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Abstract—Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on

the Internet. However, evidences show that users’ reluctance to disclose their private information during search has become a major

barrier for the wide proliferation of PWS. We study privacy protection in PWS applications that model user preferences as hierarchical

user profiles. We propose a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user-

specified privacy requirements. Our runtime generalization aims at striking a balance between two predictive metrics that evaluate the

utility of personalization and the privacy risk of exposing the generalized profile. We present two greedy algorithms, namely GreedyDP

and GreedyIL, for runtime generalization. We also provide an online prediction mechanism for deciding whether personalizing a query

is beneficial. Extensive experiments demonstrate the effectiveness of our framework. The experimental results also reveal that

GreedyIL significantly outperforms GreedyDP in terms of efficiency.

Index Terms—Privacy protection, personalized web search, utility, risk, profile
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1 INTRODUCTION

THE web search engine has long become the most
important portal for ordinary people looking for useful

information on the web. However, users might experience
failure when search engines return irrelevant results that do
not meet their real intentions. Such irrelevance is largely
due to the enormous variety of users’ contexts and
backgrounds, as well as the ambiguity of texts. Personalized
web search (PWS) is a general category of search techniques
aiming at providing better search results, which are tailored
for individual user needs. As the expense, user information
has to be collected and analyzed to figure out the user
intention behind the issued query.

The solutions to PWS can generally be categorized into
two types, namely click-log-based methods and profile-based

ones. The click-log based methods are straightforward—
they simply impose bias to clicked pages in the user’s query
history. Although this strategy has been demonstrated to
perform consistently and considerably well [1], it can only
work on repeated queries from the same user, which is a
strong limitation confining its applicability. In contrast,
profile-based methods improve the search experience with
complicated user-interest models generated from user
profiling techniques. Profile-based methods can be poten-
tially effective for almost all sorts of queries, but are
reported to be unstable under some circumstances [1].

Although there are pros and cons for both types of PWS
techniques, the profile-based PWS has demonstrated more
effectiveness in improving the quality of web search

recently, with increasing usage of personal and behavior
information to profile its users, which is usually gathered
implicitly from query history [2], [3], [4], browsing history
[5], [6], click-through data [7], [8], [1] bookmarks [9], user
documents [2], [10], and so forth. Unfortunately, such
implicitly collected personal data can easily reveal a gamut
of user’s private life. Privacy issues rising from the lack of
protection for such data, for instance the AOL query logs
scandal [11], not only raise panic among individual users,
but also dampen the data-publisher’s enthusiasm in
offering personalized service. In fact, privacy concerns
have become the major barrier for wide proliferation of
PWS services.

1.1 Motivations

To protect user privacy in profile-based PWS, researchers
have to consider two contradicting effects during the search
process. On the one hand, they attempt to improve the
search quality with the personalization utility of the user
profile. On the other hand, they need to hide the privacy
contents existing in the user profile to place the privacy risk
under control. A few previous studies [10], [12] suggest that
people are willing to compromise privacy if the persona-
lization by supplying user profile to the search engine
yields better search quality. In an ideal case, significant
gain can be obtained by personalization at the expense
of only a small (and less-sensitive) portion of the user
profile, namely a generalized profile. Thus, user privacy can
be protected without compromising the personalized
search quality. In general, there is a tradeoff between the
search quality and the level of privacy protection achieved
from generalization.

Unfortunately, the previous works of privacy preserving
PWS are far from optimal. The problems with the existing
methods are explained in the following observations:

1. The existing profile-based PWS do not support runtime
profiling. A user profile is typically generalized for
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only once offline, and used to personalize all queries
from a same user indiscriminatingly. Such “one
profile fits all” strategy certainly has drawbacks
given the variety of queries. One evidence reported
in [1] is that profile-based personalization may
not even help to improve the search quality for
some ad hoc queries, though exposing user profile to
a server has put the user’s privacy at risk. A better
approach is to make an online decision on

a. whether to personalize the query (by exposing
the profile) and

b. what to expose in the user profile at runtime.

To the best of our knowledge, no previous work has
supported such feature.

2. The existing methods do not take into account the
customization of privacy requirements. This probably
makes some user privacy to be overprotected while
others insufficiently protected. For example, in [10],
all the sensitive topics are detected using an
absolute metric called surprisal based on the
information theory, assuming that the interests with
less user document support are more sensitive.
However, this assumption can be doubted with a
simple counterexample: If a user has a large
number of documents about “sex,” the surprisal of
this topic may lead to a conclusion that “sex” is
very general and not sensitive, despite the truth
which is opposite. Unfortunately, few prior work
can effectively address individual privacy needs
during the generalization.

3. Many personalization techniques require iterative user
interactions when creating personalized search results.
They usually refine the search results with some
metrics which require multiple user interactions,
such as rank scoring [13], average rank [8], and so on.
This paradigm is, however, infeasible for runtime
profiling, as it will not only pose too much risk of
privacy breach, but also demand prohibitive proces-
sing time for profiling. Thus, we need predictive
metrics to measure the search quality and breach
risk after personalization, without incurring iterative
user interaction.

1.2 Contributions

The above problems are addressed in our UPS (literally for
User customizable Privacy-preserving Search) framework.
The framework assumes that the queries do not contain
any sensitive information, and aims at protecting the
privacy in individual user profiles while retaining their
usefulness for PWS.

As illustrated in Fig. 1, UPS consists of a nontrusty search
engine server and a number of clients. Each client (user)
accessing the search service trusts no one but himself/
herself. The key component for privacy protection is an
online profiler implemented as a search proxy running on the
client machine itself. The proxy maintains both the
complete user profile, in a hierarchy of nodes with semantics,
and the user-specified (customized) privacy requirements repre-
sented as a set of sensitive-nodes.

The framework works in two phases, namely the offline
and online phase, for each user. During the offline phase, a

hierarchical user profile is constructed and customized with
the user-specified privacy requirements. The online phase
handles queries as follows:

1. When a user issues a query qi on the client, the
proxy generates a user profile in runtime in the
light of query terms. The output of this step is a
generalized user profile Gi satisfying the privacy
requirements. The generalization process is guided
by considering two conflicting metrics, namely the
personalization utility and the privacy risk, both
defined for user profiles.

2. Subsequently, the query and the generalized user
profile are sent together to the PWS server for
personalized search.

3. The search results are personalized with the profile
and delivered back to the query proxy.

4. Finally, the proxy either presents the raw results to the
user, or reranks them with the complete user profile.

UPS is distinguished from conventional PWS in that it
1) provides runtime profiling, which in effect optimizes the
personalization utility while respecting user’s privacy
requirements; 2) allows for customization of privacy needs;
and 3) does not require iterative user interaction. Our main
contributions are summarized as following:

. We propose a privacy-preserving personalized web
search framework UPS, which can generalize pro-
files for each query according to user-specified
privacy requirements.

. Relying on the definition of two conflicting metrics,
namely personalization utility and privacy risk, for
hierarchical user profile, we formulate the problem
of privacy-preserving personalized search as �-Risk
Profile Generalization, with itsNP-hardness proved.

. We develop two simple but effective generalization
algorithms, GreedyDP and GreedyIL, to support
runtime profiling. While the former tries to max-
imize the discriminating power (DP), the latter
attempts to minimize the information loss (IL). By
exploiting a number of heuristics, GreedyIL outper-
forms GreedyDP significantly.

