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Abstract—Social identity linkage across different social media platforms is of critical importance to business intelligence by gaining
from social data a deeper understanding and more accurate profiling of users. In this paper, we propose a solution framework, HYDRA,
which consists of three key steps: (I) we model heterogeneous behavior by long-term topical distribution analysis and multi-resolution
temporal behavior matching against high noise and information missing, and the behavior similarity are described by multi-dimensional
similarity vector for each user pair; (II) we build structure consistency models to maximize the structure and behavior consistency on
users’ core social structure across different platforms, thus the task of identity linkage can be performed on groups of users, which
is beyond the individual level linkage in previous study; and (III) we propose a normalized-margin-based linkage function formulation,
and learn the linkage function by multi-objective optimization where both supervised pair-wise linkage function learning and structure
consistency maximization are conducted towards a unified Pareto optimal solution. The model is able to deal with drastic information
missing, and avoid the curse-of-dimensionality in handling high dimensional sparse representation. Extensive experiments on 10 million
users across seven popular social networks platforms demonstrate that HYDRA correctly identifies real user linkage across different
platforms from massive noisy user behavior data records, and outperforms existing state-of-the-art approaches by at least 20% under
different settings, and 4 times better in most settings.
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1 INTRODUCTION

The ability of assuming multiple identities has long been a
dream for many people. Yet it is not until the late advent
of online social networks that this ambition of millions has
been made possible in cyber virtual world. In fact, the re-
cent proliferation of social network services of all kinds has
revolutionized our social life by providing everyone with the
ease and fun of sharing various information like never before
(e.g., micro-blogs, images, videos, reviews, location check-
ins). Meanwhile, probably the biggest and most intriguing
question concerning all businesses is how to leverage this
big social data for better business intelligence. In particular,
people wonder how to gain thorough understanding of each
individual user from the vast amount of online social data
records. Unfortunately, information of a user from the current
social scene is fragmented, inconsistent and disruptive. The
key to unleashing the true power of social media is to link up
all the data of the same user across different social platforms,
offering the following benefits to user profiling.
Completeness. Single social networks service offers only a
partial view of a user from a particular perspective. Cross-
platform user linkage would enrich an otherwise-fragmented
user profile to enable an all-around understanding of a user’s
interests and behavior patterns.
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Consistency. For various reasons, information provided by
users on a social platform could be false, conflicting, missing
and deceptive. Cross-checking among multiple platforms helps
improve the consistency of user information.
Continuity. While social platforms come and go, the under-
lying real persons remain, and simply migrate to newer ones.
User identity linkage makes it possible to integrate useful user
information from those platforms that has over time become
less popular, or even abandoned.

Towards automatic user identity linkage of the same natural
person across different social media platforms, we study to
construct statistical learning method based on massive online
user behavior data records. The research challenges can be
addressed from the following aspects.
Unreliable Attributes. How users register their names online
varies among different platforms. For example, a user tends to
add family name after “Adele” in English communities, and
users are likely to put a Chinese name or bizarre characters
before or after “Adele” for eccentricity in Chinese communi-
ties. To make things worse, people do not use their true names,
women would not tell their true ages, and males even pretend
to be females. Statistical models (e.g. SVM [1], [2], [3]) or
rule based models [4], [5] constructed with mere username
[1], [2] and attribute analysis are far from being robust for
accurate user linkage across online social communities.
Data Misalignment. User data on different social platforms
could be misaligned in various ways that makes it hard to
measure the behavior similarity among users.
• Platform Difference. User behavior may be divergent and

platform dependent. For example, users might post their
opinions about “life of youth” on Facebook and their
political views on Twitter. Our study on 5 million users
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from five most popular Chinese social platforms and 5
million users from two most popular English social plat-
forms reveals a 25% to 85% difference in user generated
content between different platforms. Moreover, the user
behavior can be represented by various types of media,
e.g., locations, blogs, tweets, videos and images, which
we refer to as heterogeneous behavior in this paper. The
platform-dependent and heterogeneous behavior would
lead to extremely low-quality information matching.

• Behavior Asynchrony. Even semantically similar actions
could often exhibit significant temporal variance. For
example, a user would post selected pictures from a trip
on Facebook in a certain time period. At a different time,
the same or different pictures from the trip may be posted
by the user again on Twitter.

• Data Imbalance. There has been a huge imbalance in
terms of data volume between a user’s primary social
account and the rest, while statistical learning on such
imbalanced data record has remained a long standing
problem in machine learning community.

Missing Information. Due to privacy considerations, users
may deliberately hide certain pieces of information online. Our
study on real social media data indicates that at least 80% of
users are missing at least two profile attributes out of the six
most popular ones, and merely 5% of users have all attributes
filled up. Drastic information missing leads to great difficulty
for data distribution modeling on the behavior feature space
in the learning process.

The above mentioned issues pose two main challenges for
linkage function learning. First, reliable attribute and behavior
feature modeling of online users should be constructed to
measure the similarity among users from their heterogeneous
and noisy online behavior records. Second, the difficulties
brought by drastic information missing and insufficient linkage
information require new learning strategy which is able to
take advantage of structure information (i.e., the frequently
interacted friends of each user) to improve the model gener-
ality. Existing work have applied heuristic processing in the
profile information such as partial username overlapping and
solved the problem by a set of binary classification models
[1], [2]. However, these methods may work well only when
information is veracious the ground-truth labels are available.
Moreover, the heuristics they rely on are not always valid
among platforms of different languages and cultures, resulting
in low recall and significant bias.

In this paper, we propose HYDRA, a framework for cross-
platform user identity linkage via heterogeneous behavior
modeling. Compared with the long studied record linkage
problem [6], [5], our technical breakthrough comes from
taking advantage of two important features unique to social
data: (I) user behavior trajectory along temporal dimension,
and (II) user’s core social networks structure, which is the
part formed by those closet to the user, and is called “core
structure” for short. The intuition is that (I) both empirical
and social behavior studies (e.g., [7]) demonstrate that, over
a sufficiently long period of time, a user’s social behav-
ior exhibits a surprisingly high level of consistency across
different platforms; and (II) a user’s core structures across

different platforms share great similarity and offer a highly
discriminative characterization of the user.

Based on (I), we model the behavior similarity among
online users with multi-dimensional similarity vectors with
the following information: a) the relative importance of the
user attributes, which measures how likely two users refer
to one person when one of their attributes is identical; b)
the statistical divergence of topic distribution, describing the
potential inclination of users over a long period; c) the overall
matching degree of the behavior trajectories, capturing the
identical actions between user accounts over a certain period
of time. Based on (II), we develop a linkage function learn-
ing methodology by jointly optimizing the pair-wise identity
linkage with ground-truth linkage information and seeking
the social structure level behavior consistency among users
without ground-truth linkage information. The key intuition is
to propagate the linkage information along the linked users and
their social structures. Consequently, the linkage function can
be effectively learned even with partial ground truth linkage
information.

In summary, the key contributions are as follows.
1. Heterogeneous Behavior Model. We design a new het-
erogeneous behavior model to measure the user behavior
similarity from all aspects of a user’s social data. It is able
to robustly deal with missing information and misaligned
behavior by long-term behavior distribution construction and
a multi-resolution temporal behavior matching paradigm.
2. Structure Consistency. We propose a novel structure
modeling method to maximize the behavior consistency on
the users’ core structure instead of user level behavior sim-
ilarity. By propagating the linkage information along the
social structure of each individual user, our model is capable
of identifying user linkage even when ground-truth labeled
linkage information is insufficient.
3. Multi-objective Model Learning. We solve the social iden-
tity linkage problem by multi-objective optimization (MOO)
framework [8], where both the supervised learning on ground
truth linkage information and the cross-platform structure
consistency maximization are jointly performed towards a
Pareto optimality. Specifically, we modify the formulations
of kernel and linkage function, and develop a normalized-
margin-based approach to deal with information missing in
the similarity modeling. Theoretical analysis shows that our
model is a generalized semi-supervised learning framework.
4. Experiments on Large-scale Real Data Sets. We evaluate
HYDRA against the state-of-the-art on two real data sets —
I) five popular Chinese social networks platforms and (II)
two popular English social networks platforms — a total of
10 million users on 7 social media platforms amounting to
more than 10 tera-bytes data. Experimental results demonstrate
HYDRA outperforms existing algorithms in identifying true
user linkage across different platforms.

