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Abstract—Traditional clustering and feature selection methods consider the data matrix as static. However, the data matrices evolve
smoothly over time in many applications. A simple approach to learn from these time-evolving data matrices is to analyze them
separately. Such strategy ignores the time-dependent nature of the underlying data. In this paper, we propose two formulations for
evolutionary co-clustering and feature selection based on the fused Lasso regularization. The evolutionary co-clustering formulation is
able to identify smoothly varying hidden block structures embedded into the matrices along the temporal dimension. Our formulation
is very flexible and allows for imposing smoothness constraints over only one dimension of the data matrices. The evolutionary feature
selection formulation can uncover shared features in clustering from time-evolving data matrices. We show that the optimization
problems involved are non-convex, non-smooth and non-separable. To compute the solutions efficiently, we develop a two-step
procedure that optimizes the objective function iteratively. We evaluate the proposed formulations using the Allen Developing Mouse
Brain Atlas data. Results show that our formulations consistently outperform prior methods.
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✦

1 INTRODUCTION

CO-CLUSTERING aims at identifying block structures
of the data matrices by clustering the rows and

columns simultaneously into co-clusters [18], [9], [13],
[14], [36]. That is, the hidden structure of the data matrix
can be more accurately described by a “checkerboard”
structure in which a subset of the rows and a subset
of the columns form a block. Currently, co-clustering
finds applications in many areas, including biological
data analysis [29], [23], text mining [14], [13], and social
studies [17].

As a class of powerful methods for unsupervised
pattern mining, existing co-clustering methods invari-
ably assume that the data matrices are static; that is,
they do not evolve over time. However, in many real-
world domains, the processes that generated the data
are time-evolving. Hence, the observed data are usually
dynamic. As a consequence, the block structures em-
bedded into the time-varying data should also evolve
smoothly over time. Therefore, it is desirable to in-
corporate the temporal smoothness constraint into the
co-clustering formalism. Similarly, current methods for
feature selection in clustering assume that the data are
static [47], [50]. Nevertheless, many practical problems
are time-evolving, and it is desirable to select features by
incorporating the temporal smooth nature of the data.
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In this paper, we propose an evolutionary co-
clustering formulation for identifying co-clusters from
time-varying data. The proposed formulation employs
sparsity-inducing regularization [38] to identify block
structures from the time-varying data matrices. More
specifically, it applies fused Lasso type of regulariza-
tion [39] to encourage temporal smoothness over the
block structures identified from contiguous time points.
The proposed formulation is very flexible and can be
applied to encourage temporal smoothness over either
one or both dimensions of the data matrices. We also
study the problem of feature selection in clustering on
time-varying data. By incorporating the fused Lasso
regularization [39] into the framework of sparse feature
selection, an evolutionary feature selection formulation
is proposed for identifying clusters and shared features
in time-varying data simultaneously.

We show that the two proposed formulations for
evolutionary co-clustering and feature selection can be
reduced to the same optimization problem, which is
non-convex, non-smooth, and non-separable. We pro-
pose an iterative two-step procedure to compute the
solution of the general optimization problem. Each of
the iterative step involves a convex, but non-smooth and
non-separable problem. To enable efficient optimization,
we derive the dual form of this problem and employ
a gradient descent algorithm to solve the smooth dual
problem.

We evaluate the proposed formulations using the
Allen Developing Mouse Brain Atlas data [25], [21],
which contain high-resolution, three-dimensional gene
expression patterns in the mouse brain at multiple de-
velopmental stages. Results show that the proposed
evolutionary co-clustering formulation consistently out-
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performs other methods by identifying blocks that are
consistent with classical neuroanatomy. Meanwhile, the
feature selection formulation yields a set of shared fea-
tures across time points.

The rest of this paper is organized as follows. We in-
troduce the sparse singular value decomposition method
for co-clustering, and then describe the proposed evolu-
tionary co-clustering formulation in Section 2. In Section
3, we present the proposed evolutionary feature selection
formulation. We discuss some related work in Section
4 and report the experimental results in Section 5. This
paper concludes in Section 6 with discussions and future
work.

Notations: We use boldface lower-case letters, e.g., u, to
denote vectors and upper-case letters, e.g., X, to denote
matrices. The norm || · || stands for ℓ2 norm unless
stated otherwise explicitly. For a vector u, its ℓ1 norm,
defined as the summation of the absolute values of its
components, is denoted as ||u||1. For a matrix X, its
Frobenius norm is denoted as ||X||F . We use ⊙ to denote
the component-wise multiplication and ⊗ to denote the
Kronecker product. The soft-thresholding operator Tλ,
acting on a vector u, is defined component-wise as:

(Tλ(u))i =







ui − λ if ui > λ,

ui + λ if ui < −λ,

0 if |ui| ≤ λ.

(1)

2 A FUSED LASSO FORMULATION FOR EVO-
LUTIONARY CO-CLUSTERING

In this section, we describe the sparse singular value de-
composition method for co-clustering. We then propose
a fused Lasso formulation for evolutionary co-clustering.

2.1 Sparse Singular Value Decomposition for Co-
Clustering

The problem of co-clustering is closely related to the
singular value decomposition (SVD) of the data matri-
ces [13], [49], [24]. In [13], [49], the spectral clustering
formalism is extended to derive a spectral formulation
for co-clustering. In these spectral co-clustering formu-
lations, the data are projected onto the left and the right
singular vector spaces before they are concatenated and
clustered to identify the co-clusters. Motivated by the
relationship between SVD and co-clustering, a sparse
SVD formulation is proposed in [24] for co-clustering.
Formally, let X ∈ R

n×p be a data matrix. The first
singular value and the corresponding left and right
singular vectors of X can be computed as

min
s,p,q

‖X − spqT ‖2F ,

where s ∈ R is the first singular value, and p ∈ R
n

and q ∈ R
p are the corresponding left and right singular

vectors, respectively, and ‖·‖F denotes the matrix Frobe-
nius norm. It is well known that the matrix spqT is the
optimal rank one approximation to the matrix X [15].

Note that p and q lie in the row space and column
space, respectively, of X. In addition, the singular vectors
p and q are usually not sparse; that is, most of their
components are nonzero.

Motivated by the optimal rank one approximation
property of SVD, a sparse SVD formulation is proposed
in [24]. Furthermore, it is shown that this sparse SVD
formulation can be employed for solving co-clustering
problems. Specifically, the following sparsity-inducing
formulation is involved in sparse SVD:

min
s,p,q

1

2
‖X − spqT ‖2F + λ‖sp‖1 + γ‖sq‖1, (2)

where ‖ · ‖ denotes the vector ℓ1-norm, and λ and γ are
the regularization parameters. It is well known that the
ℓ1-norm regularization on p and q encourages sparse
solutions [38]. Thus, when λ and γ are set to large
values, many entries of p and q will be set of zero. The
regularization parameters λ and γ control the tradeoff
between the quality of the rank one approximation and
the sparsity of p and q, respectively.

