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Robust Median Reversion Strategy
for Online Portfolio Selection

Dingjiang Huang, Junlong Zhou, Bin Li, Steven C.H. Hoi and Shuigeng Zhou

Abstract—Online portfolio selection has attracted increasing attentions from data mining and machine learning communities in recent
years. One of the most important theories in financial markets is mean reversion, which plays a critical role in some state-of-the-art
portfolio selection strategies. Although existing mean reversion strategies have been shown to achieve good empirical performance on
certain datasets, they often do not fully deal with noise and outliers in the data, leading to suboptimal portfolios, and consequently
yielding poor performance in practice. In this paper, we propose to exploit the reversion phenomenon by using robust L1-median
estimators, and design a novel online portfolio selection strategy named “Robust Median Reversion” (RMR), which constructs optimal
portfolios based on the improved reversion estimator . We examine the performance of the proposed algorithms on various real
markets with extensive experiments. Empirical results show that RMR can overcome the drawbacks of existing mean reversion
algorithms and achieve significantly better results. Finally, RMR runs in linear time, and thus is suitable for large-scale real-time
algorithmic trading applications.

Index Terms—Portfolio selection, Online learning, Mean Reversion, Robust Median Reversion, L1-median.

F

1 INTRODUCTION

PORTFOLIO Selection (PS) aims to determine an effective
investment strategy for allocating wealth among a set

of assets so as to achieve certain financial objectives in the
long run. There are two main mathematical models for this
task. The first is the mean-variance model [2], which trades
off between a portfolio’s expected return (mean) and risk
(standard deviation), and is generally suitable for single-
period (batch) PS. Another model is the Kelly investment
(also termed “Capital Growth Theory”) [3], which aims to
maximize a portfolio’s expected log return, and focuses
mainly on multiple-period PS. These two theories have
become the cornerstones of modern financial theory, whose
principles are constantly visited and re-invented. One active
research direction in data mining [4], [5], [6] and machine
learning communities [7], [8] is online PS, which aims to
design online algorithms following the Kelly model.

Some state-of-the-art online PS strategies [7], [9] assume
that the current well performing stocks would continue
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to perform well in the next trading day, which is often
known as the “momentum” principle. However, empirical
evidence [10] indicates that such trends may be often vio-
lated, especially in the short term. This observation leads to
the strategy of buying underperforming stocks and selling
those over-performing ones, which is known as the “mean
reversion” principle [11], [12].

Recent years have witnessed a surge of online PS stud-
ies [5], [8], [11], [12], [13] that have attempted to exploit
the mean reversion principle. Although these algorithms
achieve encouraging results on some datasets, they perform
poorly on certain datasets, such as the DJA dataset [5], [8].
This is because real-world datasets often contain noisy data
and outliers, while the existing mean reversion strategies
do not fully address these issues, leading to estimation
error and suboptimal portfolio (see [14]). Furthermore, the
assumption of single-period prediction [5], [13] also leads to
estimation errors and thus unsatisfactory performance [13].

To address the above drawbacks, we present a new
multi-period online PS strategy named “Robust Median
Reversion”(RMR). The basic idea is to exploit the reversion
phenomenon via robust L1-median estimators [15], [16],
[17], which explicitly estimates the next price relative and
is more accurate than traditional simple mean estimators.
Then we learn optimal portfolios based on the improved
reversion estimator and the state-of-the-art online learning
techniques.

To the best of our knowledge, RMR is the first algorith-
m that exploits the reversion phenomenon by robust L1-
median estimator. Though simple in nature, it can achieve
better estimates than the existing algorithms and has been
empirically validated via extensive experiments on real mar-
kets. The experimental results show that RMR significantly
surpasses a number of state-of-the-art strategies in terms
of long-term compound return. Moreover, it is robust to
different parameter settings and can withstand nontrivial
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transaction costs. Finally, with a linear time complexity with
respect to the number of stocks and the number of trading
periods, RMR is suitable for large-scale applications.

As a summary, the main contributions of this paper
include:

1) we propose a novel multi-period online PS strategy
RMR to exploit the reversion phenomenon, which
explicitly estimates the next price relative via robust
L1-median estimator and is more accurate than
simple mean estimator;

2) we exploit two types of L1-median estimators based
on the absolute loss function and Huber loss func-
tion in order to deal with noise and outliers effec-
tively and

3) we conduct extensive experiments to validate the
performance of the proposed RMR algorithms by
comparing with various state-of-the-art algorithms.

The rest of the paper is organized as follows. Section 2
formulates the online PS problem and Section 3 reviews
some related work. Section 4 proposes the RMR algorith-
m and Section 5 empirically evaluates its efficacy on real
markets. Section 6 finally summarizes this article.

