effect is

1014

outweighed by communication. It remains, however, an
evaluated factor for OSP.

2.2 Adaptation of Existing Approaches

In this section, we briefly discuss the applicability of the
state-of-the-art shortest path solutions on different trans-
mission models. As discussed in the introduction, the result
transmission model scales poorly with respect to the num-
ber of clients. The communication cost is proportional to the
number of clients (regardless of whether the server trans-
mits live traffic or result paths to the clients). Thus, we omit
this model from the remaining discussion.

2.2.1 Raw Transmission Model

Under the raw transmission model, the traffic data (i.e.,
edge weights) are broadcasted by a set of packets for each
broadcast cycle. Each header stores the latest time stamp of
the packets, so that clients can decide which packets have
been updated, and only fetch those updated packets in the
current broadcast cycle. Having downloaded the raw traffic
data from the broadcast channel, the following methods
either directly calculate the shortest path or efficiently main-
tain certain data structure for the shortest path computation.

Uninformed search (e.g., Dijkstra’s algorithm) traverses
graph nodes in ascending order of their distances from the
source s, and eventually discovers the shortest path to
the destination t. Bi-directional search (BD) [3] reduces the
search space by executing Dijkstra’s algorithm simulta-
neously forwards from s and backwards from t. As to be
discussed shortly, bi-directional search can also be applied
on some advanced index structures. However, the response
time is relatively high and the clients may receive large
amount of irrelevant updates due to the transmission
model.

Goal directed approaches search towards the target by filter-
ing out the edges that cannot possibly belong to the shortest
path. The filtering procedure requires some pre-computed
information. ALT [25] and arc flags (AF) [26] are two repre-
sentative algorithms in this category.

ALT makes use of A* search, landmarks, and triangle
inequality [27]. A few landmark nodes are selected and
the distances between each landmark and every node are
pre-computed. These pre-computed distances can be
exploited to derive distance bounds for A* search on
the graph. Delling and Wagner [28] proposes a lazy
update paradigm for ALT (DALT) so that it can tolerate
certain extents of edge weights changes on a dynamic
graph. The distance bounds derived from the pre-com-
puted information remain correct if no edge weight
becomes lower than the initial weight used at the ALT
construction. This lazy update paradigm significantly
reduces the index maintenance cost.

Another well known goal directed approach is arc flags
that partitions the graph into m sub-graphs. For each
edge ¢, it stores a bitmap B where B[i] is set to true if and
only if a shortest path to a node in the sub-graph i starts
with e. During the Dijkstra execution, it only relaxes those
edges for which the bitmap flag of the target node’s sub-
graph is true. AF provides reasonable speed-ups, but con-
sume too much space for large road networks. The

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

dynamic updates of AF (DAF) has been recently studied
in [29]. However, the solution is not practical since the
cost of updating the bitmap flags is exponential to the
number of edge updates.

Dynamic shortest path tree (DSPT) maintains a tree struc-
ture locally for efficient shortest path retrieval. Chan and
Yang [22] discusses how to maintain a correct shortest path
tree rooted at s after receive a set of edge weight updates to
the graph G = (V, E). Finding a shortest path from s to any
node is computed at O(|V]) time on the shortest path tree.
In their work, a simple dynamic version of Dijkstra is pro-
posed which can outperform all competitors.

2.2.2 Index Transmission Model

The index transmission model enables servers to broadcast
an index instead of raw traffic data. We review the state-of-
the-art indices for shortest path computation and discuss
their applicability on the index transmission model.

Road map hierarchical approaches try to exploit the hierar-
chical structure to the road map network in a pre-processing
step, which can be used to accelerate all subsequent queries.
These speed-up approaches include reach [4], highway hierar-
chies (HH) [2][6], contraction hierarchies (CH) [30], and transit-
node routing (TNR) [1].

Reach, HH, and CH are based on shortcut techniques
[2][6], i.e., some paths in the original graph are repre-
sented by some shortcut edges. The shortcuts are identi-
fied out by exploiting the hierarchical structure (e.g.,
node ordering) on the road map network. To answer a
query, a bi-directional search is executed on the overlay
graph that constitutes of the shortcuts and some edges
in the original graph. As the shortcuts are the only extra
structure stored in the index, the construction is rela-
tively fast as compared to other index approaches.

TNR is based on a simple observation that a driving path
only passes one of a few important transit nodes. For each
shortest path query (s,), two transit node sets, A(s) and
A(t), can be identified by the forward and backward
searches from the source and the destination, respectively.
The length of the shortest path (s,) that passes at least one
transit node is given by min{dist(s,u)+ dist(u,v) +
dist(v,t) |u € A(s),v € A(t)}, where all involved distances
can be directly looked up in the pre-computed data struc-
ture. Note that if the shortest path that passes no transit
node, then other shortest path algorithm is applied instead.

The hierarchical approaches can provide very fast query
time as reported in [31]. However, the maintenance time
could be high as most of them have no efficient approach to
update the pre-computed data structure. HH and CH can
support dynamic weight updates [7] but the solution is lim-
ited to weight increasing cases. In [32], a theoretical
approach has been proposed to update the overlay graphs,
but the proposed algorithms have not been shown to have
good practical performances in real-world networks. Again,
none of these approaches supports index transmission
model well since the shortest path can only be computed on
a complete index.

Hierarchical index structures provide another way to
abstracting and structuring a topographical index in a hier-
archical fashion. Hierarchical MulTi-graph model (HiTi)

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

[21] is a representative approach in this category. The mean-
ing of hierarchy in HiTi is the hierarchy of the index (i.e.,
tree structure) instead of the hierarchy of the road map (i.e.,
level of roads). By exploiting the hierarchical index struc-
ture, HiTi can support fast shortest path computation on a
portion of entire index which can significantly reduce the
tune-in cost on the index transmission model. However,
prohibitive maintenance time and large broadcast size
make it inapplicable to OSP on any transmission model.

Hierarchical encoded path view (HEPV) [20] and Hub
indexing [19] share the same intuition of HiTi which divides
large graph into smaller subgraphs and organize them in a
hierarchical fashion by pushing up border nodes. However,
both are infeasible for OSP since these approaches suffer
from the excessive storage overhead for a large amount of
pre-computed path information.

TEDI [33] applies a tree-based partitioning on the graph
such that each partition in the tree has a bounded number
of sub-partitions. This method is applicable to unweighted
graphs only; it is not applicable to typical road networks
where the edges are weighted. Furthermore, there is no dis-
cussion on how to maintain the TEDI structure in presence
of edge weight updates.

Oracle [34], [35] focus on precomputing certain shortest
path distances called oracles in order to answer approximate
shortest path queries efficiently. These techniques bound the
approximate path distance error to be € times the shortest
path distance. The distance oracle [34] can answer approxi-
mate shortest path distance query in O(log|V|) time, and it
occupies O(|V|/€?) space. The path oracle [35] takes the same
complexity, and it can compute an approximate shortest
path in O(klog|V]) time, where k is the number of vertices on
the path. The maintenance of these oracles regarding live
traffic updates has not been studied in [34], [35]. Also, these
techniques do not provide exact results and incur high stor-
age space at small e.

Full pre-computation pre-computes the shortest paths
between any two nodes in the road network, such as SILC
[36] and distance index [37]. Even though these approaches
offer fast query response time, the maintenance cost and
size overhead become prohibitive on large road networks.
Besides, as reported by [38], the performance of the full
pre-computation approaches (i.e., SILC [36]) is not much
superior to those road map hierarchical approaches (i.e.,
CH [30]).

Combination approaches integrate promising features from
different index structure to support efficient shortest path
computation. SHARC [39] and CALT [31] are two well
studied combination approaches which integrate road
map hierarchical approaches with AF and ALT, respec-
tively. However, these complex index structures are either
lack of efficient maintenance strategies or have huge size
overhead which makes them inapplicable to OSP on any
transmission model.