It is shown in [24] that the sparse SVD formulation
can be readily employed to solve co-clustering problems.
Specifically, the rows and columns of X corresponding to
nonzero entries of p and q, respectively, can be naturally
interpreted to form a co-cluster. If multiple co-clusters
are desired, subsequent co-clusters can be identified by
removing the rank one approximation from the data
matrix and solving the optimization problem in Eq. (2)
using the residual matrix. It is shown that this sparse
SVD method outperforms prior co-clustering methods
by identifying distinctive gene expression profiles cor-
responding to various pathological conditions from a
microarray gene expression data set.

The optimization problem in Eq. (2) is non-convex and
non-smooth. An iterative procedure has been developed
in [24] to compute the solution. In this procedure, one
of the vector variables is fixed while the other one
is optimized, and this process is alternated between
the two vector variables until it converges to a locally
optimal solution. Specifically, when p is fixed, q can be
computed by solving

min
q̃

F (q̃) ≡
1

2
‖X − pq̃T ‖2F + γ‖q̃‖1, (3)

where q̃ = sq. After q̃ is obtained, we have s = ‖q̃‖
and q = q̃/s. Similarly, when q is fixed, the following
problem is involved:

min
p̃

G(p̃) ≡
1

2
‖X − p̃qT ‖2F + λ‖p̃‖1, (4)

and p = p̃/s where s = ‖p̃‖. It can be shown that the
problems in Eqs. (3) and (4) are convex and can be solved
analytically.

The objective function in Eq. (3) can be written as

F (q̃) =
1

2
‖X − pq̃T ‖2F + γ‖q̃‖1

=
1

2
Tr (XT X)− pT Xq̃ +

1

2
q̃T q̃ + γ‖q̃‖1. (5)
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Taking the subdifferential of Eq. (5) with respect to q̃,
we have

∂F (q̃) = −XT p + q̃ + γ SGN(q̃),

where SGN(·) is defined component-wise as

(SGN(q̃))i =







{1} if (q̃)i > 0

{−1} if (q̃)i < 0

[−1, 1] if (q̃)i = 0.

Note that the subdifferential of a function is a set, and
when the function is differentiable, the set is a singleton
containing the derivative [34]. It follows from the opti-
mality condition for unconstrained problems [34] that q̃∗

is an optimal solution to Eq. (3) if and only if 0 ∈ ∂F (q̃∗).
Hence, it can be easily verified that the optimal q̃∗ is
given by

(q̃∗)i =







(XT p − γ)i if (XT p)i > γ

(XT p + γ)i if (XT p)i < −γ

0 if |(XT p)i| ≤ γ.

(6)

Similarly, the optimal p̃∗ for the optimization problem
in Eq. (4) is given by

(p̃∗)i =







(Xq − λ)i if (Xq)i > λ

(Xq + λ)i if (Xq)i < −λ

0 if |(Xq)i| ≤ λ.

(7)

The iterative procedure in [24] applies Eqs. (6) and (7)
alternately until a locally optimal solution is reached.

2.2 Evolutionary Co-Clustering

In the traditional co-clustering framework [18], [9], [13],
[23], [36], [29], we assume that the data matrix is time-
invariant; that is, it does not evolve along the temporal
dimension. In many application domains, each data
matrix is usually associated with a particular time point,
and it evolves smoothly over time. For example, in the
developing mouse brain gene expression analysis, the
spatial gene expression patterns at a particular develop-
ing time point is captured by a data matrix in which
one dimension corresponds to the genes and the other
dimension corresponds to the spatial locations. Since
gene regulation acts sequentially, the expression patterns
usually evolves smoothly over time, thereby resulting
a series of time-stamped data matrices, one for each
sampled developing time point. A simple approach for
mining these time-evolving data matrices is to treat the
data matrices at different time points separately. This ap-
proach, however, ignores the time-dependent nature of
the underlying process, thereby yielding results that are
not amenable to domain interpretation. In this paper, we
propose an evolutionary co-clustering formulation for
uncovering patterns from time-evolving data matrices.
The proposed formulation encourages smooth changes
in the row and/or column patterns over time, thereby
capturing the time-evolving nature of the underlying

process faithfully. The proposed framework is very flexi-
ble and can be applied to applications in which only one
dimension of the data matrices evolves.

Given a set of time-evolving data matrices Xt ∈ R
n×p

for t = 1, · · · , N , where N is the number of sampled time
points, we are interested in identifying block structures
from each of the data matrices. A simple approach is to
compute the sparse SVD for each data matrix separately,
leading to the following optimization problem:

min
st,ut,vt

N∑

t=1

{
1

2
‖Xt − stutv

T
t ‖

2
F + λ‖stut‖1 + γ‖stvt‖1

}

,

where ut ∈ R
n and vt ∈ R

p are associated with the
rows and columns, respectively, of Xt, and st is the
corresponding singular value. However, this approach
decouples the data matrices for contiguous time points
and ignores the temporal evolving nature of the under-
lying process that generated the data matrices.

To incorporate the temporal smoothness constraints
into the co-clustering framework, we propose the fol-
lowing sparsity-inducing evolutionary co-clustering for-
mulation:

min
st,ut,vt

N∑

t=1

{
1

2
‖Xt − stutv

T
t ‖

2
F + λ‖stut‖1 + γ‖stvt‖1

}

(8)

+

N−1∑

t=1

{η‖st+1ut+1 − stut‖1 + ξ‖st+1vt+1 − stvt‖1} ,

where η and ξ and tunable parameters. In this for-
mulation, the last two regularization terms are fused
Lasso type of regularization [40], and they encourage
the ut and vt for contiguous time points to be sim-
ilar. Specifically, these regularization terms encourage
the differences of contiguous ut and vt to be zero,
thus enforcing many entries of contiguous ut and vt to
be identical. These fused Lasso type of regularization
naturally incorporates the time-evolving nature of the
data matrices by encouraging the block structures for
contiguous time points to be similar. Note that we can
also encourage only the rows or the columns of the block
structures to be similar by setting either ξ or η to zero.