. We provide an inexpensive mechanism for the client
to decide whether to personalize a query in UPS.
This decision can be made before each runtime
profiling to enhance the stability of the search results
while avoid the unnecessary exposure of the profile.

. Our extensive experiments demonstrate the effi-
ciency and effectiveness of our UPS framework.
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Fig. 1. System architecture of UPS.



The rest of this paper is organized as follows: Section 2

reviews the related work, focusing on PWS and its privacy

preservation. Section 3 introduces some preliminary knowl-

edge and gives the problem statement. Section 4 presents
the procedures of UPS framework. The generalization

techniques used in UPS are proposed in Section 5. Section 6

further discusses some implementation issues of UPS. The

experimental results and findings are reported in Section 7.

Finally, Section 8 concludes the paper.

2 RELATED WORKS

In this section, we overview the related works. We focus on

the literature of profile-based personalization and privacy

protection in PWS system.

2.1 Profile-Based Personalization

Previous works on profile-based PWS mainly focus on
improving the search utility. The basic idea of these
works is to tailor the search results by referring to, often
implicitly, a user profile that reveals an individual
information goal. In the remainder of this section, we
review the previous solutions to PWS on two aspects,
namely the representation of profiles, and the measure of the
effectiveness of personalization.

Many profile representations are available in the

literature to facilitate different personalization strategies.
Earlier techniques utilize term lists/vectors [5] or bag of

words [2] to represent their profile. However, most recent

works build profiles in hierarchical structures due to their

stronger descriptive ability, better scalability, and higher

access efficiency. The majority of the hierarchical represen-

tations are constructed with existing weighted topic

hierarchy/graph, such as ODP1 [1], [14], [3], [15], Wikipe-

dia2 [16], [17], and so on. Another work in [10] builds the

hierarchical profile automatically via term-frequency ana-

lysis on the user data. In our proposed UPS framework, we

do not focus on the implementation of the user profiles.

Actually, our framework can potentially adopt any hier-
archical representation based on a taxonomy of knowledge.

As for the performance measures of PWS in the
literature, Normalized Discounted Cumulative Gain

(nDCG) [18] is a common measure of the effectiveness of

an information retrieval system. It is based on a human-

graded relevance scale of item-positions in the result list,

and is, therefore, known for its high cost in explicit feedback

collection. To reduce the human involvement in perfor-

mance measuring, researchers also propose other metrics of

personalized web search that rely on clicking decisions,

including Average Precision (AP) [19], [10], Rank Scoring [13],

and Average Rank [3], [8]. We use the Average Precision

metric, proposed by Dou et al. [1], to measure the

effectiveness of the personalization in UPS. Meanwhile,
our work is distinguished from previous studies as it also

proposes two predictive metrics, namely personalization

utility and privacy risk, on a profile instance without

requesting for user feedback.

2.2 Privacy Protection in PWS System

Generally there are two classes of privacy protection
problems for PWS. One class includes those treat privacy
as the identification of an individual, as described in [20].
The other includes those consider the sensitivity of the data,
particularly the user profiles, exposed to the PWS server.

Typical works in the literature of protecting user
identifications (class one) try to solve the privacy problem
on different levels, including the pseudoidentity, the group
identity, no identity, and no personal information. Solution to
the first level is proved to fragile [11]. The third and fourth
levels are impractical due to high cost in communication
and cryptography. Therefore, the existing efforts focus on
the second level. Both [21] and [22] provide online
anonymity on user profiles by generating a group profile
of k users. Using this approach, the linkage between the
query and a single user is broken. In [23], the useless user
profile (UUP) protocol is proposed to shuffle queries
among a group of users who issue them. As a result any
entity cannot profile a certain individual. These works
assume the existence of a trustworthy third-party anon-
ymizer, which is not readily available over the Internet at
large. Viejo and Castell�a-Roca [24] use legacy social net-
works instead of the third party to provide a distorted user
profile to the web search engine. In the scheme, every user
acts as a search agency of his or her neighbors. They can
decide to submit the query on behalf of who issued it, or
forward it to other neighbors. The shortcomings of current
solutions in class one is the high cost introduced due to the
collaboration and communication.

The solutions in class two do not require third-party
assistance or collaborations between social network entries.
In these solutions, users only trust themselves and cannot
tolerate the exposure of their complete profiles an anon-
ymity server. In [12], Krause and Horvitz employ statistical
techniques to learn a probabilistic model, and then use this
model to generate the near-optimal partial profile. One
main limitation in this work is that it builds the user profile
as a finite set of attributes, and the probabilistic model is
trained through predefined frequent queries. These as-
sumptions are impractical in the context of PWS. Xu et al.
[10] proposed a privacy protection solution for PWS based
on hierarchical profiles. Using a user-specified threshold, a
generalized profile is obtained in effect as a rooted subtree
of the complete profile. Unfortunately, this work does not
address the query utility, which is crucial for the service
quality of PWS. For comparison, our approach takes both
the privacy requirement and the query utility into account.

A more important property that distinguishes our work
from [10] is that we provide personalized privacy protection in
PWS. The concept of personalized privacy protection is first
introduced by Xiao and Tao [25] in Privacy-Preserving Data
Publishing (PPDP). A person can specify the degree of
privacy protection for her/his sensitive values by specify-
ing “guarding nodes” in the taxonomy of the sensitive
attribute. Motivate by this, we allow users to customize
privacy needs in their hierarchical user profiles.

Aside from the above works, a couple of recent studies
have raised an interesting question that concerns the
privacy protection in PWS. The works in [1], [26] have
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found that personalization may have different effects on
different queries. Queries with smaller click-entropies,
namely distinct queries, are expected to benefit more from
personalization, while those with larger values (ambiguous
ones) are not. Moreover, the latter may even cause privacy
disclosure. Therefore, the need for personalization becomes
questionable for such queries. Teevan et al. [26] collect a set
of features of the query to classify queries by their click-
entropy. While these works are motivative in questioning
whether to personalize or not to, they assume the avail-
ability of massive user query logs (on the server side) and
user feedback. In our UPS framework, we differentiate
distinct queries from ambiguous ones based on a client-side
solution using the predictive query utility metric.

This paper is an extension to our preliminary study
reported in [27]. In the previous work, we have proposed
the prototype of UPS, together with a greedy algorithm
GreedyDP (named as GreedyUtility in [27]) to support
online profiling based on predictive metrics of personaliza-
tion utility and privacy risk. In this paper, we extend and
detail the implementation of UPS. We extend the metric of
personalization utility to capture our three new observa-
tions. We also refine the evaluation model of privacy risk
to support user-customized sensitivities. Moreover, we
propose a new profile generalization algorithm called
GreedyIL. Based on three heuristics newly added in the
extention, the efficiency and stability of the new algorithm
outperforms the old one significantly.

3 PRELIMINARIES and PROBLEM DEFINITION

In this section, we first introduce the structure of user
profile in UPS. Then, we define the customized privacy
requirements on a user profile. Finally, we present the
attack model and formulate the problem of privacy-
preserving profile generalization. For ease of presentation,
Table 1 summarizes all the symbols used in this paper.

3.1 User Profile

Consistent with many previous works in personalized web
services, each user profile in UPS adopts a hierarchical
structure. Moreover, our profile is constructed based on the
availability of a public accessible taxonomy, denoted as R,
which satisfies the following assumption.

