
1

Security evaluation of pattern classifiers
under attack

Battista Biggio, Member, IEEE, Giorgio Fumera, Member, IEEE, Fabio Roli, Fellow, IEEE

Abstract—Pattern classification systems are commonly used in adversarial applications, like biometric authentication, network
intrusion detection, and spam filtering, in which data can be purposely manipulated by humans to undermine their operation. As this
adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities,
whose exploitation may severely affect their performance, and consequently limit their practical utility. Extending pattern classification
theory and design methods to adversarial settings is thus a novel and very relevant research direction, which has not yet been pursued
in a systematic way. In this paper, we address one of the main open issues: evaluating at design phase the security of pattern classifiers,
namely, the performance degradation under potential attacks they may incur during operation. We propose a framework for empirical
evaluation of classifier security that formalizes and generalizes the main ideas proposed in the literature, and give examples of its use
in three real applications. Reported results show that security evaluation can provide a more complete understanding of the classifier’s
behavior in adversarial environments, and lead to better design choices.

Index Terms—Pattern classification, adversarial classification, performance evaluation, security evaluation, robustness evaluation.

F

1 INTRODUCTION

Pattern classification systems based on machine learning
algorithms are commonly used in security-related appli-
cations like biometric authentication, network intrusion
detection, and spam filtering, to discriminate between a
“legitimate” and a “malicious” pattern class (e.g., legit-
imate and spam emails). Contrary to traditional ones,
these applications have an intrinsic adversarial nature
since the input data can be purposely manipulated by
an intelligent and adaptive adversary to undermine clas-
sifier operation. This often gives rise to an arms race
between the adversary and the classifier designer. Well
known examples of attacks against pattern classifiers
are: submitting a fake biometric trait to a biometric
authentication system (spoofing attack) [1], [2]; modify-
ing network packets belonging to intrusive traffic to
evade intrusion detection systems [3]; manipulating the
content of spam emails to get them past spam filters
(e.g., by misspelling common spam words to avoid their
detection) [4]–[6]. Adversarial scenarios can also occur
in intelligent data analysis [7] and information retrieval
[8]; e.g., a malicious webmaster may manipulate search
engine rankings to artificially promote her1 web site.

It is now acknowledged that, since pattern classifi-
cation systems based on classical theory and design
methods [9] do not take into account adversarial settings,
they exhibit vulnerabilities to several potential attacks,

Department of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy
Battista Biggio: e-mail battista.biggio@diee.unica.it, phone +39 070 675 5776
Giorgio Fumera: e-mail fumera@diee.unica.it, phone +39 070 675 5754
Fabio Roli (corresponding author): e-mail roli@diee.unica.it, phone +39 070
675 5779, fax (shared) +39 070 675 5782

1. The adversary is hereafter referred to as feminine due to the pop-
ular interpretation as “Eve” or “Carol” in cryptography and computer
security.

allowing adversaries to undermine their effectiveness
[6], [10]–[14]. A systematic and unified treatment of this
issue is thus needed to allow the trusted adoption of pat-
tern classifiers in adversarial environments, starting from
the theoretical foundations up to novel design methods,
extending the classical design cycle of [9]. In particular,
three main open issues can be identified: (i) analyzing
the vulnerabilities of classification algorithms, and the
corresponding attacks [11], [14], [15]; (ii) developing
novel methods to assess classifier security against these
attacks, which is not possible using classical performance
evaluation methods [6], [12], [16], [17]; (iii) developing
novel design methods to guarantee classifier security in
adversarial environments [1], [6], [10].

Although this emerging field is attracting growing
interest [13], [18], [19], the above issues have only been
sparsely addressed under different perspectives and to
a limited extent. Most of the work has focused on
application-specific issues related to spam filtering and
network intrusion detection, e.g., [3]–[6], [10], while only
a few theoretical models of adversarial classification
problems have been proposed in the machine learn-
ing literature [10], [14], [15]; however, they do not yet
provide practical guidelines and tools for designers of
pattern recognition systems.

Besides introducing these issues to the pattern recog-
nition research community, in this work we address
issues (i) and (ii) above by developing a framework for
the empirical evaluation of classifier security at design
phase that extends the model selection and performance
evaluation steps of the classical design cycle of [9].

In Sect. 2 we summarize previous work, and point out
three main ideas that emerge from it. We then formalize
and generalize them in our framework (Sect. 3). First, to
pursue security in the context of an arms race it is not



2

sufficient to react to observed attacks, but it is also nec-
essary to proactively anticipate the adversary by predicting
the most relevant, potential attacks through a what-if
analysis; this allows one to develop suitable countermea-
sures before the attack actually occurs, according to the
principle of security by design. Second, to provide practi-
cal guidelines for simulating realistic attack scenarios, we
define a general model of the adversary, in terms of her
goal, knowledge, and capability, which encompasses and
generalizes models proposed in previous work. Third,
since the presence of carefully targeted attacks may affect
the distribution of training and testing data separately,
we propose a model of the data distribution that can
formally characterize this behavior, and that allows us to
take into account a large number of potential attacks; we
also propose an algorithm for the generation of training
and testing sets to be used for security evaluation,
which can naturally accommodate application-specific
and heuristic techniques for simulating attacks.

In Sect. 4 we give three concrete examples of applica-
tions of our framework in spam filtering, biometric au-
thentication, and network intrusion detection. In Sect. 5,
we discuss how the classical design cycle of pattern
classifiers should be revised to take security into account.
Finally, in Sect. 6, we summarize our contributions, the
limitations of our framework, and some open issues.

2 BACKGROUND AND PREVIOUS WORK

Here we review previous work, highlighting the con-
cepts that will be exploited in our framework.

2.1 A taxonomy of attacks against pattern classifiers
A taxonomy of potential attacks against pattern clas-
sifiers was proposed in [11], [15], and subsequently
extended in [14]. We will exploit it in our framework, as
part of the definition of attack scenarios. The taxonomy
is based on two main features: the kind of influence of
attacks on the classifier, and the kind of security violation
they cause. The influence can be either causative, if it
undermines the learning algorithm to cause subsequent
misclassifications; or exploratory, if it exploits knowl-
edge of the trained classifier to cause misclassifications,
without affecting the learning algorithm. Thus, causative
attacks may influence both training and testing data,
or only training data, whereas exploratory attacks af-
fect only testing data. The security violation can be an
integrity violation, if it allows the adversary to access
the service or resource protected by the classifier; an
availability violation, if it denies legitimate users access
to it; or a privacy violation, if it allows the adversary
to obtain confidential information from the classifier.
Integrity violations result in misclassifying malicious
samples as legitimate, while availability violations can
also cause legitimate samples to be misclassified as ma-
licious. A third feature of the taxonomy is the specificity
of an attack, that ranges from targeted to indiscriminate,
depending on whether the attack focuses on a single

or few specific samples (e.g., a specific spam email
misclassified as legitimate), or on a wider set of samples.

2.2 Limitations of classical performance evaluation
methods in adversarial classification

Classical performance evaluation methods, like k-fold
cross validation and bootstrapping, aim to estimate the
performance that a classifier will exhibit during operation,
by using data D collected during classifier design.2 These
methods are based on the stationarity assumption that the
data seen during operation follow the same distribution
as D. Accordingly, they resample D to construct one or
more pairs of training and testing sets that ideally follow
the same distribution as D [9]. However, the presence of
an intelligent and adaptive adversary makes the clas-
sification problem highly non-stationary, and makes it
difficult to predict how many and which kinds of attacks
a classifier will be subject to during operation, that is,
how the data distribution will change. In particular,
the testing data processed by the trained classifier can
be affected by both exploratory and causative attacks,
while the training data can only be affected by causative
attacks, if the classifier is retrained online [11], [14], [15].3

In both cases, during operation, testing data may follow
a different distribution than that of training data, when
the classifier is under attack. Therefore, security evalu-
ation can not be carried out according to the classical
paradigm of performance evaluation.4

2.3 Arms race and security by design

Security problems often lead to a “reactive” arms race
between the adversary and the classifier designer. At
each step, the adversary analyzes the classifier defenses,
and develops an attack strategy to overcome them. The
designer reacts by analyzing the novel attack samples,
and, if required, updates the classifier; typically, by re-
training it on the new collected samples, and/or adding
features that can detect the novel attacks (see Fig. 1, left).
Examples of this arms race can be observed in spam
filtering and malware detection, where it has led to a
considerable increase in the variability and sophistica-
tion of attacks and countermeasures.

2. By design we refer to the classical steps of [9], which include
feature extraction, model selection, classifier training and performance
evaluation (testing). Operation denotes instead the phase which starts
when the deployed classifier is set to operate in a real environment.

3. “Training” data refers both to the data used by the learning
algorithm during classifier design, coming from D, and to the data
collected during operation to retrain the classifier through online
learning algorithms. “Testing” data refers both to the data drawn from
D to evaluate classifier performance during design, and to the data
classified during operation. The meaning will be clear from the context.

4. Classical performance evaluation is generally not suitable for
non-stationary, time-varying environments, where changes in the data
distribution can be hardly predicted; e.g., in the case of concept drift
[20]. Further, the evaluation process has a different goal in this case,
i.e., to assess whether the classifier can “recover” quickly after a change
has occurred in the data distribution. Instead, security evaluation aims
at identifying the most relevant attacks and threats that should be
countered before deploying the classifier (see Sect. 2.3).