The objective function in Eq. (8) can be expressed
equivalently as

N∑

t=1

1

2
‖Xt− stutv

T
t ‖

2
F +λ‖ũ‖1+ γ‖ṽ‖1+ η‖Eũ‖1+ ξ‖Fṽ‖1,

where ũ = (s⊗en)⊙u, s = [s1, s2, · · · , sN ]T , ṽ = (s⊗ep)⊙
v, u = [uT

1 ,uT
2 , · · · ,uT

N ]T ∈ R
nN , v = [vT

1 , vT
2 , · · · , vT

N ]T ∈
R

pN , E ∈ R
n(N−1)×nN and F ∈ R

p(N−1)×pN are defined
as

(E)ij =







−1 if j = i, i = 1, · · · , n(N − 1)

1 j = i+ n, i = 1, · · · , n(N − 1)

0 otherwise,
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(F)ij =







−1 if j = i, i = 1, · · · , p(N − 1)

1 j = i+ p, i = 1, · · · , p(N − 1)

0 otherwise.

(9)

The objective function in Eq. (8) is non-convex and
non-smooth. In addition, the fused Lasso regularization
terms are non-separable [43], [16]. We propose an iter-
ative procedure to compute u and v. Specifically, we
optimize u by fixing v and then optimize v by fixing
u. This iterative process is repeated until convergence.
In the following, we discuss the detailed procedure of
computing v when u are fixed. The other case can be
derived in a similar way. Specifically, when u are fixed,
ṽ can be computed by solving the following optimization
problem:

min
ṽ

fγ
ξ (ṽ) ≡

t∑

i=1

1

2
‖Ai − uiṽ

T
i ‖

2
F + γ‖ṽ‖1 + ξ‖Fṽ‖1. (10)

The objective function in Eq. (10) is convex, but non-
smooth and non-separable. In Section 4, we develop an
efficient algorithm to compute the optimal ṽ∗.

3 EVOLUTIONARY FEATURE SELECTION IN
CLUSTERING

In this section, we describe the problem of feature se-
lection in clustering. We then propose an evolutionary
feature selection formulation for clustering time-varying
data.

3.1 Feature Selection in Clustering

Given a data matrix X ∈ R
n×p containing n samples and

p features, we want to group the rows of X into clusters.
If we use Xj to denote the j-th column (feature) of X, the
objective functions of many clustering methods can be
expressed in terms of the columns of X as follows [47]:

min
Θ

p
∑

j=1

fj(Xj ,Θ),

where fj is a function only related to the feature Xj , and
Θ represents a partition of the data set. For instance, if
we consider the K-means clustering method, fj will be
the summation of within-cluster distances for feature Xj

as

fj(Xj ,Θ) = c−

K∑

k=1

1

nk

∑

i,i′∈Ck

di,i′,j

where Θ = {C1, · · · , CK} is a partition of the samples
in K clusters, c is a constant related to the data, nk

denotes the number of samples in cluster Ck, di,i′,j is
the dissimilarity between the i-th and the i′-th samples
with respect to the j-th feature.

When the squared Euclidean distance di,i′,j = |Xi,j −
Xi′,j |

2 is used, a sparse clustering method was proposed
in [47]. Instead of treating features equally, the sparse

clustering method gives each feature a weight. This leads
to the following optimization problem:

min
w;Θ

p
∑

j=1

wjfj(Xj ,Θ),

where w = (w1, · · · , wp)
T denotes the weight vector

for the features. In this formulation, the different con-
tributions of features to the overall objective function
are reflected in the weight vector. Furthermore, if ad-
ditional constraints on the weight vector are imposed,
the weight vector can be encouraged to be sparse (i.e.,
containing zero elements) [38], thereby leading to feature
selection [47]. Specifically, the following optimization
problem is involved in the sparse clustering method
in [47]:

min
w;Θ

p
∑

j=1

wjfj(Xj ,Θ)

s.t. ||w||2 ≤ 1, ||w||1 ≤ s, wj ≥ 0,

where s is a tuning parameter.
In [47] a two-step procedure is used to solve this opti-

mization problem. In the first step, the weight vector w
is fixed, and the optimization reduces to a weighted K-
means problem. In the second step, a vector a is formed,
where each element aj = fj(Xj ,Θ) is the within-cluster
distance for the j-th feature based on the clustering
results obtained from the first step. This gives rise to
the following optimization problem:

min
w

− wT a

s.t. ||w||2 ≤ 1, ||w||1 ≤ s, wj ≥ 0.

This problem is of Lasso type and the solution can be
computed by applying the soft thresholding operator in
Eq. (1) as

w =
Tλ(a)

||Tλ(a)||
,

for some λ determined by s. The weight vector w is
updated and this loop will be iterated until the change
of w is very small.

It is intuitively easy to understand that some features
will be given zero weight after a few iterations, and thus
they will not affect the clustering results. Specifically,
if there are only minor differences among samples for
the j-th feature, aj obtained from the first step will be
close to zero. According to the shrinkage effect of the soft
thresholding operator, the corresponding weight wj will
be updated to a smaller value. In the next iteration, since
the standard K-means will be applied on data scaled
by w, the contributions of this feature will diminish
gradually. Therefore, features that are invariant among
samples will be eliminated eventually.

3.2 Evolutionary Feature Selection in Clustering

In the above feature selection framework, the data matrix
is considered static and does not evolve over time. In
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many application domains, the data matrices evolve over
time, and thus the data matrices at different time points
are correlated with each other. Each of them captures
a snapshot of an evolving process that generated the
data. A simple approach for mining these time-evolving
data matrices is to analyze them at different time points
separately. In this way, however, the time-dependent
nature of the underlying process is ignored and the
results are not amenable to domain interpretation.

In this section, we propose an evolutionary feature se-
lection formulation for uncovering shared features from
time-evolving data matrices. The proposed formulation
encourages smooth changes of the features over time,
thereby capturing the time-evolving nature of the un-
derlying process faithfully. Formally, given a sequence of
data matrices Xt, t = 1, · · · , N , where N is the number of
time points. A simple idea is to apply sparse K-means
separately to each data matrix, leading to the following
optimization problem:

min
w̃;Θ̃

N∑

t=1

p
∑

j=1

(wt)jfj((Xt)j ,Θt)

||wt||
2 ≤ 1, ||wt||1 ≤ st, t = 1, · · · , N,

where w̃ = (wT
1 , · · · ,wT

N )T ∈ R
Np, wt ∈ R

p is weight
vector corresponding to the data matrix Xt ∈ R

n×p,
Θ̃ = {Θ1, · · · ,ΘN}, and {s1, · · · , sN} are the tuning
parameters controlling the feature selection at different
time points.

In order to encourage the selection of shared features
among time-varying data matrices, we introduce a fused
Lasso term on the successive differences of the weight
vectors. This leads to the following optimization prob-
lem:

min
w̃;Θ̃

N∑

t=1

p
∑

j=1

(wt)jfj((Xt)j ,Θt)

||wt||
2 ≤ 1, ||wt||1 ≤ st, t = 1 · · · , N,

||wt − wt−1||1 ≤ s′, t = 2, · · · , N,

(11)

where s′ is a tuning parameter to encourage weight vec-
tors at contiguous time points to be similar. Specifically,
with the fused Lasso regularization, wt − wt−1 will be
enforced to be close to zero if the tuning parameter s′ is
small enough. In this case, wt and wt−1 will be almost
the same, thereby leading to the selection of shared
features across time points.