Assumption 1. The repository R is a huge topic hierarchy
covering the entire topic domain of human knowledge. That is,
given any human recognizable topic t, a corresponding node

(also referred to as t) can be found in R, with the subtree
subtrðt;RÞ as the taxonomy accompanying t.

The repository is regarded as publicly available and can
be used by anyone as the background knowledge. Such
repositories do exist in the literature, for example, the ODP
[1], [14], [3], [15], Wikipedia [16], [17], WordNet [22], and so
on. In addition, each topic t 2 R is associated with a
repository support, denoted by supRðtÞ, which quantifies
how often the respective topic is touched in human
knowledge. If we consider each topic to be the result of a
random walk from its parent topic in R, we have the
following recursive equation:

supRðtÞ ¼
X

t02Cðt;RÞ
supRðt0Þ: ð1Þ

Equation (1) can be used to calculate the repository support
of all topics in R, relying on the following assumption that
the support values of all leaf topics in R are available.

Assumption 2. Given a taxonomy repository R, the repository
support is provided by R itself for each leaf topic.

In fact, Assumption 2 can be relaxed if the support
values are not available. In such case, it is still possible to
“simulate” these repository supports with the topological
structure of R. That is, supRðtÞ can be calculated as the
count of leaves in subtrðt;RÞ.

Based on the taxonomy repository, we define a prob-
ability model for the topic domain of the human knowl-
edge. In the model, the repository R can be viewed as a
hierarchical partitioning of the universe (represented by the
root topic) and every topic t 2 R stands for a random event.
The conditional probability Prðt j sÞ (s is an ancestor of t) is
defined as the proportion of repository support:

Prðt j sÞ ¼ supRðtÞ
supRðsÞ

; t 2 subtrðs;RÞ: ð2Þ

Thus, PrðtÞ can be further defined as

PrðtÞ ¼ Prðt j rootðRÞÞ; ð3Þ

where rootðRÞ is the root topic which has probability 1.
Now, we present the formal definition of user profile.

Definition 1 (USER PROFILE/H). A user profile H, as a
hierarchical representation of user interests, is a rooted
subtree of R. The notion rooted subtree is given in
Definition 2.

Definition 2 (ROOTED SUBTREE). Given two trees S and T ,
S is a rooted subtree of T if S can be generated from T by
removing a node set X � T (together with subtrees) from T ,
i.e., S ¼ rsbtrðX; T Þ.

A diagram of a sample user profile is illustrated in
Fig. 2a, which is constructed based on the sample taxonomy
repository in Fig. 2b. We can observe that the owner of this
profile is mainly interested in Computer Science and Music,
because the major portion of this profile is made up of
fragments from taxonomies of these two topics in the
sample repository. Some other taxonomies also serve in
comprising the profile, for example, Sports and Adults.
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Although a user profile H inherits from R a subset of

topic nodes and their links, it does not duplicate the

repository supports. Instead, each topic t 2 H is labeled

with a user support, denoted by supHðtÞ, which describes the

user’s preference on the respective topic t. Similar to its

repository counterpart, the user support can be recursively

aggregated from those specified on the leaf topics:

supHðtÞ ¼
X

t02Cðt;HÞ
supHðt0Þ: ð4Þ

The user support is different from the repository support

as the former describes the user’s preference on t, while

the latter indicates the importance of t in the entire

human knowledge.

3.2 Customized Privacy Requirements

Customized privacy requirements can be specified with a

number of sensitive-nodes (topics) in the user profile, whose

disclosure (to the server) introduces privacy risk to the user.

Definition 3 (SENSITIVE NODES/S). Given a user profile H,

the sensitive nodes are a set of user specified sensitive topics

S � H, whose subtrees are nonoverlapping, i.e., 8s1; s2 2
Sðs1 6¼ s2Þ; s2 62 subtrðs1;HÞ.

In the sample profile shown in Fig. 2a, the sensitive

nodes S ¼ fAdults; Privacy;Harmonica; Figure ðSkatingÞg
are shaded in gray color in H.

It must be noted that user’s privacy concern differs from

one sensitive topic to another. In the above example, the

user may hesitate to share her personal interests (e.g.,

Harmonica, Figure Skating) only to avoid various advertise-

ments. Thus, the user might still tolerate the exposure of

such interests to trade for better personalization utility.

However, the user may never allow another interest in

topic Adults to be disclosed. To address the difference in

privacy concerns, we allow the user to specify a sensitivity

for each node s 2 S.

Definition 4 (SENSITIVITY/senðsÞsenðsÞ). Given a sensitive-node
s, its sensitivity, i.e., senðsÞ, is a positive value that quantifies

the severity of the privacy leakage caused by disclosing s.

As the sensitivity values explicitly indicate the user’s
privacy concerns, the most straightforward privacy-
preserving method is to remove subtrees rooted at all
sensitive-nodes whose sensitivity values are greater than a
threshold. Such method is referred to as forbidding.
However, forbidding is far from enough against a more
sophisticated adversary. To clearly illustrate the limitation
of forbidding, we first introduce the attack model which
we aim at resisting.

3.3 Attack Model

Our work aims at providing protection against a typical
model of privacy attack, namely eavesdropping. As shown in
Fig. 3, to corrupt Alice’s privacy, the eavesdropper Eve
successfully intercepts the communication between Alice
and the PWS-server via some measures, such as man-in-the-

middle attack, invading the server, and so on. Consequently,
whenever Alice issues a query q, the entire copy of q

together with a runtime profile G will be captured by Eve.
Based on G, Eve will attempt to touch the sensitive nodes of
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Alice by recovering the segments hidden from the original
H and computing a confidence for each recovered topic,
relying on the background knowledge in the publicly
available taxonomy repository R.

Note that in our attack model, Eve is regarded as an
adversary satisfying the following assumptions:

Knowledge bounded. The background knowledge of the
adversary is limited to the taxonomy repository R. Both the
profile H and privacy are defined based on R.

Session bounded. None of previously captured informa-
tion is available for tracing the same victim in a long
duration. In other words, the eavesdropping will be started
and ended within a single query session.

The above assumptions seem strong, but are reasonable
in practice. This is due to the fact that the majority of privacy
attacks on the web are undertaken by some automatic
programs for sending targeted (spam) advertisements to a
large amount of PWS-users. These programs rarely act as a
real person that collects prolific information of a specific
victim for a long time as the latter is much more costly.

If we consider the sensitivity of each sensitive topic as the
cost of recovering it, the privacy risk can be defined as the
total (probabilistic) sensitivity of the sensitive nodes, which
the adversary can probably recover from G. For fairness
among different users, we can normalize the privacy risk
with

P
s2S senðsÞ, which stands for the total wealth of the

user. Our approach to privacy protection of personalized
web search has to keep this privacy risk under control.

3.4 Generalizing User Profile

Now, we exemplify the inadequacy of forbidding operation.
In the sample profile in Fig. 2a, Figure is specified as a
sensitive node. Thus, rsbtrðS;HÞ only releases its parent Ice
Skating. Unfortunately, an adversary can recover the subtree
of Ice Skating relying on the repository shown in Fig. 2b,
where Figure is a main branch of Ice Skating besides Speed. If
the probability of touching both branches is equal, the
adversary can have 50 percent confidence on Figure. This
may lead to high privacy risk if senðFigureÞ is high. A safer
solution would remove node Ice Skating in such case for
privacy protection. In contrast, it might be unnecessary to
remove sensitive nodes with low sensitivity. Therefore,
simply forbidding the sensitive topics does not protect the
user’s privacy needs precisely.

