
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 1

Task Assignment on Multi-Skill Oriented Spatial
Crowdsourcing

Peng Cheng, Xiang Lian, Lei Chen, Member, IEEE , Jinsong Han, and Jizhong Zhao

Abstract—With the rapid development of mobile devices and crowdsourcing platforms, the spatial crowdsourcing has attracted much
attention from the database community. Specifically, the spatial crowdsourcing refers to sending location-based requests to workers,
based on their current positions. In this paper, we consider a spatial crowdsourcing scenario, in which each worker has a set of qualified
skills, whereas each spatial task (e.g., repairing a house, decorating a room, and performing entertainment shows for a ceremony) is
time-constrained, under the budget constraint, and required a set of skills. Under this scenario, we will study an important problem,
namely multi-skill spatial crowdsourcing (MS-SC), which finds an optimal worker-and-task assignment strategy, such that skills between
workers and tasks match with each other, and workers’ benefits are maximized under the budget constraint. We prove that the MS-SC
problem is NP-hard and intractable. Therefore, we propose three effective heuristic approaches, including greedy, g-divide-and-conquer
and cost-model-based adaptive algorithms to get worker-and-task assignments. Through extensive experiments, we demonstrate the
efficiency and effectiveness of our MS-SC processing approaches on both real and synthetic data sets.

Keywords—multi-skill spatial crowdsourcing, greedy algorithm, g-divide-and-conquer algorithm, cost-model-based adaptive algorithm

F

1 INTRODUCTION

With the popularity of GPS-equipped smart devices and wire-
less mobile networks [12], [17], nowadays people can easily
identify and participate in some location-based tasks that are
close to their current positions, such as taking photos/videos,
repairing houses, and/or preparing for parties at some spatial
locations. Recently, a new framework, namely spatial crowd-
sourcing [17], for employing workers to conduct spatial tasks,
has emerged in both academia (e.g., the database community
[9]) and industry (e.g., TaskRabbit [3]). A typical spatial
crowdsourcing platform (e.g., gMission [9] and MediaQ [18])
assigns a number of moving workers to do spatial tasks nearby,
which requires workers to physically move to some specified
locations and accomplish these tasks.

Note that, not all spatial tasks are as simple as taking a photo
or video clip (e.g., street view of Google Maps [2]), monitoring
traffic conditions (e.g., Waze [4]), or reporting local hot spots
(e.g., Foursquare [1]), which can be easily completed by pro-
viding answers via camera, sensing devices in smart phones,
or naked eyes, respectively. In contrast, some spatial tasks can
be rather complex, such as repairing a house, preparing for

• P. Cheng is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Kowloon, Hong Kong,
China, Email: pchengaa@cse.ust.hk.

• X. Lian is with the Department of Computer Science, University
of Texas Rio Grande Valley, Edinburg, TX 78539, USA, Email: xi-
ang.lian@utrgv.edu.

• L. Chen is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Kowloon, Hong Kong,
China, Email: leichen@cse.ust.hk.

• J. Han and J. Zhao are with the Department of Computer Sci-
ence, Xi’an Jiaotong University, Shaanxi, China. E-mails: {hanjinsong,
zjz}@mail.xjtu.edu.cn.

Fig. 1: An Example of Repairing a House in the Multi-Skill Spatial
Crowdsourcing System.
TABLE 1: Worker/Task
Skills

worker/task skill key set
w1, w4, w8 {a1, a4, a6}
w2 {a5}
w3, w7 {a2, a3}
w5, w6 {a1, a5}
t1, t2, t3 {a1 ⇠ a6}

TABLE 2: Descriptions of Skills
skill key skill description

a1 painting walls
a2 repairing roofs
a3 repairing floors
a4 installing pipe systems
a5 installing electronic components
a6 cleaning

a party, and performing entertainment shows for a ceremony,
which may consist of several steps/phases/aspects, and require
demanding professional skills from workers. In other words,
these complex tasks cannot be simply accomplished by normal
workers, but require the skilled workers with specific expertise
(e.g., fixing roofs or setting up the stage).

Inspired by the phenomenon of complex spatial tasks, in this
paper, we will consider an important problem in the spatial
crowdsourcing system, namely multi-skill spatial crowdsourc-
ing (MS-SC), which assigns multi-skilled workers to those
complex tasks, with the matching skill sets and high scores
of the worker-and-task assignments.

In the sequel, we will illustrate the MS-SC problem by a
motivation example of repairing a house.
Example (Repairing a House). Consider a scenario of the
spatial crowdsourcing in Figure 1, where a user wants to re-
pair a house he/she just bought, in order to have a good living
environment for his/her family. However, it is not an easy task
to repair the house, which requires many challenging works
(skills), such as repairing roofs/floors, replacing/installing pipe

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 2

systems and electronic components, painting walls, and finally
cleaning rooms. There are many skilled workers that can
accomplish one or some of these skill types. In this case, the
user can post a spatial task t

1

, as shown in Figure 1, in the
spatial crowdsourcing system, which specifies a set of required
skills (given in Tables 1 and 2) for the house-repairing task,
a deadline of the arrival time to repair, and the maximum
budget that he/she would like to pay. In Figure 1, around the
spatial location of task t

1

, there are 8 workers, w
1

⇠ w
8

,
each of whom has a different set of skills as given in Table
1. For example, worker w

1

has the skill set {painting walls,
installing pipe systems, cleaning}. In addition, each worker
has a maximum moving distance, as workers may not want to
go to another city to conduct spatial tasks. Moreover, different
workers also have different moving velocities.

To accomplish the spatial task t
1

(i.e., repair the house), the
spatial crowdsourcing platform needs to select a best subset
of workers wi (1 i 8), such that the union of their skill
sets can cover the required skill set of task t

1

, and, moreover,
workers can travel to the location of t

1

with the maximum
net payment under the constraints of arrival times, workers’
moving ranges, and budgets. For example, we can assign task
t
1

with 3 workers w
2

, w
7

, and w
8

, who are close to t
1

, and
whose skills can cover all the required skills of t

1

.
Motivated by the example above, in this paper, we will

formalize the MS-SC problem, which aims to efficiently assign
workers to complex spatial tasks, under the task constraints
of valid time periods and maximum budgets, such that the
required skill sets of tasks are fully covered by those assigned
workers, and the total score of the assignment (defined as the
total profit of workers) is maximized.

Note that, existing works on spatial crowdsourcing focused
on assigning workers to tasks to maximize the total number
of completed tasks [17], the number of performed tasks for
a worker with an optimal schedule [12], or the reliability-
and-diversity score of assignments [10]. However, they did
not take into account multi-skill covering of complex spatial
tasks, time/distance constraints, and the assignment score with
respect to task budgets and workers’ salaries (excluding the
traveling cost). Thus, we cannot directly apply prior solutions
to solve our MS-SC problem.

In this paper, we first prove that our MS-SC problem in
the spatial crowdsourcing system is NP-hard, by reducing it
from the Set Cover Problem (SCP) [16]. As a result, the
MS-SC problem is not tractable, and thus very challenging
to achieve the optimal solution. Therefore, in this paper, we
will tackle the MS-SC problem by proposing three effective
heuristic approaches, greedy, g-divide-and-conquer (g-D&C),
and cost-model-based adaptive algorithms, which can effi-
ciently compute worker-and-task assignment pairs with the
constraints/goals of skills, time, distance, and budgets.

Specifically, we make the following contributions.
• We formally define the multi-skill spatial crowdsourcing

(MS-SC) problem in Section 2, under the constraints of
multi-skill covering, time, distance, and budget for spa-
tial workers/tasks in the spatial crowdsourcing system.

• We prove that the MS-SC problem is NP-hard, and thus
intractable in Section 2.4.

• We propose efficient heuristic approaches, namely
greedy, g-divide-and-conquer, and cost-model-based
adaptive algorithms to tackle the MS-SC problem in
Sections 4, 5, and 6, respectively.

• We conduct extensive experiments on real and synthetic
data sets, and show the efficiency and effectiveness of
our MS-SC approaches in Section 7.

Section 3 introduces a general framework for our MS-SC
problem in spatial crowdsourcing systems. Section 8 reviews
previous works on spatial crowdsourcing. Finally, Section 9
concludes this paper.

2 PROBLEM DEFINITION
In this section, we present the formal definition of the multi-
skill spatial crowdsourcing, in which we assign multi-skilled
workers with time-constrained complex spatial tasks.

2.1 Multi-Skilled Workers
We first define the multi-skilled workers in spatial crowd-
sourcing applications. Assume that = {a

1

, a
2

, ..., ak} is a
universe of k abilities/skills. Each worker has one or multiple
skills in , and can provide services for spatial tasks that
require some skills in .

Definition 1: (Multi-Skilled Workers) Let Wp = {w
1

, w
2

,
..., wn} be a set of n multi-skilled workers at timestamp p.
Each worker wi (1 i n) has a set, Xi (✓), of skills,
is located at position li(p) at timestamp p, can move with
velocity vi, and has a maximum moving distance di. ⌅

In Definition 1, the multi-skilled workers wi can move
dynamically with speed vi in any direction, and at each
timestamp p, they are located at spatial places li(p), and prefer
to move at most di distance from li(p). They can freely join or
leave the spatial crowdsourcing system. Moreover, each worker
wi is associated with a set, Xi, of skills, such as taking photos,
cooking, and decorating rooms.

2.2 Time-Constrained Complex Spatial Tasks
Next, we define complex spatial tasks in the spatial crowd-
sourcing system, which are constrained by deadlines of arriv-
ing at task locations and budgets.