Following [47], we develop a two-step procedure for
solving the optimization problem in Eq. (11). In the first
step, the weight vector w̃ is fixed, and we optimize the
clustering Θ̃. This leads to a set of decoupled clustering
problems in which each feature is associated with a
weight. The can be solved by applying commonly used
algorithms such as K-means to scaled data matrices
using w̃ as the weights. In the second step, the clustering
results Θ̃ from the first step are fixed, and the optimiza-
tion problem in Eq. (11) is reduced to a fused Lasso type

problem as

min
w̃

−w̃T ã

||wt||
2 ≤ 1, ||wt||1 ≤ st, t = 1 · · · , N,

||wt − wt−1||1 ≤ s′, t = 2, · · · , N,

(12)

where ã = (aT
1 , · · · , aT

N )T , at ∈ R
p is the within-cluster

dissimilarity vector, and its element is defined as (at)j =
fj((Xt)j ,Θt).

We can transform the problem in Eq. (12) to an equiv-
alent unconstrained optimization problem:

min
w̃

α||w̃||2 − w̃T ã +

N∑

t=1

λt||w̃t||1 + λ′||Fw̃||1, (13)

where F is defined in Eq.(9), the coefficient of the ℓ2-norm
term α depends on the data and needs to be determined.
Although there is no closed form solution for α, we
can devise an approximation scheme to estimate its
value. To this end, we propose to solve an unconstraint
optimization problem first as

min
w̃

α||w̃||2 − w̃T ã. (14)

The solution to the problem in Eq. (14) can be expressed

as w̃⋆ = ã
2α . Then we set ||w̃⋆|| = 1, and obtain α⋆ = ||ã||

2 .
Finally, we substitute this α⋆ into Eq. (13) and get the
following problem:

min
w̃

1

2
||w̃ − ũ||2 +

N∑

t=1

λt||wt||1 + λ′||Fw̃||1, (15)

where ũ = ã
||ã|| . The formulation in Eq. (15) is similar

to the problem that we need to solve in the second step
of the evolutionary co-clustering procedure. In Eq. (15),
we still use the notations λt and λ′ instead of their exact
forms, 2λt

||ã|| and 2λ′

||ã|| to simplify the notation, since the

parameters λt and λ′ can be scaled to make these two
forms equivalent. Note that the parameters λt can be
different for the sequences of data sets. For simplicity,
we set them to the same value in our experiments.

4 AN EFFICIENT ALGORITHM

The evolutionary co-clustering is for identifying the
hidden block structures in the data matrices along the
temporal dimension. Meanwhile, the evolutionary fea-
ture selection method is designed to uncover the shared
features from time-evolving data matrices. We show that
both problems can be formulated as solving fused Lasso
regularized objective functions. Specifically, a common
optimization problem that needs to be solved in the
evolutionary co-clustering and feature selection formu-
lations in Sections 2 and 3 has the following form:

min
w̃

fλ1

λ2
≡ L(w̃) + λ1||w̃||1 + λ2||Fw̃||1, (16)

where L(w̃) is a convex smooth loss function. In partic-

ular, L(w̃) is
∑N

t=1
1
2‖Xt − utw̃

T
t ‖

2
F for the evolutionary

co-clustering model and 1
2 ||w̃− ũ||2 for the evolutionary
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feature selection formulation. This optimization problem
is similar to the fused Lasso signal approximator [28],
[27], and we develop an efficient procedure for solving
it in the following.

4.1 A Two-Step Algorithm

A central challenge for solving the optimization problem
in Eq. (16) is to deal with the ℓ1-norm and the fused
Lasso regularization term, which is non-smooth and
non-separable. A key property that leads to an efficient
algorithm to this problem is that the ℓ1-norm term and
the fused Lasso term can be solved sequentially in two
steps, giving rise to a two-step procedure. This result is
originally given in [16], [28] and is summarized in the
following theorem:

Theorem 4.1: Define

πλ1

λ2
= argmin

w̃
fλ1

λ2
(w̃). (17)

Then for any λ1, λ2 ≥ 0, we have

πλ1

λ2
= Tλ1

(
π0
λ2

)
. (18)

The proof of this theorem is similar to that of Theorem
3 in [28] and is thus omitted.

Theorem 4.1 shows that we can solve the optimization
problem in two sequential steps. Specifically, we can first
solve the problem in Eq. (16) with λ1 = 0 to obtain the in-
termediate solution π0

λ2
. Then the final optimal solution

πλ1

λ2
can be obtained by applying the soft thresholding

operator to the intermediate solution as in Eq. (18). We
now discuss how the λ1 = 0 case can be solved efficiently
in its dual form.

4.2 A Dual Formulation

A key to the two-step procedure mentioned above is to
solve the optimization problem rewritten in its full form
as

min
w̃

fλ2
(w̃) ≡ L(w) + λ2‖Fw̃‖1. (19)

We propose to solve this problem in its dual form. Since
the ℓ1 norm is non-differentiable, we obtain the following
equivalent min-max problem:

min
w̃

max
‖z̃‖∞≤λ2

φ(w̃, z̃) ≡ L(z̃) + 〈Fw̃, z̃〉 . (20)

The existence of saddle point to this min-max problem is
guaranteed by the Von Neumann Lemma [33], because
φ(·, ·) is differentiable, convex in w̃, and concave in z̃.
After exchanging the order of min and max and setting
the derivative of φ(w̃, z̃) with respect to w̃ to zero, we
obtain an equation to describe the relationship between
the primal and dual variables as

∇L(w̃) + FT z̃ = 0, (21)

where ∇L(w̃) denotes the gradient of the smooth func-
tion L(w̃) with respect to w̃. By substituting Eq. (21) into
Eq. (20), we obtain a dual optimization problem in terms

of z̃. For ease of presentation, we change max to min after
the substitution by negating the objective function.

In the case of evolutionary co-clustering, the form of
the dual problem can be written as

min
‖z̃‖∞≤λ2

ϕ(z̃) ≡
1

2
‖FT z̃‖2 −

〈

X̃
T

u, FT z̃
〉

− c, (22)

where

X̃ =








X1 0
X2

. . .

0 Xt








∈ R
nN×pN ,

c = 1
2

∑N

t=1 Tr
(
(Xt − utu

T
t Xt)(Xt − utu

T
t Xt)

T
)
. In the

case of evolutionary feature selection, the dual problem
can be written as

min
||z̃||∞≤λ2

ϕ(z̃) ≡
1

2
||FT z̃||2− < Fz̃, ũ > . (23)

The dual formulations in Eqs. (23) and (22) are convex
and smooth. Hence, they can be solved by gradient
decent algorithms.