2.2.3 Discussion

Except for hierarchical index structures, all methods on
either raw or index transmission models suffer from
a drawback that a few updates could affect a large
portion of packets. We demonstrate this by a simple proba-
bilistic analysis. Suppose that there are B packets in a

1015

b3

¢ sild g % BD. DSPT
= = 5 DALT
] HiTi % TNR @
5 x g
c SHARCy o HiTi
g %DAF 2 iTi x
E CALT% 8 % oRe
=

CH 3T %CH caLT g

X LTI
2 TNR
BD, DALT, DSPT b SHARCX %

Ideal Broadcast size Ideal Tune-in cost

(a) costs at service provider (b) costs at client

Fig. 2. Relative performance illustration.

broadcast cycle and U edges are updated. The probability
of a specific packet being affected by the updates is
1—(1—1/B)Y. For instance, suppose that the San Fran-
cisco (CA) bay area road network can be transmitted in
1,000 packets (443,604 edges in total), and there are 1 per-
cent live traffic updates (i.e., ~ 4,400 edges) in each proc-
essing cycle. Thus, the probability of a packet being
affected is 98.77 percent. This means that almost every
broadcast packet is updated by this small portion of edge
updates.

Fig. 2 illustrates the relative performance' to different
cost factors (including tune-in cost, response time, broad-
cast size, and maintenance time) on two transmission
models. Except that BD, DALT, and DSPT use the raw
transmission model, other methods use the index trans-
mission model. Except for HiTi [21] and LTI (our proposed
method), the tune-in cost of all approaches is very close to
the broadcast size as explained above. Based on the com-
parison in Fig. 2, LTI is the only method that supports rela-
tively low tune-in cost (at client side), fast query response
time (at client side), small broadcast size (at server side),
and light index maintenance time (at server side) for OSP.

3 LTI OVERVIEW AND OBJECTIVES

3.1 LTI Overview

A road network monitoring system typically consists of a
service provider, a large number of mobile clients (e.g.,
vehicles), and a traffic provider (e.g.,, GoogleMap, NAV-
TEQ, INRIX, etc.). Fig. 3 shows an architectural overview of
this system in the context of our live traffic index frame-
work. The traffic provider collects the live traffic circumstan-
ces from the traffic monitors via techniques like road
sensors and traffic video analysis. The service provider peri-
odically receives live traffic updates from the traffic pro-
vider and broadcasts the live traffic index on radio or
wireless network (e.g.,, 3G, LTE, Mobile WiMAX, etc.).
When a mobile client wishes to compute and monitor a short-
est path, it listens to the live traffic index and reads the rele-
vant portion of the index for computing the shortest path.

In this work, we focus on handling traffic updates but not
graph structure updates. For real road networks, it is infre-
quent to have graph structure updates (i.e., construction of
a new road) when compared to edge weight updates (i.e.,

1. Based on the experimental results reported by [31] and [38].

1016

E

=5 JE E‘*; :g :
§§§=ﬁ§a§'%§'

Fig. 3. LTI system overview.

live traffic circumstances). Thus, we assume that the graph
structures are distributed to every client in advance (e.g., by
monthly updates or at system boot-up) via typical transmis-
sion protocol (i.e., HTTP and FIP).

In Fig. 4, we illustrate the components and system flow in
our LTI framework. The components shaded by gray color
are the core of LTL In order to provide live traffic informa-
tion, the server maintains (component a) and broadcasts
(component b) the index according to the up-to-date traffic
circumstances. In order to compute the online shortest path,
a client listens to the live traffic index, reads the relevant
portions of the index (component ¢), and computes the
shortest path (component d).

3.2 LTI Objectives
To optimize the performance of the LTI components, our
solution should support the following features.

(1) Efficient maintenance strategy. Without efficient mainte-
nance strategy, long maintenance time is needed at server
side so that the traffic information is no longer live. This can
reduce the maintenance time spent at component a.

(2) Light index overhead. The index size must be con-
trolled in a reasonable ratio to the entire road map data.
This reduces not only the length of a broadcast cycle, but
also makes clients listen fewer packets in the broadcast
channel. This can save the communication cost at compo-
nents b and c.

(3) Efficient computation on a portion of entire index. This
property enables clients to compute shortest path on a por-
tion of the entire index. The computation at component d
gets improved since it is executed on a smaller graph. This
property also reduces the amount of data received and
energy consumed at component c.

Inspired by these properties, LTI has relatively short
tune-in cost (at client side), fast query response time (at cli-
ent side), small broadcast size (at server side), and light

Client Service Provider Traffic Provider
o (c) Tune-in&listen (b) Broadcast 1™ Receive traffic |
e relevantI packets index _ _updates |

! |
(a) Maintain index

—— - - ———d
(d) Compute
result for q(s,d)

| |
| Queryalsd) |

Computation

Fig. 4. Components in LTI.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

@@ [0 0 _ ;

861@ AN | SGs|SG; | | SGI15 §,,(,’,‘I§:1ﬂ

oLl el mmmm s
. @3: © @ [SGi, | SG;1SG; SGs SG; SGr SGss SGro
) SGo|

@ ®@@ 5 : ® SGs SGo

SG, 5Gs| SG, SGx Search Graph of q(b,d){

(a) road network (b) hierarchical tree view

Fig. 5. Hierarchical index structure.

index maintenance time (at server side) for OSP. As dis-
cussed in Section 2.2, the hierarchical index structures enable
clients to compute the shortest path on a portion of entire
index. However, without pairing up with the first and sec-
ond features, the communication and computation costs
are still infeasible for OSP. To achieve these two features, in
Sections 4 and 6, we will discuss how to optimize the hierar-
chical structure and efficiently maintain the index according
to live traffic circumstances.

4 LTI CONSTRUCTION

In Section 4.1, we carefully analyze the hierarchical
index structures and study how to optimize the index. In
Section 4.2, we present a stochastic based index construction
that minimizes not only the size overhead but also reduces
the search space of shortest path queries. To the best of our
knowledge, this is the first work to analyze the hierarchical
index structures and exploit the stochastic process to opti-
mize the index.

4.1 Analysis of Hierarchical Index Structures
Hierarchical index structures (e.g., HiTi [21], HEPV [20],
and Hub Indexing [19], TEDI [33]) enable fast shortest path
computation on a portion of entire index which significantly
reduces the tune-in cost on the index transmission model.
Given a graph G = (V, E¢;) (i.e., road network), this type of
index structures partitions G into a set of small sub-graphs
SG; and organizes SG; in a hierarchical fashion (i.e., tree).
In Fig. 5, we illustrate a graph being partitioned into 10 sub-
graphs (SGi, SGs,...,S5G) and the corresponding hierar-
chical index structure.

Every leaf entry in a hierarchical structure represents a
subgraph SG; that consists of the corresponding nodes and
edges from the original graph. For instance, SG consists of
two nodes Vsg, = {a,b} and one edge Esg, = {(a,0)}. A
non-leaf entry stores the inter-connectivity information
between the child entries. For instance, SG1-, stores a con-
nectivity edge I'sq,_, = {(b,c)} between SG; and SG». To
boost up the shortest path computation, the hierarchical
index structures additionally keep some pre-computed
information in the index entries. For instance, shortcuts
Asg; are the most common type of pre-computed informa-
tion in these indices, where a shortcut is the shortest path
between two border nodes in a subgraph. In Fig. 5, SG; has
two border nodes® k and m so that SG5 keeps a shortcut
Asg, = {(k,m)} and its corresponding weight.

2. Node n is a border node in SG,-5 but not in SG5.

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

To answer a shortest path query ¢(s, t) using the hierar-
chical structures, a common approach is to fetch the rele-
vant entries from the index using a bottom-up execution
fashion. For the sake of analysis, we use HiTi as our refer-
ence model in the remaining discussion. Our analysis can
be adapted to other approaches since their execution para-
digm shares the same principle.

In Fig. 5, the relevant entries of a shortest path query
q(b,d) are shaded in gray color. Besides the source and des-
tination leaf entries (SG; and SGj3), we need to fetch the
entries from two leaf entries towards the root entry (SG-5,
SGi-3, SGi5, and SGi-p) and their sibling entries (SGs,
SGy5, and SGg-y0). The shortest path is computed on the
search graph G (typically much smaller than) which con-
stitutes of the edges from the source and destination entries
and the connectivity edges and shortcuts from other rele-
vant entries. Note that the edges in G¢ already secure the
correctness of the shortest path query process [21]. As an
example, suppose the shortest path of ¢(b, d) passes through
an edge in SGg, this path must be revealed in the shortcut of
SG@'_H) (i.e., ASGG—m = {(f, p)})

Cost analysis. The total space requirement of a hierarchi-
cal index I can be represented as follows.