3

Fig. 1. A conceptual representation of the arms race in adversarial classification. Left: the classical “reactive” arms
race. The designer reacts to the attack by analyzing the attack’s effects and developing countermeasures. Right: the
“proactive” arms race advocated in this paper. The designer tries to anticipate the adversary by simulating potential
attacks, evaluating their effects, and developing countermeasures if necessary.

To secure a system, a common approach used in
engineering and cryptography is security by obscurity,
that relies on keeping secret some of the system details
to the adversary. In contrast, the paradigm of security
by design advocates that systems should be designed
from the ground-up to be secure, without assuming
that the adversary may ever find out some important
system details. Accordingly, the system designer should
anticipate the adversary by simulating a “proactive” arms
race to (i) figure out the most relevant threats and
attacks, and (ii) devise proper countermeasures, before
deploying the classifier (see Fig. 1, right). This paradigm
typically improves security by delaying each step of
the “reactive” arms race, as it requires the adversary
to spend a greater effort (time, skills, and resources) to
find and exploit vulnerabilities. System security should
thus be guaranteed for a longer time, with less frequent
supervision or human intervention.

The goal of security evaluation is to address issue
(i) above, i.e., to simulate a number of realistic attack
scenarios that may be incurred during operation, and
to assess the impact of the corresponding attacks on the
targeted classifier to highlight the most critical vulner-
abilities. This amounts to performing a what-if analysis
[21], which is a common practice in security. This ap-
proach has been implicitly followed in several previous
works (see Sect. 2.4), but never formalized within a gen-
eral framework for the empirical evaluation of classifier
security. Although security evaluation may also suggest
specific countermeasures, the design of secure classifiers,
i.e., issue (ii) above, remains a distinct open problem.

2.4 Previous work on security evaluation

Many authors implicitly performed security evaluation
as a what-if analysis, based on empirical simulation
methods; however, they mainly focused on a specific
application, classifier and attack, and devised ad hoc
security evaluation procedures based on the exploita-
tion of problem knowledge and heuristic techniques
[1]–[6], [15], [22]–[36]. Their goal was either to point
out a previously unknown vulnerability, or to evaluate
security against a known attack. In some cases, spe-
cific countermeasures were also proposed, according to
a proactive/security-by-design approach. Attacks were
simulated by manipulating training and testing samples

according to application-specific criteria only, without
reference to more general guidelines; consequently, such
techniques can not be directly exploited by a system
designer in more general cases.

A few works proposed analytical methods to evaluate
the security of learning algorithms or of some classes
of decision functions (e.g., linear ones), based on more
general, application-independent criteria to model the
adversary’s behavior (including PAC learning and game
theory) [10], [12], [14], [16], [17], [37]–[40]. Some of these
criteria will be exploited in our framework for empirical
security evaluation; in particular, in the definition of
the adversary model described in Sect. 3.1, as high-level
guidelines for simulating attacks.

2.5 Building on previous work
We summarize here the three main concepts more or
less explicitly emerged from previous work that will be
exploited in our framework for security evaluation.

1) Arms race and security by design: since it is not
possible to predict how many and which kinds of attacks
a classifier will incur during operation, classifier security
should be proactively evaluated using a what-if analysis,
by simulating potential attack scenarios.

2) Adversary modeling: effective simulation of attack
scenarios requires a formal model of the adversary.

3) Data distribution under attack: the distribution of
testing data may differ from that of training data, when
the classifier is under attack.

3 A FRAMEWORK FOR EMPIRICAL EVALUA-
TION OF CLASSIFIER SECURITY

We propose here a framework for the empirical evalu-
ation of classifier security in adversarial environments,
that unifies and builds on the three concepts highlighted
in Sect. 2.5. Our main goal is to provide a quantitative
and general-purpose basis for the application of the
what-if analysis to classifier security evaluation, based on
the definition of potential attack scenarios. To this end,
we propose: (i) a model of the adversary, that allows
us to define any attack scenario; (ii) a corresponding
model of the data distribution; and (iii) a method for
generating training and testing sets that are representa-
tive of the data distribution, and are used for empirical
performance evaluation.



4

3.1 Attack scenario and model of the adversary

Although the definition of attack scenarios is ultimately
an application-specific issue, it is possible to give general
guidelines that can help the designer of a pattern recog-
nition system. Here we propose to specify the attack
scenario in terms of a conceptual model of the adversary
that encompasses, unifies, and extends different ideas
from previous work. Our model is based on the assump-
tion that the adversary acts rationally to attain a given
goal, according to her knowledge of the classifier, and her
capability of manipulating data. This allows one to derive
the corresponding optimal attack strategy.

Adversary’s goal. As in [17], it is formulated as the
optimization of an objective function. We propose to
define this function based on the desired security vio-
lation (integrity, availability, or privacy), and on the attack
specificity (from targeted to indiscriminate), according to
the taxonomy in [11], [14] (see Sect. 2.1). For instance, the
goal of an indiscriminate integrity violation may be to
maximize the fraction of misclassified malicious samples
[6], [10], [14]; the goal of a targeted privacy violation
may be to obtain some specific, confidential information
from the classifier (e.g., the biometric trait of a given user
enrolled in a biometric system) by exploiting the class
labels assigned to some “query” samples, while mini-
mizing the number of query samples that the adversary
has to issue to violate privacy [14], [16], [41].

Adversary’s knowledge. Assumptions on the adver-
sary’s knowledge have only been qualitatively discussed
in previous work, mainly depending on the application
at hand. Here we propose a more systematic scheme
for their definition, with respect to the knowledge of
the single components of a pattern classifier: (k.i) the
training data; (k.ii) the feature set; (k.iii) the learning
algorithm and the kind of decision function (e.g., a linear
SVM); (k.iv) the classifier’s decision function and its
parameters (e.g., the feature weights of a linear clas-
sifier); (k.v) the feedback available from the classifier,
if any (e.g., the class labels assigned to some “query”
samples that the adversary issues to get feedback [14],
[16], [41]). It is worth noting that realistic and minimal
assumptions about what can be kept fully secret from the
adversary should be done, as discussed in [14]. Examples
of adversary’s knowledge are given in Sect. 4.

Adversary’s capability. It refers to the control that
the adversary has on training and testing data. We
propose to define it in terms of: (c.i) the attack influence
(either causative or exploratory), as defined in [11], [14];
(c.ii) whether and to what extent the attack affects the
class priors; (c.iii) how many and which training and
testing samples can be controlled by the adversary in
each class; (c.iv) which features can be manipulated, and
to what extent, taking into account application-specific
constraints (e.g., correlated features can not be modified
independently, and the functionality of malicious sam-
ples can not be compromised [1], [3], [6], [10]).

Attack strategy. One can finally define the optimal

attack strategy, namely, how training and testing data
should be quantitatively modified to optimize the objec-
tive function characterizing the adversary’s goal. Such
modifications are defined in terms of: (a.i) how the class
priors are modified; (a.ii) what fraction of samples of
each class is affected by the attack; and (a.iii) how fea-
tures are manipulated by the attack. Detailed examples
are given in Sect. 4.

Once the attack scenario is defined in terms of the
adversary model and the resulting attack strategy, our
framework proceeds with the definition of the corre-
sponding data distribution, that is used to construct
training and testing sets for security evaluation.

3.2 A model of the data distribution

We consider the standard setting for classifier design
in a problem which consists of discriminating between
legitimate (L) and malicious (M) samples: a learning
algorithm and a performance measure have been chosen,
a set D of n labelled samples has been collected, and
a set of d features have been extracted, so that D =
{(xi, yi)}ni=1, where xi denotes a d-dimensional feature
vector, and yi ∈ {L,M} a class label. The pairs (xi, yi)
are assumed to be i.i.d. samples of some unknown distri-
bution pD(X, Y ). Since the adversary model in Sect. 3.1
requires us to specify how the attack affects the class
priors and the features of each class, we consider the
classical generative model pD(X, Y ) = pD(Y )pD(X|Y ).5

To account for the presence of attacks during operation,
which may affect either the training or the testing data,
or both, we denote the corresponding training and test-
ing distributions as ptr and pts, respectively. We will just
write p when we want to refer to either of them, or both,
and the meaning is clear from the context.

When a classifier is not under attack, according to
the classical stationarity assumption we have ptr(Y ) =
pts(Y ) = pD(Y ), and ptr(X|Y ) = pts(X|Y ) = pD(X|Y ).
We extend this assumption to the components of ptr

and pts that are not affected by the attack (if any), by
assuming that they remain identical to the corresponding
distribution pD (e.g., if the attack does not affect the class
priors, the above equality also holds under attack).

The distributions p(Y ) and p(X|Y ) that are affected
by the attack can be defined as follows, according to the
definition of the attack strategy, (a.i-iii).

Class priors. ptr(Y ) and pts(Y ) can be immediately
defined based on assumption (a.i).

Class-conditional distributions. ptr(X|Y ) and
pts(X|Y ) can be defined based on assumptions (a.ii-iii).
First, to account for the fact that the attack may not
modify all training or testing samples, according to
(a.ii), we model p(X|Y ) as a mixture controlled by a
Boolean random variable A, which denotes whether

5. In this paper, for the sake of simplicity, we use the lowercase
notation p(·) to denote any probability density function, with both
continuous and discrete random variables.



5

Fig. 2. Generative model of the distributions ptr and pts.

a given sample has been manipulated (A = T) or not
(A = F):

p(X|Y ) = p(X|Y,A = T)p(A = T|Y ) +

p(X|Y,A = F)p(A = F|Y ). (1)

We name the samples of the component p(X|Y,A = T)
attack samples to emphasize that their distribution is
different from that of samples which have not been
manipulated by the adversary, p(X|Y,A = F). Note that
p(A = T|Y = y) is the probability that an attack sample
belongs to class y, i.e., the percentage of samples of class
y controlled by the adversary. It is thus defined by (a.ii).