To address the problem with forbidding, we propose a
technique, which detects and removes a set of nodes X from
H, such that the privacy risk introduced by exposing G ¼
rsbtrðX;HÞ is always under control. Set X is typically
different from S. For clarity of description, we assume that
all the subtrees ofH rooted at the nodes in X do not overlap
each other. This process is called generalization, and the
output G is a generalized profile.

The generalization technique can seemingly be con-
ducted during offline processing without involving user
queries. However, it is impractical to perform offline
generalization due to two reasons:

1. The output from offline generalization may contain
many topic branches, which are irrelevant to a
query. A more flexible solution requires online
generalization, which depends on the queries. Online

generalization not only avoids unnecessary privacy
disclosure, but also removes noisy topics that are
irrelevant to the current query.

For example, given a query qa ¼ “K-Anonymity,”
which is a privacy protection technique used in data
publishing, a desirable result of online generalization
might be Ga, surrounded by the dashed ellipse in
Fig. 2a. For comparison, if the query is qb ¼ “Eagles,”
the generalized profile would better become Gb
contained in the dotted curve, which includes two
possible intentions (one being a rock band and the
other being an American football team Philadelphia
Eagles). The node sets to be removed are Xa ¼
fAdults; Privacy; Database; Develop; Arts; Sportsg,
and Xb ¼ fAdults; Computer Science; Instrument;
Ice Skatingg, respectively.

2. It is important to monitor the personalization utility
during the generalization. Using the running exam-
ple, profiles Ga and Gb might be generalized to
smaller rooted subtrees. However, overgeneraliza-
tion may cause ambiguity in the personalization,
and eventually lead to poor search results. Monitor-
ing the utility would be possible only if we perform
the generalization at runtime.

We now define the problem of privacy-preserving
generalization in UPS as follows, based on two notions
named utility and risk. The former measures the personaliza-
tion utility of the generalized profile, while the latter
measures the privacy risk of exposing the profile.

Problem 1 (�-RISK PROFILE GENERALIZATION/�-RPG).
Given a user profileH with sensitive-nodes S being specified,
a query q, metric of privacy riskðq;GÞ, metric of utility
utilðq;GÞ, and a user specified threshold �, the �-risk profile
generalization is to find an optimal instance of G (denoted as
G�), which satisfies

G� ¼ argmax
G
ðutilðq;GÞÞ; riskðq;GÞ < �: ð5Þ

In the above definition, � represents the user’s tolerance
to the privacy risk (expense rate) of exposing the profile.
Note that metric riskðq;GÞ and utilðq;GÞ only depend on the
instance of G and the query q as they are implemented to
predict the privacy risk and personalization utility of G on q,
without any user feedback. Details of these metrics will be
presented in Section 5.1.

4 UPS PROCEDURES

In this section, we present the procedures carried out for
each user during two different execution phases, namely
the offline and online phases. Generally, the offline phase
constructs the original user profile and then performs
privacy requirement customization according to user-specified
topic sensitivity. The subsequent online phase finds the
Optimal �-Risk Generalization solution in the search space
determined by the customized user profile.

As mentioned in the previous section, the online
generalization procedure is guided by the global risk and
utility metrics. The computation of these metrics relies on
two intermediate data structures, namely a cost layer and a
preference layer defined on the user profile. The cost layer
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defines for each node t 2 H a cost value costðtÞ � 0, which
indicates the total sensitivity at risk caused by the
disclosure of t. These cost values can be computed offline
from the user-specified sensitivity values of the sensitive
nodes. The preference layer is computed online when a
query q is issued. It contains for each node t 2 H a value
indicating the user’s query-related preference on topic t.
These preference values are computed relying on a
procedure called query topic mapping.

Specifically, each user has to undertake the following
procedures in our solution:

1. offline profile construction,
2. offline privacy requirement customization,
3. online query-topic mapping, and
4. online generalization.

Offline-1. Profile Construction. The first step of the offline
processing is to build the original user profile in a topic
hierarchy H that reveals user interests. We assume that the
user’s preferences are represented in a set of plain text
documents, denoted by D. To construct the profile, we take
the following steps:

1. Detect the respective topic in R for every document
d 2 D. Thus, the preference document set D is
transformed into a topic set T .

2. Construct the profile H as a topic-path trie with T ,
i.e., H ¼ trieðT Þ.

3. Initialize the user support supHðtÞ for each topic t 2
T with its document support from D, then compute
supHðtÞ of other nodes of H with (4).

There is one open question in the above process—how to
detect the respective topic for each document d 2 D. In
Section 6, we present our solution to this problem in our
implementation.

Offline-2. Privacy Requirement Customization. This proce-
dure first requests the user to specify a sensitive-node set
S � H, and the respective sensitivity value senðsÞ > 0 for
each topic s 2 S. Next, the cost layer of the profile is
generated by computing the cost value of each node t 2 H
as follows:

1. For each sensitive-node, costðtÞ ¼ senðtÞ;
2. For each nonsensitive leaf node, costðtÞ ¼ 0;
3. For each nonsensitive internal node, costðtÞ is recur-

sively given by (6) in a bottom-up manner:

costðtÞ ¼
X

t02Cðt;HÞ
costðt0Þ � Prðt0 j tÞ: ð6Þ

Till now, we have obtained the customized profile with
its cost layer available. When a query q is issued, this profile
has to go through the following two online procedures:

Online-1. Query-topic Mapping. Given a query q, the
purposes of query-topic mapping are 1) to compute a
rooted subtree of H, which is called a seed profile, so that all
topics relevant to q are contained in it; and 2) to obtain the
preference values between q and all topics in H. This
procedure is performed in the following steps:

1. Find the topics inR that are relevant to q. We develop
an efficient method to compute the relevances of all

topics inRwith q (detailed in Section 6). These values
can be used to obtain a set of nonoverlapping relevant
topics denoted by T ðqÞ, namely the relevant set. We
require these topics to be nonoverlapping so that
T ðqÞ, together with all their ancestor nodes in R,
comprise a query-relevant trie denoted as RðqÞ.
Apparently, T ðqÞ are the leaf nodes of RðqÞ. Note
that RðqÞ is usually a small fraction of R.

2. Overlap RðqÞ with H to obtain the seed profile G0,
which is also a rooted subtree of H. For example, by
applying the mapping procedure on query “Eagles,”
we obtain a relevant set T ðEaglesÞ as shown in
Table 2. Overlapping the sample profile in Fig. 2a
with its query-relevant trie RðEaglesÞ gives the
seed profile Gb, whose size is significantly reduced
compared to the original profile.

The leaves of the seed profile G0 (generated from the
second step) form a particularly interesting node set—the
overlap between set T ðqÞ and H. We denote it by THðqÞ, and
obviously we have THðqÞ � T ðqÞ.

Then, the preference value of a topic t 2 H is computed
as following:

1. If t is a leaf node and t 2 THðqÞ, its preference
prefHðt; qÞ is set to the long-term user support
supHðqÞ,3 which can be obtained directly from the
user profile.