4.3 A Gradient Algorithm

The dual problems in Eqs. (22) and (23) are constrained
quadratic programs (QP) and can be solved by gen-
eral QP solvers. However, direct application of general
QP solvers would ignore the special structure of this
problem, incurring excessive computational cost. In this
paper, we propose to solve this dual formulation by
a gradient descent algorithm, since the objective func-
tion is differentiable. Note that the Hessian of ϕ(z̃) in
Eqs. (22) and (23) is a p(N − 1)× p(N − 1) matrix and
can be express as

(p−1) 0s
︷︸︸︷

FFT =















2 · · · −1 · · · · · · 0
... 2 · · · −1 · · · 0

−1
...

. . . · · ·
. . .

...
... −1

...
. . . · · · −1

...
...

. . .
...

. . .
...

0 0 · · · −1 · · · 2















.

Since the Hessian matrix is positive definite, the fol-
lowing iterative process is guaranteed to converge to the
solution:

z̃(k+1) = P||·||≤λ2

(

z̃(k) −
1

eignmax
g̃(k)

)

,

where g̃(k) = ∇ϕ(z̃(k)), eignmax is the largest eigenvalue
of the Hessian matrix and

(
P||·||≤λ2

(x)
)

i
=

{
xi if |xi| ≤ λ2,
sgn(xi)λ2 if |xi| > λ2.
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From the analysis in [34], this algorithm has a linear
convergence rate as

||z̃(k) − z̃⋆||2 ≤

(

1−
eignmin

eignmax

)k

||z̃(0) − z̃⋆||2,

where z̃⋆ denotes the optimal solution, and z̃(0) is the
starting point of this iterative process. Since F is a full
rank matrix, the Hessian matrix FFT is positive definite.
Thus a unique solution exists. This algorithm can also
be accelerated by the Nesterov’s method [34].

4.4 Convergence and Stopping Criterion

The gradient descent algorithm is an iterative procedure,
and thus a criterion is required to assess the convergence
of the algorithm. Following [28], we define a duality gap
for the min-max problem in Eq. (20) and derive a simple
equation for computing the duality gap in each iteration.
We use this duality gap as the stopping criterion in our
experiments, and the gradient descent algorithm returns
when the duality gap is smaller than 10−8.

Let z̄ be an appropriate solution computed by the
gradient descent algorithm. Note that ‖z̄‖∞ ≤ λ2, as
it has been projected onto the feasible region in each
step. Let w̄ be the corresponding solution for the primal
formulation. We can define the duality gap for Eq. (20)
at (w̄, z̄) as

dg(w̄, z̄) = max
‖z̃‖∞≤λ2

φ(w̄, z̃)−min
w̃

φ(w̃, z̄). (24)

The following results show that the duality gap in
Eq. (24) is an upper bound for the errors in both the
primal and the dual formulations. In addition, it can be
computed easily by a simple equation.

Theorem 4.2: The duality gap defined in Eq. (24) can
be computed as

dg(w̄, z̄) = λ2‖∇ϕ(z̄)‖1 + 〈w̄,∇ϕ(z̄)〉 . (25)

In addition, we have the following results:

ϕ(z̄)− ϕ(z̃∗) ≤ dg(w̄, z̄), (26)

fλ2
(w̄)− fλ2

(w̃∗) ≤ dg(w̄, z̄). (27)

The proof of this theorem is similar to that of Theorem
3 in [28] and is thus omitted.

4.5 Regularization Parameter Interval

The regularization parameter λ2 controls the temporal
smoothness over wi. That is, when λ2 is larger than a
certain value λmax , wt and wt+1, for t = 1, 2, · · · , N − 1,
will be enforced to be identical. We show that such a λmax

can be computed via solving a system of equations. To
this end, we need to state the optimality condition for
the problems in Eqs. (22) and (23).

It follows from the optimality condition for con-
strained problems [34] that z̃∗ (‖z̃∗‖∞ ≤ λ2) is a min-
imizer of Eq. (23) or (22) if and only if

〈∇ϕ(z̃∗), z̃ − z̃∗〉 ≥ 0, ∀ z̃ : ‖z̃‖∞ ≤ λ2.

This is the well-known variational inequality, and it
gives the optimality condition for constrained optimiza-
tion problems. Based on the above result, we show that
λmax can be computed via solving a system of equations
with a special structure.

Theorem 4.3: Let ẑ denote the unique solution of the
system

∇ϕ(z̃) = 0,

and let
λmax = ‖ẑ‖∞.

Then for any λ2 ≥ λmax, we have w̃i = w̃j , ∀ i, j.
The proof of this theorem is similar to that of Theorem
3.3 in [22] and is thus omitted.

The value of λmax can be used to guide the selection of
an appropriate value for λ2 in practice. We evaluate the
effectiveness of λ2 in the experiments on the biological
data sets.

5 RELATED WORK

Simultaneous row and column clustering for identifying
block structures from matrix data has been initially
studied in [18]. Recent surge of interests in co-clustering
is motivated by biological applications, which aim at
identifying subset of genes co-expressed in a subset of
samples from microarray gene expression data [9]. Co-
clustering has also been applied in many other appli-
cations, including simultaneous clustering of words and
documents [14], [13], authors and conference [42], etc.
Early work on co-clustering focuses on defining an error
measure and then identifying blocks that minimize this
measure using heuristic search algorithms [18], [9]. These
early work has recently been reformulated using matrix
and optimization techniques [11], [4]. Following the
spectral clustering formalism, it has been shown recently
that co-clustering is closely related to the singular value
decomposition (SVD) of the data matrix [6]. In [13],
[49], co-clustering is formulated as a bipartite graph cut
problem, and the data are projected onto the left and
right singular vector spaces before they are concatenated
and clustered to identify row and column co-clusters.
It is shown in [24] that sparsity-inducing regularization
can be employed to compute sparse singular vectors,
which in turn can be used to form co-clusters. In [12], a
framework for simultaneous co-clustering and predictive
learning is proposed.

This work is also related to recent studies on min-
ing from time-evolving data. Chakrabarti et al. [7] first
proposed the concept of evolutionary clustering and
extended the K-means and the hierarchical clustering
algorithms for uncovering smooth patterns from time-
evolving data matrices. In [10], the spectral clustering
formalism is systematically extended to the evolutionary
setting by incorporating a temporal cost into the objec-
tive function, leading to a suite of formulations for evolu-
tionary spectral clustering. In [26], the nonnegative ma-
trix factorization is employed for soft clustering, and a
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temporal cost is included for mining from time-evolving
data. Evolutionary nonnegative matrix factorization is
studied in [44], and the idea of adaptively estimating
the smoothness parameter is proposed in [48]. The broad
area of evolutionary network analysis is reviewed in [1].