1] = Z (|‘/SGi

SGel

+ |ESGi‘ + |FSG1’| + |ASG1’|) + tree, (1)

where Vsg, and Esg, represent the nodes and edges in SGj,
respectively, I'sq, represents the connectivity information
between the child entries, Ag, represents the pre-computed
information kept in SG;, and tree represents the hierarchical
information of I. Since Vsg;, Esg, and I'sg, are directly
derived from the original graph and tree is negligible com-
pared to G, the space requirement can be revised as the fol-
lows:

I~ |G+ Y |Asq,l. (2)
SGel

To minimize the index broadcast size, it is more or less
equivalent to minimize the size of Ag¢,. The simplest way is
to partition the graph into multiple subgraphs such that the
total size of Agg, is minimized. However, this may not opti-
mize the query performance being discussed shortly.

In our problem, both tune-in cost and query response
time are highly relevant to the size of the search graph
G (i.e., search space). Given an index / and a query g,
the search space of ¢ can be represented by the relevant
edge sets:

S(], q) = ‘ESGS] ESGt U {rg(;t @] As(;,ﬁ :VSG; € Gqfst}‘, (3)

where SG; and SGy represent the leaf entry of source and
destination, respectively and G475t = G4\ {SG, U SGy}. To
reduce S(I,q) for all possible queries, our goal is to find a
hierarchical structure such that it minimizes (O1) the size
of leaf entries Esg, and Esg,, (02) the overhead of pre-
computed information Agg,, and (O3) the number of rele-
vant entries GY. However, these objectives are correlated
to each other. For instance, to make Egq, and Egq, smaller,
a simple way is to partition G into more subgraphs; how-
ever, it may increase the number of relevant entries G?
and the number of border nodes Asg;.

1017

(a) 3 shortcut edges

(b) 24 shortcut edges

Fig. 6. The number of shortcut edges created by different cuts.

4.2 Index Construction

The above discussion shows that it is hard to find a hierar-
chical index structure / that achieves all optimization objec-
tives. One possible solution is to relax the optimization
objectives which makes them be the tunable factors of the
problem. While the overhead of pre-computed information
(02) and the number of relevant entries (O3) cannot be
decided straightforwardly, we decide to relax the first objec-
tive (i.e., minimizing the size of leaf entries) such that it
becomes a tunable factor in constructing the index.

To minimize the overhead of pre-computed informa-
tion (02), we study a graph partitioning optimization
that minimizes the index overhead Agg, through the
entire index construction subject to a leaf entry constraint
(O1). Subsequently, we propose a stochastic process to
optimize the index structure such that the size of the
query search graph GY is minimized (O3).

Graph partitioning optimization. For the sake of discussion,
we denote that the number of subgraphs being created is y
that is a tunable parameter for controlling the number of
subgraphs® in this work. According to Eq. (2), minimizing
the size of Agg, is likely to minimize the overhead of I.
Obviously, our objective is to find a hierarchical index struc-
ture I such that

B) Z |ASGi|
OBIWD) = i, e Vea T

(4)

where min{|Vsg,|} can be viewed as a normalized factor
such that the objective function prefers balanced partitions.

We observe that minimizing Eq. (4) is similar to finding
the best Cheeger cut [40] in a graph. A Cheeger cut is to
remove some edges from a graph such that the graph is iso-
lated into n subgraphs subject to an objective function:

Cut({SG,...,5G,})

OB s (€)= o, M o inf[5Ga] [5G})

where Cut({SG, ..., SG,}) is the number of edges between
any two subgraphs.

We use an example to illustrate how Cheeger cut result
can be viewed as a good result of I. Fig. 6a shows a Cheeger
cut on a graph where the cut value Cut({SG1,5G2}) and
the number of shortcut edges, |Asq,|+ |Asa,|=|{0}+
(e, f), (e, 9),(f,9)}|, are identical (i.e., 3). A large cut value
is likely to produce more shortcut edges; in Fig. 6b, the cut
value is 10 and there are 12 shortcuts.

Lemma 1. Given a cut having the cut value c and the maximum
cut degree of border nodes d., (where the cut degree only

3. y is a parameter to control the size of subgraphs.

1018

_SGis | SGIMO
i SC|1‘45 3?6—7 SGle—w
SG, | SG, SGs SGs SGr SGss SGio
@ B
SGg SGy

Search Graph of q(b,d) |

Fig. 7. Effect of hierarchical structure.

counts on those edges being cut), the number of shortcuts pro-
duced by the cut is bounded by C<"; by “’d"“f’*;)(“dm’f).

Proof. Given a cut having the cut value ¢ and the maxi-
mum cut degree d.,, the maximum number of border
nodes in two subgraphs being created is ¢ and
¢ — dey + 1, respectively. Thereby, the maximum num-

ber of shortcuts being created is "(C; Uy (Cfd”ﬁ;) (e=dewt)

Lemma 1. provides a relationship between the Cheeger
cut and our objective function. Practically, the effect of d:
is negligible since d.,; is relatively small as compared to c.
For instance, the average in/out degree of the San Francisco
(CA) bay area vertices is only 2.54 (which means d, is
smaller than 2.54 since a portion of these edges are interior
edges.). Therefore, we claim that a partitioning result that
minimizes Eq. (5) is likely to minimize Eq. (4) as well.

Finding the best Cheeger cut can be reduced to a quadratic
discrete optimization problem [41]. Based on [41], a cut on a
graph can be determined by the second smallest eigenvalue
A and its corresponding eigenvector V. The problem
becomes to decompose V into two subsets such that the
objective function is minimized. To further improve the
quality of each cut, we use Eq. (4) as the objective function so
that we can heuristically reduce the number of border nodes.
To construct an index, we recursively cut the subgraphs until
we have enough partitions (i.e., the leaf entry constraint, y).
The pseudo code is omitted due to space limits.

Stochastic based index construction. The graph partition-
ing framework only returns a binary tree index I” that is
constructed based on Cheeger cut sequences. However, 1"
only fulfills the first two objectives (i.e., minimizing the
overhead |Agg,| subject to y). Intuitively, the size of search
graphs G (i.e., O3) is highly relevant to the index hierar-
chical structure. As a motivating example, the number of
relevant entries of ¢(b,d) is reduced from 9 to 8 if we
remove one index node (e.g., SG1_2) from the index tree
in Fig. 5b. The new index and the relevant entries are
illustrated in Fig. 7.

Given the size of leaf entries y, minimizing the size of
search graph can be viewed as a problem of finding the
best hierarchical index structure for potential queries.
Finding the optimal hierarchical structure is challenging
since (1) the performance of an index cannot be easily
estimated (which should be estimated by a query work-
load Q or a universal query set /) and (2) the index statis-
tics (e.g., shortcuts) are changed on different index
hierarchical structures (which is necessarily recalculated
based on the structure). This problem is similar to those
combinatorial optimization problems (e.g., hierarchical
clustering [42]) that groups data into a set of hierarchical
partitions such that the objective function is optimized.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

86,]

1 SG, | | SGy | SG, | SG3i SGy |
® ® @ @
(a) small v (b) large ~y

Fig. 8. The effect of y on index construction.

Typically, these combinatorial problems are solved by
approximate solutions under reasonable response time.
Thus, we propose a top-down approach that greedily
decides the structure based on a stochastic estimation.

To estimate the average size of the search graphs, we
apply a stochastic process, Monte Carlo, that relies on ran-
dom sampling to obtain numerical results. In this work, the
Monte Carlo process is to execute a set of randomly gener-
ated shortest path queries on a temporal index I’ and esti-
mates the average size of their relevant search graphs,
avg(S(I")). For clarity, the stochastic process can be replaced
by a query workload, Q, based estimation which should
offer more accurate estimation when Q is available.

At every partitioning, we attempt to find the best struc-
ture for the potential queries by the stochastic process.
More specifically, we assess the average size of the rele-
vant search graphs, avg(S(I')), for different partitioning
settings (i.e., varying k). Among all assessed partitioning,
we attach the partitioning having the smallest relevant
search graphs to the index. The construction terminates
when we have enough leave entries (i.e.,). Algorithm 1
shows the pseudo codes of the partitioning algorithm
based on the stochastic process.