2 RELATED WORK
User Linkage across Social Media. User linkage was firstly
formalized as connecting corresponding identities across com-
munities in [9] and a web-search-based approach was pro-
posed to address it. Previous research can be categorized into
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three types: user-profile-based, user-generated-content-based,
user-behavior-model-based and social-structure-based. User-
profile-based methods collect tagging information provided by
users [10], [11] or user profiles from several social networks
and then represent user profiles in vectors, of which each
dimension corresponds to a profile field [12], [13], [14].
Methods in this category suffer from huge effort of user
tagging, different identifiable personal information types from
site to site, and privacy of user profile. User-generated-content-
based methods [1], on the other hand, collect personal identifi-
able information from public pages of user-generated content.
Yet these methods still make the assumption of consistent
usernames across social platforms, which is not the case in
large-scale social networks platforms. User-behavior-model-
based methods [2] analyze behavior patterns and build feature
models from usernames, language and writing styles. Social-
structure-based user linkage conduct linkage analysis by using
structure features in social circles [15], [16], [17], [18]. For
example, Korula et al. [15] solve the reconciliation of user’s
social network by starting from nodes with high degrees.
Koutra et al. [17] formulates the user linkage problem by
learning an optimal permutation function between two graph
affinity matrices. Based on user’s social, spatial, temporal
and text information, Kong et al. [16] propose Multi-Network
Anchoring to find the links between users from different
platforms. Zhang et al. [18] propose to predict heterogeneous
links (social links and location links) inside the target social
network given a set of anchor links among users from target
network and source network. Previous methods 1) seldom
handle the missing information in usernames, user-generated
content, behaviors and social structure; and 2) have not given
interpretation why there exists such missing information and
how it impacts the user linking result.

Authorship Identification across Documents. Authorship
identification is a task that identifies the authors of docu-
ments by their writing and language styles analyzed from
their corresponding documents. Previous studies on authorship
identification can be categorized into two types: content-based
and behavior-model-based. Content-based-methods identify
content features across a large number of documents [19], [20],
[21]. Behavior-model-based methods capture writing-style fea-
tures [4], or build language models [22] to identify content
authorship. However, different from document scenario, social
media platforms are much more complicated with multiple
data media, graph/ social structures and missing information,
which compromises most authorship identification methods.

Entity Resolution across Records. User linkage is in one
way or another related to problems from other research com-
munities including co-reference resolution in natural language
processing [23], entity matching [24], graph node classification
[25], record linkage in database [6], [5], and name disam-
biguation in information retrieval [26], [27], which can be
generalized as entity resolution across records. Different from
previous structure-based feature extraction approach [25] and
single feature based approaches [6], [5], we consider a much
more challenging setting where we examine multiple features
along time-line with missing and misaligned information and
multiple media environments to link users across different

platforms. Similarly, previous work on user identification on
single site and de-anonymization in social networks have been
surveyed in [1], [2], which are not elaborated here.

3 PROBLEM DEFINITION AND OVERVIEW
Denote as P the set of all natural persons in real life. For
a social networks platform S, denote as CS the set of all
usernames each belonging to a distinct user and φS : CS 7→ P
the injective function mapping each online user of S to a
natural person.

Definition 1. Social Identity Linkage (SIL): Given two social
networks platforms S and S’, the problem of Social Identity
Linkage (SIL) is to find a function f to decide if any two users
from S and S’ respectively correspond to the same natural
person, i.e., f : CS × CS’ 7→ {0, 1} such that for any pair of
users (ui, ui′) ∈ CS × CS’, we have

f(ui, ui′) =

{
1 , if φS(ui) = φS’(ui′)
0 , otherwise

(1)

It is worth noting that the straightforward approach to solve
the problem by examining each pair of users would entail a
high computational cost. Given an SIL problem instance of
two social networks platforms S and S’ with N1 and N2

users respectively, the number of all possible functions f by
considering all the possible numbers of matched users is:

min(N1,N2)∑
n=1

N1!N2!

n!(N1 − n)!n!(N2 − n)!
(2)

where N ! =
N∏
k=1

k. When we consider SIL problem on

more platforms, the search space of pair-wise examination
grows exponentially with the number of different platforms.
Therefore, by only employing the user level pair-wise linkage
information, huge amount of ground-truth linked pairs are
required for training. From statistical linkage function learning
aspect, it means that we need to collect statistically sufficient
samples from the real data, to guarantee the convergence to
the globally optimal linkage model. On the other hand, strong
consistency is observed in behavior pattern and inclination
among the users in the strongly interacted social friend groups
[7], [28], [2], i.e., the stronger the interaction among users,
the more similar their behavior and inclinations are. This
observation endows us with the possibility of alleviating the
difficulty by seeking the structure consistency of the candidate
linked pairs generated by simple behavior matching across
platforms. Furthermore, by joint optimization of the pair-wise
linkage model and structure consistency, the linkage model can
reach its full potential as the ground-truth linkage information
can be reliably propagated along the user core social structure
step by step, and finally a robust linkage model can be firmly
constructed.

By taking the above mentioned issues into consideration, we
propose HYDRA, a user linkage framework based on multi-
objective optimization. It is composed of three main steps.
Step 1. Behavior Similarity Modeling. We calculate similar-
ity among pairs of users via heterogeneous behavior modeling.
Details are discussed in Section 4.
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Step 2. Structure Information Modeling. We construct the
structure consistency graph on user pairs by considering both
the core network structure of the users and their behavior
similarities. Details are discussed in Section 5.
Step 3. Multi-objective Optimization with Missing In-
formation: We construct multi-objective optimization which
jointly optimizes the prediction accuracy on the labeled user
pairs and structure consistency measurements across different
platforms. The model is further modified to deal with signifi-
cant information missing. Details are discussed in Section 5.

We consider three kinds of data for model learning: (1)
labeled data, including ground-truth linked pairs and pre-
matched pairs, and the rest are (2) unlabeled pairs with no
linkage information. The pre-matched labeled data is generated
by our rule-based filtering, a much more sophisticated set of
measures than existing methods, including partial username
overlapping [1], [2], user attribute matching and user profile
image matching by face recognition techniques[29]. by rule-
based filtering. By combining heterogeneous behavior mod-
eling and user core social networks structure, together with
labeled data, into a multi-objective optimization, our approach
conducts SIL on groups of users by taking full advantage of
the context and content from social media.

4 HETEROGENEOUS BEHAVIOR MODEL
The key challenges in modeling user behavior across different
social media platforms are (I) the heterogeneity of user social
data and (II) the temporal misalignment of user behavior
across platforms. The high heterogeneity of user social data
can be appreciated by the following categorization of all the
data about a user available on a typical social platform.

1) User Attributes. Included here are all the traditional
structured data about a user, e.g., demographic informa-
tion, contact, etc. (Subsection 4.1).

2) User Generated Content (UGC). Included here are
the unstructured data generated by users such as text
(reviews, micro-blogs, etc.), images, videos and so on.
Modeling is primarily targeted at topic (Subsection 4.2)
and style (Subsection 4.3).