The fused Lasso penalty was originally proposed
in [40] for encouraging smoothness over related coef-
ficients in regression problems. This type of penalty
is very attractive and has been applied for encourag-
ing smoothness over spatial and temporal smoothness
in many applications, including biological data analy-
sis [41] and social studies. A critical challenge in em-
ploying the fused Lasso formalism is that this class
of penalty is non-smooth and non-separable and thus
is very challenging to optimize. In [16], a modified
coordinate descent algorithm is developed to solve the
fused Lasso formulation. However, this algorithm is not
guaranteed to give the exact solution. In [19], a path
algorithm is proposed to solve the fused Lasso signal
approximator. Instead of solving the original primal
problem, Liu et al. developed a dual formulation for the
fused Lasso signal approximator and devised a gradient
descent algorithm for computing the dual solution [28].
Similar formulations and algorithms have been studied
in the compressive sensing literature [20], [8].

The problem of feature selection in clustering has been
studied in [47], [50], [2], [45], [31]. These studies mostly
focus on clustering static data matrices. In the literature,
the evolutionary clustering [7], [10], [26] paradigm is re-
lated, but different from, the currently studied evolution-
ary feature selection formalism. Specifically, the smooth-
ness constraints are imposed on the sample dimension
in evolutionary clustering, while similar constraints are
imposed on the feature dimension in evolutionary fea-
ture selection. Consequently, the clustering results are
expected to evolve smoothly in evolutionary clustering,
while the selected features are shared across time points
in evolutionary feature selection.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

We evaluate the proposed evolutionary co-clustering for-
mulation and evolutionary feature selection formulation
using the Allen Developing Mouse Brain Atlas data [3],
[37]. This data set contains in situ hybridization gene
expression pattern images in the developing mouse brain
across seven developmental ages E11.5, E13.5, E15.5,
E18.5, P4, P14, and P28. The 3D images are registered to a
reference atlas separately for each age, and a regular grid
is applied to partition the 3D brain space into voxels. The
expression energy within each voxel is given as a numer-
ical value. There is one data matrix associated with each
of the seven developing ages. The rows of the matrices
correspond to brain voxels while the columns corre-
spond to genes. The reference atlas ontology is organized
into a hierarchy, and we up-propagate the annotations

to Level 3 and Level 5 in the experiments. It is well-
known that the developing mouse brain is divided into
grid-like patterns along the longitudinal and transversal
dimensions [46], [35], and identification of genes co-
expressed in these domains might elucidate the genetic
mechanisms governing the mouse brain development.
The transversal and longitudinal dimensions correspond
to the Level 3 and Level 5 ontology, respectively. Table 1
shows the statistics on the number of genes, voxels and
brain regions for each data set on Level 3 and Level 5
annotations respectively.

To measure the performance of our proposed methods,
we consider the annotated brain region of each voxel
as its class and compare the clustering results with the
region labels of voxels, since it has been shown that
the results of gene expression data clustering are largely
consistent with classical neuroanatomy [5]. Following
[30], the normalized mutual information (NMI) and
Rand index are used to quantitatively measure the cor-
respondence of the clustering results with the classical
neuroanatomy reflected in the region annotations. We
use the duality gap as the stopping criterion for the
gradient descent algorithm and the error tolerance is
set to 10−8 in the experiments. Overall, the proposed
formulations are efficient to solve on a regular desktop
PC, but we do not provide detailed timing results due
to space constraints.

6.2 Co-Clustering Performance Evaluation

To evaluate the performance of the proposed evolu-
tionary co-clustering method, we compare the proposed
method with two other co-clustering methods; namely
the one based on sparse SVD in [24] and the spectral co-
clustering method proposed in [13], [49]. Note that the
evolutionary clustering methods [7], [10], [26] cannot be
applied to this data set, since the brain voxels are not
registered across ages and the data for each age contain
different number of voxels. Hence, we only apply the
fused Lasso regularization over the columns (genes); that
is, we set η = 0 in Eq. (8). This is one of the unique
advantages of the proposed formulation in which the
smoothness constraint can be applied to either or both
dimensions.

The performance of the three methods on the seven
data sets is reported in Figure 1. We observe that the
best performance is achieved when ξ = 0.05 × λmax

where λmax is defined in Eq. (4.3) and report the re-
sults under this parameter setting. Detailed studies on
parameter sensitivity are reported in the following. It
can be observed from Figure 1 that incorporation of
the smoothness constraints between contiguous age data
yield improved performance.

In order to fully understand how the fused Lasso
regularization parameter affects performance, we con-
duct a series of experiments and report the results in
the following. We first investigate how the performance
changes as the value for ξ changes. To this end, we vary
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TABLE 1
Statistics about the mouse brain data at annotation Level 3 and Level 5.

E11.5 E13.5 E15.5 E18.5 P4 P14 P28

Number of genes
Level 3 1724 1724 1724 1724 1724 1724 1724
Level 5 1724 1724 1724 1724 1724 1724 1724

Number of voxels
Level 3 7122 13194 12148 12045 21845 24180 28023
Level 5 7106 13191 12148 12045 21845 24180 28023

Number of regions
Level 3 20 20 20 20 20 19 20
Level 5 82 77 76 65 64 71 74

E11.5 E13.5 E15.5 E18.5 P4 P14 P28 Avg.
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Fig. 1. Performance of the proposed method (ξ = 0.05 × λmax), denoted as CCevol, for the Level 3 data and Level
5 data in comparison with two other methods measured using NMI and Rand index respectively. CCSVD denotes the
co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral co-clustering method proposed
in [13].

the value for ξ from 0.001 ∗ λmax to λmax and report
the performance on each data set and summarize the
average performance across data sets in Tables 2 and 4
for Level 3 data sets and Tables 3 and 5 for Level 5 data
sets, respectively. We can observe that the performance
is dependent on the choice of the parameter value.
This demonstrate that incorporation of the fused Lasso
regularization is effective in boosting the performance.

To evaluate the effectiveness of the fused Lasso regu-
larization in encouraging smoothness over the temporal
dimension, we report the ℓ1-norm differences between
temporally adjacent variable vectors with different val-
ues of ξ in Figure 2. We can observe that, as ξ in-
creases, the values for the fused Lasso regularization
terms decrease monotonically for Level 3 data until they
reach zero, where the adjacent variables are forced to
be identical. The values for Level 5 data also decreased
to zero with the increasing of ξ after some fluctuations
when ξ is very small.