2. If t is a leaf node and t 62 THðqÞ, prefHðt; qÞ ¼ 0.
3. Otherwise, t is not a leaf node. The preference value

of topic t is recursively aggregated from its child
topics as

prefHðt; qÞ ¼
X

t02Cðt;HÞ
prefHðt0;HÞ:

Finally, it is easy to obtain the normalized preference for
each t 2 H as

Prðt j q;HÞ ¼ prefHðt; qÞP
t02THðqÞ prefHðt0; qÞ

: ð7Þ

Note that the first step computes for each t 2 T ðqÞ a
relevance value with the query, denoted by relRðqÞ. These
values can be used to model a conditional probability that
indicates how frequently topic t is covered by q:

Prðt j qÞ ¼ Prðt j q;RÞ ¼ relRðt; qÞP
t02T ðqÞ relRðt0; qÞ

: ð8Þ
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TABLE 2
Contents of T (Eagles)

3. This approximation is made based on the idea that the user’s query-
related preference of t can be estimated with its long-term preference in the
user profile.



Though this probability is not used in this procedure, it is
needed to evaluate the discriminating power of q (Sec-
tion 5.1), and to decide whether to personalize a query or
not (Section 5.2).

Online-2. Profile Generalization. This procedure gener-
alizes the seed profile G0 in a cost-based iterative manner
relying on the privacy and utility metrics. In addition, this
procedure computes the discriminating power for online
decision on whether personalization should be employed.
We will elaborate these techniques in Section 5.3.

5 GENERALIZATION TECHNIQUES

In this section, we first introduce the two critical metrics for
our generalization problem. Then, we present our method
of online decision on personalization. Finally, we propose
the generalization algorithms.

5.1 Metrics

5.1.1 Metric of Utility

The purpose of the utility metric is to predict the search
quality (in revealing the user’s intention) of the query q on a
generalized profile G. The reason for not measuring the
search quality directly is because search quality depends
largely on the implementation of PWS search engine, which
is hard to predict. In addition, it is too expensive to solicit
user feedback on search results. Alternatively, we transform
the utility prediction problem to the estimation of the
discriminating power of a given query q on a profile G under
the following assumption.

Assumption 3. When a PWS search engine is given, the search
quality is only determined by the discriminating power of
the exposed query-profile pair hq;Gi.

Although the same assumption has been made in [12] to
model utility, the metric in that work cannot be used in
our problem settings as our profile is a hierarchical
structure rather than a flat one. Given a hierarchical
profile G and a query q, we can intuitively expect more
discriminating power when

. ob1) more specific topics are observed in TGðqÞ, or

. ob2) the distribution of Prðt j q;GÞ is more concen-
trated on a few topics in TGðqÞ, or

. ob3) the topics in TGðqÞ are more similar to each other.

Therefore, an effective utility metric should be consistent
with observations ob1, ob2, and ob3.

To propose our model of utility, we introduce the notion
of Information Content (IC), which estimates how specific a
given topic t is. Formally, the IC of a topic t is given by

ICðtÞ ¼ log�1 PrðtÞ; ð9Þ

where PrðtÞ is given in (3). The more often topic t is
mentioned, the smaller IC (less specific) will it have. The
root topic has an IC of 0, as it dominates the entire topic
domain and always occurs.

Now, we develop the first component of the utility metric
called Profile Granularity (PG), which is the KL-Divergence
between the probability distributions of the topic domain
with and without hq;Gi exposed. That is

PGðq;GÞ ¼
X
t2TGðqÞ

Prðt j q;GÞ log
Prðt j q;GÞ
PrðtÞ

¼
X
t2TGðqÞ

Prðt j q;GÞICðtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ob1

�Hðt j q;GÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ob2

; ð10Þ

where the probability Prðt j q;GÞ (referred to as normalized
preference) can be computed with (7). We can justify that this
component can capture the first two observations we
proposed above, by decomposing PGðq;GÞ into two terms
which respect ob1 and ob2 separately. The first term can be
considered as the expected IC of topics in TGðqÞ. The second
one quantifies the uncertainty of the distribution of the user
preference on topics in TGðqÞ. Such uncertainty is modeled
as a penalty to the utility.

The second component of utility is called Topic Similarity
(TS), which measures the semantic similarity among the
topics in TGðqÞ as observation ob3 suggests. This can be
computed as the Information Content of the Least Common
Ancestor of TGðqÞ as follows:

TSðq;GÞ ¼ ICðlcaðTGðqÞÞÞ: ð11Þ

This similarity measure was first proposed in [28], whose idea
is straightforward: the more specific the common ancestor
topic is, the more similarity among the topics in TGðqÞ.

Finally, the discriminating power can be expressed as a
normalized combination of PGðq;GÞ and TSðq;GÞ as
follows:

DP ðq;GÞ ¼ PGðq;GÞ þ TSðq;GÞ
2
P

t2THðqÞ Prðt j q;HÞICðtÞ
; ð12Þ

where
P

t2THðqÞ Prðt j q;HÞICðtÞ is the expected IC of topics
in THðqÞ, given the profile G is generalized from H. It is easy
to demonstrate that the value of DP ðq;GÞ is bounded
within ð0; 1�.

Then, the personalization utility is defined as the gain of
discriminating power achieved by exposing profile G together
with query q, i.e.,

utilðq;GÞ ¼ DP ðq;GÞ �DP ðq;RÞ;

where DP ðq;RÞ quantifies the discriminating power of the
query q without exposing any profile, which can be
obtained by simply replacing all occurrences of Prðt j q;GÞ
in (12) with Prðt j qÞ (obtained in (8)). Note that utilðq;GÞ
can be negative. That is, personalization with a profile G
may generate poorer discriminating power. This may happen
when G does not reduce the uncertainty of Prðt j qÞ
effectively, i.e., TGðqÞ ¼ T ðqÞ, and describes the related
topics in coarser granularity.

Since DP ðq;RÞ is fixed whenever q is specified, the
profile generalization simply take DP ðq;GÞ (instead of
utilðq;GÞ) to be the optimization target.

5.1.2 Metric of Privacy

The privacy risk when exposing G is defined as the total
sensitivity contained in it, given in normalized form. In the
worst case, the original profile is exposed, and the risk of
exposing all sensitive nodes reaches its maximum, namely 1.
However, if a sensitive node is pruned and its ancestor
nodes are retained during the generalization, we still have
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to evaluate the risk of exposing the ancestors. This can be
done using the cost layer computed during Offline-2.

Given a generalized profile G, the unnormalized risk of
exposing it is recursively given by

Riskðt;GÞ ¼ costðtÞ if t is leaf;P
t02Cðt;GÞRiskðt0;GÞ otherwise:

�
ð13Þ

However, in some cases, the cost of a nonleaf node might
even be greater than the total risk aggregated from its
children. For instance, in the profile Gb (Fig. 2a), the cost of
Music is greater than that of Artist since Music has
sensitivity propagation from its sensitive descendent
Harmonica. Therefore, (13) might underestimate the real
risk. So we amend the equation for nonleaf node as

Riskðt;GÞ ¼ max
�
costðtÞ;

X
t02Cðt;GÞ

Riskðt0;GÞ
�
: ð14Þ

Then, the normalized risk can be obtained by dividing
the unnormalized risk of the root node with the total
sensitivity in H, namely

riskðq;GÞ ¼ Riskðroot;GÞP
s2S senðsÞ

: ð15Þ

We can see that riskðq;GÞ is always in the interval ½0; 1�.