For samples which are unaffected by the attack, the
stationarity assumption holds:

p(X|Y,A = F) = pD(X|Y ). (2)

The distribution p(X|Y,A = T) depends on assump-
tion (a.iii). Depending on the problem at hand, it may not
be possible to analytically define it. Nevertheless, for the
purpose of security evaluation, we will show in Sect. 3.3
that it can be defined as the empirical distribution of a
set of fictitious attack samples.

Finally, p(X|Y,A = F) can be defined similarly, if
its analytical definition is not possible. In particular,
according to Eq. (2), it can be defined as the empirical
distribution of D.

The above generative model of the training and
testing distributions ptr and pts is represented by the
Bayesian network in Fig. 2, which corresponds to fac-
torize p(X, Y, A) as follows:

p(X, Y, A) = p(Y )p(A|Y )p(X|Y,A). (3)

Our model can be easily extended to take into account
concurrent attacks involving m > 1 different kinds of
sample manipulations; for example, to model attacks
against different classifiers in multimodal biometric sys-
tems [1], [2]. To this end, one can define m different
Boolean random variables A = (A1, . . . , Am), and the
corresponding distributions. The extension of Eq. 3 is
then straightforward (e.g., see [32]). The dependence
between the different attacks, if any, can be modeled by
the distribution p(A|Y ).

If one is also interested in evaluating classifier secu-
rity subject to temporal, non-adversarial variations of
the data distribution (e.g., the drift of the content of
legitimate emails over time), it can be assumed that the

distribution p(X, Y, A = F) changes over time, according
to some model p(X, Y, A = F, t) (see, e.g., [20]). Then,
classifier security at time t can be evaluated by modeling
the attack distribution over time p(X, Y, A = T, t) as a
function of p(X, Y, A = F, t).

The model of the adversary in Sect. 3.1, and the above
model of the data distribution provide a quantitative,
well-grounded and general-purpose basis for the ap-
plication of the what-if analysis to classifier security
evaluation, which advances previous work.

3.3 Training and testing set generation

Here we propose an algorithm to sample training (TR)
and testing (TS) sets of any desired size from the distri-
butions ptr(X, Y ) and pts(X, Y ).

We assume that k ≥ 1 different pairs of training and
testing sets (Di

TR,Di
TS), i = 1, . . . , k, have been obtained

from D using a classical resampling technique, like cross-
validation or bootstrapping. Accordingly, their samples
follow the distribution pD(X, Y ). In the following, we
describe how to modify each of the sets Di

TR to construct
a training set TRi that follows the distribution ptr(X, Y ).
For the sake of simplicity, we will omit the superscript
i. An identical procedure can be followed to construct a
testing set TSi from each of the Di

TS. Security evaluation
is then carried out with the classical method, by averag-
ing (if k > 1) the performance of the classifier trained on
TRi and tested on TSi.

If the attack does not affect the training samples,
i.e., ptr(X, Y ) = pD(X, Y ), TR is simply set equal to
DTR. Otherwise, two alternatives are possible. (i) If
ptr(X|Y,A) is analytically defined for each Y ∈ {L,M}
and A ∈ {T,F}, then TR can be obtained by sampling
the generative model of p(X, Y, A) of Eq. (3): first, a
class label y is sampled from ptr(Y ), then, a value a
from ptr(A|Y = y), and, finally, a feature vector x from
ptr(X|Y = y,A = a). (ii) If ptr(X|Y = y,A = a) is
not analytically defined for some y and a, but a set
of its samples is available, denoted in the following as
Dy,a

TR, it can be approximated as the empirical distribution
of Dy,a

TR. Accordingly, we can sample with replacement
from Dy,a

TR [42]. An identical procedure can be used to
construct the testing set TS. The procedure to obtain TR
or TS is formally described as Algorithm 1.6

Let us now discuss how to construct the sets Dy,a
TR,

when ptr(X|Y = y,A = a) is not analytically defined.
The same discussion holds for the sets Dy,a

TS . First, the
two sets DL,F

TR and DM,F
TR can be respectively set equal

to the legitimate and malicious samples in DTR, since

6. Since the proposed algorithm is based on classical resampling
techniques such as cross-validation and bootstrapping, it is reasonable
to expect that the bias and the variance of the estimated classification
error (or of any other performance measure) will enjoy similar statis-
tical properties to those exhibited by classical performance evaluation
methods based on the same techniques. In practice, these error compo-
nents are typically negligible with respect to errors introduced by the
use of limited training data, biased learning/classification algorithms,
and noisy or corrupted data.



6

Algorithm 1 Construction of TR or TS.
Input: The number n of desired samples;
the distributions p(Y ) and p(A|Y );
for each y ∈ {L,M}, a ∈ {T,F}, the distribution p(X|Y =
y,A = a), if analytically defined, or the set of samples
Dy,a, otherwise.
Output: A data set S (either TR or TS) drawn from
p(Y )p(A|Y )p(X|Y,A).

1: S ← ∅
2: for i = 1, . . . , n do
3: sample y from p(Y )
4: sample a from p(A|Y = y)
5: draw a sample x from p(X|Y = y,A = a), if analyt-

ically defined; otherwise, sample with replacement
from Dy,a

6: S ← S
⋃
{(x, y)}

7: end for
8: return S

the distribution of such samples is assumed to be just
ptr(X|Y = L, A = F) and ptr(X|Y = M, A = F) (see
Eq. 2): DL,F

TR = {(x, y) ∈ DTR : y = L}, DM,F
TR =

{(x, y) ∈ DTR : y = M}. The two sets of attack
samples Dy,T

TR , for y = L,M, must come instead from
ptr(X|Y = y,A = T). They can thus be constructed
according to the point (a.iii) of the attack strategy, using
any technique for simulating attack samples. Therefore,
all the ad hoc techniques used in previous work for
constructing fictitious attack samples can be used as
methods to define or empirically approximate the dis-
tribution p(X|Y = y,A = T), for y = L,M.

Two further considerations must be made on the sim-
ulated attack samples Dy,T

TR . First, the number of distinct
attack samples that can be obtained depends on the
simulation technique, when it requires the use of the
data in DTR; for instance, if it consists of modifying
deterministically each malicious sample in DTR, no more
than |{(x, y) ∈ DTR : y = M}| distinct attack samples
can be obtained. If any number of attack samples can
be generated, instead (e.g., [5], [28], [34], [36]), then the
sets Dy,T

TR , for y = L,M, do not need to be constructed
beforehand: a single attack sample can be generated
online at step 5 of Algorithm 1, when a = T. Second, in
some cases it may be necessary to construct the attack
samples incrementally; for instance, in the causative
attacks considered in [11], [30], [36], the attack samples
are added to the training data one at a time, since
each of them is a function of the current training set.
This corresponds to a non-i.i.d. sampling of the attack
distribution. In these cases, Algorithm 1 can be modified
by first generating all pairs y, a, then, the feature vectors
x corresponding to a = F, and, lastly, the attack samples
corresponding to a = T, one at a time.

3.4 How to use our framework

We summarize here the steps that the designer of a
pattern classifier should take to evaluate its security
using our framework, for each attack scenario of interest.
They extend the performance evaluation step of the
classical design cycle of [9], which is used as part of the
model selection phase, and to evaluate the final classifier
to be deployed.

1) Attack scenario. The attack scenario should be de-
fined at the conceptual level by making specific assump-
tions on the goal, knowledge (k.i-v), and capability of the
adversary (c.i-iv), and defining the corresponding attack
strategy (a.i-iii), according to the model of Sect. 3.1.

2) Data model. According to the hypothesized attack
scenario, the designer should define the distributions
p(Y ), p(A|Y ), and p(X|Y,A), for Y ∈ {L,M}, A ∈ {F,T},
and for training and testing data. If p(X|Y,A) is not
analytically defined for some Y = y and A = a, either
for training or testing data, the corresponding set Dy,a

TR

or Dy,a
TS must be constructed. The sets Dy,F

TR (Dy,F
TS ) are

obtained from DTR (DTS). The sets Dy,T
TR and Dy,T

TS can
be generated, only if the attack involves sample ma-
nipulation, using an attack sample simulation technique
according to the attack strategy (a.iii).

3) Construction of TR and TS. Given k ≥ 1 pairs
(Di

TR,Di
TS), i = 1, . . . , k, obtained from classical resam-

pling techniques like cross-validation or bootstrapping,
the size of TR and TS must be defined, and Algorithm
1 must be run with the corresponding inputs to obtain
TRi and TSi. If the attack does not affect the training
(testing) data, TRi (TSi) is set to Di

TR (Di
TS).

4) Performance evaluation. The classifier performance
under the simulated attack is evaluated using the con-
structed (TRi, TSi) pairs, as in classical techniques.

4 APPLICATION EXAMPLES

While previous work focused on a single application, we
consider here three different application examples of our
framework in spam filtering, biometric authentication,
and network intrusion detection. Our aim is to show
how the designer of a pattern classifier can use our
framework, and what kind of additional information
he can obtain from security evaluation. We will show
that a trade-off between classifier accuracy and secu-
rity emerges sometimes, and that this information can
be exploited for several purposes; e.g., to improve the
model selection phase by considering both classification
accuracy and security.