We also evaluate the effectiveness of the defined dual-

ity gap in determining the convergence of the gradient
descent algorithm. To this end, we plot the values of the
duality gap in the first 50 iterations of the gradient de-
scent algorithm under multiple ξ values in Figure 3. We
can observe that the duality gap decreases monotonically
in all cases. In addition, as the value of ξ increases, the
duality gap approaches zero at a slower speed. This is
because more computations are required to fuse adjacent
variables when the value for ξ increases. In all cases, the
duality gap is reduced below the tolerance level within
a relatively small number of iterations.

6.3 Evolutionary Feature Selection in Clustering

To evaluate the proposed evolutionary feature selection
formulation, we compare it with two other clustering
methods; namely the K-means and the sparse K-means
methods in [47] on the Allen Developing Mouse Brain
Atlas data. To study the effect of the fused Lasso regu-
larization parameter, we conduct a series of experiments
and report the performance measured using NMI and
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TABLE 2
Performance of the proposed method on the the Level 3 Allen Developing Mouse Brain Atlas data measured using
NMI. The regularization parameter is set to ξ = percentage × λmax, and the “percentage” is increased from 0.001 to

1. CCSVD denotes the co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral
co-clustering method proposed in [13].

Data CCSVD CCspectral 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.4230 0.4619 0.4983 0.5108 0.4947 0.5282 0.4835 0.2844 0.2637
E13.5 0.4148 0.4076 0.4694 0.4438 0.4672 0.4390 0.4463 0.3701 0.3557
E15.5 0.3789 0.3412 0.4770 0.4609 0.4795 0.4742 0.4218 0.3890 0.3878
E18.5 0.2978 0.2701 0.4498 0.4394 0.4435 0.4822 0.3816 0.3665 0.3952

P4 0.3713 0.3243 0.3087 0.3345 0.3902 0.3682 0.3353 0.3812 0.4275
P14 0.3298 0.0791 0.4186 0.3904 0.3607 0.3659 0.3490 0.3422 0.4259
P28 0.3042 0.3387 0.3521 0.3487 0.3382 0.3461 0.3087 0.3204 0.4147

Avg. 0.3600 0.3175 0.4248 0.4184 0.4249 0.4291 0.3894 0.3505 0.3815

TABLE 3
Performance of the proposed method on the the Level 5 Allen Developing Mouse Brain Atlas data measured using
NMI. The regularization parameter is set to ξ = percentage × λmax, and the “percentage” is increased from 0.001 to

1. CCSVD denotes the co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral
co-clustering method proposed in [13].

Data CCSVD CCspectral 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.4939 0.5296 0.5153 0.5205 0.5358 0.5265 0.4921 0.4408 0.4403
E13.5 0.4616 0.4832 0.5192 0.5063 0.4836 0.4667 0.4459 0.4487 0.4385
E15.5 0.4140 0.4147 0.4477 0.4336 0.4556 0.4563 0.4360 0.4491 0.4384
E18.5 0.3795 0.3746 0.3855 0.4023 0.4159 0.4070 0.4222 0.4302 0.4203

P4 0.3361 0.3768 0.3193 0.2800 0.3081 0.3574 0.3571 0.4203 0.4089
P14 0.3197 0.1593 0.4193 0.4006 0.3969 0.4122 0.3901 0.3974 0.3912
P28 0.3056 0.3884 0.3533 0.3304 0.3649 0.3749 0.3824 0.3792 0.3621

Avg. 0.3872 0.3895 0.4228 0.4105 0.4230 0.4287 0.4180 0.4236 0.4142

TABLE 4
Performance of the proposed method on the the Level 3 Allen Developing Mouse Brain Atlas data measured using
Rand index. The regularization parameter is set to ξ = percentage × λmax, and the “percentage” is increased from

0.001 to 1. CCSVD denotes the co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral
co-clustering method proposed in [13].

Data CCSVD CCspectral 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.8676 0.8529 0.8807 0.8833 0.8749 0.8634 0.8641 0.8825 0.8757
E13.5 0.8442 0.8394 0.8626 0.8648 0.8740 0.8607 0.8760 0.8446 0.8410
E15.5 0.7993 0.7787 0.8514 0.8142 0.8376 0.8212 0.8212 0.7872 0.7732
E18.5 0.7588 0.7274 0.8573 0.8371 0.8511 0.8334 0.8363 0.7777 0.7712

P4 0.6744 0.6629 0.5960 0.6708 0.6503 0.7393 0.6829 0.6889 0.7095
P14 0.6404 0.4902 0.7015 0.7078 0.6708 0.6674 0.6312 0.6854 0.7052
P28 0.6542 0.6674 0.6395 0.6449 0.6610 0.6307 0.6082 0.6112 0.6695

Avg. 0.7484 0.7170 0.7698 0.7747 0.7742 0.7737 0.7600 0.7539 0.7636

TABLE 5
Performance of the proposed method on the the Level 5 Allen Developing Mouse Brain Atlas data measured using
Rand index. The regularization parameter is set to ξ = percentage × λmax, and the “percentage” is increased from

0.001 to 1. CCSVD denotes the co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral
co-clustering method proposed in [13].

Data CCSVD CCspectral 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.9300 0.9293 0.9377 0.9428 0.9413 0.9509 0.9475 0.9377 0.9306
E13.5 0.8981 0.8993 0.9214 0.9009 0.8992 0.8878 0.8953 0.8921 0.8965
E15.5 0.8277 0.8237 0.8246 0.7957 0.7992 0.8815 0.8883 0.8185 0.8076
E18.5 0.8008 0.7943 0.7677 0.7766 0.7704 0.7831 0.8819 0.8219 0.7880

P4 0.6987 0.6986 0.5565 0.5102 0.5518 0.7374 0.7325 0.7524 0.7367
P14 0.6563 0.6489 0.7942 0.8033 0.7929 0.7971 0.7875 0.7638 0.7534
P28 0.6682 0.6748 0.8014 0.7790 0.7816 0.8125 0.7862 0.7185 0.7217

Avg. 0.7828 0.7813 0.8005 0.7869 0.7909 0.8358 0.8456 0.8150 0.8049
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Fig. 2. The values of the fused Lasso regularization terms as ξ increases. The x-axis denotes the ”percentage” that
is used to determine the value of ξ by ξ = percentage × λmax.
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Fig. 3. The duality gap for the first 50 iterations under different ξ values. The x-axis denotes the “percentage” that is
used to determine the value of ξ by ξ = percentage × λmax.

Rand index for different λ′ in Eq. (15). We select λ′

to be some percentage of λmax defined in Eq.(4.3). The
percentage is varied from 0.001 to 1 and the performance
is reported in Tables 6 and 8 for the Level 3 data sets,
and Tables 7 and 9 for the Level 5 data sets, respectively.
We can see from these results that our proposed method
outperforms the other two compared methods for mul-
tiple different regularization parameter values. The best
average performance is achieved at λ′ = 0.05× λmax for
most cases. More importantly, the evolutionary feature
selection method yields a set of shared features across
developmental ages. These features correspond to genes
in our data sets. Hence, our method identifies a set of
genes that act continuously in multiple developmental
ages. These genes might play important roles in the
mouse brain development. We will analyze their func-
tional and developmental roles in the future.