Definition 2: (Time-Constrained Complex Spatial Tasks)
Let Tp = {t

1

, t
2

, ..., tm} be a set of time-constrained complex
spatial tasks at timestamp p. Each task tj (1 j m) is
located at a specific location lj , and workers are expected to
reach the location of task tj before the arrival deadline ej .
Moreover, to complete the task tj , a set, Yj (✓), of skills is
required for those assigned workers. Furthermore, each task tj
is associated with a budget, Bj , of salaries for workers. ⌅

As given in Definition 2, usually, a task requester creates
a time-constrained spatial task tj , which requires workers
physically moving to a specific location lj , and arriving at lj
before the arrival deadline ej . Meanwhile, the task requester
also specifies a budget, Bj , of salaries, that is, the maximum
allowance that he/she is willing to pay for workers. This
budget, Bj , can be either the reward cash or bonus points
in the spatial crowdsourcing system.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 3

Moreover, the spatial task tj is often complex, in the sense
that it might require several distinct skills (in Yj) to be
conducted. For example, a spatial task of repairing a house
may require several skills, such as repairing floors, painting
walls and cleaning.

2.3 The Multi-Skill Spatial Crowdsourcing Problem
In this subsection, we will formally define the multi-skill
spatial crowdsourcing (MS-SC) problem, which assigns spatial
tasks to workers such that workers can cover the skills required
by tasks and the assignment strategy can achieve high scores.
Task Assignment Instance Set. Before we present the MS-
SC problem, we first introduce the concept of task assignment
instance set.

Definition 3: (Task Assignment Instance Set) At timestamp
p, given a worker set Wp and a task set Tp, a task assignment
instance set, denoted by Ip, is a set of worker-and-task assign-
ment pairs in the form hwi, tji, where each worker wi 2 Wp

is assigned to at most one spatial task tj 2 Tp.
Moreover, we denote CTp as the set of completed tasks

tj that can be reached before the arrival deadlines ej , and
accomplished by those assigned workers in Ip. ⌅

Intuitively, the task assignment instance set Ip is one valid
worker-and-task assignment between worker set Wp and task
set Tp. Each pair hwi, tji is in Ip, if and only if this assignment
satisfies the constraints of task tj , with respect to distance (i.e.,
di), time (i.e., ej), budget (i.e., Bj), and skills (i.e., Yj).

In particular, for each pair hwi, tji, worker wi must arrive
at location lj of the assigned task tj before its arrival deadline
ej , and can support the skills required by task tj , that is,
Xi

T
Yj 6= ;. The distance between li(p) and lj should be

less than di. Moreover, for all pairs in Ip that contain task tj ,
the required skills of task tj should be fully covered by skills
of its assigned workers, that is, Yj ✓ [8hwi,tji2IpXi.

To assign a worker wi to a task tj , we need to pay him/her
salary, cij , which is related to the travelling cost from the
location, li(p), of worker wi to that, lj , of task tj . The
travelling cost, cij , for vehicles can be calculated by the unit
gas price per gallon times the number of gallons needed. For
the public transportation, the cost cij can be computed by the
fees per mile times the travelling distance. For walking, we
can also provide the compensation fee for the worker with the
cost cij proportional to his/her travelling distance.

Without loss of generality, we assume that the cost, cij , is
proportional to the travelling distance, dist(li(p), lj), between
li(p) and lj , where dist(x, y) is a distance function between
locations x and y. Formally, we have: cij = Ci ·dist(li(p), lj),
where Ci is a constant (e.g., gas/transportation fee per mile).

Note that, for simplicity, in this paper, we use Euclidean dis-
tance as our distance function (i.e., dist(x, y)). We can easily
extend our proposed approaches in this paper by considering
other distance function (e.g., road-network distance), under the
framework of the spatial crowdsourcing system.
The MS-SC Problem. In the sequel, we give the definition of
our multi-skill spatial crowdsourcing (MS-SC) problem.

Definition 4: (Multi-Skill Spatial Crowdsourcing Problem)
Given a time interval P , the problem of multi-skill spatial

crowdsourcing (MS-SC) is to assign the available workers
wi 2 Wp to tasks tj 2 Tp, and to obtain a task assignment
instance set, Ip, at each timestamp p 2 P , such that:

1) any worker wi 2 Wp is assigned to only one spatial
task tj 2 Tp such that his/her arrival time at location
lj before the arrival deadline ej , the moving distance
is less than the worker’s maximum moving distance
di, and all workers assigned to tj have skill sets fully
covering Yj ;

2) the total travelling cost of all the assigned workers to
task tj does not exceed the budget of the task, that is,P

8hwi,tji2Ip
cij Bj ; and

3) the total score,
P

p2P Sp, of the task assignment in-
stance sets Ip within the time interval P is maximized,

where it holds that:
Sp =

X

tj2CTp

B
0
j , and (1)

B
0
j = Bj �

X

hwi,tji2Ip

cij . (2)

Definition 4 can be rewritten in the form of the linear
programming problem below:

max
X

tj2CTp

(Bj �
nX

i=1

cijxij)

s.t. dist(lj , li(p)) (ej � p) · vi di i = 1, . . . , n; j = 1, . . . ,m,

Yj ✓ [n
i=1Xi ^ xij tj 2 CTp,

nX

i=1

cijxij Bj j = 1, . . . ,m,

mX

j=1

xij 1 i = 1, ..., n,

where, xij is an indicator. If a worker wi is assigned to a task
tj , xij = 1; otherwise, xij = 0.

In Definition 4, our MS-SC problem aims to assign workers
wi to tasks tj such that: (1) workers wi are able to reach
locations, lj , of tasks tj on time and cover the required skill
set Yj , and the moving distance is less than di; (2) the total
travelling cost of all the assigned workers should not exceed
budget Bj ; and (3) the total score,

P
p2P Sp, of the task-and-

worker assignment within time interval P is maximized.
After the server-side assignment at a timestamp p, those

assigned workers will become unavailable, and move to the
locations of spatial tasks. Next, these workers will become
available again, only if they finish/reject the assigned tasks.
Discussions on the Score Sp. Eq. (1) calculates the score,
Sp, of a task-and-worker assignment by summing up flexible
budgets, B0

j (given by Eq. (2)), of all the completed tasks
tj 2 CTp, where the flexible budget of task tj is the remaining
budget of task tj after paying workers’ travelling costs. Maxi-
mizing scores means maximizing the number of accomplished
tasks while minimizing the travelling cost of workers.

Intuitively, each task tj has a maximum budget Bj , which
consists of two parts, the travelling cost of the assigned
workers and the flexible budget. The former cost is related
to the total travelling distance of workers, whereas the latter
one can be freely and flexibly used for rewarding workers for
their contributions to the task. Here, the distribution of the
flexible budget among workers can follow existing incentive
mechanisms in crowdsourcing [20], [23], which stimulate

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 4

workers who did the task better (i.e., with more rewards).
We can reward the workers based on the requirement of the
assigned tasks and the skills that they can provide, which is
beyond the scope of this study. We would like to leave it as
our future work.

Note that, in Eq. (1), the score, Sp, of the task assignment
instance set Ip only takes into account those tasks that can
be completed by the assigned workers (i.e., tasks in set CTp).
Here, a task can be completed, if the assigned workers can
reach the task location before the deadline and finish the task
with the required skills.

Since the spatial crowdsourcing system is quite dynamic,
new tasks/workers may arrive at next timestamps. Thus, if
we cannot find enough/proper workers to do the task at the
current timestamp p, the task is still expected to be successfully
assigned with workers and completed in future timestamps.
Meanwhile, the task requester can be also informed by the
spatial crowdsourcing system to increase the budget (i.e., with
higher budget Bj , we can find more skilled candidate workers
that satisfy the budget constraint). Therefore, in our definition
of score Sp, we would only consider those tasks in CTp that
can be completed by the assigned workers at timestamp p, and
maximize this score Sp.

2.4 The Hardness of the MS-SC Problem
With m time-constrained complex spatial tasks and n multi-
skilled workers, in the worst case, there are an exponential
number of possible task-and-worker assignment strategies,
which leads to high time complexity, O((m + 1)n). In this
subsection, we prove that our MS-SC problem is NP-hard, by
reducing a well-known NP-hard problem, set cover problem
(SCP) [22], to the MS-SC problem.

Lemma 1: (Hardness of the MS-SC Problem) The problem
of the Multi-Skill Spatial Crowdsourcing (MS-SC) is NP-hard.

Proof: Please refer to Appendix A in supplementary
materials.

Since the MS-SC problem involves multiple spatial tasks
whose skill sets should be covered, we thus cannot directly
use existing approximation algorithms for SCP (or its variants)
to solve the MS-SC problem. What is more, we also need to
find an assignment strategy such that workers and tasks match
with each other (in terms of travelling time/cost, and budge
constraints), which is more challenging.

Thus, due to the NP-hardness of our MS-SC problem, in
subsequent sections, we will present a general framework for
MS-SC processing and design 3 heuristic algorithms, namely
greedy, g-divide-and-conquer, and cost-model-based adaptive
approaches, to efficiently retrieve MS-SC answers.

Table 3 summarizes the commonly used symbols.

3 FRAMEWORK FOR SOLVING THE MS-SC
PROBLEM
In this section, we present a general framework, in Figure 2 for
solving the MS-SC problem, which greedily assigns workers
with spatial tasks for multiple rounds. For each round, at
timestamp p, we first retrieve a set, Tp, of all the available

TABLE 3: Symbols and Descriptions.

Symbol Description
Tp a set of m time-constrained spatial tasks tj at timestamp p
Wp a set of n dynamically moving workers wi at timestamp p
ej the deadline of arriving at the location of task tj
li(p) the position of worker wi at timestamp p
lj the position of task tj
Xi a set of skills that worker wi has
Yj a set of the required skills for task tj
di the maximum moving distance of worker wi

Bj the maximum budget of task tj
Ip the task assignment instance set at timestamp p
CTp a set of tasks that are assigned with workers at timestamp p and

can be completed by these assigned workers
Ci the unit price of the travelling cost of worker wi

cij the travelling cost from the location of worker wi to that of task tj
Sp the score of the task assignment instance set Ip
�Sp the score increase when changing the pair assignment

spatial tasks, and a set, Wp, of available workers (lines 2-3).
Here, the available task set Tp contains existing spatial tasks
that have not been assigned with workers in the last round,
and the ones that newly arrive at the system after the last
round. Moreover, set Wp includes those workers who have
accomplished (or rejected) the previously assigned tasks, and
thus are available to receive new tasks in the current round.