4.1 Spam filtering

Assume that a classifier has to discriminate between
legitimate and spam emails on the basis of their textual
content, and that the bag-of-words feature representation
has been chosen, with binary features denoting the oc-
currence of a given set of words. This kind of classifier



7

Sect. 4.1 Sect. 4.2 Sect. 4.3
Attack scenario Indiscrim.

Exploratory
Integrity

Targeted
Exploratory
Integrity

Indiscrim.
Causative
Integrity

ptr(Y ) pD(Y ) pD(Y ) ptr(M)=pmax

ptr(A = T|Y = L) 0 0 0
ptr(A = T|Y = M) 0 0 1
ptr(X|Y = L, A = T) - - -
ptr(X|Y = M, A = T) - - empirical
ptr(X|Y = L, A = F) pD(X|L) pD(X|L) pD(X|L)
ptr(X|Y = M, A = F) pD(X|M) pD(X|M) -
pts(Y ) pD(Y ) pD(Y ) pD(Y )
pts(A = T|Y = L) 0 0 0
pts(A = T|Y = M) 1 1 0
pts(X|Y = L, A = T) - - -
pts(X|Y = M, A = T) empirical empirical -
pts(X|Y = L, A = F) pD(X|L) pD(X|L) pD(X|L)
pts(X|Y = M, A = F) - - pD(X|M)

TABLE 1
Parameters of the attack scenario and of the data model

for each application example. ‘Empirical’ means that
p(X|Y = y,A = a) was approximated as the empirical
distribution of a set of samples Dy,a; and ‘-’ means that

no samples from this distribution were needed to
simulate the attack.

has been considered by several authors [6], [28], [43], and
it is included in several real spam filters.7

In this example, we focus on model selection. We
assume that the designer wants to choose between a
support vector machine (SVM) with a linear kernel,
and a logistic regression (LR) linear classifier. He also
wants to choose a feature subset, among all the words
occurring in training emails. A set D of legitimate and
spam emails is available for this purpose. We assume
that the designer wants to evaluate not only classifier
accuracy in the absence of attacks, as in the classical
design scenario, but also its security against the well-
known bad word obfuscation (BWO) and good word
insertion (GWI) attacks. They consist of modifying spam
emails by inserting “good words” that are likely to
appear in legitimate emails, and by obfuscating “bad
words” that are typically present in spam [6]. The attack
scenario can be modeled as follows.

1) Attack scenario. Goal. The adversary aims at max-
imizing the percentage of spam emails misclassified as
legitimate, which is an indiscriminate integrity violation.

Knowledge. As in [6], [10], the adversary is assumed
to have perfect knowledge of the classifier, i.e.: (k.ii) the
feature set, (k.iii) the kind of decision function, and (k.iv)
its parameters (the weight assigned to each feature, and
the decision threshold). Assumptions on the knowledge
of (k.i) the training data and (k.v) feedback from the
classifier are not relevant in this case, as they do not
provide any additional information.

Capability. We assume that the adversary: (c.i) is only

7. SpamAssassin, http://spamassassin.apache.org/; Bogofilter,
http://bogofilter.sourceforge.net/; SpamBayes http://spambayes.
sourceforge.net/

able to influence testing data (exploratory attack); (c.ii)
can not modify the class priors; (c.iii) can manipulate
each malicious sample, but no legitimate ones; (c.iv)
can manipulate any feature value (i.e., she can insert or
obfuscate any word), but up to a maximum number nmax

of features in each spam email [6], [10]. This allows us
to evaluate how gracefully the classifier performance de-
grades as an increasing number of features is modified,
by repeating the evaluation for increasing values of nmax.

Attack strategy. Without loss of generality, let us fur-
ther assume that x is classified as legitimate if g(x) =∑n

i=1 wixi +w0 < 0, where g(·) is the discriminant func-
tion of the classifier, n is the feature set size, xi ∈ {0, 1}
are the feature values (1 and 0 denote respectively the
presence and the absence of the corresponding term), wi

are the feature weights, and w0 is the bias.
Under the above assumptions, the optimal attack strat-

egy can be attained by: (a.i) leaving the class priors
unchanged; (a.ii) manipulating all testing spam emails;
and (a.iii) modifying up to nmax words in each spam to
minimize the discriminant function of the classifier.

Each attack sample (i.e., modified spam) can be thus
obtained by solving a constrained optimization problem.
As in [10], the generation of attack samples can be
represented by a function A : X 7→ X , and the number
of modified words can be evaluated by the Hamming
distance. Accordingly, for any given x ∈ X , the optimal
attack strategy amounts to finding the attack sample
A(x) which minimizes g(A(x)), subject to the constraint
that the Hamming distance between x and A(x) is no
greater than nmax, that is:

A(x) = argminx′

n∑
i=1

wix
′
i

s.t.

n∑
i=1

|x′i − xi| ≤ nmax. (4)

The solution to problem (4) is straightforward. First,
note that inserting (obfuscating) a word results in switch-
ing the corresponding feature value from 0 to 1 (1 to
0), and that the minimum of g(·) is attained when all
features that have been assigned a negative (positive)
weight are equal to 1 (0). Accordingly, for a given x, the
largest decrease of g(A(x)) subject to the above constraint
is obtained by analyzing all features for decreasing
values of |wi|, and switching from 0 to 1 (from 1 to
0) the ones corresponding to wi < 0 (wi > 0), until
nmax changes have been made, or all features have been
analyzed. Note that this attack can be simulated by
directly manipulating the feature vectors of spam emails
instead of the emails themselves.

2) Data model. Since the adversary can only manipu-
late testing data, we set ptr(Y ) = pD(Y ), and ptr(X|Y ) =
pD(X|Y ). Assumptions (a.i-ii) are directly encoded as:
(a.i) pts(Y ) = pD(Y ); and (a.ii) pts(A = T|Y = M) = 1,
and pts(A = T|Y = L) = 0. The latter implies that
pts(X|Y = L) = pD(X|Y = L). Assumption (a.iii) is
encoded into the above function A(x), which empirically

http://spamassassin.apache.org/
http://bogofilter.sourceforge.net/
http://spambayes.sourceforge.net/
http://spambayes.sourceforge.net/


8

defines the distribution of the attack samples pts(X|Y =
M, A = T). Similarly, p(X|Y = y,A = F) = pD(X|y), for
y = L,M, will be approximated as the empirical distri-
bution of the set Dy,F

TS obtained from DTS, as described
below; the same approximation will be made in all the
considered application examples.

The definition of the attack scenario and the data
model is summarized in Table 1 (first column).

3) Construction of TR and TS. We use a publicly
available email corpus, TREC 2007. It consists of 25,220
legitimate and 50,199 real spam emails.8 We select the
first 20,000 emails in chronological order to create the
data set D. We then split D into two subsets DTR and
DTS, respectively made up of the first 10,000 and the
next 10,000 emails, in chronological order. We use DTR to
construct TR and DTS to construct TS, as in [5], [6]. Since
the considered attack does not affect training samples,
we set TR = DTR. Then, we define DL,F

TS and DM,F
TS

respectively as the legitimate and malicious samples in
DTS, and construct the set of attack samples DM,T

TS by
modifying all the samples in DM,F

TS according to A(x),
for any fixed nmax value. Since the attack does not affect
the legitimate samples, we set DL,T

TS = ∅. Finally, we set
the size of TS to 10,000, and generate TS by running
Algorithm 1 on DL,F

TS , DM,F
TS and DM,T

TS .
The features (words) are extracted from TR using the

SpamAssassin tokenization method. Four feature subsets
with size 1,000, 2,000, 10,000 and 20,000 have been
selected using the information gain criterion [44].

4) Performance evaluation. The performance measure
we use is the area under the receiver operating char-
acteristic curve (AUC) corresponding to false positive
(FP) error rates in the range [0, 0.1] [6]: AUC10% =∫ 0.1

0
TP(FP)dFP ∈ [0, 0.1], where TP is the true positive

error rate. It is suited to classification tasks like spam
filtering, where FP errors (i.e., legitimate emails mis-
classified as spam) are much more harmful than false
negative (FN) ones.

Under the above model selection setting (two classi-
fiers, and four feature subsets) eight different classifier
models must be evaluated. Each model is trained on TR.
SVMs are implemented with the LibSVM software [45].
The C parameter of their learning algorithm is chosen
by maximizing the AUC10% through a 5-fold cross-
validation on TR. An online gradient descent algorithm
is used for LR. After classifier training, the AUC10%

value is assessed on TS, for different values of nmax. In
this case, it is a monotonically decreasing function of
nmax. The more graceful its decrease, the more robust
the classifier is to the considered attack. Note that,
for nmax = 0, no attack samples are included in the
testing set: the corresponding AUC10% value equals that
attained by classical performance evaluation methods.

The results are reported in Fig. 3. As expected, the
AUC10% of each model decreases as nmax increases.
It drops to zero for nmax values between 30 and 50

8. http://plg.uwaterloo.ca/∼gvcormac/treccorpus07

Fig. 3. AUC10% attained on TS as a function of nmax, for
the LR (top) and SVM (bottom) classifier, with 1,000 (1K),
2,000 (2K), 10,000 (10K) and 20,000 (20K) features. The
AUC10% value for nmax = 0, corresponding to classical
performance evaluation, is also reported in the legend
between square brackets.

(depending on the classifier): this means that all testing
spam emails got misclassified as legitimate, after adding
or obfuscating from 30 to 50 words.