3) User Behavior Trajectory. User behavior trajectory
refers to all the social behavior of a user as exhibited
on the platforms along the time-line, e.g., befriend,
follow/unfollow, retweet, thumb-up/thumb-down, etc.
(Subsection 4.4).

4) User Core Social Networks Features. A user’s core
social networks are the social networks formed among
those who are the closet to the user, and the features
are the aggregation of the user’s core social networks
behavior (Subsection 4.5).

4.1 User Attribute Modeling
Textual Attributes. The profile information is informative in
distinguishing different users. Common textual attributes in a
user profile include name, gender, age, nationality, company,
education, email account, etc. A simple matching strategy can
be built on such a set of information. However, the rela-
tive importance of these attributes are not identical, because
attributes such as gender and common names like “John”

are not as discriminative as others such as email address in
identifying user linkage. Yet, the weights of the attributes used
in the matching can be learned from large training set by
probabilistic modeling.

Specifically, given a set of N labeled training user pairs
from different platforms, the relative importance of the at-
tributes can be estimated by data counting. For a specific at-
tribute ak, k = 1, ...,MA, we estimate the relative importance
score by the following equation:

mt(k) = PD(k)
PD(k)+ND(k) , mt(k) = mt(k)+ε

MA∑
k′=1

mt(k′)+MAε
(3)

where PD(k) represents the number of user pairs matched on
ak in the positive labeled set PD, and ND(k) represents the
number of pairs matched on ak in the negative labeled set
ND. ε denotes a small real number that avoids over-fitting.
MA denotes the number of attributes. If ak is missing for
user i or i′, it is denoted as a missing feature.

Given a user pair, an exact MA dimensional attribute
matching feature can be calculated. For example, if the user
pair (i, i′) is matched on 1st, 2nd, and 5-th attributes, where
the corresponding weight of them are 0.1, 0.3, and 0.2,
respectively, then the attribute feature of the user pair is
[0.1, 0.3, 0, 0, 0.2, ...]. If any k-th attribute of user i or i′ is
absent, we denote the k-th feature as missing.

Visual Attributes. Besides textual attributes, visual at-
tributes such as face images used in the profile can also be used
to link users. However, as many users may not use their true
face images, or use those with poor illumination and severe
occlusion, such information could be very noisy. We designed
a matching scheme to safely compare two user profile images.
The work flow of face matching can be referred to [30]. In
particular, if faces have been detected from both images, the
pre-trained classifier is used to determine if the two faces
correspond to the same person. As a standard work flow in
face identification, we use the face detection approach, facial
feature extraction and face classifier in [29]. For a large scale
image processing, we implement the face attribute matching
in a distributed computing environment, so that the matching
of pairs of face images can be performed in parallel.

4.2 User Topic Modeling
An important feature of social media platform is that over a
sufficiently long period of time, the UGC of a user collectively
gives a faithful reflection of the user’s topical interest. Faking
one’s interests all the time defeats the purpose of using a
social networks service. Therefore, we propose to model a
user’s topical interest by a long-term user topic model. We
first construct a latent topic model using Latent Dirichlet
Allocation by using the collected textual messages after a
textual preprocessing procedure, and the output of which is
a probability distribution in the topic space. The number of
latent topics is set to 300 in our study. We then calculate the
multi-scale temporal topic distribution within a given temporal
range for a user using the multi-scale temporal division [30].
The intuition comes from the fact that if two users refer to
one person, their inclinations tend to be similar in the whole
temporal range. Moreover, their inclinations in a shorter time
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Fig. 1. Illustration of user topic modeling. First, the whole
temporal range of user behavior data is divided into a set
of time intervals with predefined values (e.g., 16 days, 8
days and 4 days). Then, all the distribution vectors within
different time intervals are weighted and concatenated
into one topic distribution vector. After that, the corre-
sponding similarity of the topic distributions in each time
interval and the whole range can be constructed. At last,
the overall similarity between user i and i′ is calculated
as the similarities of all the time intervals, where a local
matching is endowed with a larger weight than a global
matching [30].

period should also be similar. The more their inclinations are
locally matched in every shorter time period, the more similar
their inclinations will be in the global range. Thus the users
are more likely to be the same person.

Specifically, as shown in Figure 1, the time axis is divided
into multiple time intervals with different scales (we use 1,
2, 4, 8, 16 and 32 days in this paper, which guarantees
good performance). Based on the topic models, we obtain a
topic distribution vector for each time interval, which is the
average topic distribution for the user contents within this time
interval. All the topic distribution vectors within each interval
are accumulated into a single distribution, which represents
the topic distribution pattern within this time interval. In
Figure 1, Ct denotes the number of time intervals when
the scale is selected to be 16. Correspondingly, the number
of time intervals will be 2Ct and 4Ct respectively for 8
days and 4 days. Based on this, the similarity of temporal
topic evolution of the specific scale between two users can
be calculated by averaging the similarity of each temporal
interval, where each similarity can be measured by the chi-
square kernel or histogram intersection kernel [30]. Finally,
all the similarities calculated using different time scales are
concatenated into a weighted similarity vector, where local
inclination matching will be endowed with a large importance
than a global inclination matching.

The proposed long-term user topic models the behavior
similarity on pair-wise topic correlation from coarse-to-fine
resolutions. In this paper, we analyze the following distribution
types using this proposed strategy:

Content Genre Distribution. The content genre measures
the relevance between the textual messages and several popular
topics on social media sites, e.g., sports/ music/ entertainment/
society/ history/ science/ art/ high-tech/ commercial/ politics/
geography/ traveling/ fashions/ digital game/ industry/ luxury/
violence, which are selected to cover the most popular topic
genres.

Sentiment Pattern Distribution. According to studies on

sentiment mining [31], [32], we can model the sentiment
pattern using a two dimensional space (arousal-valence) [31]
or roughly divide the emotion into several categories, e.g.,
happy/ fear /sad /neutral. It can be done by extracting the
representative emotional key words in the textual content
and learning a sentiment vocabulary. After that, each textual
message can be represented by a probabilistic distribution on
the sentiment vocabulary. We use the scheme in this section
to construct the multi-scale similarity on sentiment pattern
between two users.

4.3 User Style Modeling
The language style of a user including personalized wording
and emotion adoption is usually well reflected in comments,
tweets and re-tweets (e.g. function words extraction [1]),
which is beneficial to distinguishing between different users.
To model a user’s characteristic style, we extract the most
unique words of each user by a simple term frequency analysis
on the whole database. Note that since the unique words may
also be mistaken input, we can select the k(k = 1, 3, 5) most
unique ones after removing stop words from the least-used
terms of the whole user data repository.

For user pairs, we can simply measure Slea, their similarity
on the unique word pattern, by word matching (the words
should be uniformly converted, such as lower-case and singu-
lar form):

Slea =
#matched words

k
(4)

4.4 Multi-resolution Behavior Modeling
User behavior trajectory is a unique feature of social media
data laying out a user’s behavior along the time line. In this
paper, we are mainly concerned with the following patterns:

Location and Mobile Trajectory Information. Social
media sites with location-based-service provide strong support
and incentive for recording and sharing user locations. Gener-
ally, over an extended period of time, two users with mutually
exclusive mobility patterns will not be the same person in
reality. On the other hand, similar trajectory patterns across
the platforms and no conflicting instances indicate the mobility
similarity in real world, as they would like to provide check-in
information on multiple social media platforms. By analyzing
the mobility similarity over an long period, a sufficiently
high similarity in mobile trajectory implies that the two users
share similar and even exactly the same mobility behavior
in real world. Therefore, the high mobility similarity can be
considered as an important evidence in social identity linkage.