In our spatial crowdsourcing system, we organize both sets
Tp and Wp in a cost-model-based grid index. For the sake
of space limitations, details about the index construction can
be found in Appendix E of supplementary materials. Due to
dynamic changes of sets Tp and Wp, we also update the grid
index accordingly (line 4). Next, we utilize the grid index to
efficiently retrieve a set, S, of valid worker-and-task candidate
pairs (line 5). Note that, we only need to find the entire set
of valid pairs at the beginning, and then update the set in
subsequent timestamps, whose time cost is low with the help
of our grid index. That is, we obtain those pairs of workers and
tasks, hwi, tji, such that workers wi can reach the locations
of tasks tj and satisfy the constraints of skill matching, time,
and budgets for tasks tj . With valid pairs in set S, we can
apply our proposed algorithms, that is, greedy (GREEDY),
g-divide-and-conquer (g-D&C), or adaptive cost-model-based
(ADAPTIVE) approach, over set S, and obtain a good worker-
and-task assignment strategy in an assignment instance set Ip,
which is a subset of S (line 6). Finally, for each pair hwi, tji in
the selected worker-and-task assignment set Ip, we will notify
worker wi to do task tj (lines 7-8).

Procedure MS-SC Framework {
Input: a time interval P
Output: a worker-and-task assignment strategy within the time interval P
(1) for each timestamp p in P
(2) retrieve all the available spatial tasks to Tp

(3) retrieve all the available workers to Wp

(4) update the grid index for current Tp and Wp

(5) obtain a set, S, of valid worker-and-task pairs from the index
(6) use our greedy, g-divide-and-conquer or adaptive cost-model-based approach

to obtain a good assignment instance set, Ip ✓ S
(7) for each pair hwi, tji in Ip
(8) inform worker wi to conduct task tj

} Fig. 2: Framework for Solving the MS-SC Problem.
In particular, GREEDY selects a “best” worker-and-task pair

that can achieve the maximum increase of the score �Sp

(as given in Eq. (3)), which is a local optimal approach. g-
D&C keeps dividing the problem into g subproblems on each
level, until finally the number of tasks in each subproblem is

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 5

1 (which can be solved by the greedy algorithm). ADAPTIVE
makes the trade-off between GREEDY and g-D&C, in terms of
efficiency and accuracy, which adaptively decides the stopping
level of the divide-and-conquer process.

4 THE GREEDY APPROACH
In this section, we will propose a greedy algorithm, which
greedily selects one worker-and-task assignment, hwi, tji, at
a time that can maximize the increase of the assignment
score (i.e.,

P
8p2P Sp as given in Definition 4). This greedy

algorithm can be applied in line 6 of the framework, MS-
SC Framework, in Fig. 2.

4.1 The Score Increase
Before we present the greedy algorithm, we first define the
increase, �Sp, of score Sp (given in Eq. (1)), in the case
where we assign a newly available worker wi to task tj .
Specifically, from Eqs. (1) and (2), we define the score increase
after assigning worker wi to task tj as follows:

�Sp = Sp � Sp�1 = �B
0
j =

|Xi \ (Yj � fYj)|
|Yj |

· Bj � cij , (3)

where fYj is the set of skills that have been covered by those
assigned workers (excluding the new worker wi) for task tj .

In Eq. (3), |Xi\(Yj�fYj)|
|Yj | is the ratio of skills for task tj that

have not been covered by (existing) assigned workers, but can
be covered by the new worker wi. Intuitively, the first term
in Eq. (3) is the pre-allocated maximum budget based on the
number of covered skills by the new worker wi, whereas the
second term, cij , is the travelling cost from location of wi

to that of tj . Thus, the score increase, �Sp, in Eq. (3) is to
measure the change of score (i.e., flexible budget) Sp, due to
the assignment of worker wi to task tj .

4.2 Pruning Strategies
The score increase can be used as a measure to evaluate
and decide which worker-and-task assignment pair should be
added to the task assignment instance set Ip. That is, each
time our greedy algorithm aims to choose one worker-and-task
assignment pair in S with the highest score increase, which
will be added to Ip (i.e., line 6 of MS-SC Framework in Fig.
2). However, it is not efficient to enumerate all valid worker-
and-task assignment pairs in S, and compute score increases.
That is, in the worst case, the time complexity is as high
as O(m · n), where m is the number of tasks and n is the
number of workers. Therefore, in this subsection, we present
three effective pruning methods (two for pruning workers and
one for pruning tasks) to quickly filter out false alarms of
worker-and-task pairs in set S.
The Worker-Pruning Strategy. When assigning available
workers to tasks, we can rule out those valid worker-and-
task pairs in S, which contain either dominated or high-wage
workers, as given in Lemmas 2 and 3, respectively, below.

We say that a worker wa is dominated by a worker wb w.r.t.
task tj (denoted as wa �tj wb), if it holds that Xa ✓ Xb and
caj � cbj , where Xa and Xb are skill sets of workers wa and

wb, and caj and cbj are the travelling costs from locations of
workers wa and wb to task tj , respectively.

Lemma 2: (Pruning Dominated Workers) Given two
worker-and-task pairs hwa, tji and hwb, tji in valid pair set
S, if it holds that wa �tj wb, then we can safely prune the
worker-and-task pair hwa, tji.

Proof: Please refer to Appendix B in supplementary
materials.

Lemma 2 indicates that if there exists a better worker wb

than worker wa to do task tj (in terms of both the skill set and
the travelling cost), then we can safely filter out the assignment
of worker wa to task tj .

Lemma 3: (Pruning High-Wage Workers) Let fc·j be the
total travelling cost for those workers that have already been
assigned to task tj . If the travelling cost cij of assigning a
worker wi to task tj is greater than the remaining budget
(Bj � fc·j) of task tj , then we will not assign worker wi to
task tj .

Proof: Please refer to Appendix C in supplementary
materials.

Intuitively, Lemma 3 shows that, if the wage of a worker
wi (including the travelling cost cij) exceeds the maximum
budget Bj of task tj (i.e., cij > Bj �fc·j), then we can safely
prune the worker-and-task assignment pair hwi, tji.
The Task-Pruning Strategy. Let W (tj) be a set of valid
workers that can be assigned to task tj , and Ŵ (tj) be a set
of valid workers that have already been assigned to task tj .
We give the lemma of pruning those tasks with insufficient
budgets below.

Lemma 4: (Pruning Tasks with Insufficient Budgets) If an
unassigned worker wi 2 (W (tj) � Ŵ (tj)) has the highest
value of �Sp

|Xi\(Yj�fYj)|
, and the travelling cost, cij , of worker

wi exceeds the remaining budget (Bj � fc·j) of task tj , then
we can safely prune task tj .

Proof: Please refer to Appendix D in supplementary
materials.

Intuitively, Lemma 4 provides the conditions of pruning
tasks. That is, if any unassigned worker subset of (W (tj) �
Ŵ (tj)) either cannot fully cover the required skill set Yj , or
exceeds the remaining budget of task tj , then we can directly
prune all assignment pairs that contain task tj .

To summarize, by utilizing Lemmas 2, 3 and 4, we do not
have to check all worker-and-task assignments iteratively in
our greedy algorithm. Instead, we can now apply our proposed
three pruning methods, and effectively filter out those false
alarms of assignment pairs, which can significantly reduce the
number of times to compute the score increases.

4.3 The Greedy Algorithm
According to the definition of the score increase �Sp (as
mentioned in Section 4.1), we propose a greedy algorithm,
which iteratively assigns a worker to a spatial task that can
always achieve the highest score increase.

Figure 3 shows the pseudo code of our MS-SC greedy al-
gorithm, namely MS-SC Greedy, which obtains one worker-
and-task pair with the highest score increase each time, and

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 6

returns a task assignment instance set Ip with high score.
Initially, we set Ip to be empty, since no workers are

assigned to any tasks (line 1). Next, we find out all valid
worker-and-task pairs hwi, tji in the crowdsourcing system at
timestamp p (line 2). Here, the validity of pair hwi, tji satisfies
4 conditions: (1) the distance between the current location,
li(p), of worker wi and the location, lj of task tj is less
than the maximum moving distance, di of worker wi, that is,
dist(li(p), lj) di; (2) worker wi can arrive at the location,
lj , of task tj before the arrival deadline ej ; (3) worker wi have
skills that task tj requires; and (4) the travelling cost, cij , of
worker wi should not exceed the budget Bj of task tj .

Then, for each round, we would select one valid worker-and-
task assignment pair with the highest score increase, and add
it to set Ip (lines 3-16). Specifically, in each round, we check
every task tj that is involved in valid pairs hwi, tji, and then
prune those dominated and high-wage workers wi, via Lemmas
2 and 3, respectively (lines 7-8). If worker wi cannot be pruned
by both pruning methods, then we add it to a candidate set
Scand for further checking (line 9). After obtaining all workers
that match with task tj , we apply Lemma 4 to filter out task
tj (if workers cannot be successfully assigned to tj). If task
tj cannot be pruned, we will calculate the score increase,
�Sp(wi, tj), for each pair hwi, tji in Scand; otherwise, we
remove task tj from task set Tp (lines 10-14).

After we scan all tasks in Tp, we can retrieve one worker-
and-task assignment pair, hwr, tji, from the candidate set
Scand, which has the highest score increase, and insert this
pair to Ip (line 15). Since worker wr has been assigned, we
remove it from the worker set Wp (line 16). The process above
repeats, until all workers have been assigned (i.e., Wp = ;) or
there are no tasks left (i.e., Tp = ;) (line 3).