The SVM and LR classifiers perform very similarly
when they are not under attack (i.e., for nmax = 0),
regardless of the feature set size; therefore, according to
the viewpoint of classical performance evaluation, the
designer could choose any of the eight models. However,
security evaluation highlights that they exhibit a very
different robustness to the considered attack, since their
AUC10% value decreases at very different rates as nmax

increases; in particular, the LR classifier with 20,000 fea-
tures clearly outperforms all the other ones, for all nmax

values. This result suggests the designer a very different
choice than the one coming from classical performance
evaluation: the LR classifier with 20,000 features should
be selected, given that it exhibit the same accuracy as
the other ones in the absence of attacks, and a higher
security under the considered attack.

4.2 Biometric authentication
Multimodal biometric systems for personal identity
recognition have received great interest in the past few
years. It has been shown that combining information
coming from different biometric traits can overcome the
limits and the weaknesses inherent in every individual
biometric, resulting in a higher accuracy. Moreover, it
is commonly believed that multimodal systems also
improve security against spoofing attacks, which consist
of claiming a false identity and submitting at least one

http://plg.uwaterloo.ca/~gvcormac/treccorpus07


9

fake biometric trait to the system (e.g., a “gummy”
fingerprint or a photograph of a user’s face). The reason
is that, to evade a multimodal system, one expects
that the adversary should spoof all the corresponding
biometric traits. In this application example, we show
how the designer of a multimodal system can verify if
this hypothesis holds, before deploying the system, by
simulating spoofing attacks against each of the matchers.
To this end, we partially exploit the analysis in [1], [2].

We consider a typical multimodal system, made up
of a fingerprint and a face matcher, which operates as
follows. The design phase includes the enrollment of
authorized users (clients): reference templates of their
biometric traits are stored into a database, together with
the corresponding identities. During operation, each user
provides the requested biometric traits to the sensors,
and claims the identity of a client. Then, each matcher
compares the submitted trait with the template of the
claimed identity, and provides a real-valued matching
score: the higher the score, the higher the similarity. We
denote the score of the fingerprint and the face matcher
respectively as xfing and xface. Finally, the matching
scores are combined through a proper fusion rule to
decide whether the claimed identity is the user’s identity
(genuine user) or not (impostor).

As in [1], [2], we consider the widely used likelihood
ratio (LLR) score fusion rule [46], and the matching
scores as its features. Denoting as x the feature vector
(xfing, xface), the LLR can be written as:

LLR(x) =

{
L if p(x|Y = L)/p(x|Y = M) ≥ t,
M if p(x|Y = L)/p(x|Y = M) < t,

(5)

where L and M denote respectively the “genuine” and
“impostor” class, and t is a decision threshold set ac-
cording to application requirements. The distributions
p(xfing, xface|Y ) are usually estimated from training data,
while t is estimated from a validation set.

1) Attack scenario. Goal. In this case, each malicious
user (impostor) aims at being accepted as a legitimate
(genuine) one. This corresponds to a targeted integrity
violation, where the adversary’s goal is to maximize the
matching score.

Knowledge. As in [1], [2], we assume that each impostor
knows: (k.i) the identity of the targeted client; and (k.ii)
the biometric traits used by the system. No knowledge
of (k.iii) the decision function and (k.iv) its parameters
is assumed, and (k.v) no feedback is available from the
classifier.

Capability. We assume that: (c.i) spoofing attacks affect
only testing data (exploratory attack); (c.ii) they do not
affect the class priors;9 and, according to (k.i), (c.iii)
each adversary (impostor) controls her testing malicious
samples. We limit the capability of each impostor by
assuming that (c.iv) only one specific trait can be spoofed
at a time (i.e., only one feature can be manipulated), and

9. Further, since the LLR considers only the ratio between the class-
conditional distributions, changing the class priors is irrelevant.

that it is the same for all impostors. We will thus repeat
the evaluation twice, considering fingerprint and face
spoofing, separately. Defining how impostors can manip-
ulate the features (in this case, the matching scores) in a
spoofing attack is not straightforward. The standard way
of evaluating the security of biometric systems against
spoofing attacks consists of fabricating fake biometric
traits and assessing performance when they are submit-
ted to the system. However, this is a cumbersome task.
Here we follow the approach of [1], [2], in which the
impostor is assumed to fabricate “perfect” fake traits,
i.e., fakes that produce the same matching score of the
“live” trait of the targeted client. This allows one to use
the available genuine scores to simulate the fake scores,
avoiding the fabrication of fake traits. On the other hand,
this assumption may be too pessimistic. This limitation
could be overcome by developing more realistic models
of the distribution of the fake traits; however, this is
a challenging research issue on its own, that is out of
the scope of this work, and part of the authors’ ongoing
work [47], [48].

Attack strategy. The above attack strategy modifies only
the testing data, and: (a.i) it does not modify the class
priors; (a.ii) it does not affect the genuine class, but all
impostors; and (a.iii) any impostor spoofs the considered
biometric trait (either the face or fingerprint) of the
known identity. According to the above assumption, as
in [1], [2], any spoofing attack is simulated by replacing
the corresponding impostor score (either the face or
fingerprint) with the score of the targeted genuine user
(chosen at random from the legitimate samples in the
testing set). This can be represented with a function
A(x), that, given an impostor x = (xfing, xface), returns
either a vector (x′fing, xface) (for fingerprint spoofing) or
(xfing, x

′
face) (for face spoofing), where x′fing and x′face are

the matching scores of the targeted genuine user.
2) Data model. Since training data is not affected, we

set ptr(X, Y ) = pD(X, Y ). Then, we set (a.i) pts(Y ) =
pD(Y ); and (a.ii) pts(A = T|Y = L) = 0 and pts(A =
T|Y = M) = 1. Thus, pts(X|Y = L) = pD(X|Y = L),
while all the malicious samples in TS have to be ma-
nipulated by A(x), according to (a.iii). This amounts to
empirically defining pts(X|Y = M, A = T). As in the spam
filtering case, pts(X|Y = y,A = F), for y = L,M, will be
empirically approximated from the available data in D.

The definition of the above attack scenario and data
model is summarized in Table 1 (second column).

3) Construction of TR and TS. We use the NIST
Biometric Score Set, Release 1.10 It contains raw simi-
larity scores obtained on a set of 517 users from two
different face matchers (named ‘G’ and ‘C’), and from
one fingerprint matcher using the left and right index
finger. For each user, one genuine score and 516 impostor
scores are available for each matcher and each modality,
for a total of 517 genuine and 266,772 impostor samples.
We use the scores of the ‘G’ face matcher and the ones

10. http://www.itl.nist.gov/iad/894.03/biometricscores/

http://www.itl.nist.gov/iad/894.03/biometricscores/


10

Fig. 4. ROC curves of the considered multimodal bio-
metric system, under a simulated spoof attack against the
fingerprint or the face matcher.

of the fingerprint matcher for the left index finger, and
normalize them in [0, 1] using the min-max technique.
The data set D is made up of pairs of face and finger-
print scores, each belonging to the same user. We first
randomly subdivide D into a disjoint training and testing
set, DTR and DTS, containing respectively 80% and 20%
of the samples. As the attack does not affect the training
samples, we set TR= DTR. The sets DL,F

TS and DM,F
TS are

constructed using DTS, while DL,F
TS = ∅. The set of attack

samples DM,T
TS is obtained by modifying each sample of

DM,F
TS with A(x). We finally set the size of TS as |DTS|,

and run Algorithm 1 to obtain it.
4) Performance evaluation. In biometric authentica-

tion tasks, the performance is usually measured in terms
of genuine acceptance rate (GAR) and false acceptance
rate (FAR), respectively the fraction of genuine and
impostor attempts that are accepted as genuine by the
system. We use here the complete ROC curve, which
shows the GAR as a function of the FAR for all values
of the decision threshold t (see Eq. 5).

To estimate p(X|Y = y), for y = L,M, in the LLR
score fusion rule (Eq. 5), we assume that xfing and xface

are conditionally independent given Y , as usually done
in biometrics. We thus compute a maximum likelihood
estimate of p(xfing, xface|Y ) from TR using a product of
two Gamma distributions, as in [1].

Fig. 4 shows the ROC curve evaluated with the stan-
dard approach (without spoofing attacks), and the ones
corresponding to the simulated spoofing attacks. The
FAR axis is in logarithmic scale to focus on low FAR
values, which are the most relevant ones in security
applications. For any operational point on the ROC curve
(namely, for any value of the decision threshold t), the
effect of the considered spoofing attack is to increase the
FAR, while the GAR does not change. This corresponds
to a shift of the ROC curve to the right. Accordingly, the
FAR under attack must be compared with the original
one, for the same GAR.

Fig. 4 clearly shows that the FAR of the biometric sys-
tem significantly increases under the considered attack
scenario, especially for fingerprint spoofing. As far as
this attack scenario is deemed to be realistic, the system

designer should conclude that the considered system
can be evaded by spoofing only one biometric trait,
and thus does not exhibit a higher security than each
of its individual classifiers. For instance, in applications
requiring relatively high security, a reasonable choice
may be to chose the operational point with FAR=10−3

and GAR=0.90, using classical performance evaluation,
i.e., without taking into account spoofing attacks. This
means that the probability that the deployed system
wrongly accepts an impostor as a genuine user (the FAR)
is expected to be 0.001. However, under face spoofing,
the corresponding FAR increases to 0.10, while it jumps
to about 0.70 under fingerprint spoofing. In other words,
an impostor who submits a perfect replica of the face
of a client has a probability of 10% of being accepted
as genuine, while this probability is as high as 70%, if
she is able to perfectly replicate the fingerprint. This
is unacceptable for security applications, and provides
further support to the conclusions of [1], [2] against the
common belief that multimodal biometric systems are
intrinsically more robust than unimodal systems.