Multimedia Content Generation and Sharing. Users may
post similar or duplicate multimedia content on the Web. For
example, they may upload or share exactly the same image,
video and music. However, if a high level of synchrony has
been observed over an extended period of time between two
users from different platforms, it is reasonable to hypothesize
that these two users correspond to the same person.

A natural solution is to construct a set of pattern-matching
sensors, one for each modality (location, visual, textual and
audio), and use them to collectively evaluate user behavior
similarity. However, as people are not always using multiple
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Fig. 2. Multi-resolution temporal behavior modeling. A
set of pattern-matching sensors are designed. For two
users, the sensors are used to detect the corresponding
type of matched behavior within certain temporal scales.
When all the matched behaviors have been detected
by sensors, an lq norm pooling and nonlinear sigmoid
mapping aggregate all matched behavior signals into a
multi-resolution similarity vector.

social platforms simultaneously, a significant amount of infor-
mation could be missing in such a task. We therefore propose
a multi-resolution temporal behavior model to perform pattern
matching with the ubiquitous presence of missing information.

As shown in Figure 2, given two users i and i′, we first
construct a set of pattern-matching sensors with different
temporal searching ranges. If there are patterns (denoted by
pentagons) matched within the selected range of the pattern-
matching sensor, it gives a positive stimuli signal. After we
have collected all the stimuli signals along a certain period, we
calculate the lq-norm non-linear stimulation function, which is
a trade-off between average pooling and max-pooling as:

Smr =
1

Nmr

(
Nmr∑
k=1

(smr(k))
q

) 1
q

, q ≥ 1 (5)

where smr(k) denotes the score of k-th pattern matching sen-
sor, Smr represents aggregated behavior similarity, and Nmr
represents the number of detected matched pattern. Next, we
fit a sigmoid function to transform Smr into a new stimulated
signal Ŝmr ∈ [0, 1]. We repeat such processing with different
pattern-matching sensors. Finally, a multi-dimensional pattern-
matching feature is formed between user i and i′, whose
dimension is equivalent to the number of pattern-matching
sensors.

Using lq-norm is a natural choice from the bio-inspired
stimulation. It has been found that the maximum stimulation
from a pooled signal set will play significant role for percep-
tion. When q tends to be infinite, the signal selection tends
to better approximate the maximum stimulation (i.e., max-
pooling). Since the pattern-matching would be performed un-
der different temporal scales, we can extract a multi-resolution
temporal matching pattern between two users on the sparsely
and asynchronously occurred patterns. The sigmoid function
Ŝmr = 1

1+e−λSmr
is a typical nonlinear transformation func-

tion, where the parameter λ can be tuned on the specific

validation dataset. Another important advantage of using lq-
norm is that it can reduce the number of dimensions in the
behavior similarity construction by aggregating the sparsely
matched patterns.

The pattern-matching sensors we construct in this paper are:
Location Matching Sensor. A location matching sensor

calculates location adjacency by a Gaussian kernel on geo-
coordinates of user i and user i′ within the predefined spatial
range [30].

Near Duplicate Multimedia Sensor. We construct a set of
domain-specific duplicate content analysis models to detect the
near duplicate multimedia content. We extract wavelet feature
and cepstrum feature on each audio file, and then learn a sup-
port vector machine to decide if two audio files are duplicate.
A spatial consistency graph model [33] is constructed for near
duplicate image sensor. For near duplicate video detection, we
apply [33] on each key video frame of video shot and develop
a simple heuristic rule set for quick determination. Besides
content analysis, the meta data (i.e., web address, time stamp
and content providers) of each multimedia document can be
used to quickly judge if they are duplicate.

The proposed framework can be further extended by de-
signing and incorporating more special purpose detectors to
capture the similarity from more content on online social
platforms in future study.

4.5 Core Social Networks Features

It has been observed that, over time, users tend to bring
their closest friends over to different social platforms they
frequently use. Therefore, the behavior of a user’s close friends
are also informative in identifying different accounts of the
same user. In [34], the average similarity of the neighborhood
data of two data items is more robust compared with the
original similarity since it calculates the similarity of two
convex hulls instead of two data points. Inspired by [34], we
model the behavior of a user’s social connections. Given two
users i and i′ from different platforms, the behavior data of
their top-k most frequently interacting friends are collected.
For example, we denote their top-3 interacting friends as i1,
i2, i3, and i′1, i′2, i′3, then the average behavior similarity
and the standard deviation of the social connections of user i
and i′ can be calculated as:

S1
sc(i, i

′) =

3∑
p=1

3∑
q=1

s(ip,i
′
q)

9 ,

S2
sc(i, i

′) =

√
3∑
p=1

3∑
q=1

(s(ip,i′q)−S1
sc(i,i

′))
2

9

(6)

where s(ip, jq) denotes the similarity of any particular similar-
ity measure described in previous sections. If we have 10-dim
similarity description between user i and i′, then a similarity
vector with 30-dim is generated, including both the original
similarity between i and i′ (10-dim), the average neighborhood
similarity (10-dim) and the standard deviation of their social
connection (10-dim). The average similarity features and the
standard deviation features measure the inclination and the
behavior consistency of the friend groups, respectively.
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Fig. 3. Structure consistency maximization. Given two
platforms, we measure both behavior similarity and struc-
ture consistency among their frequently communicating
friends (elliptical rings), especially users with ground truth
linkage information (linked by black arrows). The arrows
within each platform indicate how the linkage information
can be propagated along the social structure of each
user. Consequently, the true linked user pairs (red dashed
arrows) are correctly identified while the falsely linked
user pairs (green dashed arrows) are filtered out.

5 MULTI-OBJECTIVE STRUCTURE LEARNING

Based on the heterogeneous behavior modeling from user
attributes, UGC and behavior trajectories as explained in
Section 4, we propose to learn the linkage function via a multi-
objective optimization framework.

Supervised Learning. Some social media platforms allow
users to log in to different platforms with one account. For
example, we can use a Facebook account to log in to Twitter.
We collect such user-provided linkage information as the
ground-truth label information. We notice that the labeled
training pairs collected by our paradigm is much cleaner
(precision over 95%) than the approach in [1] (precision
around 75%) where the labeled training pairs are automatically
generated based on the uniqueness (n-gram probability) of
user names. We also collect label information by user attribute
matching as the pre-linked label information. By utilizing the
collected label information, we minimize the structured loss
(SVM objective function) on the labeled training data.

Structure Consistency Modeling. We optimize the linkage
function by maximizing both behavior similarity and social
structure consistency between platforms. By constructing a
positive semidefinite second-order structure consistency matrix
among candidate linked user pairs, our model is able to
consider the global structure between platforms to identify the
true linkages and filter out those false ones, as illustrated in
Figure 3. Most importantly, it compensates for the shortage
of ground truth linkage information for user-level supervised
learning by propagating the linkage information along the
core social structure (i.e., friends with the most frequent
interactions) of each individual user.

Multi-objective Optimization. We learn the linkage func-
tion by jointly minimizing the two objective functions via a
unified multi-objective optimization framework. We prove that
our model is a generalized semi-supervised learning approach
by leveraging both ground truth linkage information and social
structure.