Procedure MS-SC Greedy {
Input: n workers in Wp and m time-constrained spatial tasks in Tp

Output: a worker-and-task assignment instance set, Ip
(1) Ip = ;;
(2) compute all valid worker-and-task pairs hwi, tji from Wp and Tp

(3) while Wp 6= ; and Tp 6= ;
(4) Scand = ;;
(5) for each task tj 2 Tp

(6) for each worker wi in the valid pair hwi, tji
(7) if we cannot prune dominated worker wi by Lemma 2
(8) if we cannot prune high-wage worker wi by Lemma 3
(9) add hwi, tji to Scand

(10) if we cannot prune task tj w.r.t. workers in Scand by Lemma 4
(11) for each pair hwi, tji w.r.t. task tj in Scand

(12) compute the score increase, �Sp(wi, tj)
(13) else
(14) Tp = Tp � {tj}
(15) obtain a pair, hwr, tji 2 Scand, with the highest score increase,

�Sp(wr, tj), and add this pair to Ip
(16) Wp = Wp � {wr}
(17) return Ip

} Fig. 3: The MS-SC Greedy Algorithm.
Figure 4(a) illustrates an example of valid pairs, where

n available workers and m spatial tasks are denoted by
rectangular and circular nodes, respectively, and valid worker-
and-task pairs are represented by dashed lines. Figure 4(b)
depicts the result of one assignment with high score, where
the bold lines indicate assignment pairs in Ip.
The Time Complexity. We next present the time complex-
ity of the greedy algorithm, MS-SC Greedy (in Figure 3).
Specifically, the time cost of computing valid worker-and-task

(a) Valid Pairs (b) Assignment Instance

Fig. 4: Illustration of the Worker-and-Task Assignment.
assignment pairs (line 2) is given by O(m·n) in the worst case,
where any of n workers can be assigned to any of m tasks (i.e.,
m ·n valid worker-and-task pairs). Then, for each round (lines
3-16), we apply pruning methods to m ·n pairs, and select the
pair with the highest score increase. In the worst case, pairs
cannot be pruned, and thus the time complexity of computing
score increases for these pairs is given by O(m ·n). Moreover,
since each of n workers can only be assigned to one spatial
task, the number of iterations is at most n times. Therefore,
the total time complexity of our greedy algorithm can be given
by O(m · n2).

5 THE g-DIVIDE-AND-CONQUER APPROACH
Although the greedy algorithm incrementally finds one worker-
and-task assignment (with the highest score increase) at a
time, it may incur the problem of only achieving local op-
timality. Therefore, in this section, we propose an efficient
g-divide-and-conquer algorithm (g-D&C), which first divides
the entire MS-SC problem into g subproblems, such that each
subproblem involves a smaller subgroup of dm/ge spatial
tasks, and then conquers the subproblems recursively (until
the final group size becomes 1). Since different numbers, g,
of the divided subproblems may incur different time costs, in
this paper, we will propose a novel cost-model-based method
to estimate the best g value to divide the problem.

Specifically, for each subproblem/subgroup (containing
dm/ge tasks), we will tackle the worker-and-task assignment
problem via recursion (note: the base case with the group
size equal to 1 can be solved by the greedy algorithm [22],
which has an approximation ratio of ln(N), where N is
the total number of skills). During the recursive process, we
combine/merge assignment results from subgroups, and obtain
the assignment strategy for merged groups, by resolving the
assignment conflicts among subgroups. Finally, we can return
the task assignment instance set Ip, with respect to the entire
worker and tasks sets.

In the sequel, we first discuss how to decompose the
MS-SC problem into subproblems in Section 5.1. Then, we
will illustrate our g-divide-and-conquer approach in Section
5.2, which utilizes the decomposition and merge (as will be
discussed in Section 5.3) algorithms. Finally, we will provide
a cost model in Section 5.4 to determine the best number g of
subproblems during the g-D&C process.

5.1 MS-SC Problem Decompositions
In this subsection, we discuss how to decompose a MS-SC
problem into subproblems. In order to illustrate the decom-

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 7

position, we first convert our original MS-SC problem into a
representation of a bipartite graph.
Bipartite Graph Representation of the MS-SC Problem.
Specifically, given a worker set Wp and a spatial task set Tp,
we denote each worker/task (i.e., wi or tj) as a vertex in the
bipartite graph, where worker and task vertices have distinct
vertex types. There exists an edge between a worker vertex
wi and a task vertex tj , if and only if worker wi can reach
spatial task tj under the constraints of skills (i.e., Xi \ Yj 6=
;), time (i.e., arrival time is before deadline ej of arrival),
distance (i.e., the travelling distance is below di), and budget
(i.e., the travelling cost is below task budget Bj). We say that
the worker-and-task assignment pair hwi, tji is valid, if there
is an edge between vertices wi and tj in the graph.

As an example in Figure 5(a), we have a worker set Wp =
{wi|1 i 5}, and a spatial task set Tp = {tj |1 j 3},
which are denoted by two types of vertices (i.e., represented by
rectangle and circle shapes, respectively) in a bipartite graph.
Any edge connects two types of vertices wi and tj , if worker
wi can reach the location of task tj and do tasks with the
required skills from tj . For example, there exists an edge
between w

1

and t
1

, which indicates that worker w
1

can move
to the location of t

1

before the arrival deadline e
1

, with the
travelling distance under d

1

, with the travelling cost below
budget B

1

, and moreover with some skill(s) in the required
skill set Y

1

of task t
1

.

(a) Original MS-SC Problem (b) Decomposed Subproblems

Fig. 5: Illustration of Decomposing the MS-SC Problem.
Note that, one or multiple worker vertices (e.g., w

1

, w
3

,
and w

4

) may be connected to the same task vertex (e.g., t
1

).
Furthermore, multiple task vertices, say t

1

and t
2

, may also
share some conflicting workers (e.g., w

3

or w
4

), where the
conflicting worker w

3

(or w
4

) can be assigned to either task
t
1

or task t
2

mutual exclusively.
Procedure MS-SC Decomposition {

Input: n workers in Wp, m time-constrained spatial tasks in Tp, and the number
of groups g

Output: decomposed MS-SC subproblems, Ps (1 s g)
(1) for s = 1 to g
(2) Ps = ;
(3) compute all valid worker-and-task pairs hwi, tji from Wp and Tp,

and obtain a bipartite graph G
(4) for s = 1 to g

(5) let set T (j)
p contain the next anchor task tj and its top-(dm/ge � 1)

nearest tasks // the task, tj , whose longitude is the smallest
(6) for each task vertex tj 2 T (j)

p in graph G
(7) obtain all worker vertices wi that connect with task vertex tj
(8) add all pairs hwi, tji to Ps

(9) return Ps (for 1 s g)
} Fig. 6: The MS-SC Problem Decomposition Algorithm.

Decomposing the MS-SC Problem. Next, we will illustrate
how to decompose the MS-SC problem, with respect to task
vertices in the bipartite graph. Figure 5 shows an example of

decomposing the MS-SC problem (as shown in Figure 5(a))
into 3 subproblems (as depicted in Figure 5(b)), where each
subproblem contains a subgroup of one single spatial task (i.e.,
group size = 1), associated with its connected worker vertices.
For example, the first subgroup in Figure 5(b)) contains task
vertex t

1

, as well as its connecting worker vertices w
1

, w
3

, and
w

4

. Different task vertices may have conflicting workers, for
example, tasks t

1

and t
2

share the same (conflicting) worker
vertices w

3

and w
4

.
In a general case, given n workers and m spatial tasks, we

partition the bipartite graph into g subgroups, each of which
contains dm/ge spatial tasks, as well as their connecting work-
ers. Figure 6 presents the pseudo code of our MS-SC problem
decomposition algorithm, namely MS-SC Decomposition,
which returns g MS-SC subproblems (each corresponding to
a subgroup with dm/ge tasks), Ps, after decomposing the
original MS-SC problem.

Specifically, we first initialize g empty subproblems, Ps,
where 1 s g (lines 1-2). Then, we find out all valid
worker-and-task pairs hwi, tji in the crowdsourcing system
at timestamp p, which can form a bipartite graph G, where
valid pairs satisfy the constraints of skills, times, distances,
and budgets (line 3).

Next, we want to obtain one subproblem Ps at a time (lines
4-8). In particular, for each round, we retrieve an anchor task
tj and its top-(dm/ge�1) nearest tasks, which form a task set
T (j)
p of size dm/ge (line 5). Here, we choose anchor tasks with

a sweeping style, that is, we always choose the task whose
longitude is smallest (in the case where multiple tasks have
the same longitude, we choose the one with smallest latitude).
Then, for each task tj 2 T (j)

p , we obtain its corresponding
vertex in G and all of its connecting worker vertices wi, and
add pairs hwi, tji to subproblem Ps (lines 6-8). Finally, we
return all the g decomposed subproblems Ps.

5.2 The g-D&C Algorithm
In this subsection, we propose an efficient g-divide-and-
conquer (g-D&C) algorithm, namely MS-SC gD&C, which
recursively partitions the original MS-SC problem into sub-
problems, solves each subproblem (via recursion), and merges
assignment results of subproblems by resolving the conflicts.

Specifically, in Algorithm MS-SC gD&C, we first estimate
the best number of groups, g, to partition, with respect to
Wp and Tp, which is based on the cost model proposed
later in Section 5.4 (line 2). Then, we will call the MS-
SC Decomposition algorithm (as mentioned in Figure 6)
to obtain subproblems Ps (line 3). For each subproblem Ps,
if Ps involves more than 1 task, then we can recursively
call Algorithm MS-SC gD&C itself, by further dividing the
subproblem Ps (lines 5-6). Otherwise, when subproblem Ps

contains only one single task, we apply the greedy algorithm of
the classical set cover problem for task set Tp(Ps) and worker
set Wp(Ps) (lines 7-8).

After that, we can obtain an assignment instance set I(s)p for
each subproblem Ps, and merge them into one single worker-
and-task assignment instance set Ip, by reconciling the conflict
(lines 9-11). In particular, Ip is initially empty (line 1), and

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 8

each time merged with an assignment set I(s)p from subproblem
Ps (lines 10-11). Due to the confliction among subproblems,
we call function MS-SC Conflict Reconcile (·, ·) (discussed
later in Section 5.3) to resolve the confliction issue during the
merging process. Finally, we can return the merged assignment
instance set Ip (line 12).