Algorithm 1 Stochastic Partitioning Algorithm

PQ: a priority queue; I: index structure;
Algorithm partition(G:the graph, y:the number of partitions)

I: (\,V) := eigen(G) and n := root of I

2: insert (n, G, V,\) into PQ in decreasing order to A

3: while |PQ| < v do

4: (n,G,V,\) :== PQ.pop()

5: for k:=2 to v — |PQ| + 1 do

6: decompose G into SG1...SGy, s.t. Eq. 4 is minimized
7: form a temporal index I’ that attaches SG1...SG
8: if avg(S(I”)) is better than bests then

9: update bests and bestsg := {SG1, ..., SGr}
10: attach bestgg as n’s children

11: for i:=1 to |bestsg| do

12: insert (n;, SGi, Vi, A;) into PQ

13: return 1

The effect of y. In this work, LTI requires only one parame-
ter y to construct the index which is used to control the
number of subgraphs being constructed. Our proposed
techniques attempt to optimize the index (02 and O3) sub-
ject to y. Intuitively, similar to other hierarchical indices, the
number of leaf entries, y, not only affects the size of leaf
entries but also the search performance.

Fig. 8 illustrates a toy example that shows the effect of y
in different settings. Obviously, when y is set to a large
value, the index has small size of leaf entries (i.e., Es¢, and
Esq,) which boost the query processing due to the locality
of relevant entries. However, it may increase the number of
relevant entries to answer queries due to the hierarchy of

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

TABLE 1
The Format of the (1, m) Interleaving Scheme
header data header data header data
1:0, n:6 | 01,02 1:2, n:6 | 03,04 1:4, n:6 | 05,06

the index. In summary, a small y may lead the index having
large leaf entries while a large y may lead the index having
large number of index nodes, where these settings may
degrade the query performance. Fortunately, y is not a very
sensitive parameter (cf. the studies in other hierarchical
indexing techniques [19], [20], [21] and our experiments),
which can be decided by experimental studies in practice.

5 LTI TRANSMISSION

In this section, we present how to transmit LTI on the air
index. We first introduce a popular broadcasting scheme
called the (1,m) interleaving scheme in Section 5.1. Based
on this broadcasting scheme, we study how to broadcast
LTI in Section 5.2 and how a client receives edge updates on
air in Section 5.3.

5.1 Broadcasting Scheme

The broadcasting model uses radio or wireless network
(e.g., 3G, LTE, Mobile WiMAX) as the transmission
medium. When the server broadcasts a data set (i.e., a
“programme”), all clients can listen to the data set concur-
rently. Thus, this transmission model scales well indepen-
dent of the number of clients. A broadcasting scheme is a
protocol to be followed by the server and the clients.

The (1,m) interleaving scheme [23] is one of the best
broadcasting schemes. Table 1 shows an example broad-
casting cycle with m = 3 packets and the entire data set
contains six data items. First, the server partitions the data
set into m equi-sized data segments. Each packet contains
a header and a data segment, where a header describes the
broadcasting schedule of all packets. In this example, the
variables ¢ and n in each header represent the last broad-
casted item and the total number of items. The server peri-
odically broadcasts a sequence of packets (called as a
broadcast cycle).

We use a concrete example to demonstrate how a client
receives her data from the broadcast channel. Suppose that
a client wishes to query for the data object os. First, the client
tunes in the broadcast channel and waits until the next
header is broadcasted. For instance, the client is listening to
the header of the first packet, and finds out that the third
packet contains o5. In order to preserve energy, the client
sleeps until the broadcasting time of that packet. Then, it
wake-ups and reads the requested data item from the
packet.

The query performance can be measured by the tuning
time and the waiting time at the client side. The tuning
time is the time for reading the packets. The waiting time

TABLE 2
Packet Format on the Air Index

Offset[1]2[3]4[5[6]7] 8
0 id checksum

9J10]11]12]13]14]15]16

1019

Segment 1 Segment 2
1 2 <l 4" 5" 6"

1 id (2 d (3} id |4 d |5 id (6] M
0 SGsdata SG;data

Segment 3
7 8"

g

1 - e
o SGrdata SGdata

timestamp
timestamp
timestamp

0
0

—

First tune-in to the air Wake up at Segment 3

index channel and sleep "
for one segment + Search Graph of g(b,d)

0
0

Fig. 9. Receiving LTI data from the air index.

is the time from the start time to the termination time of
the query. In this broadcasting scheme, the parameter m
decides the tradeoff between tune-in size and the over-
head. A large m favors small tune-in size whereas a small
m incurs small waiting time. Imielinski et al. [23] suggests
to set m to the square root of the ratio of the data size to
the index size.

5.2 LTlon Air

To broadcast a hierarchical index using the (1,m) inter-
leaving scheme, we first partition the index into two com-
ponents: the index structure and the weight of edges. The
former stores the index structure (e.g., graph vertices,
graph edges, and shortcut edges) and the latter stores the
weight of edges. In order to keep the freshness of LTI,
our system is required to broadcast the latest weight of
edges periodically.*

Table 2 shows the format of a header/data packet in our
model. 1d is the offset of the packet in the present broadcast
cycle and checksum is used for error-checking of the
header and data. Note that the packet does not store any off-
set information to the next broadcast cycle or broadcast seg-
ment. The offset can be matched up by the corresponding
id since the structure of LTI is pre-stored at each client. In
our model, the header packet stores a time stamp set 7" for
checking new updates and data loss recovery.

5.3 Client Tune-in Procedures of Air LTI

We proceed to demonstrate how a client (i.e., driver)
receives edge weights from the air index using the hier-
archical structure. Fig. 9 shows the content of a broad-
cast cycle for a LTI structure in Fig. 7. In this example,
the air index uses a (1,2) interleaving scheme and each
data packet stores the edge weight of different sub-
graphs. For instance, the edge weight of subgraph SG;
are stored in the 2nd packet of a broadcast cycle.
Assume that a driver is moving from node b to node d
and his navigation system first tunes-in to the air index
at the 3rd packet of segment 1. According to the search
graph (as shown in Fig. 7) and the packet id, the navi-
gation system falls into sleep for one segment transmis-
sion time. It wakes up and receives segment 3 where the
search graph elements (SGi-3 and SG,5) are located in.

4. The hierarchical index structure is only affected by the connectiv-
ity / topology information (see Sections 4 and 6). Thus, any changes in
the weights would not affect the hierarchical index structure.

1020

%\@%\@%\@
O3 O~ O~

(a) SPT (k) (b) wj.m, increases () w,,; decreases

Fig. 10. Shortest path tree maintenance.

Note that the other search graph elements (SG;, SG3,
and SGs) in segment 1 can only be collected in the next
broadcast cycle.

Suppose that there are two edge updates, including one
graph edge (k,l) in SG5 and one shortcut (j,n) in SG4-5, in
the next broadcast cycle. The navigation system identifies
the subgraphs being updated by checking the time stamp
set T in the header packet. Since the search graph G con-
tains SG5 and SGy-5, the system tunes-in to the air index
when the corresponding packets are broadcasted (i.e., the
3rd packet of segment 1 and 3 respectively).

6 LTI MAINTENANCE

In order to keep the freshness of the broadcasted index, the
cost of index maintenance is necessarily minimized. In this
section, we study an incremental update approach that can
efficiently maintain the live traffic index according to the
updates. As a remark, the entire update process is done at
the service provider and there is no extra data structure
being broadcasted to the clients.

There is a bottom-up framework [21] available to main-
tain the hierarchical index structure according to the
updates. Their idea is to re-compute the affected subgraphs
starting from lowest level (i.e., leaf subgraphs). Unfortu-
nately, as shown in Section 2.2, a small portion of edge
updates trigger updates in the majority of packets (i.e., sub-
graphs). Thus, the above update technique incurs high
computational cost on updating the affected subgraphs.

It is thus necessary to develop a more efficient update
framework. For any weight update on the road edges, we
observe that only shortcut edges Agq, are necessarily re-
computed as the weight of other edges (i.e., Esq, UTl'sg,) are
directly derived from the updates. To reduce the mainte-
nance cost, we incorporates dynamic shortest path tree tech-
nique (DSPT) [22] into the hierarchical index structures and
reduce the size of trees by a bounded version (BSPT).