5.2 Online Decision: To Personalize or Not

The results reported in [1] demonstrate that there exist a fair
amount of queries called distinct queries, to which the
profile-based personalization contributes little or even
reduces the search quality, while exposing the profile to a
server would for sure risk the user’s privacy. To address
this problem, we develop an online mechanism to decide
whether to personalize a query. The basic idea is straight-
forward—if a distinct query is identified during general-
ization, the entire runtime profiling will be aborted and the
query will be sent to the server without a user profile.

We identify distinct queries using the discriminating
power (defined in Section 5.1). Specifically, remember that
the personalization utility is defined as the gain in DP when
exposing the generalized profile with the query. Thus, we
consider the distinct queries as those with good DP even
when the client does not expose any profile. Given a query
q, if DP ðq;RÞ � �, where � is a predefined threshold, then q
is considered a distinct query.

The benefits of making the above runtime decision are
twofold:

1. It enhances the stability of the search quality;
2. It avoids the unnecessary exposure of the user

profile.

5.3 The Generalization Algorithms

We start by introducing a brute-force optimal algorithm,
which is proven to be NP-hard. Then, we propose two
greedy algorithms, namely the GreedyDP and GreedyIL.

5.3.1 The Brute-Force Algorithm

The brute-force algorithm exhausts all possible rooted
subtrees of a given seed profile to find the optimal general-
ization. The privacy requirements are respected during the

exhaustion. The subtree with the optimal utility is chosen as
the result. Although the seed profile G0 is significantly
smaller thanH, the exponential computational complexity of
brute-force algorithm is still unacceptable. Formally, we
have the following theorem whose proof is given in the
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2012.201.

Theorem 1. The �-RPG problem (Problem 1) is NP-hard.

5.3.2 The GreedyDP Algorithm

Given the complexity of our problem, a more practical
solution would be a near-optimal greedy algorithm. As
preliminary, we introduce an operator �t�! called prune-leaf,
which indicates the removal of a leaf topic t from a profile.
Formally, we denote by Gi �t�! Giþ1 the process of pruning
leaf t from Gi to obtain Giþ1. Obviously, the optimal profile
G � can be generated with a finite-length transitive closure
of prune-leaf.

The first greedy algorithm GreedyDP works in a bottom-
up manner. Starting from G0, in every ith iteration,
GreedyDP chooses a leaf topic t 2 TGiðqÞ for pruning, trying
to maximize the utility of the output of the current iteration,
namely Giþ1. During the iterations, we also maintain a best-
profile-so-far, which indicates the Giþ1 having the highest
discriminating power while satisfying the �-risk constraint.
The iterative process terminates when the profile is
generalized to a root-topic. The best-profile-so-far will be
the final result (G�) of the algorithm.

The main problem of GreedyDP is that it requires
recomputation of all candidate profiles (together with their
discriminating power and privacy risk) generated from
attempts of prune-leaf on all t 2 TGiðqÞ. This causes
significant memory requirements and computational cost.

5.3.3 The GreedyIL Algorithm

The GreedyIL algorithm improves the efficiency of the
generalization using heuristics based on several findings.
One important finding is that any prune-leaf operation
reduces the discriminating power of the profile. In other
words, the DP displays monotonicity by prune-leaf.
Formally, we have the following theorem:

Theorem 2. If G0 is a profile obtained by applying a prune-leaf
operation on G, then DP ðq;GÞ � DP ðq;G0Þ.

Considering operation Gi �t�! Giþ1 in the ith iteration,
maximizing DP ðq;Giþ1Þ is equivalent to minimizing the
incurred information loss, which is defined as DP ðq;GiÞ �
DP ðq;Giþ1Þ.

The above finding motivates us to maintain a priority
queue of candidate prune-leaf operators in descending order
of the information loss caused by the operator. Specifically,
each candidate operator in the queue is a tuple like
op ¼ ht; ILðt;GiÞi, where t is the leaf to be pruned by op

and ILðt;GiÞ indicates the IL incurred by pruning t from Gi.
This queue, denoted by Q, enables fast retrieval of the best-
so-far candidate operator.

Theorem 2 also leads to the following heuristic, which
reduces the total computational cost significantly.
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Heuristic 1. The iterative process can terminate whenever �-risk
is satisfied.

The second finding is that the computation of IL can be
simplified to the evaluation of �PGðq;GÞ ¼ PGðq;GiÞ �
PGðq;Giþ1Þ. The reason is that, referring to (12), the second
term (TSðq;GÞ) remains unchanged for any pruning opera-
tions until a single leaf is left (in such case the only choice
for pruning is the single leaf itself). Furthermore, consider
two possible cases as being illustrated in Fig. 4: (C1) t is a
node with no siblings, and (C2) t is a node with siblings.
The case C1 is easy to handle. However, the evaluation of IL
in case C2 requires introducing a shadow sibling4 of t. Each
time if we attempt to prune t, we actually merge t into
shadow to obtain a new shadow leaf shadow0, together with
the preference of t, i.e.,

Prðshadow0 j q;GÞ ¼ Prðshadow j q;GÞ þ Prðt j q;GÞ:

Finally, we have the following heuristic, which signifi-
cantly eases the computation of ILðtÞ. It can be seen that all
terms in (16) can be computed efficiently.

Heuristic 2.

ILðtÞ ¼ Prðt j q;GÞðICðtÞ � ICðparðt;GÞÞÞ; case C1
dpðtÞ þ dpðshadowÞ � dpðshadow0Þ; case C2;

�

ð16Þ

where dpðtÞ ¼ Prðt j q;GÞ log Prðtjq;GÞ
PrðtÞ .

The third finding is that, in case C1 described above,
prune-leaf only operates on a single topic t. Thus, it does not
impact the IL of other candidate operators in Q. While in
case C2, pruning t incurs recomputation of the preference
values of its sibling nodes. Therefore, we have

Heuristic 3. Once a leaf topic t is pruned, only the candidate
operators pruning t’s sibling topics need to be updated inQ. In
other words, we only need to recompute the IL values for
operators attempting to prune t’s sibling topics.

Algorithm 1 shows the pseudocode of the GreedyIL
algorithm. In general, GreedyIL traces the information loss
instead of the discriminating power. This saves a lot of
computational cost. In the above findings, Heuristic 1
(line 5) avoids unnecessary iterations. Heuristics 2 (line 4,
10, 14) further simplifies the computation of IL. Finally,

Heuristics 3 (line 16) reduces the need for IL-recomputation
significantly. In the worst case, all topics in the seed profile
have sibling nodes, then GreedyIL has computational
complexity of OðjG0j � jTG0

ðqÞjÞ. However, this is extremely
rare in practice. Therefore, GreedyIL is expected to
significantly outperform GreedyDP.

6 IMPLEMENTATION ISSUES

This section presents our solutions to some of the open
problems in the UPS processing. We start by introducing an
inverted-indexing mechanism for computing the query-
topic relevance. Then, we discuss how the topic for each
document d 2 D is detected (Offline-1) relying on this
index. Finally, we show how the query-topic relevances are
computed in Online-1.