Procedure MS-SC gD&C {
Input: n workers in Wp, and m time-constrained spatial tasks in Tp

Output: a worker-and-task assignment instance set, Ip
(1) Ip = ;
(2) estimate the best number of groups, g, for Wp and Tp

(3) invoke MS-SC Decomposition(Wp, Tp, g), and obtain subproblems Ps

(4) for s = 1 to g
(5) if the number of tasks in subproblem Ps (group size) is greater than 1
(6) I(s)

p = MS-SC gD&C(Wp(Ps), Tp(Ps))
(7) else
(8) invoke classical greedy set cover algorithm to solve subproblem Ps,

and obtain assignment results I(s)
p

(9) for i = 1 to g
(10) find the next subproblem, Ps

(11) Ip = MS-SC Conflict Reconcile (Ip, I(s)
p)

(12) return Ip
} Fig. 7: The g-Divide-and-Conquer Algorithm.

5.3 Merging Conflict Reconciliation
In this subsection, we introduce the merging conflict reconcil-
iation procedure, which resolves the conflicts while merging
assignment results of subproblems (i.e., line 11 of Procedure
MS-SC gD&C). Assume that Ip is the current assignment
instance set we have merged so far. Given a new subproblem
Ps with assignment set I(s)p , Figure 8 shows the merging algo-
rithm, namely MS-SC Conflict Reconcile, which combines
two assignment sets Ip and I(s)p by resolving conflicts.

Procedure MS-SC Conflict Reconcile {
Input: the current assignment instance set, Ip, of subproblem P we have merged,

and the assignment instance set, I(s)
p , of subproblem Ps

Output: a merged worker-and-task assignment instance set, Ip
(1) let Wc be a set of all conflicting workers between Ip and I(s)

p

(2) while Wc 6= ;
(3) choose a worker wi 2 Wc with the highest travelling cost in I(s)

p

(4) if we substitute wi with w0
i in Ps having the highest score S(s)

p

(5) compute the reduction of the assignment score, �S(s)
p

(6) if we substitute wi with w00
i in P having the highest score Sp

(7) compute the reduction of the assignment score, �Sp

(8) if �Sp > �S(s)
p

(9) substitute worker wi with w0
i in I(s)

p

(10) else
(11) substitute worker wi with w00

i in Ip
(12) Wc = Wc � {wi}
(13) Ip = Ip [I(s)

p

(14) return Ip
} Fig. 8: The Merging Conflict Reconciliation Algorithm.
In particular, two distinct tasks from two subproblems may

be assigned with the same (conflicting) worker wi. Since each
worker can only be assigned to one spatial task at a time, we
thus need to avoid such a scenario when merging assignment
instance sets of two subproblems (e.g., Ip and I(s)p). Our
algorithm in Figure 8 first obtain a set, Wc, of all conflicting
workers between Ip and I(s)p (line 1). Then, each time we
greedily solve the conflicts for workers wi in an non-decreasing
order of the travelling cost (i.e., cij) in I(s)p (line 3). Next, in
order to resolve the conflicts, we try to replace worker wi with
another worker w0

i (or w00
i) in Ps (or P) with the highest score

S(s)
p (or Sp), and compute possible reduction of the assignment

score, �S(s)
p (or �Sp) (lines 4-7). Note that, here we replace

worker wi with other available workers. If no other workers are
available for replacing wi, we may need to sacrifice task tj that
worker wi is assigned to. For example, when we cannot find
another worker to replace wi in Ps, the substitute of wi will be
set as an empty worker, which means the assigned task tj for
wi in I(s)p will be sacrificed and �S(s)

p = B0
j (as calculated

in Equation 2). In the case that �Sp > �S(s)
p , we substitute

worker wi with w0
i in I(s)p (since the replacement of wi in

subproblem S(s)
p leads to lower score reduction); otherwise, we

resolve conflicts by replacing wi with w00
i in Ip (lines 8-12).

After resolving all conflicts, we merge assignment instance set
Ip with I(s)p (line 13), and return the merged result Ip.

5.4 Cost-Model-Based Estimation of the Best Num-
ber of Groups
In this subsection, we discuss how to estimate the best number
of groups, g, such that the total cost of solving the MS-
SC problem in g-divide-and-conquer approach is minimized.
Specifically, the cost of the g-divide-and-conquer approach
consists of 3 parts: the cost, FD, of decomposing subproblems,
that, FC , of conquering subproblems recursively, and that, FM ,
of merging subproblems by resolving conflicts.

Without loss of generality, as illustrated in Figure 9, during
the g-divide-and-conquer process, on level k, we recursively
divide the original MS-SC problem into gk subproblems, P (k)

1

,
P (k)
2

, ..., and P (k)

gk , where each subproblem involves m/gk

spatial tasks.

Fig. 9: Illustration of the Cost Model Estimation.
The Cost, FD, of Decomposing Subproblems. From Algo-
rithm MS-SC Decomposition (in Figure 6), we first need
to retrieve all valid worker-and-task assignment pairs (line 3),
whose cost is O(m·n). Then, we will divide each problem into
g subproblems, whose cost is given by O(m · g+m) on each
level. For level k, we have m/gk tasks in each subproblem
P (k)
i . We will further divide it into g more subproblems,

P (k+1)

j , and each one will have m/gk+1 tasks. To obtain
m/gk+1 tasks in each subproblem P (k+1)

j , we first need
to find the anchor task, which needs O(m/gk) cost, and
further retrieve the rest tasks, which needs O(m/gk+1) cost.
Moreover, since we will have gk+1 subproblems on level
k + 1, the cost of decomposing tasks on level k is given by
O(m · g +m).

Since there are totally logg(m) levels, the total cost of
decomposing the MS-SC problem is given by:

FD = m · n + (m · g + m) · logg(m).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 9

The Cost, FC , of Recursively Conquering Subproblems. Let
function FC(x) be the total cost of conquering a subproblem
which contains x spatial tasks. Then, we have the following
recursive function:

FC(m) = g · FC(

⇠
m

g

⇡
).

Assume that degt is the average degree of task nodes in the
bipartite group G. Then, the base case of function FC(x) is
the case that x = 1, in which we apply the greedy algorithm
on just one single task and degt workers. Thus, by the analysis
of the time complexity in Section 4.3, we have:

FC(1) = costgreedy(degt, 1) = deg
2
t .

From the recursive function FC(x) and its base case, we
can obtain the total cost of the recursive invocation on levels
from 1 to logg(m) below:

logg(m)X

k=1

Fc(m/g
k
) =

1 � m

1 � g
deg

2
t

The Cost, FM , of Merging Subproblems. Next, we provide
the cost, FM , of merging subproblems by resolving conflicts.
Assume that we have ns workers who could be assigned to
more than one spatial task (i.e., conflicting workers). Moreover,
each worker node has an average degree degw in the bipartite
graph. During the subproblem merging processing, we can
estimate the worst-case cost of resolving conflicts for these
ns workers, and we may resolve conflicts for each worker at
most (degw � 1) times.

Therefore, the worst-case cost of merging subproblems can
be given by: FM = ns · (degw � 1).
The Total Cost of the g-D&C Approach. The total cost,
costgD&C , of the g-D&C algorithm can be given by summing
up three costs, FD, FC , and FM . That is, we have:

costgD&C = FD +

logg(m)X

k=1

Fc(m/g
k
) + FM (4)

= (mg + m) logg(m) +

1 � m

1 � g
deg

2
t + ns(degw � 1).

We take the derivation of costgD&C (given in Eq. (4)) over
g, and let it be 0. In particular, we have:

@costgD&C

@g
=

m log(m)(g log(g) � g � 1)

g log(2g)
+

1 � m

(1 � g)2
deg

2
t = 0 (5)

We notice that when g = 2, @costgD&C

@g is much smaller than
0 but increases quickly when g grows. In addition, g can only
be an integer. Then we can try the integers, (2, 3, 4...), until
@costgD&C

@g is above 0.

6 THE COST-MODEL-BASED ADAPTIVE AL-
GORITHM
In this section, we introduce a cost-model-based adaptive
approach, which adaptively decides the strategies to apply
our proposed greedy and g-divide-and-conquer (g-D&C) al-
gorithms. The basic idea is as follows. Unlike the g-D&C
algorithm, we do not divide the MS-SC problem into sub-
problems recursively until task group sizes become 1 (which
can be solved by the greedy algorithm of set cover problems).
Instead, based on our proposed cost model, we will partition
the problem into subproblems, and adaptively determine when
to stop in some partitioning round (i.e., the total cost of solving

subproblems with the greedy algorithm is smaller than that of
continuing dividing subproblems).

Procedure MS-SC Adaptive {
Input: n workers in Wp, and m time-constrained spatial tasks in Tp

Output: a worker-and-task assignment instance set, Ip
(1) Ip = ;
(2) estimate the cost, costgreedy , of the greedy algorithm
(3) estimate the best number of groups, g, and obtain the cost, costgdc,

of the g-D&C approach
(4) if costgreedy < costgdc
(5) Ip = MS-SC Greedy(Wp, Tp)
(6) else // g-D&C algorithm
(7) invoke MS-SC Decomposition(Wp, Tp, g), and obtain subproblems Ps

(8) for each subproblem, Ps,
(9) I(s)

p = MS-SC Adaptive(Wp(Ps), Tp(Ps))
(10) for i = 1 to g
(11) find the next subproblem, Ps

(12) Ip = MS-SC Conflict Reconcile (Ip, I(s)
p)

(13) return Ip
} Fig. 10: The MS-SC Cost-Model-Based Adaptive Algorithm.

6.1 Algorithm of the Cost-Model-Based Adaptive Ap-
proach
Figure 10 shows the pseudo-code of our cost-model-based
adaptive algorithm, namely MS-SC Adaptive. Initially, we
estimate the cost, costgreedy , of applying the greedy approach
over worker/task sets Wp and Tp (line 2). Similarly, we also
estimate the best group size, g, and compute the cost, costgd&c

of using the g-D&C algorithm (line 3). If it holds that the cost
of the greedy algorithm is smaller than that of the g-D&C
approach (i.e., costgreedy < costgdc), then we will use the
greedy algorithm by invoking function MS-SC Greedy(·, ·)
(due to its lower cost; lines 4-5). Otherwise, we will apply
the g-D&C algorithm, and further partition the problem into
subproblems Ps (lines 6-7). Then, for each subproblem Ps, we
recursively call the cost-model-based adaptive algorithm, and
retrieve the assignment instance set I(s)p (line 9). After that, we
merge all the assignment instance sets from subproblems by
invoking function MS-SC Conflict Reconcile(·, ·) (lines 10-
12). Finally, we return the worker-and-task assignment instance
set Ip (line 13).