4.3 Network intrusion detection

Intrusion detection systems (IDSs) analyze network traf-
fic to prevent and detect malicious activities like in-
trusion attempts, port scans, and denial-of-service at-
tacks.11 When suspected malicious traffic is detected, an
alarm is raised by the IDS and subsequently handled
by the system administrator. Two main kinds of IDSs
exist: misuse detectors and anomaly-based ones. Misuse
detectors match the analyzed network traffic against a
database of signatures of known malicious activities
(e.g., Snort).12 The main drawback is that they are not
able to detect never-before-seen malicious activities, or
even variants of known ones. To overcome this issue,
anomaly-based detectors have been proposed. They build
a statistical model of the normal traffic using machine
learning techniques, usually one-class classifiers (e.g.,
PAYL [49]), and raise an alarm when anomalous traf-
fic is detected. Their training set is constructed, and
periodically updated to follow the changes of normal
traffic, by collecting unsupervised network traffic during
operation, assuming that it is normal (it can be filtered
by a misuse detector, and should be discarded if some
system malfunctioning occurs during its collection). This
kind of IDS is vulnerable to causative attacks, since an
attacker may inject carefully designed malicious traffic
during the collection of training samples to force the IDS
to learn a wrong model of the normal traffic [11], [17],
[29], [30], [36].

11. The term “attack” is used in this field to denote a malicious
activity, even when there is no deliberate attempt of misleading an
IDS. In adversarial classification, as in this paper, this term is used to
specifically denote the attempt of misleading a classifier, instead. To
avoid any confusion, in the following we will refrain from using the
term “attack” with the former meaning, using paraphrases, instead.

12. http://www.snort.org/

http://www.snort.org/


11

Here we assume that an anomaly-based IDS is being
designed, using a one-class ν-SVM classifier with a
radial basis function (RBF) kernel and the feature vector
representation proposed in [49]. Each network packet
is considered as an individual sample to be labeled as
normal (legitimate) or anomalous (malicious), and is
represented as a 256-dimensional feature vector, defined
as the histogram of byte frequencies in its payload (this is
known as “1-gram” representation in the IDS literature).
We then focus on the model selection stage. In the
above setting, it amounts to choosing the values of the ν
parameter of the learning algorithm (which is an upper
bound on the false positive error rate on training data
[50]), and the γ value of the RBF kernel. For the sake of
simplicity, we assume that ν is set to 0.01 as suggested
in [24], so that only γ has to be chosen.

We show how the IDS designer can select a model
(the value of γ) based also on the evaluation of classifier
security. We focus on a causative attack similar to the
ones considered in [38], aimed at forcing the learned
model of normal traffic to include samples of intrusions
to be attempted during operation. To this end, the attack
samples should be carefully designed such that they
include some features of the desired intrusive traffic,
but do not perform any real intrusion (otherwise, the
collected traffic may be discarded, as explained above).

1) Attack scenario. Goal. This attack aims to cause
an indiscriminate integrity violation by maximizing the
fraction of malicious testing samples misclassified as
legitimate.

Knowledge. The adversary is assumed to know: (k.ii)
the feature set; and (k.iii) that a one-class classifier is
used. No knowledge of (k.i) the training data and (k.iv)
the classifiers’ parameters is available to the adversary,
as well as (k.v) any feedback from the classifier.

Capability. The attack consists of injecting malicious
samples into the training set. Accordingly, we assume
that: (c.i) the adversary can inject malicious samples
into the training data, without manipulating testing data
(causative attack); (c.ii) she can modify the class priors by
injecting a maximum fraction pmax of malicious samples
into the training data; (c.iii) all the injected malicious
samples can be manipulated; and (c.iv) the adversary
is able to completely control the feature values of the
malicious attack samples. As in [17], [28]–[30], we repeat
the security evaluation for pmax ∈ [0, 0.5], since it is
unrealistic that the adversary can control the majority
of the training data.

Attack strategy. The goal of maximizing the percentage
of malicious testing samples misclassified as legitimate,
for any pmax value, can be attained by manipulating the
training data with the following attack strategy: (a.i) the
maximum percentage of malicious samples pmax will be
injected into the training data; (a.ii) all the injected mali-
cious samples will be attack samples, while no legitimate
samples will be affected; and (a.iii) the feature values of
the attack samples will be equal to that of the malicious
testing samples. To understand the latter assumption,

note that: first, the best case for the adversary is when
the attack samples exhibit the same histogram of the
payload’s byte values as the malicious testing samples,
as this intuitively forces the model of the normal traffic
to be as similar as possible to the distribution of the
testing malicious samples; and, second, this does not
imply that the attack samples perform any intrusion,
allowing them to avoid detection. In fact, one may
construct an attack packet which exhibit the same feature
values of an intrusive network packet (i.e., a malicious
testing sample), but looses its intrusive functionality, by
simply shuffling its payload bytes. Accordingly, for our
purposes, we directly set the feature values of the attack
samples equal to those of the malicious testing samples,
without constructing real network packets.

2) Data model. Since testing data is not affected by
the considered causative attack, we set pts(X, Y ) =
pD(X, Y ). We then encode the attack strategy as fol-
lows. According to (a.ii), ptr(A = T|Y = L) = 0
and ptr(A = T|Y = M) = 1. The former assumption
implies that ptr(X|Y = L) = pD(X|Y = L). Since the
training data of one-class classifiers does not contain any
malicious samples (see explanation at the beginning of
this section), i.e., ptr(A = F|Y = M) = 0, the latter
assumption implies that the class prior ptr(Y = M)
corresponds exactly to the fraction of attack samples in
the training set. Therefore, assumption (a.i) amounts to
setting ptr(Y = M) = pmax. Finally, according to (a.iii),
the distribution of attack samples ptr(X|Y = M, A =
T) will be defined as the empirical distribution of the
malicious testing samples, namely, DM,T

TR = DM,F
TS . The

distribution ptr(X|Y = L, A = F) = pD(X|L) will also be
empirically defined as the set DL,F

TR .
The definition of the attack scenario and data model

is summarized in Table 1 (third column).
3) Construction of TR and TS. We use the data set of

[24]. It consists of 1,699,822 legitimate samples (network
packets) collected by a web server during five days
in 2006, and a publicly available set of 205 malicious
samples coming from intrusions which exploit the HTTP
protocol [51].13 To construct TR and TS, we take into
account the chronological order of network packets as
in Sect. 4.1, and the fact that in this application all the
malicious samples in D must be inserted in the testing
set [27], [51]. Accordingly, we set DTR as the first 20,000
legitimate packets of day one, and DTS as the first 20,000
legitimate samples of day two, plus all the malicious
samples. Since this attack does not affect testing samples,
we set TS = DTS. We then set DL,F

TR = DTR, and
DM,F

TR = DL,T
TR = ∅. Since the feature vectors of attack

samples are identical to those of the malicious samples,
as above mentioned, we set DM,T

TR = DM,F
TS (where the

latter set clearly includes the malicious samples in DTS).
The size of TR is initially set to 20,000. We then consider
different attack scenarios by increasing the number of
attack samples in the training data, up to 40,000 samples

13. http://www.i-pi.com/HTTP-attacks-JoCN-2006/

http://www.i-pi.com/HTTP-attacks-JoCN-2006/


12

Fig. 5. AUC10% as a function of pmax, for the ν-SVMs with
RBF kernel. The AUC10% value for pmax = 0, correspond-
ing to classical performance evaluation, is also reported
in the legend between square brackets. The standard
deviation (dashed lines) is reported only for γ = 0.5, since
it was negligible for γ = 0.01.

in total, that corresponds to pmax = 0.5. For each value
of pmax, TR is obtained by running Algorithm 1 with the
proper inputs.

4) Performance evaluation. Classifier performance is
assessed using the AUC10% measure, for the same rea-
sons as in Sect. 4.1. The performance under attack is
evaluated as a function of pmax, as in [17], [28], which
reduces to the classical performance evaluation when
pmax = 0. For the sake of simplicity, we consider only
two values of the parameter γ, which clearly point out
how design choices based only on classical performance
evaluation methods can be unsuitable for adversarial
environments.

The results are reported in Fig. 5. In the absence of
attacks (pmax = 0), the choice γ = 0.5 appears slightly
better than γ = 0.01. Under attack, the performance for
γ = 0.01 remains almost identical as the one without
attack, and starts decreasing very slightly only when the
percentage of attack samples in the training set exceeds
30%. On the contrary, for γ = 0.5 the performance
suddenly drops as pmax increases, becoming lower than
the one for γ = 0.01 when pmax is as small as about 1%.
The reason for this behavior is the following. The attack
samples can be considered outliers with respect to the
legitimate training samples, and, for large γ values of
the RBF kernel, the SVM discriminant function tends to
overfit, forming a “peak” around each individual train-
ing sample. Thus, it exhibits relatively high values also in
the region of the feature space where the attack samples
lie, and this allows many of the corresponding testing
intrusions. Conversely, this is not true for lower γ values,
where the higher spread of the RBF kernel leads to a
smoother discriminant function, which exhibits much
lower values for the attack samples.

According to the above results, the choice of γ =
0.5, suggested by classical performance evaluation for
pmax = 0 is clearly unsuitable from the viewpoint of
classifier security under the considered attack, unless it is
deemed unrealistic that an attacker can inject more than

1% attack samples into the training set. To summarize,
the designer should select γ = 0.01 and trade a small
decrease of classification accuracy in the absence of
attacks for a significant security improvement.