Given a graph G = (V,E), a shortest path tree (SPT)
rooted at a vertex r € V, denoted as SPT(r), is a tree
with root r, and Vv € V — {r}, SPT(r) contains a shortest
path from r to v. In Fig. 10a, the shortest path tree of ver-
tex k is highlighted by bold lines. Given a shortest path
tree, a dynamic Dijkstra approach [22] is proposed for
handling both weight increasing (Fig. 10b) and decreas-
ing cases (Fig. 10c). The intuition of the algorithms is to
find the affected local vertices and revise the shortest
path tree using a Dijkstra like algorithm starting from the
updated vertices. For instance, the weight of edge(m, () is
decreased from 2 to 0. Starting from the vertex m, a new
path m — [— k, that is a better path from m to k, is
found by the Dijkstra searching. Thereby, the update

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

~® T %\;@

\3'. NS !

’ ' '
~,0 I 10 ~ 10
-) ll | l ‘l

\

(a) Two SPTs (b) Two BSPTs (c) Edge (j,m) up-

date
Fig. 11. Shortest path trees and updates.

process revises the shortest path tree accordingly as
shown in Fig. 10c.

To keep the freshness of LTI, every subgraph is
required to maintain its corresponding shortcut edges
Asg; according to live traffic circumstances. The weight of
these shortcuts can be maintained by the corresponding
shortest path tree from each border node Bgg,. Obviously,
the total space overhead of the shortest path trees is
>_scer |Bsc;| - |Vsg,;|. To reduce the space overhead and
boost the maintenance process, we observe that not every
edge in a SPT(v) is necessarily kept for the maintenance
process. We illustrate this by a concrete example in
Fig. 11a. Suppose that only vertices k and [are the border
nodes and Agg, = {(/,k)}. We can say edge (j,m) is irrele-
vant to shortcut (I, k) since the distance from [to j or m is
already longer than the distance from [to k. More specifi-
cally, changing the weight of edge (j,m) does not influ-
ence the shortest path from [to k in SPT(I).

Definition 1 (Bounded shortest path tree (BSPT)). Given a
subgraph SG; = (Vsq,, Esc;), a bounded shortest path tree
rooted at a vertex s € Vsg,, denoted as BSPT(s), is a tree
with root s, and BSPT(s) contains a shortest path from s to
v €V — {s} subject to d(s,v) < max,eaq, d(s,v).

Inspired by the discussion, we propose a variant short-
est path tree, named as bounded shortest path tree
BSPT(v), in Definition 1. A shortest path starting from v
is necessarily kept in a bounded shortest path tree
BSPT(v) if and only if the distance of the shortest path is
shorter than the distance from v to every border node. In
Fig. 11b, BSPT(l) keeps only one shortest path [— k. The
shortest path [— m and | — j are dropped since the short-
est distance of [— m and | — j is not shorter than the dis-
tance from [to border node k. Typically, BSPT(v) is
much smaller than SPT(v) and it also boosts up computa-
tion efficiency due to smaller search space.

Lemma 2 (Relevance of weight updates). A bounded shortest
path tree BSPT (v) is affected by the weight update of an edge
e if and only if e is adjacent to at least one vertex of BSPT (v).

Proof. Assume to the contrary that a bounded shortest path
tree, BSPT(v), is affected by the weight updated of an
edge e(ve, v)). In other words, based on Definition 1, the
path distance of some vertex v in BSPT(v) becomes
smaller if the weight of e is changed, i.e.,

dv— =) >dv— v — =)
=dv— - —v)+dve =V, = =)
> dv— - =).

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

According to the assumption, e is not adjacent to
BSPT(v). Thereby,

dv— - —=V) >dv— v v =)

= o=) + (e e),

where v; € BSPT(v) and v; ¢ BSPT(v). However, it is in

contradiction to Definition 1 since d(v— --- — 1) <
maxyepg, d(s,v) but d(v— v —v;) > maxyeag,
d(s,v'). O

Based on Definition 1, we study Lemma 2 that pro-
vides the relevance of an edge update to a bounded short-
est path tree. In the running example (Fig. 11c), the edge
update (j,m) is relevant to BSPT(k) but not BSPT(l)
since it is not adjacent to any vertex of BSPT(l). In other
words, BSPT(l) is not necessary to maintain for this edge
update. This lemma enables the system to omit update
maintenance to those irrelevant bounded shortest path
trees which can significantly reduce the maintenance cost.
Besides, the maintenance does not increase any communi-
cation overhead since LTI only delivers the weight of bor-
der node pairs (i.e., Asg;) but not the shortest path trees
on the index transmission model.

Pruning ability of BSPT. The pruning ability of BSPT is
highly relevant to the border node selection in each sub-
graph. In the worst case, BSPT performs as the same as a
naive SPT if the borders are very far from each others. How-
ever, such cases rarely happen in LTI since the graph parti-
tioning technique (Section 4.2) prefers a partitioning having
small number of borders, which minimizes the change of
the worst-case scenario. In our study, BSPT prunes 30 to
50 percent edges from the complete SPT for our evaluated
data sets (Section 8).

7 PUTTING ALL TOGETHER

We are now ready to present our complete LTI frame-
work, which integrates all techniques been discussed. A
client can invoke Algorithm 2 in order to find the shortest
path from a source s to a destination t. First, the client
generates a search graph G based on s (i.e., current loca-
tion) and d. When the client tunes-in the broadcast chan-
nel (cf. Section 5.2), it keeps listening until it discovers a
header segment (cf. Fig. 9). After reading the header seg-
ment, it decides the necessary segments (to be read) for
computing the shortest path. These issues are addressed
in Section 5.3. The client then waits for those segments,
reads them, and update the weight of GY. Subsequently,
GY is used to compute the shortest path in the client
machine locally (cf. Fig. 7 and Section 4.1). Note that
Algorithm 2 is kept running in order to provide online
shortest path until the client reaches to the destination.
We then discuss about the tasks to be performed by the
service provider, as shown in Algorithm 3. The first step is
devoted to construct the live traffic index; they are offline
tasks to be executed once only. The service provider builds
the live traffic index by partitioning the graph G into a set of
subgraphs {SG;} such that they are ready for broadcasting.
We develop an effective graph partitioning algorithm for
minimizing the total size of subgraphs and study a

1021

combinatorial optimization for reducing the search space of
shortest path queries in Section 4.2. In each broadcasting
cycle, the server first collects live traffic updates from the
traffic provider, updates the subgraphs {SG;} (discussed in
Section 6), and eventually broadcasts them.

Algorithm 2 Client Algorithm

Algorithm Client(I:LTI, s:source, t:destination)
: generate G9 from I based on s and d
: listen to the channel for a header segment
: read the header segment > Section 5.3
: decide the necessary segments to be read > Section 5.3
: wait for those segments, read them to update the weight of G¢
: compute the shortest path (from s to t) on G¢ > Section 4.1

QNN RN =

Algorithm 3 Service Algorithm

Algorithm Service(G:graph)
1: construct I and {SG;} based on G
2: for each broadcast cycle do
3: collect traffic updates from the traffic provider
4: update the subgraphs {SG;}
5 broadcast the subgraphs {SG;}

> Section 4.2

> Section 6
> Section 5.2

8 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance of
some representative algorithms using the broadcasting
architecture; we ignore the client-server architecture due to
massive live traffic in near future (see Section 1). From our
discussion in Section 2, bi-directional search [3], ALT on
dynamic graph (DALT) [28], and dynamic shortest paths
tree [22], are applicable to raw transmission model. On the
other hand, contraction hierarchies [30], Hierarchical
MulTi-graph model [21], and our proposed live traffic index
are applicable to index transmission model. We omit some
methods (such as TNR [1], Quadtree [36], SHARC [39], and
CALT [31]) due to their prohibitive maintenance time and
broadcast size. In the following, we first describe the road
map data used in experiments and describe the simulation
of clients’” movements and live traffic circumstances on a
road map. Then, we study the performance of the above
methods with respect to various factors.

Map data. We test with four different road maps, includ-
ing New York City (NYC) (264k nodes, 733k edges), San
Francisco bay area road map (SF) (174k nodes, 443k edges),
San Joaquin road map (S]) (18k nodes, 48k edges), and Old-
enburg road map (OB) (6k nodes, 14k edges). All of them
are available at [43] and [44].

Simulation of clients and traffic updates. We run the network-
based generator [44] to generate the weight of edges. It initi-
alizes 100,000 cars (i.e., clients) and then generates 1,000 new
cars in each iteration. It runs for 200 iterations in total, with
the other generator parameters as their default values. The
weight of an edge is set to the average driving time on it.