6.1 Inverted-Index of Topics

Many of the publicly available repositories allow for
manual tagging and editing on each topic (e.g., DMOZ).
These textual data associated with the topics comprise a
document repository DðRÞ, so that each leaf topic t 2 R
finds its associated document set DðtÞ � DðRÞ, which
describes t itself. For simplicity, we assume that
dðt1Þ

T
dðt2Þ ¼ � if t1 6¼ t2. In other words, each document

in DðRÞ is assigned to only one leaf topic. Thus, for each
leaf topic t 2 R, it is possible to generate an inverted-index,
denoted by I½t�, containing entries like hterm; doc id;
topic idi for all documents in DðtÞ.

Furthermore, for each document di assigned to topic t
(that means di 2 DðtÞ), we also insert entries in the form of
hterm; di; ti to the index files of all the ancestor topics of t.
For example, the entries of a document of Top/Arts/Music
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4. The shadow sibling is dynamically generated to maintain the
nonoverlapping property of TGðqÞ. The preference of shadow is initialized to
0. In semantics, the shadow stands for ANY OTHER subtopic of a topic s 2 G
apart from those presented in Cðs;GÞ. Thus, the probability of shadow can
always be dynamically evaluated as PrðshadowÞ ¼ PrðsÞ �

P
t2Cðs;GÞ PrðtÞ.

Fig. 4. Two Cases of prune-leaf on a leaf t.



will be inserted into I½Top=Arts=Music�, I½Top=Arts�
and I½Top�.

In the end, we obtain a hierarchy of inverted indices,
where each index file I½t� contains all the documents within
the taxonomy of t. This structure enables us to efficiently
process keyword search and retrieval at different semantic
granularity. In particular, the root index file I½Top�
maintains the entire document set, which can support
term-based topic searching in R.

6.2 Topic Detection in RR
During Offline-1 procedure, we need to detect the respec-
tive topic in R for each document d 2 D. A naive method is
to compute for each pair of d and t 2 R their relevance with
a discriminative naı̈ve Bayesian classifier as defined in [29]:

dnbðd; tÞ ¼
X
w2d

Nd;w ln
Nt;w þ �P
t02RNt0;w þ �

; ð17Þ

where Nt;w is the frequency of word w in topic t, Nd;w
5 is the

frequency ofw in d, and � is a smoothing factor. The topic with
the largest dnb value is considered the result. Note that in
(17), the values ofNd;w,Nt;w, andNt0;w can all be obtained from
the hierarchical inverted indices proposed in Section 6.1.
Unfortunately, the naive method is inefficient as many of the
topics in R are not relevant to the documents in D.

A more efficient way (and the one used in our
implementation) is to exploit the user’s click log to be the
set D. The click log contains entries like hqi; di1; di2; . . .i,
where qi is the ith query in the log and dij is the jth
document clicked by the user after issuing qi. Note that
dij 2 D. Thus, we can reduce the need for computation of
(17) to the topics which are retrieved by qi from the top-
most inverted index I½Top�. Specifically, for qi and dij 2 D,
we retrieve all documents relevant to qi from the inverted
index and obtain their associated topics (from the topic id).
These topics are denoted by T ðqiÞ. Then, the dnb value for
each t 2 T ðqiÞ is computed as

dnbðd; tÞ ¼
X
w2d

Nd;w ln
Nt;w þ �P

t02T ðqiÞNt0;w þ �
: ð18Þ

6.3 Query-Topic Relevance

The computation of query-topic relevance during Online-1
is straightforward. Given a query q, we retrieve from
inverted index I½Top� the documents relevant to q using
the conventional approach. These documents are then
grouped by their respective topics. The relevance of each
topic is then computed as the number of documents
contained in each topic.

We note that the relevance metric used in our imple-
mentation is very simple and fast to evaluate. It can easily
be replaced by more complicated versions.

7 EXPERIMENTAL RESULTS

In this section, we present the experimental results of UPS.
We conduct four experiments on UPS. In the first
experiment, we study the detailed results of the metrics

in each iteration of the proposed algorithms. Second, we
look at the effectiveness of the proposed query-topic

mapping. Third, we study the scalability of the proposed
algorithms in terms of response time. In the fourth

experiment, we study the effectiveness of clarity prediction

and the search quality of UPS.

7.1 Experimental Setup

The UPS framework is implemented on a PC with a
Pentium Dual-Core 2.50-GHz CPU and 2-GB main memory,

running Microsoft Windows XP. All the algorithms are
implemented in Java.

The topic repository uses the ODP web Directory. To
focus on the pure English categories, we filter out
taxonomies “Top/World” and “Top/Adult/World.” The click
logs are downloaded from the online AOL query log, which
is the most recently published data we could find. The AOL
query data contain over 20 million queries and 30 million
clicks of 650k users over 3 months (March 1, 2006 to May 31,
2006). The data format of each record is as follows:

huid; query; time½; rank; url�i;

where the first three fields indicate user uid issued query at

timestamp time, and the last two optional fields appear
when the user further clicks the url ranked at position rank

in the returned results.
The profiles used in our experiment can be either

synthetic or generated from real query logs:

. Synthetic. We cluster all AOL queries by their DP
into three groups using the 1-dimensional k-means
algorithm. These three groups, namely Distinct
Queries, Medium Queries, and Ambiguous Queries,
can be specified according to the following empirical
rules obtained by splitting the boundaries between
two neighboring clusters.

- Distinct Queries for DP ðq;RÞ 2 ð0:82; 1�.
- Medium Queries for DP ðq;RÞ 2 ð0:44; 0:82Þ.
- Ambiguous Queries for DP ðq;RÞ 2 ð0; 0:44Þ.
Each synthetic profile is built from the click log of
three queries, with one from each group. The
forbidden node set S is selected randomly from the

topics associated with the clicked documents.
. Real. The real user profiles are extracted from

50 distinct user click logs (with #clicks � 2;000) from
AOL. For each user, the user profile is built with the
documents dumped from all urls in his/her log.6

The sensitive nodes are randomly chosen from no
more than five topics (with depth � 3Þ.

7.2 Ex1: Micro Results of Queries

In this experiment, we analyze and compare the effect of the
generalization on queries with different discriminating
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5. Nd;w is not necessary to count, since dnbðd; tÞ can be obtained by
incrementally increasing the value by ln

Nt;wþ�P
t0 2T ðqÞ Nt0 ;wþ�

for w 2 d.

6. In the original AOL-data, the url field is truncated to the domain name
(e.g., www.une.edu/mwwc/ becomes www.une.edu) except the URL is of
the protocol https. As a result, we have to recover the full URLs by means of
REPLAY. That is, to reissue the query of the AOL-records to some designate
search engines and then retrieve the URLs matching url. We processed
REPLAY, respectively, on the top 100 results returned by Yahoo and ODP,
and 40 percent (#clicks � 800) and 25 percent (#clicks � 500) full URLs are
recovered.



power, and study the tradeoff between the utility and the
privacy risk in the GreedyDP/GreedyIL algorithm. To
clearly illustrate the difference between the three groups of
queries, we use the synthetic profiles in this experiment. We
perform iterative generalization on the profile using one of
the original queries for creating the profile itself. The DP
and risk are measured after each iteration. As the results of
different profiles display similar trends, we only plot the
results of three representative queries (“Wikipedia” for
distinct queries, “Freestyle” for medium queries, and
“Program” for ambiguous queries) in Fig. 5.