6.2 Cost Model for the Stopping Condition
Next, we discuss how to determine the stopping level, when
using our cost-model-based adaptive approach to recursively
solve the MS-SC problem. Intuitively, at the current level
k, we need to estimate the costs, costgreedy and costgdc, of
using greedy and g-D&C algorithms, respectively, to solve the
remaining MS-SC problem. If the greedy algorithm has lower
cost, then we will stop the divide-and-conquer, and apply the
greedy algorithm for each subproblems.

In the sequel, we discuss how to obtain the formulae of costs
costgreedy and costgdc.

The Cost, costgreedy , of the Greedy Algorithm. Given a set,
Wp, of n workers and a set, Tp, of m tasks, the cost,
costgreedy , of our greedy approach (as given in Figure 3) has
been discussed in Section 4.3.

In the bipartite graph of valid worker-and-task pairs, denote
the average degree of workers as degw, and that of tasks as
degt. In Figure 3, the computation of valid worker-and-task
pairs in line 2 needs O(m · n) cost. Since there are at most n

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 10

iterations, for each round (lines 3-16), we apply two worker-
pruning methods to at most (2m · degt) pairs, and select pairs
with the highest score increases, which need O(3m · n · degt)
cost in total. For the cost of task-pruning, there are totally
n rounds (lines 3-16; i.e., removing one out of n workers
in each round in line 16). In each round, there are at most
degw out of m tasks (line 5) that may be potentially pruned
by Lemma 4 (line10). To check each of degw tasks, we need
O(degt) cost. Therefore, the total cost of task-pruning is given
by O(n · degt · degw). If we cannot prune a task that was
assigned with a worker in the last round (lines 3-16), then we
need to update score increases of degt workers for that task.
Each task will be assigned with workers for degt times. Thus,
the total update cost for one task is given by O(deg2t) (line
12). Therefore, costgreedy(n,m) can be given by:

costgreedy(n,m)

= Cgreedy · (m · n + n · degt · (3m + degw) + m · deg2
t), (6)

where parameter Cgreedy is a constant factor, which can be
inferred from cost statistics of the greedy algorithm.

The Cost, costgdc, of the g-D&C Algorithm. Assume that
the current g-divide-and-conquer level is k. We can modify the
cost analysis in Section 5.4, by considering the cost, costgdc,
of the remaining divide-and-conquer levels. Specifically, we
have the cost, F 0

D, of the decomposition algorithm, that is:
F

0
D = m · n + (m · g + m) · k.

Moreover, when the current level is k, the cost of conquering
the remaining subproblems is given by:

logg(m)X

i=k

Fc(m/g
i
).

Finally, the cost of merging subproblems is given by FM .
As a result, the total cost, costgdc, of solving the MS-

SC problem with our g-D&C approach for the remaining
partitioning levels (from level k to logg(m)) can be given by:

costgdc = Cgdc · (F 0
D +

logg(m)X

i=k

Fc(m/g
i
) + FM),

where parameter Cgdc is a constant factor, which can be
inferred from time cost statistics of the g-D&C algorithm.

This way, we compare costgreedy with costgdc (as men-
tioned in line 4 of MS-SC Adaptive Algorithm). If costgreedy
is smaller than costgdc, we stop at the current level k, and
apply the greedy algorithm to tackle the MS-SC problem
directly; otherwise, we keep dividing the original MS-SC
problem into subproblems (i.e., g-D&C).
Discussions on 3 MS-SC Approaches. The greedy approach
(GREEDY) greedily assigns workers to tasks to maximize the
increase of the assignment score in each iteration, which may
achieve a local optimality of the whole problem space. The
g-divide-and-conquer approach (g-D&C) keeps dividing the
original problem into g smaller subproblems on each level, un-
til the number of tasks in each subproblem is 1. For each one-
task subproblem, we use the state-of-the-art set cover greedy
algorithm (SCGreedy) [22], a ln(N)-approximation algorithm,
to solve it. For each task, the sum of the travelling costs
calculated by GREEDY cannot be less than that calculated by
SCGreedy such that the score achieved by GREEDY is less
than that achieved by SCGreedy. The reason is that, for each

task, GREEDY cannot guarantee the same “best” worker as
that selected by SCGreedy, since the “best” worker may have
been assigned to some other task. In other words, g-D&C can
achieve better local optimal results for one-task subproblems
compared with GREEDY. In addition, when we combine the
results of subproblems, we solve the conflicts and maintain
these better local optimal results. As a result, g-D&C can
achieve better assignment scores. The adaptive cost-model-
based approach trades the accuracy for the running time such
that it can run faster than g-D&C and achieve better results
than GREEDY.

7 EXPERIMENTAL STUDY
7.1 Experimental Methodology
Data Sets. We use both real and synthetic data to test our
proposed MS-SC approaches. Specifically, for real data, we
use Meetup data set from [19], which was crawled from
meetup.com between Oct. 2011 and Jan. 2012. There are
5,153,886 users, 5,183,840 events, and 97,587 groups in
Meetup, where each user is associated with a location and
a set of tags, each group is associated with a set of tags,
and each event is associated with a location and a group who
created the event. For an event, we use the tags of the group
who creates the event as its tags. To conduct the experiments
on our approaches, we use the locations and tags of users in
Meetup to initialize the locations and the practiced skills of
workers in our MS-SC problem. In addition, we utilize the
locations and tags of events to initialize the locations and the
required skills of tasks in our experiments. Since workers are
unlikely to move between two distant cities to conduct one
spatial task, and the constraints of time (i.e., ej), budget (i.e.,
Bj) and distance (i.e., di) also prevent workers from moving
too far, we only consider those user-and-event pairs located in
the same city. Specifically, we select one famous and popular
city, Hong Kong, and extract Meetup records from the area
of Hong Kong (with latitude from 22.209� to 113.843� and
longitude from 22.609� to 114.283�), in which we obtain 1,282
tasks and 3,525 workers.

For synthetic data, we generate locations of workers and
tasks in a 2D data space [0, 1]2, following either Uniform
(UNIFORM) or Skewed (SKEWED) distribution. For Uni-
form distribution, we uniformly generate the locations of
tasks/workers in the 2D data space. Similarly, we also generate
tasks/workers with the Skewed distribution by locating 90% of
them into a Gaussian cluster (centered at (0.5, 0.5) with vari-
ance = 0.22), and distribute the rest workers/tasks uniformly.
Then, for skills of each worker, we randomly associate one
user in Meetup data set to this worker, and use tags of the
user as his/her skills in our MS-SC system. For the required
skills of each task, we randomly select an event, and use its
tags as the required skills of the task.

For both real and synthetic data sets, we simulate the
velocity of each worker with Gaussian distribution within
range [v�, v+], for v�, v+ 2 (0, 1). For the unit price, Ci,
w.r.t. the travelling distance of each worker, we generate it
following the Uniform distribution within the range [C�, C+].
Furthermore, we produce the maximum moving distance of

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 11

TABLE 4: Experiments Settings.

Parameters Values
the number of tasks m 1K, 2K, 5K, 8K, 10K
the number of workers n 1K, 2K, 5K, 8K, 10K
the task budget range [B�, B+

] [1, 5], [5, 10], [10, 15], [15, 20], [20, 25]
the velocity range [v�, v+

] [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]
the unit price w.r.t. distance [C�, C+

] [10, 20], [20, 30], [30, 40], [40, 50]
the moving distance range [d�, d+

] [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]
the expiration time range [rt�, rt+] [0.25, 0.5], [0.5, 1], [1, 2], [2, 3], [3, 4]

each worker, following the Uniform distribution within the
range [d�, d+] (for d�, d+ 2 (0, 1)). For temporal constraints
of tasks, we also generate the arrival deadlines of tasks, e,
within range [rt�, rt+] with Gaussian distribution. Finally, we
set the budgets of tasks with Gaussian distribution within the
range [B�, B+]. Here, for Gaussian distributions, we linearly
map data samples within [�1, 1] of a Gaussian distribution
N (0, 0.22) to the target ranges.
MS-SC Approaches and Measures. We conduct experi-
ments to compare our three approaches, GREEDY, g-D&C
and ADAPTIVE, with a random method, namely RANDOM,
which randomly assigns workers to tasks.

In particular, GREEDY selects a “best” worker-and-task
assignment with the highest score increase each time, which
is a local optimal approach. The g-D&C algorithm keeps
dividing the problem into g subproblems on each level, until
finally the number of tasks in each subproblem is 1 (which
can be solved by the greedy algorithm on each one-task
subproblem). Here, the parameter g can be estimated by a cost
model to minimize the computing cost. The cost-model-base
adaptive algorithm (ADAPTIVE) makes the trade-off between
GREEDY and g-D&C, in terms of efficiency and accuracy,
which adaptively decides the stopping level of the divide-
and-conquer. To evaluate our three proposed approaches, we
need to compare the results with ground truth. However, as
proved in Section 2.4, the MS-SC problem is NP-hard, and
thus infeasible to calculate the real optimal result as the ground
truth. Alternatively, we will compare the effectiveness of our
three approaches with that of a random (RANDOM) method,
which randomly chooses a worker, and then randomly assigns
him/her to a task that he/she can satisfy its constraints and the
required skills. For each MS-SC instance, we run RANDOM
for 10 times, and report the highest score. We also conducted
comparison experiments on a small dataset to show that the
results achieved by our three approaches are close to the
optimal results. Due to the space limitation, please refer to
Appendix H of supplementary materials.