5 SECURE DESIGN CYCLE: NEXT STEPS

The classical design cycle of a pattern classifier [9]
consists of: data collection, data pre-processing, feature
extraction and selection, model selection (including the
choice of the learning and classification algorithms, and
the tuning of their parameters), and performance evalu-
ation. We pointed out that this design cycle disregards
the threats that may arise in adversarial settings, and ex-
tended the performance evaluation step to such settings.
Revising the remaining steps under a security viewpoint
remains a very interesting issue for future work. Here we
briefly outline how this open issue can be addressed.

If the adversary is assumed to have some control over
the data collected for classifier training and parameter
tuning, a filtering step to detect and remove attack
samples should also be performed (see, e.g., the data
sanitization method of [27]).

Feature extraction algorithms should be designed to
be robust to sample manipulation. Alternatively, features
which are more difficult to be manipulated should be
used. For instance, in [52] inexact string matching was
proposed to counteract word obfuscation attacks in spam
filtering. In biometric recognition, it is very common
to use additional input features to detect the presence
(“liveness detection”) of attack samples coming from
spoofing attacks, i.e., fake biometric traits [53]. The ad-
versary could also undermine feature selection, e.g., to
force the choice of a set of features that are easier to
manipulate, or that are not discriminant enough with
respect to future attacks. Therefore, feature selection al-
gorithms should be designed by taking into account not
only the discriminant capability, but also the robustness
of features to adversarial manipulation.

Model selection is clearly the design step that is more
subject to attacks. Selected algorithms should be robust
to causative and exploratory attacks. In particular, robust
learning algorithms should be adopted, if no data saniti-
zation can be performed. The use of robust statistics has
already been proposed to this aim; in particular, to devise
learning algorithms robust to a limited amount of data
contamination [14], [29], and classification algorithms
robust to specific exploratory attacks [6], [23], [26], [32].

Finally, a secure system should also guarantee the pri-
vacy of its users, against attacks aimed at stealing confi-
dential information [14]. For instance, privacy preserving
methods have been proposed in biometric recognition
systems to protect the users against the so-called hill-
climbing attacks, whose goal is to get information about
the users’ biometric traits [41], [53]. Randomization of
some classifiers parameters has been also proposed to
preserve privacy in [14], [54].



13

6 CONTRIBUTIONS, LIMITATIONS
AND OPEN ISSUES

In this paper we focused on empirical security evalu-
ation of pattern classifiers that have to be deployed in
adversarial environments, and proposed how to revise
the classical performance evaluation design step, which
is not suitable for this purpose.

Our main contribution is a framework for empirical
security evaluation that formalizes and generalizes ideas
from previous work, and can be applied to different
classifiers, learning algorithms, and classification tasks.
It is grounded on a formal model of the adversary,
and on a model of data distribution that can represent
all the attacks considered in previous work; provides a
systematic method for the generation of training and
testing sets that enables security evaluation; and can
accommodate application-specific techniques for attack
simulation. This is a clear advancement with respect to
previous work, since without a general framework most
of the proposed techniques (often tailored to a given
classifier model, attack, and application) could not be
directly applied to other problems.

An intrinsic limitation of our work is that security
evaluation is carried out empirically, and it is thus data-
dependent; on the other hand, model-driven analyses
[12], [17], [38] require a full analytical model of the prob-
lem and of the adversary’s behavior, that may be very
difficult to develop for real-world applications. Another
intrinsic limitation is due to fact that our method is not
application-specific, and, therefore, provides only high-
level guidelines for simulating attacks. Indeed, detailed
guidelines require one to take into account application-
specific constraints and adversary models. Our future
work will be devoted to develop techniques for simulat-
ing attacks for different applications.

Although the design of secure classifiers is a distinct
problem than security evaluation, our framework could
be also exploited to this end. For instance, simulated
attack samples can be included into the training data to
improve security of discriminative classifiers (e.g., SVMs),
while the proposed data model can be exploited to
design more secure generative classifiers. We obtained
encouraging preliminary results on this topic [32].

ACKNOWLEDGMENTS

The authors are grateful to Davide Ariu, Gavin Brown,
Pavel Laskov, and Blaine Nelson for discussions and
comments on an earlier version of this paper. This work
was partly supported by a grant awarded to Battista Big-
gio by Regione Autonoma della Sardegna, PO Sardegna
FSE 2007-2013, L.R. 7/2007 “Promotion of the scientific
research and technological innovation in Sardinia”, by
the project CRP-18293 funded by Regione Autonoma
della Sardegna, L.R. 7/2007, Bando 2009, and by the
TABULA RASA project, funded within the 7th Frame-
work Research Programme of the European Union.

REFERENCES

[1] R. N. Rodrigues, L. L. Ling, and V. Govindaraju, “Robustness of
multimodal biometric fusion methods against spoof attacks,” J.
Vis. Lang. Comput., vol. 20, no. 3, pp. 169–179, 2009.

[2] P. Johnson, B. Tan, and S. Schuckers, “Multimodal fusion vulnera-
bility to non-zero effort (spoof) imposters,” in IEEE Int’l Workshop
on Inf. Forensics and Security, 2010, pp. 1–5.

[3] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee,
“Polymorphic blending attacks,” in Proc. 15th Conf. on USENIX
Security Symp. CA, USA: USENIX Association, 2006.

[4] G. L. Wittel and S. F. Wu, “On attacking statistical spam filters,”
in 1st Conf. on Email and Anti-Spam, CA, USA, 2004.

[5] D. Lowd and C. Meek, “Good word attacks on statistical spam
filters,” in 2nd Conf. on Email and Anti-Spam, CA, USA, 2005.

[6] A. Kolcz and C. H. Teo, “Feature weighting for improved classifier
robustness,” in 6th Conf. on Email and Anti-Spam, CA, USA, 2009.

[7] D. B. Skillicorn, “Adversarial knowledge discovery,” IEEE Intell.
Syst., vol. 24, pp. 54–61, 2009.

[8] D. Fetterly, “Adversarial information retrieval: The manipulation
of web content,” ACM Computing Reviews, 2007.

[9] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
Wiley-Interscience Publication, 2000.

[10] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma,
“Adversarial classification,” in 10th ACM SIGKDD Int’l Conf. on
Knowl. Discovery and Data Mining, WA, USA, 2004, pp. 99–108.

[11] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in Proc. Symp. Inf., Computer
and Commun. Sec. (ASIACCS). NY, USA: ACM, 2006, pp. 16–25.

[12] A. A. Cárdenas and J. S. Baras, “Evaluation of classifiers: Practical
considerations for security applications,” in AAAI Workshop on
Evaluation Methods for Machine Learning, MA, USA, 2006.

[13] P. Laskov and R. Lippmann, “Machine learning in adversarial
environments,” Machine Learning, vol. 81, pp. 115–119, 2010.

[14] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in 4th ACM Workshop on Artificial
Intelligence and Security, IL, USA, 2011, pp. 43–57.

[15] M. Barreno, B. Nelson, A. Joseph, and J. Tygar, “The security of
machine learning,” Machine Learning, vol. 81, pp. 121–148, 2010.

[16] D. Lowd and C. Meek, “Adversarial learning,” in Proc. 11th ACM
SIGKDD Int’l Conf. on Knowl. Discovery and Data Mining, A. Press,
Ed., IL, USA, 2005, pp. 641–647.

[17] P. Laskov and M. Kloft, “A framework for quantitative security
analysis of machine learning,” in Proc. 2nd ACM Workshop on
Security and Artificial Intelligence. NY, USA: ACM, 2009, pp. 1–4.

[18] P. Laskov and R. Lippmann, Eds., NIPS Workshop on Machine
Learning in Adversarial Environments for Computer Security, 2007.
[Online]. Available: http://mls-nips07.first.fraunhofer.de/

[19] A. D. Joseph, P. Laskov, F. Roli, and D. Tygar, Eds., Dagstuhl
Perspectives Workshop on Mach. Learning Methods for Computer Sec.,
2012. [Online]. Available: http://www.dagstuhl.de/12371/

[20] A. M. Narasimhamurthy and L. I. Kuncheva, “A framework for
generating data to simulate changing environments,” in Artificial
Intell. and Applications. IASTED/ACTA Press, 2007, pp. 415–420.

[21] S. Rizzi, “What-if analysis,” Enc. of Database Systems, pp. 3525–
3529, 2009.

[22] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting sig-
nature learning by training maliciously,” in Recent Advances in
Intrusion Detection, ser. LNCS. Springer, 2006, pp. 81–105.

[23] A. Globerson and S. T. Roweis, “Nightmare at test time: robust
learning by feature deletion,” in Proc. 23rd Int’l Conf. on Machine
Learning. ACM, 2006, pp. 353–360.

[24] R. Perdisci, G. Gu, and W. Lee, “Using an ensemble of one-
class SVM classifiers to harden payload-based anomaly detection
systems,” in Int’l Conf. Data Mining. IEEE CS, 2006, pp. 488–498.

[25] S. P. Chung and A. K. Mok, “Advanced allergy attacks: does a
corpus really help,” in Recent Advances in Intrusion Detection, ser.
RAID ’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 236–255.

[26] Z. Jorgensen, Y. Zhou, and M. Inge, “A multiple instance learning
strategy for combating good word attacks on spam filters,” Journal
of Machine Learning Research, vol. 9, pp. 1115–1146, 2008.