5.1 Decision Model on Pairwise Similarity

Given a set Pl of Nl user pairs with ground-truth labels
represented as: {(xii′ , yii′)}, where xii′ denotes the D-
dimensional pair-wise similarity vector between user i and
user i′ calculated by the above behavior modeling methods,
and yii′ ∈ {1,−1} denotes the label indicating whether the
two users correspond to the same natural person. We denote
the index set of user pairs with labels as Pl. The decision
model f to predict if a pair of users belong to the same natural
person is represented as:

f(x) = wTx+ b (7)

where w and b are the model parameters that can be learned
by minimizing the following objective function:

FD(w) = γL
2 ||w||

2 +
∑
ξii′

s.t. yii′(w
Txii′ + b) ≥ 1− ξii′

(8)

where ξii′ denotes the slack variables that allow the model
for non-linearly separable cases and b denotes the bias learned
from the data. The optimization of objective function FD is the
standard structured risk minimization of binary classification.

5.2 Structure Consistency Modeling

The supervised learning relies heavily on a sufficient amount
of ground truth linkage information. On the other hand, users’
social structure information is an important complementary
piece of information if its power in inferring user linkage
is fully unleashed, as illustrated by the example in Figure
3. If Alice, Bob and Henry are friends in real life, there
would most likely be a high level of interaction frequency
and behavior similarity among their corresponding accounts
on the same platform. Such a consistent structure is indicated
by the elliptic rings in Figure 3. A main strongly-connected
cluster formed by correctly linked users (the dashed red
arrows in Figure 3) would generate agreement links (edges
with positive weights) among one another. These links are
formed when the behavior of pairs of linked users agree
at the level of social structure (their frequently interacting
friends). Second, incorrect user linkage outside the cluster
or weakly connected to it do not form strongly connected
clusters due to the slim chance of establishing agreement
links coincidentally (the dashed green arrows in Figure 3).
When the ground truth linkage between the accounts of Alice
and Henry is not available, we can still reliably link their
accounts across the platforms based on the linked accounts
of Bob together with the strong interaction observed from
their social structures. Such linkage prediction can be further
propagated to other frequently interacting friends of Alice and
Henry. Consequently, the linkage can be regularized towards
the consistency at social structure level rather than individual
user level.

To model the structure consistency, first, a set of candi-
date matched pairs are generated by measuring the behavior
similarity between users i and i′ from platform S and S’,
respectively, given two platforms S and S’ containing NS and
NS’ users. For each candidate matching a = (i, i′), there is an
associated affinity score that measures the similarity between
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user i and user i′. For each pair of assignments (a, b), where
a = (i, i′) and b = (j, j′), there is an affinity score that
measures how compatible the users (i, j) are with the users
(i′, j′). Given a list of candidate user pairs Pl

⋃
Pu, we store

the affinities on every candidate a ∈ Pl
⋃
Pu and every pair

of candidate a, b ∈ Pl
⋃
Pu in M, such that (I) M(a, a) is

the affinity score measuring the individual-level similarity for
candidate matching user pair a = (i, i′) based on the cross-
platform behavior similarity. User pairs that are unlikely to be
linked due to significant discrepancy in behavior patterns will
be filtered out; (II) M(a, b) is the affinity score measuring the
similarity between user pairs a = (i′, j′) and b = (i, j) based
on the pairwise behavior similarity as well as social structure
consistency. M(a, b) = 0 if the inconsistency between (i, j)
and (i′, j′) is too large. We assume M(a, b) = M(b, a)
without loss of generality.

We represent the agreement cluster C∗ by an indicator
vector y, such that y(a) = 1 if a ∈ C∗ and zero otherwise.
The correspondent problem is reduced to find a cluster C∗

of candidate user pairs (i, i′) that maximizes the structure
consistency FS(y) =

∑
a,b∈C∗M(a, b) = yTMy. We relax

both the mapping constraints and the integral constraints on
y, such that its elements can take real values in [0, 1]. By
the Raleigh’s ratio theorem, the solution that maximizes the
inter-cluster score yTMy is the principal eigenvector of M.

By defining the relation between y and w as y(ii′) =
wTxii′ , maximizing FS(y) is equivalent to the following
problem:

min
w

FS(w)=wTXT (D−M)Xw

s.t. ||w||2 ≤ s,D(a, a) =
∑
bM(a, b)

(9)

where s is a predefined real positive number which is used to
prevent the norm of w from being arbitrarily large.

For users from C social platforms, we can decompose
the problem into a set of one-to-one SIL problems with
respect to Mcc′ , where c ≤ c′, c = 1, ..., C − 1 and
c′ = 2, ..., C, without much effort. Then, the objective
function FS(w) can be extended to an objective function
vector FS(w) = [F cc

′

S (w)]. The structure consistency matrix
Mcc′ is constructed as follows. First, for each candidate
user pair a = (i, i′), their behavior similarity is calculated
by M cc′(a, a) = exp

(
−||xi−xi′ ||

2

σ2
1

)
, where σ1 denotes the

bandwidth to control the sensitivity on behavior similarity.
Second, for candidate user pair a = (i, i′) and b = (j, j′),
their structure consistency is calculated by:

M cc′(a, b) = exp

(
−(||xi−xi′ ||2+||xj−xj′ ||2)

2σ2
1

)
·(

1− (dij−di′j′ )
2

σ2
2

) (10)

where σ2 denotes the bandwidth to control the structure sen-
sitivity of user social relations. dij denotes the n-hop distance
measuring the closeness of two users, which is formally
defined as the minimal number of friends (including the user
himself) that a user reaches the friend user. Specifically, we
define kij as the number of intermediate users from user i to
j, and then their distance is dij = (kij + 1)2.

It is not hard to prove that matrix Mcc′ is positive-definite,
and consequently, matrix Θcc′ = Dcc′ −Mcc′ is positive-

semidefinite by spectral graph theory. Details are omitted due
to space limit.

Our model is consistent with [35] that the majority of user’s
friends tend to provide useful information besides the users
themselves. Other works follow similar rules with diversified
assumptions on the data structure. For example, in [15], the
graph reconciliation is started on a set of nodes with high
degrees. In “Big-Align” model [17], the optimal permutation
is learned among the adjacency matrices of two graphs. Our
model is similar in spirit of the Big-Align model because both
use structural matching for linking social identities. However,
the adjacency information in our model is constructed by
joint modeling of behavior and social circles, instead of only
considering the follower/followee information.

5.3 Multi-objective Optimization
Based on the two above-mentioned objective functions (FS
and FD), given C social platforms and their users, we formu-
late the SIL problem as a multi-objective optimization problem
[8]:

min
w

F (w) = [FD(w),FS(w)]

s.t. cii′(w
Txii′ + b) ≥ 1− ξii′ , i ∈ S, i′ ∈ S’, ||w||2 ≤ s

(11)
where F (w) denotes a (C−1)C/2 + 1 dimensional objective
function vector.

A feasible solution does not typically exist that minimizes
all objective functions simultaneously in such a problem.
Note that since a penalty on the squared norm of w has
been included in FD, then constraint ||w||2 ≤ s can be
omitted. Therefore, we define a Utility function to aggregate
all the objective functions in form of generalized weighted
exponential sum as:

U =
(C−1)C/2+1∑

k=1

wk[Fk(w)]
p
,∀k, Fk(w) > 0, wk ≥ 0

(12)
where the weight parameter wk is a preference parameter
encoding decision makers’ preference. By minimizing Utility
function U , we seek the Pareto optimal solutions [8], which
cannot be improved in any of the objectives without degrading
at least one of the other objectives.

Proposition 1. The solution of the weighted exponential sum
utility function U is sufficient and neccessary for Pareto
optimality.

Proof: See Athan et. al. [36] and Yu [37].
When p = 1, the utility function is similar with traditional

semi-supervised learning objective function with a weighted
combination of empirical loss, the penalty on w and a graph
Laplacian regularizer [38]. When p > 1, our model is viewed
as minimizing the distance function between the solution point
and Utopia points [36] in the multi-dimensional objective
function space.