Table 4 depicts our experimental settings, where the default
values of parameters are in bold font. In each set of experi-
ments, we vary one parameter, while setting other parameters
to their default values. For each experiment, we report the run-
ning time and the assignment score of our tested approaches.
The trend w.r.t. the number of the completed tasks is similar
to that of the assignment score. Due to space limitations,
please refer to experimental results for the number of the
completed tasks in Appendix I of supplementary materials.
All our experiments were run on an Intel Xeon X5675 CPU
@3.07 GHZ with 32 GB RAM in Java.

7.2 Experiments on Real Data
In this subsection, we show the effects of the range of task
budgets [B�, B+], the range of workers’ velocities [v�, v+],
and the range of unit prices w.r.t. distance [C�, C+].
Effect of the Range of Task Budgets [B�, B+]. Figure
11 illustrates the experimental results on different ranges,
[B�, B+], of task budgets Bj from [1, 5] to [20, 25]. In
Figure 11(a), the assignment scores of all the four approaches
increase, when the value range of task budgets gets larger.
When the average budgets of tasks increase, the flexible budget
B0 of each task will also increase. g-D&C and ADAPTIVE can
achieve higher score than GREEDY. In contrast, RANDOM
has the lowest score, which shows that our proposed three
approaches are more effective. As shown in Figure 11(b),
the running times of our three approaches increase, when the
range of task budgets becomes larger. The reason is that, when
Bj 2 [B�, B+] increases, each task has more valid workers,
which thus leads to higher complexity of the MS-SC problem
and the increase of the running time. RANDOM is the fastest
(however, with the lowest assignment score), since it does
not even need to find local optimal assignment. ADAPTIVE
achieves much lower running time than g-D&C (a bit higher
time cost than GREEDY), but has comparable score with g-
D&C (much higher score than GREEDY), which shows the
good performance of ADAPTIVE, compared with GREEDY
and g-D&C. The requesters provide budgets to support the
travelling costs of workers. Higher travelling budget can sup-
port workers located in farther locations, which means more
worker candidates that can reach the task.

[B-, B+]

[1,5] [5,10] [10,15] [15,20] [20,25]

S
co

re

0

2000

4000

6000

8000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(a) Scores of Assignment

[B-, B+]

[1,5] [5,10] [10,15] [15,20] [20, 25]

R
u

n
n

in
g

 T
im

e
 (

m
s)

0

1000

2000

3000

4000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(b) Running Times

Fig. 11: Effect of the Range of Task Budgets [B�, B+] (Real Data).

Effect of the Workers’ Velocity Range [v�, v+]. Figure 12
reports the effect of the range of velocities, [v�, v+], of work-
ers over real data. As shown in Figure 12(a), when the range
of velocities increases from [0.1, 0.2] to [0.2, 0.3], the scores of
all the approaches first increase; then, they stop growing for
the velocity range varying from [0.2, 0.3] to [0.4, 0.5]. The
reason is that, at the beginning, with the increase of velocities,
workers can reach more tasks before their arrival deadlines.
Nevertheless, workers are also constrained by their maximum
moving distances, which prevents them from reaching more
tasks. ADAPTIVE can achieve a bit higher scores than g-D&C,
and much better assignment scores than GREEDY.

In Figure 12(b), when the range of velocity [v�, v+] in-
creases, the running times of our tested approaches also
increase, due to the cost of more valid worker-and-task pairs
to be handled. For RANDOM, in each iteration, it may need
more time to eliminate the invalid pairs caused by the newly
assigned worker-and-task pairs, which leads to the increase of

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 12

the total running time. Similar to previous results, RANDOM
is the fastest, and g-D&C is the slowest. ADAPTIVE requires
about 0.5-1.5 seconds, and has lower time cost than g-D&C,
which shows the efficiency of our proposed approaches.

[v-,v+]

[0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

S
co

re

200

400

600

800

1000

1200

GREEDY
g-D&C
ADAPTIVE
RANDOM

(a) Scores of Assignment

[v-,v+]

[0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

R
u

n
n

in
g

 T
im

e
 (

m
s)

0

500

1000

1500

2000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(b) Running Times

Fig. 12: Effect of the Range of Velocities [v�, v+] (Real Data).
Effect of the Range of Unit Prices w.r.t. Travelling Dis-
tance [C�, C+]. In Figure 13(a), when the unit prices w.r.t.
travelling distance Ci 2 [C�, C+] increase, the scores of
all the approaches decrease. The reason is that, when the
range of unit prices [C�, C+] increases, we need to pay more
wages containing the travelling costs of workers (to do spatial
tasks), which in turn decreases the flexible budget of each
task. However, ADAPTIVE can still achieve the highest score
among all four approaches; scores of g-D&C are close to
the scores of ADAPTIVE and higher than GREEDY. This
parameter can be determined by

In Figure 13(b), when the range of unit prices, [C�, C+],
of the travelling cost increases, the number of valid worker-
and-task pairs decreases, and thus the running time of all the
approaches also decreases. Our ADAPTIVE algorithm is faster
than g-D&C, and slower than GREEDY. On a real platform,
the unit price value can be set by the platform based on the gas
price and the gas consumption per mile for specific vehicles.

[C-, C+]

[10,20] [20,30] [30,40] [40,50]

S
co

re

0

500

1000

1500

2000

2500
GREEDY
g-D&C
ADAPTIVE
RANDOM

(a) Scores of Assignment

[C-, C+]

[10,20] [20,30] [30,40] [40,50]

R
u

n
n

in
g

 T
im

e
 (

m
s)

0

1000

2000

3000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(b) Running Times

Fig. 13: Effect of the Range of Unit Prices w.r.t. Travelling Distance
[C�, C+] (Real Data).

In addition, we also tested the effects of the range, [d�, d+],
of maximum moving distances for workers, and the expiration
time range, [rt�, rt+], of tasks over the real data set, Meetup.
Due to space limitations, please refer to experimental results
with respect to other parameters (e.g., [d�, d+] and [rt�, rt+])
in Appendix F of supplementary materials.

From experimental results on the real data above, ADAP-
TIVE can achieve higher scores than Greedy and g-D&C, and
it is faster than g-D&C and slower than GREEDY. Although
g-D&C can achieve good scores close to ADAPTIVE, it is the
slowest among all the 4 approaches.

7.3 Experiments on Synthetic Data
In this subsection, we test the effectiveness and robustness of
our three MS-SC approaches, GREEDY, g-D&C, and ADAP-

TIVE, compared with RANDOM, by varying the number of
tasks m and the number of workers n on synthetic data sets.
Due to space limitations, we present the experimental results
for tasks/workers with Uniform distributions. For similar re-
sults with tasks/workers following skewed distributions, please
refer to Appendix G in supplementary materials.
Effect of the Number of Tasks m. Figure 14 illustrates the
effect of the number, m, of spatial tasks, by varying m from
1K to 10K, over synthetic data sets, where other parameters
are set to default values. For assignment scores in Figure 14(a),
g-D&C obtains results with the highest scores among all the
four approaches. ADAPTIVE performs similar to g-D&C, and
achieves good results similar to g-D&C. GREEDY is not as
good as g-D&C and ADAPTIVE, but is still much better than
RANDOM. When the number, m, of spatial tasks becomes
larger, all our approaches can achieve higher scores.

In Figure 14(b), when m increases, the running time also
increases. This is because, we need to deal with more worker-
and-task assignment pairs for large m. The ADAPTIVE al-
gorithm is slower than GREEDY, and faster than g-D&C. In
addition, we find that the running time of GREEDY performs,
with the same trend as that estimated in our cost model (as
given in Eq. (6)).

m
1K2K 5K 8K 10K

S
co

re

0

2000

4000

6000

8000

10000

12000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(a) Scores of Assignment

m
1K 2K 5K 8K 10K

R
u

n
n

in
g

 T
im

e
 (

m
s)

0

2000

4000

6000

8000

10000

12000

14000

GREEDY
g-D&C
ADAPTIVE
RANDOM

(b) Running Times

Fig. 14: Effect of the Number of Tasks m (Synthetic Data).
Effect of the Number of Workers n. Figure 15 shows the
experimental results with different numbers of workers, n,
from 1K to 10K over synthetic data, where other parameters
are set to their default values. Similar to previous results about
the effect of m, in Figure 15(a), our proposed three approaches
can obtain good results with high assignment scores, compared
with RANDOM. Moreover, when the number, n, of workers
increases, the scores of all our approaches also increase. The
reason is that, when n increases, we have more potential
workers, who can be assigned to nearby tasks, which may
lead to even larger scores.

In Figure 15(b), the running time of our approaches in-
creases, with the increase of the number of workers . This
is due to higher cost to process more workers (i.e., larger n).
Similarly, ADAPTIVE has higher time cost than GREEDY,
and lower time cost than g-D&C.

In summary, over synthetic data sets, our ADAPTIVE al-
gorithm trades the accuracy for efficiency, and thus has the
trade-off of scores/times between GREEDY and g-D&C.

8 RELATED WORK

In this section, we review the related work on spatial crowd-
sourcing, as well as the set cover problem.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 13

n
1K2K 5K 8K 10K

S
co

re

0

2000

4000

6000

8000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(a) Scores of Assignment

n
1K2K 5K 8K 10K

R
u

n
n

in
g

 T
im

e
 (

m
s)

0

2000

4000

6000

8000
GREEDY
g-D&C
ADAPTIVE
RANDOM

(b) Running Times

Fig. 15: Effect of the Number of Workers n (Synthetic Data).

Spatial Crowdsourcing. Without considering the location
information in crowdsourcing, previous works [7], [25], [13]
studied the task assignment to achieve better accuracy, and
prior works [8], [24] studied how to select a proper worker set
for a particular task. Prior works like [5], [14] usually studied
crowdsourcing problems, which treat the location information
as a parameter and distribute tasks to workers. In these prob-
lems, workers are not required to accomplish tasks on sites. In
our MS-SC problem, we focus on finding an assignment such
that the spatial (e.g., maximum moving distances of worker)
and temporal (e.g., the arrival deadlines of tasks) constraints
can be met, the skills required by the tasks can be supported
by workers, and the assignment score is maximized. Thus the
existing methods cannot be directly applied.