We adopt the approach in [28] to simulate live traffic
updates. The initial weights of edges are assigned by the
above network-based generator. In each iteration, we ran-
domly select a set of edges subject to the update ratio 6
and specific weight update settings. In our work, each
weight update can be either a light traffic change, a heavy
traffic change, or a road maintenance. The proportion of

these update types are g, %, and 1;‘3, respectively, where

1022

TABLE 3
Range of Parameter Values
[Parameter T Values i
Road maps NYC, SF, SJ, OB

Type of shortest paths o
Update ratio o
Ratio of light traffic updates /3
Weight changes of light traffic
Weight factor of heavy traffic, w
Number of HiTi partitions, v

short, average, long, mix
1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%
50%, 60%, 710%, 80%, 90%
+20%
2, 5,10, 15, 20
500, 1000, 2000, 3000, 4000

B is a ratio parameter. For each light traffic change, the
edge weight is set to £20% of the current weight. For
each heavy traffic change, the weight is set to a large
value by multiplying a weight factor w (which is set to 5
by default). For each road maintenance, the weight is set
to oo. We reset the edge weight to its initial value if the
edge weight is updated by heavy traffic or road mainte-
nance after 10 iterations.

Implementation and evaluation platforms. All tested meth-
ods except CH [30] were implemented in Java. Experiments
on the service provider were conducted on an Intel Xeon
E5620 2.40 GHz CPU machine with 18 GBytes memory, run-
ning Ubuntu 10.10; and experiments on the client were per-
formed on an Intel Core2Duo 2.66 GHz CPU machine with
4 GBytes memory, running Windows 7. Table 3 shows the
ranges of the investigated parameters, and their default val-
ues (in bold). In each experiment, we vary a single parame-
ter, while setting the others to their default values. For each
method, we measure its performance in terms of tune-in
size, query response time, broadcast size, and index maintenance
time for all tested methods, and report its average perfor-
mance over 2,000 shortest path queries. The response time
is the query computation time at client and the maintenance
time is the index maintenance time at service provider. In
order to measure the exact transmission behavior, we use
the number of packets received (broadcasted) by client (ser-
vice provider) to represent the tune-in (broadcast) perfor-
mance. Each packet size is of 128 bytes and the packet
format can be found in Table 2. Each edge weight occupies
4 bytes. For Algorithm 1, we randomly generate 1,000
queries at each Monte Carlo estimation and we only parti-
tion the graph into 2 to 16 subgraphs at every partitioning
for boosting up the construction time. As a remark, each
subgraph/partition (in the HiTi and LTI methods) may
span over multiple packets.

8.1 Effectiveness of Optimizations

First, we evaluate the effectiveness of the optimizations pro-
posed in Section 4. The fully optimized LTI is compared

3 HiTi ©-0 HiTi
LTl-biPart IE4 LTI-biPart]
[mmufifh] vv.in

140) = HiTi ©-© i 10°
=3 LTi-biPart B4 LTI-biPary
129) LTl vv.in 10°

9 ©-- - € ©----- o | Z

100) E =
o 30 g

80 * £ o
, £ B---oo- B----e- B------ | - b

60) o] 20 " 5
£ A P2 L ASERR LA v 2

» 8 §

Tune-in size (#packets x 1000)

Broadcast size (#packets x 1000)

=N K

1000 200 — 5000
Number of partitions, v

(b) client

1]

1000 20(N . 3000
Number of partitions, v

500

(a) service provider

Fig. 12. Varying number of partitions, y.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

TABLE 4
Performance of Different Methods

Client side: Tune-in cost (#packets), Response time (ms)
Server side: Broadcast size (#packets), Maintenance time (ms)

Method
City raw transmission model index transmission model

BD DALT DSPT CH HiTi LTI

T [{18300.7 18300.7 18300.7 18617.9 26834.5 704.7

INYC R [[7239 54.53 374.93 228 157.11 4.26
B [[22930 22930 22930 24802 124870 30661
M - - - 15759.6 105451 5575.4

T [[11149.4 111494 111494 10212.1 12468.9 602.8

SF R 89.74 45.03 94.51 0.72 7589 2.40
B 13863 13863 13863 13453 52377 18850
M - - - 5411.4 192644 2094.9

T [|1191.2 1191.2 11912 624.0 1524.1 331.1

sy R 5.20 1.98 9.37 0.08 10.72 1.37
B 2525 2525 2525 1370 4602 2827

M - - - 2763 7353 96.6

T [3520 352.0 352.0 2589 516.3 118.4

OB R 1.11 0.45 31.12 0.091 3.66 0.68
B 604 604 604 348 1336 666

M - - - 1043 1346 16.0

against to LTI-biPart (that is constructed by only the graph
partitioning technique, described in Section 4.2) and HiTi
[21] (which is the most representative model of hierarchical
index structures). For fairness, we internally tune the HiTi
graph model by varying the number of children subgraphs,
and the eight-way regular partitioning is the best HiTi
graph model among all testings.

Fig. 12 plots the performance of all three methods as a
function of the number of partitions y on the SF data set.
For the sake of saving space, we plot the costs at service pro-
vider (i.e., broadcast size and maintenance time) into one
figure and plot the costs at client (i.e., tune-in size and
response time) into another figure. The number of packets
(left y-axis) is represented by bars, whereas the time (right
y-axis) is represented by lines.

LTI is superior to LTI-biPart and HiTi for all four perfor-
mance factors in Fig. 12. As compared to HiTi, its mainte-
nance time and response time are up to 14.7 and 21.1 times
faster, respectively. The broadcast size and tune-in size are
at least 2.4 and 6.4 times smaller than HiTi. It shows that
our fully optimized LTI is very efficient and performs vastly
different from HiTi. In this work, we set y to 1,000 since it
performs the best in both HiTi and LTI. As shown in the fig-
ures, all performance factors are not very sensitive to y
which supports our claim in Section 4.2.

8.2 Scalability Experiments

Next, we compare the discussed solutions on four differ-
ent road maps. The result is shown in Table 4. Note that
all methods on the raw transmission model have the
same tune-in size and broadcast size. The only difference
is the response time as it represents the local computation
time for each client. Apart from BD and DALT, other
methods require each client to maintain some index
structures locally after receiving the live traffic updates.
Thus, their response time is slower’ than BD and DALT
on the raw transmission model. Based on the response
time, DALT is the best approach among the methods in
this category.

5. We omit the performance of CH, HiTi, and LTI on the raw trans-
mission model since they are 2 orders of magnitude slower than DALT.

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

3% [DALT ©-© DALT| 3 |:1 DALT ©-© DALT|
S = cH EfCH S CcH B CH
S 35 3 LTI V-V LTl 107 _ — 20| I:I LTI VV.LTI 0 =
x 0 x PP 102 @
2% ©--©---6---€---0---0---0---0| £, E
I3 ®] .-© e
5 25| g ¥ 15 27 g
@ 100 5] 5
a o 10"
20 9 # 13
= a = c
Sy g 8 g
@ @ @ @
£ 19 i -3 £ 100 &
9 g 9 9
S 5 P g 5
[§ s =
NN = .
O 2% 5% 107 10*

b [l [Lol [
10% 20% 30% 40% 50%
Update ratio, §

ort ‘Average Long
Type of shortest paths, o

(a) varying (b) varying o
S 3 DALT @©-© DALT| 5 3 DALT GO DALT]
S C3ICH ELCH 5 S o 2
a2 O Vvl 0 S 2 v
R | Beensniil el e nmew e s) x u
5| e---® © © [E 2
@ 29 b © 20 5
2 2
8 w0 E 8 w0 E
S5 b 2 14 S
x a o 2
9 @
N1 & Ny 2
a 1| o @ @ . @
£ & c g
g s 2 5
E] 5
= =

10"

o

Vi
5 10 15
Weight factor of heavy traffic, w

0% 0%
Ratio of light traffic updates, 8

(c) varying (3 (d) varying w

Fig. 13. Scalability experiments (client).