Dual Problem. By introducing a nonlinear mapping φ(·)
to a higher (possibly infinite) dimensional Hilbert space H.
w and b define a linear regression in that space. Accord-
ing to the Representer Theorem [39], the decision function
w can be expressed in the dual problem as the expansion
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over labeled user pairs and unlabeled candidate user pairs
w =

∑
ii′∈Pl

⋃
Pu
αii′φ(xii′). Then, the decision function is

given by:

f(xt) =
∑

ii′∈Pl
⋃

Pu
αii′K(xii′ , xt) + b (13)

where we use K to denote the kernel matrix formed by kernel
functions K (xii′ , xjj′) = 〈φ (xii′) , φ (xjj′)〉. Take p = 1 as
the illustrative example, by setting w(1) = 1 and w(k) =
γM , k = 2, ..., (C − 1)C/2 + 1, we plug Eqn. 13 into Eqn.
12 and introduce the Lagrangian multipliers, and obtain the
following regularized Utility function to be minimized:

min
α,β

{
1
2α

T
(

2γLK + 2γM
|Pl

⋃
Pu|2K(D−M)K

)
α

−αTKJYβ + βT1
} (14)

where β denotes an Nl-dimensional Lagrangian parameter
vector, J = [I,0] is an Nl × |Pl

⋃
Pu| with I as the

Nl × Nl identity matrix (the first Nl pairs are labeled)
and Y = diag{y1, ..., yNl}. M denotes the cross-platform
structure consistency matrix:

M =


M12 0 ... 0

0 ... ... ...

... ... Mcc′ 0
0 ... 0 ...

 (15)

where c < c′, c = 1, ..., C−1, c′ = 2, ..., C. Similarly, D is the
diagonal matrix. We obtain the solution by taking derivatives
w.r.t. α:

α =
(

2γLI + 2 γM
|Pl

⋃
Pu|2 (D−M)K

)−1
JTYβ∗ (16)

Again, substituting Eqn. 16 into the dual functional Eqn.
14, we obtain the following smooth quadratic programming
problem to be solved:

β∗= max
β

{
βT1− 1

2β
TQβ

}
s.t.

∑
ii′∈Pl

βii′yii′ = 0, 0 ≤ βii′ ≤ 1
|Pl|

(17)

where:

Q = YJK

(
2γLI + 2

γM
|Pl
⋃
Pu|2

(D−M)

)−1
JTY (18)

From the above derivation we can see that the SIL problem
can be well cast into a standard convex programming problem
that can be easily solved by many off-the-shelf optimization
package. Despite that we only introduce the model construc-
tion procedure when p = 1, similar derivation can also be
performed when p > 1. Consequently, the resulted objective
function is also convex due to the convexity of the individual
objective functions and the convexity of the Utility function U .
Besides, using higher values for p increases the effectiveness
of the method in providing the complete Pareto optimal set
[36], [8].

Dealing with Information Missing. When constructing
the pair-wise similarity among users, significant information
missing exists among real world Web platforms due to: (A)
intrinsically heterogeneous information sources, (B) unpre-
dictable user login and logout, and (C) privacy concerns.

Previous approaches [1], [2] construct discriminate models
where the missing feature is automatically filled with zeros
based on the assumption that the values do exist but not
observed, which is actually not the case of the problem in
hand. In this paper, we suppose that the missed values can
not be observed, and they need not be filled with any value. We
revise the discriminative model f(x) by a normalized margin
as [40]:

f(x) = wii′φ(xii′) + b,w =
∑

ii′∈Pl
⋃

Pu

αii′

sii′
φ(xii′) (19)

where wii′ denotes the instance specific vector obtained by
taking the entries of w that are relevant to xii′ (φ(xii′)),
namely, those for which the sample xii′ (φ(xii′)) has valid

features. sii′ =
√
||wii′ ||2
||w||2 is a normalized scalar that can be

estimated iteratively, where:

||w||2 =
∑

ii′∈Pl
⋃

Pu

∑
jj′∈Pl

⋃
Pu

αii′αjj′

sii′sjj′
〈φ(xii′), φ(xjj′)〉

||wii′ ||2 =
∑

ii′∈Pl
⋃

Pu

∑
jj′∈Pl

⋃
Pu

αii′αjj′

sii′sjj′
〈φ(xii′), φ(xjj′)〉Rii′

(20)
where 〈·, ·〉Rii′ denotes the kernel calculation using only
the non-missing indices of user pair ii′. Consequently, the
objective dual problem in Eqn. 17 is revised as:

Q = YJKn

(
2γLI + 2

γM
|Pl
⋃
Pu|2

(D−M)

)−1
JTY (21)

where each element of Kn is calculated by polynomial kernel:

Kn(xii′ , xjj′) =

(
〈xii′ , xjj′〉R + 1

)d
sii′sjj′

(22)

with the inner product calculated over valid features
〈xii′ , xjj′〉R =

∑
r:r∈Rii′∩Rjj′

xii′(r)xjj′(r). It is straightfor-

ward to see that Kn is a kernel, since user pairs with missing
values can be filled with zeros. In summary, the details of the
model are described in Algorithm 1. The proposed model is
guaranteed to converge to a local optimal solution within 5
iterations, according to experiments in this paper and in [40].

Since the data size would be extremely large, we adopt the
distributed convex optimization method [41] to optimize the
objective function distributively on several servers in parallel
with a carefully designed model synchronization strategy. In
summary, the sketch of the optimization process is described
in Algorithm 1.

Algorithm 1 The HYDRA algorithm
Input: Data: X,Y, Parameters: γL, γM , p, σS , σD

Output: α, β
1: Select the candidate pair set Pu by comparing the pair-wise

similarity.
2: Construct structure consistency graph M.
3: Initialize s for all the labeled and unlabeled training pairs as:
s0ii′ = 1−#absent feat/#feat dim.

4: while the stopping criterion is not reached do
5: Find βt by Eqn. 17, and calculate αt by Eqn. 16.
6: Update st based on w(t), using Eqn. 20, t = t+ 1.
7: end while
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5.4 Model Analysis
Interaction of multiple objectives. We learn the linkage
function via optimizing two kinds of objective functions, i.e.,
the supervised learning using the reliably obtained ground
truth, and the structure consistency maximization by mod-
eling the core social networks behavior consistency. They
are complementary to each other by jointly measuring the
behavior similarity of both individual and group levels. When
the ground truth information is insufficient (e.g., less than 10%
of the pairs assigned with labels), the model will be more
dependent on the core social networks structure. The linked
user pairs will be served as some “anchor” pairs where the
linkage information can be propagated along the core social
networks. However, the learned model tends to be over-smooth
(under-fitting) by over-emphasizing the structure consistency.
When the ground truth information is sufficient (e.g., more
than 80% of the training pairs assigned with labels), the model
can still be endowed with more generalization power by the de-
cision boundary smoothing towards better group level behavior
consistency. The lp-norm in the Utility function determines
the way how the two kinds of objective functions interact
with each other, where large p imposes more uniqueness on
the dominant objective function. Correspondingly, model over-
fitting is likely to take place. Therefore, a better trade-off
can be steadily achieved by appropriately tuning ωk and p
on different behavior data record repositories from different
communities.

Complexity. We briefly analyze the model complexity of
HYDRA. In Eqn. 17, our model achieves an O(|Pl|2) time
complexity, where Pl denotes the number of user pairs with
ground truth linkage information. In Eqn. 18 and Eqn. 21,
the time complexity is O(s2|Pl

⋃
Pu|3), where s indicates

the sparse level of the matrix M. In fact, M is extremely
sparse under real situations. For example, in our study, the
sparse level of M is only about [0.0001, 0.001] on Chinese
social platforms. Therefore, the actual time consumption for
Eqn. 18 and Eqn. 21 will be far less than the linkage function
construction in Eqn. 17.