As Figs. 5a, 5b, and 5c show the discriminating power of
all three sample queries displays a diminishing-returns
property during generalization, especially the ambiguous
one (i.e., “Program”). This indicates that the higher-level
topics in the profile are more effective in improving the
search quality during the personalization, while the lower-
level ones are less. This property has also been reported in
[12], [10]. In addition, we also plot the results of profile
granularity and topic similarity (TS) across iterations in
these figures. We observe that for all three samples, 1) PG
shows an exactly similar trend as that of DP, 2) TS
remains unchanged until the last few iterations of general-
ization. In particular, the TS of the ambiguous one is
always 0. The reason of such results is that TS is fixed
before the generalization reaches the least common
ancestor of the related queries, which means PG shapes
the overall DP more.

Similarly, Figs. 5d, 5e, and 5f show the results of risk
during the generalization. The value of the metric first
declines rapidly, but the decrease slows down as more
specific profile information becomes hidden. Fig. 5g
illustrates the tradeoff pattern of DP versus risk of three
sample queries. For all queries, we observe an apparent
“knee” on their tradeoff curve. Before this turning point,
small concessions on risk can bring great promotion on
utility; while after that, any tiny increase of utility will lead
to enormous increase in risk. Hence, the knee is a near-
optimal point for the tradeoff. We also find that the knee

can be reached within limited iterations for all cases (when
risk is below 0.1).

7.3 Ex2: Efficiency of Generalization Algorithms

To study the efficiency of the proposed generalization
algorithms, we perform GreedyDP and GreedyIL algo-
rithms on real profiles. The queries are randomly selected
from their respective query log. We present the results in
terms of average number of iterations and the response time
of the generalization.

Fig. 6 shows the results of the experiment. For compar-
ison, we also plot the theoretical number of iterations of the
Optimal algorithm. It can be seen that both greedy
algorithm outperform Optimal. GreedyDP bounds the
search space to the finite-length transitive closure of
prune-leaf. GreedyIL further reduces this measure with
Heuristic 1. The greater the privacy threshold �, the fewer
iterations the algorithm requires.

The advantage of GreedyIL over GreedyDP is more
obvious in terms of response time, as Fig. 6b shows. This is
because GreedyDP requires much more recomputation of
DP, which incurs lots of logarithmic operations. The
problem worsens as the query becomes more ambiguous.
For instance, the average time to process GreedyDP for
queries in the ambiguous group is more than 7 seconds. In
contrast, GreedyIL incurs a much smaller real-time cost,
and outperforms GreedyDP by two orders of magnitude.
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Fig. 5. Results of Distinct/Medium/Ambiguous queries during each iteration in GreedyDP/GreedyIL. All results are obtained from the same profile.

Fig. 6. Efficiency of Optimal/GreedyDP/GreedyIL.



7.4 Ex3: Scalability of Generalization Algorithms

We study the scalability of the proposed algorithms by
varying 1) the seed profile size (i.e., number of nodes), and
2) the data set size (i.e., number of queries). For each
possible seed profile size (ranging from 1 to 108), we
randomly choose 100 queries from the AOL query log, and
take their respective RðqÞ as their seed profiles. All leaf
nodes in a same seed profile are given equal user
preference. These queries are then processed using the
GreedyDP and GreedyIL algorithms. For fair comparison,
we set the privacy threshold � ¼ 0 for GreedyIL to make it
always run the same number of iterations as GreedyDP
does. Fig. 7 shows the average response time of the two
algorithms while varying the seed profile size. It can be seen
that the cost of GreedyDP grows exponentially, and exceeds
8 seconds when the profile contains more than 100 nodes.
However, GreedyIL displays near-linear scalability, and
significantly outperforms GreedyDP.

Fig. 8 illustrates the results of data sets containing
different numbers of queries (from 1,000 to 100,000 queries).
Apparently both algorithms have linear scalability by the
data set size. For the largest data set containing 100,000
queries, it took GreedyDP 84 hours to complete all queries
while GreedyIL less than 150 minutes.

7.5 Ex4: Effective Analysis of Personalization

In this experiment, we evaluate the real search quality on
commercial search engines using our UPS framework. The
search results is reranked with the generalized profile
output by GreedyIL over 50 target users. The final search
quality is evaluated using the Average Precision of the click
records of the users, which is defined as

AP ¼
Xn
i¼1

i

li:rank
=n; ð19Þ

where li is the ith relevant link identified for a query, and n

is the number of relevant links.

For each test query, the framework computes the final
personalized rank as the Borda fusion [1] of the UPRank and
the original rank, and then evaluate AP of the search results
on both the fusion and the original rank. UPRank is
achieved by sorting link items l in the descending order
of uscore, which is the weighted sum over related topics in
profile G�, where the weight dnbðl; tÞ is the relevance
quantified in (17). The uscore is given by

uscoreðlÞ ¼
X

t2TG�ðqÞ
dnbðl; tÞ: ð20Þ

Fig. 9 shows the average AP of the ranks before
(Original) and after (Fusion) personalizing the test queries
on Yahoo and ODP, respectively. The GreedyIL has a � ¼
0:1 and online decision mechanism disabled. From the
results of both search engines, we can observe that
improvements of the search quality for Medium Queries
and Ambiguous Queries are much more significant than
that of Distinct Queries. In particular, the personalization on
Distinct Queries of Yahoo results reduces the average
performance from 73.4 to 66.2 percent. This is because some
irrelevant profile topics (noises) are added. The results
demonstrate that profile-based personalization is more
suitable for queries with small DP ðq;RÞ.

Fig. 10 shows the results of search quality by varying the
� threshold. It is observed that the average precision of
FusionRank increases rapidly when � grows from 0.0 to 0.1.
Then, further increasing � (in effect exposing more specific
topics) will only improve the search quality marginally.
Moreover, the AP of FusionRank based on Yahoo (Fig. 10a)
has a significant drop when � > ¼0:3.

A comparison between the personalization results of
ODP and Yahoo reveal that, although the original ODP-
Rank (AP ¼ 37:3%) is poorer than the original Yahoo-
Rank (AP ¼ 46:7%), personalization on ODP will generate
better ranking than that on Yahoo. The reason for this
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Fig. 7. Scalability by varying profile size.

Fig. 8. Scalability by varying data set size.

Fig. 9. Effectiveness of personalization on test queries.

Fig. 10. Effectiveness of personalization on varying �.



may be that the document-distribution of ODP over all
the available topics is expectedly more consistent with its
own taxonomy repository, which has been employed in
our implementation.

8 CONCLUSIONS

This paper presented a client-side privacy protection
framework called UPS for personalized web search. UPS
could potentially be adopted by any PWS that captures user
profiles in a hierarchical taxonomy. The framework allowed
users to specify customized privacy requirements via the
hierarchical profiles. In addition, UPS also performed
online generalization on user profiles to protect the personal
privacy without compromising the search quality. We
proposed two greedy algorithms, namely GreedyDP and
GreedyIL, for the online generalization. Our experimental
results revealed that UPS could achieve quality search
results while preserving user’s customized privacy require-
ments. The results also confirmed the effectiveness and
efficiency of our solution.

For future work, we will try to resist adversaries with
broader background knowledge, such as richer relationship
among topics (e.g., exclusiveness, sequentiality, and so on),
or capability to capture a series of queries (relaxing the
second constraint of the adversary in Section 3.3) from the
victim. We will also seek more sophisticated method to
build the user profile, and better metrics to predict the
performance (especially the utility) of UPS.
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