Regarding the index transmission model, HiTi is obvi-
ously infeasible for online shortest path computation due to
its prohibitive costs. Although CH has slightly better broad-
cast size and response time,® we recommend LTI as the
best approach due to its light tune-in cost and fast mainte-
nance time. The tune-in size significantly affects the energy
consumption and the duration of active mode at client
receiver. The tune-in size of LTI is 2.19-26.41 and 2.97-
25.97 times smaller than CH and DALT, respectively. Note
that the margin becomes more significant on larger maps
which demonstrates good scalability of our LTI framework.
This is important since reducing the tune-in cost provides
opportunity for clients to receive more services simulta-
neously by selective tuning. In addition, fast maintenance
time keeps the freshness of the broadcasted index. The
maintenance time of LTI is 2.58-6.5 times faster than CH
while the broadcast size of LTI is just 23.6 and 40 percent
larger than CH in NYC and SF, respectively.

In Section 1, we show that the present traffic providers
report the traffic very frequently and megabit wireless
networks (3G, LTE, Mobile WiMAX, etc.) are available.
Therefore, the maintenance time of LTI (i.e., 2 and 5.5 sec-
onds on SF and NYC, respectively) is affordable as com-
pared to the live traffic update frequency and the
broadcast overhead of LTI (i.e., around 35 percent larger
than the raw data) is reasonable as the data is transmitted
on the megabit wireless networks.

We omit HiTi from the remaining experiments as it is
inferior to LTI. The remaining representative methods are:
DALT on the raw transmission model, CH and LTI on the
index transmission model. We evaluate the performance of
these three methods as a function of different system set-
tings in Fig. 13. In Fig. 13a, the tune-in size of all methods
grow with the update ratio §, as well, the response time
slightly increases since the search graph becomes larger.
When § = 20%, the number of necessary packets received

6. We use the codes provided by [30] to construct the CH index
which is implemented in C++ instead of Java.

1023

3 DALT ©©
CH BEL
Ol VV

Nu..
¥ 4 8
4"
«
g

Maintain time (ms)

Broadcast size (#packets x 1000)

Maintain time (ms)
Broadcast size (#packets x 1000)

Short

°

rage ong
Type of shortest paths, o

(b) varying o

Update ratio, &

(a) varying &

8 = DALT %ﬁ DALT] v 2 = DALT %ﬁ DALT] -
3 = o CH g =3 cH CH
: 40| 0o V-V LTI ¥ : 40 o 7 YV in

] 10° @
%2 % £ % i 8------ B------ [P—— o g
T I S - T e A W
7] Weeeseo¥eomoocWonoooc¥ooeency [G E B E
* 10° 5 by £
Fl 5 ‘@ 10° £
8 T 8 §
3 s 2 E
N $ k] 100 ©
8 g % 5
L 10} S 1
E E 10°
I S i

10

°

L A%
50% 80% 90%
Ratlo f light traffc updates, 8

Welght factor of heavy trafflc w

(c) varying B (d) varying w

Fig. 14. Scalability experiments (service provider).

by clients is 13847.2, 13390.12, and 727.28 for DALT, CH,
and LTI respectively. DALT and CH almost receive the
entire broadcast packets (ie., 99.89 and 99.53 percent,
respectively); this conforms with our edge-update probabil-
ity analysis in Section 2.2. An impressive finding is that the
client using LTI only receives 20.63 percent more packets as
compared to § = 10%. This shows that LTI is robust as the
tune-in size only increases sub-linearly with the update
ratio 4.

Fig. 13b shows the tune-in size and response time of the
methods on different type of shortest path queries o. The
type of queries is classified based on their length. Again,
LTI has the lowest tune-in cost which is at least 16.9 times
smaller than DALT and CH among all three types of
queries. Note that only DALT is sensitive to various length
of queries to the response time since the distance bounds
derived from the pre-computed information become looser
when the length of queries is longer.

We then study how the methods perform for different
traffic circumstances. Figs. 13c and 13d shows the tune-in
size and response time of the methods on two traffic update
behaviors. For all three methods, the tune-in size and
response time are not very sensitive to the ratio of traffic
updates 8 and the weight factor of heavy traffic w. Again,
our LTI outperforms DALT and CH by an order of magni-
tude in terms of the tune-in size.

Lastly, we demonstrate how the methods perform at ser-
vice provider. Fig. 14 shows the broadcast size and mainte-
nance time of the methods by varying 8, o, §, and w. For all
testings, LTI is superior to CH in terms of maintenance time
but produces around 40 percent more packets than CH. A
more promising result is that the maintenance time of LTI is
no longer sensitive to the update ratio when § > 20%. This
is because most of BSPTs are necessarily updated when the
update ratio is around 20 percent. The subsequent updates
(> 20%) are more likely some incremental work in updat-
ing the BSPTs (i.e., traversing few more edges by the Dijk-
stra like algorithm) so that it becomes less sensitive to 8. To
express the comparison in absolute terms, we show the time

1024

TABLE 5
Broadcast Cycle Length at Default Settings

Methods || WCDMA time (s) [HSDPA time (s) |
| Broadcast [Main. | Tune-in | Broadcast | Main. | Tune-in ||
DALT 7.05 - 5.67 0.97 - 0.78
CH 6.84 5.41 5.19 0.94 5.41 0.71
LTI 9.59 2.01 0.31 1.31 2.01 0.04

it takes to broadcast over a 1.92 Mbps (WCDMA) and a
14 Mbps (HSDPA) channel in Table 5, which are typical
transmission rates in 3G networks and 3.5G networks. LTI
takes 11.6 and 3.32 s to complete a maintenance and broad-
cast cycle at WCDMA and HSDPA, respectively; while CH
takes 12.25 and 6.35 s to complete the same cycle, respec-
tively. In addition, DALT and CH require the clients to
tune-in the broadcast channel for ~5 and ~0.7 s over
WCDMA and HSDPA, respectively, which significantly
affects the number of simultaneous services in the wireless
broadcast environments. Although DALT does not bother
any maintenance cost at service provider, the tune-in cost
and response time of DALT makes it infeasible on the live
traffic circumstance.

9 CONCLUSION

In this paper we studied online shortest path computation;
the shortest path result is computed /updated based on the
live traffic circumstances. We carefully analyze the existing
work and discuss their inapplicability to the problem (due
to their prohibitive maintenance time and large transmis-
sion overhead). To address the problem, we suggest a
promising architecture that broadcasts the index on the air.
We first identify an important feature of the hierarchical
index structure which enables us to compute shortest path
on a small portion of index. This important feature is thor-
oughly used in our solution, LTI. Our experiments confirm
that LTI is a Pareto optimal solution in terms of four perfor-
mance factors for online shortest path computation.

In the future, we will extend our solution on time depen-
dent networks. This is a very interesting topic since the deci-
sion of a shortest path depends not only on current traffic
data but also based on the predicted traffic circumstances.

ACKNOWLEDGMENTS

This work was partially supported by SRG007-FST11-LHU
and MYRG109(Y1-L3)-FST12-ULH from UMAC Research
Committee and FDCT/106/2012/A3 from FDCT. Man
Lung Yiu was supported by ICRG grant A-PL99 from the
Hong Kong Polytechnic University.

REFERENCES

[1] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In
Transit to Constant Time Shortest-Path Queries in Road
Networks,” Proc. Workshop Algorithm Eng. and Experiments
(ALENEX), 2007.

[2] P. Sanders and D. Schultes, “Engineering Highway Hierarchies,”
Proc. 14th Conf. Ann. European Symp. (ESA), pp. 804-816, 2006.

[3] G. Dantzig, Linear Programming and Extensions, series Rand Cor-
poration Research Study Princeton Univ. Press, 1963.

[4] RJ.Gutman, “Reach-Based Routing: A New Approach to Shortest
Path Algorithms Optimized for Road Networks,” Proc. Sixth
Workshop Algorithm Eng. and Experiments and the First Workshop
Analytic Algorithmics and Combinatorics (ALENEX/ANALC),
pp- 100-111, 2004.

(5]
6]

(71

(8]

(]
[10]
(11]

[12]
(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.26, NO.4, APRIL2014

B. Jiang, “I/O-Efficiency of Shortest Path Algorithms: An Analy-
sis,” Proc. Eight Int’l Conf. Data Eng. (ICDE), pp. 12-19, 1992.

P. Sanders and D. Schultes, “Highway Hierarchies Hasten Exact
Shortest Path Queries,” Proc. 13th Ann. European Conf. Algorithms
(ESA), pp- 568-579, 2005.