6 EXPERIMENTAL EVALUATION

Real Data. We use two publicly available large-scale real data
sets for our experiments. The first one, referred to as “Chi-
nese”, includes five popular social networks services which
were originated from China and have since gained global
popularity. (1) Sina Weibo: (www.weibo.com) A hybrid of
Twitter and Facebook with a user base of 500 million users
and 47 million daily active users by December 2012. (2)
Tecent Weibo: (t.qq.com) Another twitter-like micro-blogging
service with 500 million users and over 100 million daily
active users. (3) Renren: (www.renren.com) A social networks
service dubbed as the Facebook of China with 162 million
registered users. (4) Douban: (www.douban.com) A social
networks service for people to share content on topics of
movies, books, music, and other off-line events in Chinese
cities, with over 100 million monthly unique visitors. (5)
Kaixin: (www.kaixin001.com) A social networks service with
160 million registered users. We use 5 million users in this data
set, each with accounts on every one of the five platforms. The

time span of this data set is from June 2012 to June 2013. The
second one, referred to as “English”, includes two globally
popular social networks: (1) Twitter (twitter.com); and (2)
Facebook (www.facebook.com). We use 5 million users in
this data set each with accounts on both Twitter and Facebook.
The time span of this data set is from June 2012 to June 2013.
For the above social networks, we collect user profiles (e.g.
gender, city, and favorites), social content (e.g. tweets, posts,
and status), social connections (e.g., friendship, comments, and
repost or retweet contents), timeline information (e.g. time
index for each behavior). Our ground truth of the linkage of
each user across all the platforms are provided by a third-
party data provider who has access to each Chinese user’s
national ID number, IP address and home address used by
the user to register all accounts on different websites, all of
which collectively serve as the most reliable data to uniquely
identify a natural person and link all the different accounts.
Note that users in the English data set are all Chinese users of
our choice. In the following experiment results, x-axis is all
decreasing ranked result (user is by degree, and community is
by size). The ratio between the labeled data to unlabeled data
is set to 1/5, but we have also tested other ratio settings in
our experiment.
Experiment Environment. Our experiments and latency ob-
servations are conducted on 5 standard servers (Linux), with
Intel (R) Xeon (R) Processor E7-4870 (30M Cache, 2.40 GHz,
6.40 GT/s Intel (R) QPI, 10 cores), 64 GB main memory and
10,000RPM server-level hard disks.
Compared Methods. We compare both our methods with the
following state-of-the-art approaches and our own baselines.

(I) MOBIUS: a behavior-modeling approach to link users
across social media platforms [2].

(II) Alias-Disamb: an unsupervised data-driven approach
based on username analysis to link users across platforms [1].

(III) SMaSh: a record linkage approach finding linkage
points over Web data [5].

(IV) SVM-B: binary prediction on user pairs using sup-
port vector machines on the proposed similarity calculation
schemes.

(V) HYDRA-Z: a degenerate version of our model HYDRA
where all the missing features are filled with zeros (Eqn. 17).

(VI) HYDRA-M: our model HYDRA with missing features
properly handled (Eqn. 21 and Algorithm 1). Without specifi-
cation, we call HYDRA-M as HYDRA.
Parameter Settings. To achieve better performance of all the
approaches, a validation set with 5 million user pairs and
their ground truth labels have been used. For other compared
learning-based linkage function learning, the model parameters
are set to be the optimal value through the validation set.
All of them are implemented on the distributed computing
platforms as our approach. Specifically, for SVM-B, we also
use a distributed optimization to learn the linkage model.

For pair-wise similarity calculation in this paper, parameters
(e.g., ε for user profiling, q and λ for multi-resolution temporal
similarity modeling) are tuned by a grid search procedure to
maximize the performance of a linear SVM on validation set.
The optimized multi-dimensional similarity xii′ are used for
model construction of (IV), (V) and (VI).
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(d) p = 4

Fig. 4. Performance curve with different settings of γM
and γT under different p.
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(c) Precision in English
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(d) Recall in English
Fig. 5. Performance w.r.t. #labeled pairs.

For both HYDRA-Z and HYDRA-M, we need to tune the
model parameters γL, γM , p, σS and σD. We construct the
models on the training data and conduct parameter tuning
on the validation set. In the following sections, we will
illustrate the functional properties with respect to different
model parameter settings.
Evaluation Metrics. In our experiments, we use precision and
recall to evaluate the effectiveness, and the total execution
time (at different scales) to evaluate the efficiency. Precision
is defined as the fraction of the user pairs in the returned result
that are correctly linked. Recall is defined as the fraction of
the actual linked user pairs that are contained in the returned
result. Parameters of all the kernels for HYDRA are tuned
according to the methods described in the previous sections.

6.1 Effectiveness Evaluation

Performance w.r.t. Different γM and γL. We compare the
performance of our approaches with different settings of γM
and γL under p = 1, 2, 3, 4, and show the performance curves
in Figure 4. From Section 5 we see that γM and γL determine
the relative importance of the problems in MOO framework
from the decision maker’s perspective, while p determines
how the learned model approximates the Utopia solution,
thus determining the intrinsic structure of the Utility function.
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Fig. 6. The precision and recall curve w.r.t. different p.
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(a) Precision in Chinese
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(b) Recall in Chinese
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(c) Precision in English
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(d) Recall in English

Fig. 7. Performance w.r.t. #unlabeled pairs.

However, for real data, a decision maker’s preference does not
necessarily correspond to the best performance, as can be seen
from Figure 4. The results tell us that different settings of p
lead to the choice of different optimal setting of γM and γL.

The performances in Figure 4 under different p indicate that
a reasonable setting of γL is in [0.01, 1]. For γM , the optimal
setting of the normalized value γM

|Pl
⋃

Pu|2 may depends on the
average number of friends for each user on different social
platforms, where a reasonable setting should be in [0.1, 10].
Performance w.r.t. Different p. Figure 6 shows our perfor-
mance with p varied from p = 1 to p = 10 and the optimal
setting of γM and γL. Although increasing p will help obtain
the complete Pareto optimal solution, it does not necessarily
correspond to the optimal solution of our SIL problem. In
fact, imposing larger p leads to heavier preference on objective
functions with larger values, leading inevitably to model over-
fitting. We see from Figure 6 that both precision and recall
reach optimum with an appropriate setting of p (p = 6 and
p = 5 for best precision and recall, respectively).
Performance w.r.t. Different Number of Labeled Pairs.
Fixing the level of structure information, we vary the num-
ber of labeled user pairs from one million to five million
users. The experimental results are reported in Figure 5. Note
that, although the performance of all five methods shows
improvement along with the increasing number of labeled
pairs, the improvement of HYDRA’s is the most significant
and exhibits noticeably greater acceleration compared to the
baseline methods. Another interesting observation is that the
performance on English platforms are better than Chinese
ones, which is also true for Figure 7. Our interpretation of
it goes as follows. First, the complexity of the SIL problem
grows with the number of platforms involved — we used five
Chinese platforms and only two for English platforms. Second,
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(b) Recall in Chinese
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(c) Precision in English
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(d) Recall in English
Fig. 8. Performance with #social communities.