[27] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D.
Keromytis, “Casting out demons: Sanitizing training data for
anomaly sensors,” in IEEE Symp. on Security and Privacy. CA,
USA: IEEE CS, 2008, pp. 81–95.

http://mls-nips07.first.fraunhofer.de/
http://www.dagstuhl.de/12371/


14

[28] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine
learning to subvert your spam filter,” in Proc. 1st Workshop on
Large-Scale Exploits and Emergent Threats. CA, USA: USENIX
Association, 2008, pp. 1–9.

[29] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau,
S. Rao, N. Taft, and J. D. Tygar, “Antidote: understanding and
defending against poisoning of anomaly detectors,” in Proc. 9th
ACM SIGCOMM Internet Measurement Conf., ser. IMC ’09. NY,
USA: ACM, 2009, pp. 1–14.

[30] M. Kloft and P. Laskov, “Online anomaly detection under ad-
versarial impact,” in Proc. 13th Int’l Conf. on Artificial Intell. and
Statistics, 2010, pp. 405–412.

[31] O. Dekel, O. Shamir, and L. Xiao, “Learning to classify with
missing and corrupted features,” Machine Learning, vol. 81, pp.
149–178, 2010.

[32] B. Biggio, G. Fumera, and F. Roli, “Design of robust classifiers for
adversarial environments,” in IEEE Int’l Conf. on Systems, Man,
and Cybernetics, 2011, pp. 977–982.

[33] ——, “Multiple classifier systems for robust classifier design in
adversarial environments,” Int’l Journal of Machine Learning and
Cybernetics, vol. 1, no. 1, pp. 27–41, 2010.

[34] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bagging
classifiers for fighting poisoning attacks in adversarial environ-
ments,” in Proc. 10th Int’l Workshop on Multiple Classifier Systems,
ser. LNCS, vol. 6713. Springer-Verlag, 2011, pp. 350–359.

[35] B. Biggio, G. Fumera, F. Roli, and L. Didaci, “Poisoning adaptive
biometric systems,” in Structural, Syntactic, and Statistical Pattern
Recognition, ser. LNCS, vol. 7626. Springer, 2012, pp. 417–425.

[36] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against
support vector machines,” in Proc. 29th Int’l Conf. on Machine
Learning, 2012.

[37] M. Kearns and M. Li, “Learning in the presence of malicious
errors,” SIAM J. Comput., vol. 22, no. 4, pp. 807–837, 1993.

[38] A. A. Cárdenas, J. S. Baras, and K. Seamon, “A framework for the
evaluation of intrusion detection systems,” in Proc. IEEE Symp. on
Security and Privacy. DC, USA: IEEE CS, 2006, pp. 63–77.

[39] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems
for adversarial classification tasks,” in Proc. 8th Int’l Workshop on
Multiple Classifier Systems, ser. LNCS, vol. 5519. Springer, 2009,
pp. 132–141.

[40] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games
for adversarial learning problems,” J. Mach. Learn. Res., vol. 13, pp.
2617–2654, 2012.

[41] A. Adler, “Vulnerabilities in biometric encryption systems,” in 5th
Int’l Conf. on Audio- and Video-Based Biometric Person Authentication,
ser. LNCS, vol. 3546. NY, USA: Springer, 2005, pp. 1100–1109.

[42] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. New
York: Chapman & Hall, 1993.

[43] H. Drucker, D. Wu, and V. N. Vapnik, “Support vector machines
for spam categorization,” IEEE Trans. on Neural Networks, vol. 10,
no. 5, pp. 1048–1054, 1999.

[44] F. Sebastiani, “Machine learning in automated text categoriza-
tion,” ACM Comput. Surv., vol. 34, pp. 1–47, 2002.

[45] C.-C. Chang and C.-J. Lin, “LibSVM: a library for support vector
machines,” 2001. [Online]. Available: http://www.csie.ntu.edu.
tw/∼cjlin/libsvm/

[46] K. Nandakumar, Y. Chen, S. C. Dass, and A. Jain, “Likelihood
ratio-based biometric score fusion,” IEEE Trans. on Pattern Analysis
and Machine Intell., vol. 30, pp. 342–347, February 2008.

[47] B. Biggio, Z. Akhtar, G. Fumera, G. Marcialis, and F. Roli, “Robust-
ness of multi-modal biometric verification systems under realistic
spoofing attacks,” in Int’l Joint Conf. on Biometrics, 2011, pp. 1–6.

[48] B. Biggio, Z. Akhtar, G. Fumera, G. L. Marcialis, and F. Roli,
“Security evaluation of biometric authentication systems under
real spoofing attacks,” IET Biometrics, vol. 1, no. 1, pp. 11–24, 2012.

[49] K. Wang and S. J. Stolfo, “Anomalous payload-based network
intrusion detection,” in RAID, ser. LNCS, vol. 3224. Springer,
2004, pp. 203–222.

[50] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett,
“New support vector algorithms,” Neural Comput., vol. 12, no. 5,
pp. 1207–1245, 2000.

[51] K. Ingham and H. Inoue, “Comparing anomaly detection tech-
niques for http,” in Recent Advances in Intrusion Detection, ser.
LNCS. Springer, 2007, pp. 42–62.

[52] D. Sculley, G. Wachman, and C. E. Brodley, “Spam filtering using
inexact string matching in explicit feature space with on-line
linear classifiers,” in 15th Text Retrieval Conf. NIST, 2006.

[53] S. Z. Li and A. K. Jain, Eds., Enc. of Biometrics. Springer US, 2009.
[54] B. Biggio, G. Fumera, and F. Roli, “Adversarial pattern classifica-

tion using multiple classifiers and randomisation,” in Structural,
Syntactic, and Statistical Pattern Recognition, ser. LNCS, vol. 5342.
FL, USA: Springer-Verlag, 2008, pp. 500–509.

Battista Biggio received the M. Sc. degree in
Electronic Eng., with honors, and the Ph. D. in
Electronic Eng. and Computer Science, respec-
tively in 2006 and 2010, from the University of
Cagliari, Italy. Since 2007 he has been working
for the Dept. of Electrical and Electronic Eng.
of the same University, where he holds now a
postdoctoral position. From May 12th, 2011 to
November 12th, 2011, he visited the University
of Tübingen, Germany, and worked on the secu-
rity of machine learning algorithms to contami-

nation of training data. His research interests currently include: secure /
robust machine learning and pattern recognition methods, multiple clas-
sifier systems, kernel methods, biometric authentication, spam filtering,
and computer security. He serves as a reviewer for several international
conferences and journals, including Pattern Recognition and Pattern
Recognition Letters. Dr. Biggio is a member of the IEEE Institute of
Electrical and Electronics Engineers (Computer Society), and of the
Italian Group of Italian Researchers in Pattern Recognition (GIRPR),
affiliated to the International Association for Pattern Recognition.

Giorgio Fumera received the M. Sc. degree
in Electronic Eng., with honors, and the Ph.D.
degree in Electronic Eng. and Computer Sci-
ence, respectively in 1997 and 2002, from the
University of Cagliari, Italy. Since February 2010
he is Associate Professor of Computer Eng.
at the Dept. of Electrical and Electronic Eng.
of the same University. His research interests
are related to methodologies and applications of
statistical pattern recognition, and include mul-
tiple classifier systems, classification with the

reject option, adversarial classification and document categorization.
On these topics he published more than sixty papers in international
journal and conferences. He acts as reviewer for the main interna-
tional journals in this field, including IEEE Trans. on Pattern Analysis
and Machine Intelligence, Journal of Machine Learning Research, and
Pattern Recognition. Dr. Fumera is a member of the IEEE Institute of
Electrical and Electronics Engineers (Computer Society), of the Italian
Association for Artificial Intelligence (AI*IA), and of the Italian Group
of Italian Researchers in Pattern Recognition (GIRPR), affiliated to the
International Association for Pattern Recognition.

Fabio Roli received his M. Sc. degree, with hon-
ors, and Ph. D. degree in Electronic Eng. from
the University of Genoa, Italy. He was a member
of the research group on Image Processing and
Understanding of the University of Genoa, Italy,
from 1988 to 1994. He was adjunct professor
at the University of Trento, Italy, in 1993 and
1994. In 1995, he joined the Dept. of Electrical
and Electronic Eng. of the University of Cagliari,
Italy, where he is now professor of computer
engineering and head of the research group on

pattern recognition and applications. His research activity is focused
on the design of pattern recognition systems and their applications
to biometric personal identification, multimedia text categorization, and
computer security. On these topics, he has published more than two
hundred papers at conferences and on journals. He was a very active
organizer of international conferences and workshops, and established
the popular workshop series on multiple classifier systems. Dr. Roli is
a member of the governing boards of the International Association for
Pattern Recognition and of the IEEE Systems, Man and Cybernetics
Society. He is Fellow of the IEEE, and Fellow of the International
Association for Pattern Recognition.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	Introduction
	Background and previous work
	A taxonomy of attacks against pattern classifiers
	Limitations of classical performance evaluation methods in adversarial classification
	Arms race and security by design
	Previous work on security evaluation
	Building on previous work

	A framework for empirical evaluation of classifier security
	Attack scenario and model of the adversary
	A model of the data distribution
	Training and testing set generation
	How to use our framework

	Application examples
	Spam filtering
	Biometric authentication
	Network intrusion detection

	Secure design cycle: next steps
	Contributions, limitations  and open issues
	References
	Biographies
	Battista Biggio
	Giorgio Fumera
	Fabio Roli