D. Schultes and P. Sanders, “Dynamic Highway-Node Routing,”
Proc. Sixth Int’l Conf. Experimental Algorithms (WEA), pp. 66-79,
2007.

F. Zhan and C. Noon, “Shortest Path Algorithms: An Evaluation
Using Real Road Networks,” Transportation Science, vol. 32, no. 1,
pp- 65-73,1998.

“Google Maps,” http:/ /maps.google.com, 2014.

“NAVTEQ Maps and Traffic,” http:/ /www.navteq.com, 2014.
“INRIX Inc. Traffic Information Provider,” http://www.inrix.
com, 2014.

“TomTom NV,” http:/ /www.tomtom.com, 2014.

“Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2010-2015,” 2011.

D. Stewart, “Economics of Wireless Means Data Prices Bound to
Rise,” The Global and Mail, 2011.

W.-S. Ku, R. Zimmermann, and H. Wang, “Location-Based Spatial
Query Processing in Wireless Broadcast Environments,” IEEE
Trans. Mobile Computing, vol. 7, no. 6, pp. 778-791, June 2008.

N. Malviya, S. Madden, and A. Bhattacharya, “A Continuous
Query System for Dynamic Route Planning,” Proc. IEEE 27th Int’l
Conf Data Eng. (ICDE), pp. 792-803, 2011.

G. Kellaris and K. Mouratidis, “Shortest Path Computation on Air
Indexes,” Proc. VLDB Endowment, vol. 3, no. 1, pp. 741-757, 2010.
Y. Jing, C. Chen, W. Sun, B. Zheng, L. Liu, and C. Tu, “Energy-
Efficient Shortest Path Query Processing on Air,” Proc. 19th ACM
SIGSPATIAL Int’l Conf. Advances in Geographic Information Systems
(GIS), pp. 393-396, 2011.

R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H.
Garcia-Molina, “Proximity Search in Databases,” Proc. Int’l
Conf. Very Large Databases (VLDB), pp. 26-37, 1998.

N. Jing, Y.-W. Huang, and E.A. Rundensteiner, “Hierarchical
Encoded Path Views for Path Query Processing: An Optimal
Model and Its Performance Evaluation,” IEEE Trans. Knowledge
and Data Eng., vol. 10, no. 3, pp. 409-432, May 1998.

S. Jung and S. Pramanik, “An Efficient Path Computation Model
for Hierarchically Structured Topographical Road Maps,” IEEE
Trans. Knowledge and Data Eng., vol. 14, no. 5, pp. 1029-1046, Sept.
2002.

E.P.F. Chan and Y. Yang, “Shortest Path Tree Computation in
Dynamic Graphs,” IEEE Trans. Computers, vol. 58, no. 4, pp. 541-
557, Apr. 2009.

T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on Air:
Organization and Access,” IEEE Trans. Knowledge and Data Eng.,
vol. 9, no. 3, pp. 353-372, May /June 1997.

J.X. Yu and K.-L. Tan, “An Analysis of Selective Tuning Schemes
for Nonuniform Broadcast,” Data and Knowledge Eng., vol. 22,
no. 3, pp. 319-344, 1997.

A.V. Goldberg and R.F.F. Werneck, “Computing Point-to-Point
Shortest Paths from External Memory,” Proc. SIAM Workshop Algo-
rithms Eng. and Experimentation and the Workshop Analytic Algorith-
mics and Combinatorics (ALENEX/ANALCO), pp. 26-40, 2005.

M. Hilger, E. Kohler, R. Mohring, and H. Schilling, “Fast Point-to-
Point Shortest Path Computations with Arc-Flags,” The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, vol. 74,
pp- 41-72, American Math. Soc., 2009.

A.V. Goldberg and C. Harrelson, “Computing the Shortest Path:
Search Meets Graph Theory,” Proc. 16th Ann. ACM-SIAM Symp.
Discrete Algorithms (SODA), pp. 156-165, 2005.

D. Delling and D. Wagner, “Landmark-Based Routing in Dynamic
Graphs,” Proc. Sixth Int’l Workshop Experimental Algorithms (WEA),
pp- 52-65, 2007.

G. D’Angelo, D. Frigioni, and C. Vitale, “Dynamic Arc-Flags in
Road Networks,” Proc. 10th Int’l Symp. Experimental Algorithms
(SEA), pp- 88-99, 2011.

R. Geisberger, P. Sanders, D. Schultes, and D. Delling,
“Contraction Hierarchies: Faster and Simpler Hierarchical Rout-
ing in Road Networks,” Proc. Seventh Int’l Workshop Experimental
Algorithms (WEA), pp. 319-333, 2008.

R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes,
and D. Wagner, “Combining Hierarchical and Goal-Directed
Speed-Up Techniques for Dijkstra’s Algorithm,” ACM]. Experi-
mental Algorithmics, vol. 15, article 2.3, 2010.

U ET AL.: TOWARDS ONLINE SHORTEST PATH COMPUTATION

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

(41]

(42]

[43]

[44]

F. Bruera, S. Cicerone, G. D’Angelo, G.D. Stefano, and D. Frigioni,
“Dynamic Multi-Level Overlay Graphs for Shortest Paths,” Math.
in Computer Science, vol. 1, no. 4, pp. 709-736, 2008.

F. Wei, “TEDIL: Efficient Shortest Path Query Answering on
Graphs,” Proc. ACM SIGMOD Int’'l Conf. Management of Data
(SIGMOD), pp. 99-110, 2010.

J. Sankaranarayanan and H. Samet, “Query Processing Using Dis-
tance Oracles for Spatial Networks,” IEEE Trans. Knowledge and
Data Eng., vol. 22, no. 8, pp. 1158-1175, Aug. 2010.

J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path Oracles for
Spatial Networks,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 1210-
1221, 2009.

H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable Net-
work Distance Browsing in Spatial Databases,” Proc. ACM SIG-
MOD Int’l Conf. Management of Data (SIGMOD), pp. 43-54, 2008.
H. Hu, D.L. Lee, and V.CS. Lee, “Distance Indexing on Road
Networks,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB),
pp- 894-905, 2006.

L. Wu, X. Xiao, D. Deng, G. Cong, A.D. Zhu, and S. Zhou,
“Shortest Path and Distance Queries on Road Networks: An
Experimental Evaluation,” Proc. VLDB Endowment, vol. 5, no. 5,
pp- 406-417, 2012.

R. Bauer and D. Delling, “SHARC: Fast and Robust Unidirectional
Routing,” Proc. 10th Workshop Algorithm Eng. and Experiments
(ALENEX), pp. 13-26, 2008.

T. Biithler and M. Hein, “Spectral Clustering Based on The Graph -
Laplacian,” Proc. Int’l Conf. Machine Learning (ICML), p. 11, 2009.

J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp- 888-905, Aug. 2000.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techni-
ques, second ed. Morgan Kaufmann, 2006.

“9th DIMACS Implementation Challenge-Shortest Paths,” http://
www.dis.uniromal.it/challenge9/download.shtml, 2014.
“Network-Based Generator of Moving Objects,” http://iapg.
jade-hs.de/personen/brinkhoff/generator/, 2014.

Leong Hou U is currently an assistant professor
at the University of Macau. His research interest
includes spatial and spatio-temporal databases,
advanced query processing, web data manage-
ment, information retrieval, data mining, and opti-
mization problems.

Hongjun Zhao graduated from the University of
Macau in 2012 under the supervision of Prof.
Zhiguo Gong and Dr. Leong Hou U. He is cur-
rently a senior software engineer in 30GROUP,
China Electronics Technology Group Corpora-
tion, Chengdu, Sichuan.

1025

Man Lung Yiu is currently an assistant professor
in the Department of Computing, Hong Kong
Polytechnic University. Prior to his current post,
he worked at Aalborg University for three years
starting in the Fall of 2006. His research focuses
on the management of complex data, in particu-
lar query processing topics on spatiotemporal
data and multidimensional data.

Yuhong Li is working toward the PhD degree in
the Department of Computer and Information
Science, University of Macau, under the supervi-
sion of Prof. Zhiguo Gong and Dr. Leong Hou U.
His current research focuses on query process-
ing on temporal and spatial data and high perfor-
mance parallel computing.

Zhiguo Gong is currently an associate profes-
sor in the Department of Computer and Infor-
mation Science, University of Macau, China.
His research interests include databases, web
information retrieval, and web mining.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