the social structure and behavior on Chinese platforms are
characterized with a higher complexity and greater temporal
dynamics than those on English platforms. We use real data
to illustrate this in Figure 10 (comparing Twitter and Sina
Weibo as an example). In Figure 10 (a), we plot the diffusion
speed for retweets. In comparison, Sina Weibo has much more
retweets and a higher diffusion speed for retweet than Twitter,
which means the information diffusion in Sina Weibo is much
faster than in Twitter. Combined with Figure 10 (b), the
retweet distribution, we can tell that Sina Weibo contains much
richer and more dynamic information than Twitter, presenting
a much more challenging task for the SIL problem. In Figure
10 (c) and Figure 10 (d) 1, we plot the follower and followee
distribution. Note that most users in Sina Weibo have much
more followers and followees than in Twitter. Consequently,
the much more complicated social structure contributes to the
greater challenge to the SIL problem on Chinese platforms.
Performance w.r.t. Different Structure Information Levels.
Fixing the number of labeled user pairs, we vary the numbers
of user pairs with no ground truth labels, and evaluate the
linkage precision. The results are illustrated in Figure 7.
Compared against Figure 5, we notice that the performance of
baseline methods with unlabeled data is much worse than the
performance with labeled data in Figure 5. But our HYDRA
survives the unlabeled data setup and performs much better
than the baseline methods. In Figure 5 and Figure 7, HYDRA
not only performs much better (higher precision and recall)
than the baseline methods, but also shows better performance
along the increasing number of users.
Performance w.r.t. Different Number of Social Commu-
nities. We evaluate how the structure information from other
social communities [28] could help enhance the model gen-
eralization power. Specifically, given the top five largest over-
lapping communities A, B, C, D, E with labeled training pairs
between A and B. To judge whether a user pair from CA×CB
corresponds to the same person, we incrementally incorpo-

1. Spikes in Figure 10 (d) are due to the default setup of Twitter and
Sina Weibo whereby (1) every Twitter new user are recommended with 10
followees by default (the left spike); and (2) For Twitter and Sina Weibo,
there are a 2,000-followee limit (the right spike).
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(b) Recall

Fig. 9. Performance on different social platforms.
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Fig. 10. Comparison between Twitter and Sina Weibo.

rate structure information of training pairs from CA × CC ,
CA ×CD, CA ×CE , CB ×CC , CB ×CD and CB ×CE for
model training, and report the results on the test set of user
pairs from CA×CB in Figure 8. The interesting observation is
that the social community structure has much greater impact
on the results for Chinese platforms than those for English. It
may due to the more complicated social community structure
and social behaviors, as we have illustrated in Figure 10. But
as we notice in Figure 8, the social community structure indeed
helps HYDRA achieve better results than baseline methods.

Performance w.r.t. Different Social Platforms. We study SIL
across culturally different social platforms, that is, between
Chinese platforms and English platforms. In this experiment,
we use the whole data set with all seven different social
networks. The results are reported in Figure 9. Compared with
the previous results, there is an obvious performance drop
(affected by different writing styles in Chinese and English,
and social friends), but HYDRA performs even better than the
baseline methods, and has better performance improvement
with the increasing number of users. This shows that hetero-
geneous behavior model demonstrates better fitting to online
social behaviors and social structure modeling helps to capture
more linkable information.

Based on effectiveness evaluation in different parameter
settings, different number of labeled data pairs, different
structure information levels and different number of social
communities, we conclude that HYDRA significantly outper-
forms the baseline methods and displays good scalability with
the increasing amount of data, in no matter Chinese platforms
or English platforms, or together.
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(b) English
Fig. 11. Efficiency evaluation.

6.2 Efficiency Evaluation

We use the total execution time at different scales to evaluate
the efficiency. From the results reported in Figure 11, HYDRA
consumes less time than the baseline methods (except SVM-
B and SMaSh) in the same scaling-up number of users, for
both Chinese and English platforms. Since HYDRA solves a
convex optimization problem where a unique global optimal
solution can be achieved. It is interesting that the runtime
cost of HYDRA increases at a slower speed than the baseline
methods. Along with the scaling-up number of users, the
runtime of HYDRA displays a converging tendency, which
is a desirable feature for handling large-scale data sets. The
explanation for this favorable characteristics lies in the the
social structure we incorporate into the HYDRA model — for
such five-million-user social networks, when we have accu-
mulated around three million users and their one-hop friends,
the social structure is almost well-constructed, and after that,
the resulting utility function contains a rather sparse structure
consistency matrix M which is easy to solve with many
accelerating techniques (e.g., accelerated coordinate descent
method). For Alias-Disamb [1], it automatically generates a
large number of training pairs by analyzing the uniqueness of
the usernames, where most of the generated label information
may be incorrect, resulting in an extremely large quadratic
programming problem and extremely slow convergence rate.
SVM-B corresponds to one of the objective functions in our
MOO learning framework, and it therefore consumes less time
for model construction. SMaSh employs a totally different
paradigm for record linkage. As a result, the property of its
efficiency behavior is quite different from other discriminative-
model-based approaches for SIL.

Our model possesses O(|Pl|2) time complexity in learning
the linkage function. However, when increasing the number
of users to million scales, the portion of inactive users will
be dominated. The behaviors of these users are very random
and sparse so that the behavior similarities are almost zeroes
among these users. For a linkage model learning, these inactive
users will not become the “support vector”, thus they will
be reduced in the first several iteration rounds. Therefore,
increasing the number of inactive users will not significantly
increase the training time consumption. In conclusion, HY-
DRA is capable of handling large-scale data sets.

6.3 Sensitivity Evaluation

Sensitivity evaluation is to test HYDRA-M and HYDRA-
Z under varied missing information settings (from varied
number of users). According to the results in Figure 12, for
both Chinese and English platforms, HYDRA-M outperforms
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Fig. 12. Performance with missing data.

HYDRA-Z although both achieve high precision and recall.
The results clearly demonstrate the superiority of HYDRA-M
(HYDRA) in handling missing information without compro-
mising performance.

6.4 Discussion
The data sizes in this paper are prohibitively large for a single
PC or server. Despite that we deal with trillions of data records
millions of users when optimizing the convex problem in Eqn.
17, the problem still can be handled efficiently by several
servers by the following reasons.

First, the meaningful behavior patterns are extremely sparse.
For example, the percentage of the non-missing or non-zero
features on the data of English communities are no more
than 4%, and the percentage of available similarities between
users are no more than 2%. Even some missing values can
be filled by aggregating the core social behavior similarities,
the available similarities are still no more than 3%. Similarly,
the available similarities are about 2% on the data of Chinese
communities. The structure consistency matrices M is even
more sparse, which is usually less than 1% non-zero elements
for both English and Chinese communities. Such data sparsity
allows efficient data storage, and successfully execution of our
learning algorithm with 5 high-end servers.

Moreover, we learn the model by the distributed optimiza-
tion method [41] which optimizes the linkage function in
parallel on several servers with a carefully designed synchro-
nization strategy. The core idea of the distributed optimization
is that the overall objective function can be optimized towards
the optimal solution via optimizing a series of sub-problems on
different part of data stored distributively on different servers.
Meanwhile, our model involves support vector representation,
i.e., α and β, where at least 90% of the dimensions in β
are zeros on million scale data. For each step of the model
optimizing, we perform a coefficient space shrinking process
to actively identifying the non-zero dimensions in β with a
very simple gradient thresholding technique. Consequently, the
corresponding entries with zeros in β in all the matrices (e.g.,
M and K) can be excluded from the memory when optimizing
βt. Finally, we further enhances the efficiency of the model
learning by using βt as the warm start for optimizing βt+1.

7 CONCLUSION

In this paper, we link user accounts across different social
networks platforms. To deal with the challenges, we propose
a framework, HYDRA, a multi-objective learning framework
incorporating heterogeneous behavior model and core social
networks structure. We evaluate HYDRA against the state-of-
the-art on two real data sets. Experimental results demonstrate

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND ENGINEERING VOL NO 27 YEAR 2015



that HYDRA outperforms existing algorithms in identifying
true user linkage across different platforms.
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