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we propose evolutionary co-clustering and
feature selection formulations for mining time-evolving
data. The proposed formulations employ the fused Lasso
type of regularization to encourage smoothness across
time points. The resulting optimization problem is non-
convex, non-smooth, and non-separable, and we employ
an iterative procedure to compute the solution. Each step

of the iterative procedure involves a convex problem.
We derive the dual form of this problem and employ a
gradient descent algorithm to compute the dual optimal
solution. Experimental results on the Allen Developing
Mouse Brain Atlas data show that the proposed methods
yield consistently higher performance in comparison to
other methods.

In this paper, we solve the dual form of the convex
problem in each iteration. In the literature, coordinate de-
scent and path algorithms have been developed to solve
the fused Lasso signal approximator. We will explore
and compare other alternative methods for solving this
problem. This paper focuses on evaluating the proposed
method on the mouse brain gene expression data, but
this method can be applied to many other domains. We
plan to apply our method to other data sets in the future.
The selection of the fused Lasso regularization parameter
is an important but challenging task. It has been shown
that the stability selection is a promising way to tune the
regularization parameters [32]. We plan to apply stability
selection to tune the parameters in the future. Our
current work does not consider tuning the smoothness
parameter adaptively in order to incorporate different
levels of smoothness at different time points [48]. We
plan to extend our formulations to such scenarios in the
future.
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TABLE 6
Performance of the proposed method on the the Allen Developing Mouse Brain Atlas Level 3 data sets measured
using NMI. The “percentage” is increased from 0.001 to 1, and λ′ = percentage × λmax. SK-means denotes the

sparse K-means method.

Data K-means SK-means 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.4757 0.4551 0.4609 0.4565 0.4906 0.4775 0.4713 0.4923 0.4852
E13.5 0.3491 0.3825 0.3841 0.4158 0.3827 0.3887 0.3746 0.3865 0.3935
E15.5 0.3592 0.3523 0.3847 0.3504 0.3720 0.3499 0.3354 0.3523 0.3779
E18.5 0.3645 0.3797 0.3490 0.3759 0.3333 0.3425 0.3436 0.3465 0.3252

P4 0.3727 0.3444 0.3983 0.3961 0.3756 0.3715 0.3866 0.3520 0.3784
P14 0.3560 0.3890 0.3221 0.4097 0.3554 0.3863 0.3536 0.3613 0.3694
P28 0.3869 0.3499 0.3560 0.3577 0.3503 0.3698 0.3484 0.3267 0.3040

Avg. 0.3806 0.3790 0.3793 0.3946 0.3800 0.3837 0.3733 0.3740 0.3762

TABLE 7
Performance of the proposed method on the the Allen Developing Mouse Brain Atlas Level 5 data sets measured
using NMI. The “percentage” is increased from 0.001 to 1, and λ′ = percentage × λmax. SK-means denotes the

sparse K-means method.

Data K-means SK-means 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.5660 0.5802 0.5779 0.5696 0.5805 0.5803 0.5749 0.5659 0.5717
E13.5 0.5341 0.5266 0.5238 0.5458 0.5363 0.5510 0.5307 0.5271 0.5314
E15.5 0.4844 0.5019 0.4900 0.4871 0.5084 0.5242 0.5052 0.5046 0.4984
E18.5 0.4743 0.4751 0.4675 0.4598 0.4742 0.4909 0.4659 0.4538 0.4476

P4 0.4143 0.4311 0.4176 0.4275 0.4185 0.4388 0.4430 0.4250 0.4325
P14 0.3913 0.4028 0.3968 0.4066 0.4075 0.4184 0.4040 0.4018 0.4016
P28 0.3924 0.3886 0.3966 0.3955 0.4009 0.3921 0.3962 0.4067 0.3986

Avg. 0.4652 0.4723 0.4672 0.4703 0.4752 0.4851 0.4743 0.4693 0.4688

TABLE 8
Performance of the proposed method on the the Allen Developing Mouse Brain Atlas Level 3 data sets measured

using Rand index. The “percentage” is increased from 0.001 to 1, and λ′ = percentage × λmax. SK-means denotes
the sparse K-means method.

Data K-means SK-means 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.8153 0.8339 0.8371 0.8359 0.8490 0.8615 0.8621 0.8638 0.8429
E13.5 0.8239 0.8034 0.8267 0.8070 0.8201 0.8179 0.8077 0.8135 0.8205
E15.5 0.7767 0.7925 0.7897 0.7683 0.7921 0.7880 0.7834 0.7997 0.7862
E18.5 0.7499 0.7621 0.7738 0.7576 0.7568 0.7685 0.7623 0.7534 0.7527

P4 0.6727 0.6806 0.6687 0.6783 0.6662 0.6768 0.6621 0.6730 0.6760
P14 0.6480 0.6244 0.6501 0.6220 0.6208 0.6264 0.6283 0.6346 0.6345
P28 0.6627 0.6559 0.6390 0.6602 0.6429 0.6493 0.6611 0.6526 0.6470

Avg. 0.7356 0.7361 0.7405 0.7328 0.7354 0.7415 0.7381 0.7415 0.7371

TABLE 9
Performance of the proposed method on the the Allen Developing Mouse Brain Atlas Level 5 data sets measured

using Rand index. The “percentage” is increased from 0.001 to 1, and λ′ = percentage × λmax. SK-means denotes
the sparse K-means method.

Data K-means SK-means 0.001 0.005 0.01 0.05 0.1 0.5 1

E11.5 0.9297 0.9298 0.9288 0.9300 0.9284 0.9291 0.9307 0.9298 0.9310
E13.5 0.8979 0.8983 0.8992 0.8985 0.8985 0.8959 0.8967 0.8977 0.8971
E15.5 0.8309 0.8280 0.8324 0.8286 0.8308 0.8282 0.8292 0.8296 0.8283
E18.5 0.8016 0.8017 0.8016 0.8002 0.8023 0.8035 0.8016 0.8028 0.8033

P4 0.7008 0.7017 0.7028 0.7025 0.7018 0.7046 0.7005 0.7034 0.7003
P14 0.6563 0.6569 0.6586 0.6566 0.6596 0.6593 0.6574 0.6564 0.6561
P28 0.6693 0.6711 0.6727 0.6694 0.6716 0.6733 0.6706 0.6695 0.6703

Avg. 0.7838 0.7839 0.7852 0.7837 0.7847 0.7848 0.7838 0.7842 0.7838
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