The spatial crowdsourcing platform [17] requires workers
to physically move to some specific locations, and perform
the requested services, such as taking photos/videos, waiting
in line at shopping malls, and decorating a room. As an
example, some previous works [11], [15] studied the small-
scale or specified campaigns benefiting from participatory
sensing techniques, which utilize smart devices (equipped by
workers) to sense/collect data for real applications.

Kazemi and Shahabi [17] classified the spatial crowdsourc-
ing systems from two perspectives: people’s motivation and
publishing models. From the perspective of people’s motiva-
tion, the spatial crowdsourcing can be categorized into two
groups: reward-based, in which workers can receive rewards
according to the services they supplied, and self-incentivised,
in which workers conduct tasks voluntarily. In our work, we
study our MS-SC problem based on the reward-based model,
where workers are paid for doing tasks. However, with a
different goal, our MS-SC problem targets at assigning workers
to tasks by using our proposed algorithms, such that the
required skills of tasks can be covered, and the total reward
budget (i.e., flexible budget B0

j in Eq. (2)) can be maximized.
Note that, we can embed incentive mechanisms from existing
works [20], [23] into our MS-SC framework to distribute
rewards (flexible budgets) among workers, which is however
not the focus of our problem.

According to the publishing modes of spatial tasks, the
spatial crowdsourcing can be also classified into two cate-
gories: worker selected tasks (WST) and server assigned tasks
(SAT) [17]. In particular, for the WST mode, spatial tasks
are broadcast to all workers, and workers can select any tasks
by themselves. In contrast, for the SAT mode, the spatial
crowdsourcing server will directly assign tasks to workers,
based on location information of tasks/workers.

Some prior works [5], [12] on the WST mode allowed

workers to select available tasks, based on their personal
preferences. However, for the SAT mode, previous works
focused on assigning available workers to tasks in the system,
such that the number of assigned tasks on the server side [17],
the number of worker’s self-selected tasks on the client side
[12], or the reliability-and-diversity score of assignments [10]
is maximized.

In particular, Cheng et al. [10] tackles the problem of reli-
able diversity-based spatial crowdsourcing (RDB-SC), which
finds a worker-and-task assignment strategy that maximizes
the assignment score (w.r.t. spatial/temporal diversity and
reliability of tasks). In contrast, our MS-SC problem has a
different, yet more general, goal, which involves multi-skilled
workers and complex tasks with the required skills (not studied
before), and aims to maximize a different assignment score
(i.e., flexible budget, given by the total budget of the completed
tasks minus the total travelling cost of workers). In addition,
our MS-SC problem also needs to consider several constraints,
such as skill-covering, budget, time, and distance constraints,
which make our problem more challenging.

Due to different assignment goals, for example, between
RDB-SC [10] and MS-SC, we cannot directly borrow previous
techniques such as [10], [12], [17] to tackle the MS-SC
problem. For instance, the greedy algorithm should design
effective approach to find one assignment each time with the
highest increase of flexible budget in our MS-SC problem
(rather than highest reliability and diversity as discussed in
RDB-SC [10]); for g-D&C, we propose an effective cost
model to determine the best g value to maximize the MS-
SC performance (instead of always dividing the problem into
2 subproblems in [10]); most importantly, we also propose a
novel cost-model-based adaptive algorithm, which combines
the greedy and g-D&C algorithms based on our cost model
that can adaptively estimate the stopping level of the recursive
division, minimizing the total computation cost, which have
not been studied by previous works.
Set Cover Problem. The set cover problem (SCP) is a classical
NP-hard problem, which targets at choosing a set of subsets
to cover a universe set, such that the number of the selected
subsets is minimized. SCP is actually a special case of our
MS-SC problem, in which there exists only one spatial task.
However, in most situations, we have more than one spatial
task in the spatial crowdsourcing system. A variant of SCP
is the weighted set cover problem, which associates each
subset with a weight. The well-known greedy algorithm [22]
can achieve an approximation ratio of ln(N)(⇡ H(N) here
H(N) =

PN
i=1

1/i), where N is the size of the universe
set. Sun and Li [21] studied set cover games problem, which
covers multiple sets. However, they focused on designing a
good mechanism to enable each single task to obtain a local
optimal result. In contrast, our work aims to obtain a global
optimal solution to maximize the score of assignment.

Different from SCP and its variants that cover only one
universe set, our MS-SC problem is targeting to cover multiple
sets, such that the assignment score is maximized. Further-
more, our MS-SC problem is also constrained by budget, time,
and distance, which is much more challenging than SCP. To the

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2550041, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JAN 2016 14

best of our knowledge, no prior works on SCP (and its variants)
have studied the MS-SC problem, and existing techniques
cannot be used directly to tackle the MS-SC problem.

9 CONCLUSION
In this paper, we propose the problem of the multi-skill
oriented spatial crowdsourcing (MS-SC), which assigns the
time-constrained and multi-skill-required spatial tasks with
dynamically moving workers, such that the required skills of
tasks can be covered by skills of workers and the assignment
score is maximized. We prove that the processing of the MS-
SC problem is NP-hard, and thus we propose three approxi-
mation approaches (i.e., greedy, g-D&C, and cost-model-based
adaptive algorithms), which can efficiently retrieve MS-SC
answers. Extensive experiments have shown the efficiency and
effectiveness of our proposed MS-SC approaches on both real
and synthetic data sets.

REFERENCES
[1] Foursquare. https://foursquare.com.
[2] Google street view. https://www.google.com/maps/views/streetview.
[3] Taskrabbit. https://www.taskrabbit.com.
[4] Waze. https://www.waze.com.
[5] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and Z. Nawaz. Location-

based crowdsourcing: extending crowdsourcing to the real world. In
NordiCHI 2010: Extending Boundaries, 2010.

[6] A. Belussi and C. Faloutsos. Self-spacial join selectivity estimation
using fractal concepts. TOIS, 16(2):161–201, 1998.

[7] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and
W.-C. Tan. Asking the right questions in crowd data sourcing. In ICDE
2012.

[8] C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask?: jury selection
for decision making tasks on micro-blog services. VLDB 2012, 5(11).

[9] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C.
Cao, and Y. Tong. gmission: A general spatial crowdsourcing platform.
VLDB 2014, 7(13).

[10] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao.
Reliable diversity-based spatial crowdsourcing by moving workers.
VLDB 2015, 8(10).

[11] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, and M. Shin. Anony-
sense: privacy-aware people-centric sensing. MobiSys 2008.

[12] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the number of
worker’s self-selected tasks in spatial crowdsourcing. In SIGSPATIAL
GIS 2013.

[13] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng. icrowd: An adaptive
crowdsourcing framework. In ACM SIGMOD 2015.

[14] Z. B. G. L. J. F. Huiqi Hu, Yudian Zheng and R. Cheng. Crowd-sourced
poi labelling: Location-aware result inference and task assignment.
ICDE 2016.

[15] S. S. Kanhere. Participatory sensing: Crowdsourcing data from mobile
smartphones in urban spaces. In MDM 2011.

[16] R. M. Karp. Reducibility among combinatorial problems. Springer,
1972.

[17] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering with
spatial crowdsourcing. In SIGSPATIAL GIS 2012.

[18] S. H. Kim, Y. Lu, G. Constantinou, C. Shahabi, G. Wang, and
R. Zimmermann. Mediaq: mobile multimedia management system. In
ACM MMSys 2014.

[19] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han. Event-
based social networks: linking the online and offline social worlds. In
ACM SIGKDD 2012.

[20] J. P. Rula, V. Navda, F. E. Bustamante, R. Bhagwan, and S. Guha. No
one-size fits all: Towards a principled approach for incentives in mobile
crowdsourcing. In HotMobile 2014. ACM.

[21] Z. Sun, X.-Y. Li, W. Wang, and X. Chu. Mechanism design for set
cover games when elements are agents. In Algorithmic Applications in
Management, pages 360–369. Springer, 2005.

[22] V. V. Vazirani. Approximation algorithms. Springer Science & Business
Media, 2013.

[23] D. Yang, G. Xue, X. Fang, and J. Tang. Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing. MobiCom 2012.

[24] Y. Zheng, R. Cheng, S. Maniu, and L. Mo. On optimality of jury
selection in crowdsourcing. In EDBT 2015.

[25] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. Qasca: A quality-
aware task assignment system for crowdsourcing applications. In ACM
SIGMOD 2015.

Peng Cheng received his BS degree and MA
degree in Software Engineering in 2012 and
2014, from Xi’an Jiaotong University, China. He
is now a PhD student in the Department of Com-
puter Science and Engineering at Hong Kong
University of Science and Technology. His re-
search interests include crowdsourcing and spa-
tial crowdsourcing.

Xiang Lian received the BS degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, and the PhD degree in
computer science from the Hong Kong Univer-
sity of Science and Technology. He is now an
assistant professor in the Computer Science De-
partment at the University of Texas Rio Grande
Valley. His research interests include prob-
abilistic/uncertain/inconsistent, uncertain/certain
graph, time-series, and spatial databases.

Lei Chen received his BS degree in Computer
Science and Engineering from Tianjin University,
China, in 1994, the MA degree from Asian In-
stitute of Technology, Thailand, in 1997, and the
PhD degree in computer science from University
of Waterloo, Canada, in 2005. He is now an as-
sociate professor in the Department of Computer
Science and Engineering at Hong Kong Univer-
sity of Science and Technology. His research
interests include crowdsourcing, uncertain and
probabilistic databases, multimedia and time se-

ries databases, and privacy. He is a member of the IEEE.
Jinsong Han received his Ph.D. degree in com-
puter science from Hong Kong University of Sci-
ence and Technology in 2007. He is a member
of CCF, ACM, and IEEE. His research interests
focus on mobile computing, RFID, and wireless
network.

Jizhong Zhao received his Ph.D. degree in com-
puter science and technology from Xi’an Jiao-
tong University in 2001. He is a member of CCF,
ACM, and IEEE. His research interests focus
on computer software, pervasive computing, dis-
tributed systems, network security.