2 PROBLEM SETTING

Now let us consider the online PS problem. We consider a
financial market with d assets for n trading periods to be in-
vested. On the tth period, the asset prices are represented by
a close price vector pt ∈ Rd+, and each element pit represents
the close price of asset i. The changes of asset prices are
represented by a price relative vector xt = (x1

t , . . . , x
d
t ) ∈ Rd+,

where xjt expresses the ratio of close price to last close price
of asset j at the tth period, i.e., xjt = pjt/p

j
t−1. We denote

xn1 = (x1, . . . ,xn) as the sequence of price relative vectors
for n periods.

At the beginning of the tth period, we allocate the
capital among the d assets according to a portfolio vector
bt = (b1t , . . . , b

d
t ), where bjt represents the proportion of

wealth invested in the jth asset. Typically, we assume the
portfolio is self-financed and no margin/short is allowed,
which means each entry of a portfolio is non-negative and
adds up to one, that is, bt ∈ ∆d, where ∆d = {bt : bjt ≥
0,
∑d
j=1 b

j
t = 1}. The investment procedure is represented

by a portfolio strategy, that is, b1 = 1
d1 and the following

sequence of mappings bt : (Rd+)t−1 → ∆d, t = 1, 2, . . . ,
where bt = bt(x

t−1
1 ) is the portfolio used on the tth trading

period given past market sequence xt−1
1 = (x1, . . . ,xt−1).

We denote by bn1 = (b1, . . . ,bn) the strategy for n periods.
On the tth trading period, a portfolio bt achieves a

portfolio period return st, that is, the wealth increases by a
factor of st = bTt xt =

∑d
j=1 b

j
tx
j
t . Since we reinvest and

adopt price relatives, the portfolio wealth would multi-
plicatively grow. Thus, after n trading periods, a portfolio
strategy bn1 produces a portfolio cumulative wealth Sn, which
increases the initial wealth by a factor of

∏n
t=1 b

T
t xt, that is,

Sn(bn1 ,x
n
1 ) = S0

∏n
t=1(bTt xt), where S0 is the initial wealth,

which is set to 1 in this paper.
Finally, we formulate the online PS problem as a se-

quential decision task following the aforementioned abstract
problem. The portfolio manager aims to design a strategy

bn1 to maximize the portfolio cumulative wealth Sn. The
portfolios are selected in a sequential fashion. On each
period t, given the historical information, the manager
learns to select a new portfolio vector bt for the next price
relative vector xt, where the decision criterion varies among
different managers. The resulting portfolio bt is scored by
the portfolio period return of st. Such procedure repeats
until the end of trading periods and the portfolio strategy is
finally scored by the cumulative wealth Sn.

In the above model, we make several general assump-
tions:

1) Transaction cost: we assume no transaction cost or
taxes in this PS model;

2) Market liquidity: we assume that one can buy and
sell required quantities at last closing price of any
given trading period;

3) Impact cost: we assume that market behavior is not
affected by a PS strategy.

These assumptions are not trivial, which has been ex-
plained in all existing work (refer to Section 3 for detail).
We will empirically analyze the effects of transaction costs
in Section 5.4.

3 RELATED WORK

In this section, we survey the online PS strategy literature
from the point of estimated methods of the next price
relatives. We start by introducing the benchmarks of the
online PS task. After that, we categorize existing methods
by their estimations of the next price relatives. Finally, we
analyze existing algorithms following the framework of
Kelly’s investment. Readers are also encouraged to read a
more comprehensive survey in [6], [18].

One common benchmark is Buy And Hold (BAH), which
buys assets according to a pre-defined weight and holds
until the end. In hindsight, the optimal BAH strategy over
a sequence of price relatives is the Best-stock, which buys
the best stock over the period. Another classical strategy
is Constantly Rebalanced Portfolios (CRP), which keeps fixed
weight on each asset for every period. In particular, the
portfolio strategy can be represented as bn1 = (b, . . . ,b),
in which b is a predefined portfolio. Note that CRP needs to
rebalance the portfolio every period, while BAH does not.
Best CRP (BCRP) [11], the best CRP strategy over a whole
market sequence in hindsight, is an optimal strategy if the
market is i.i.d. [19]. Thus, Cover [11] proposes to design a
online PS strategy that asymptotically approaches the BCRP
strategy.

The first category of existing methods is to estimate the
next price relative via all historical price relatives with a
uniform probability. This category includes Successive Con-
stantly Rebalanced Portfolios (SCRP) [20] and Online Newton
Step (ONS) [7]1. Theoretically, SCRP has the same asymptot-
ic growth of wealth as the BCRP and superior performance
over portfolios which explicitly take into account possible
nonstationary market behavior. ONS aims to maximize the
expected logarithmic cumulative wealth (approximated us-
ing historical price relatives) and minimize the variation of

1. SCRP and ONS’s formulations are similar, while they use different
techniques to solve the formulations.
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the expected portfolio. Since it iteratively updates the first
and second order information, it costs O(d3) per period,
which is irrelevant to the number of past periods. Here d
denotes the number of stocks.

The second category of strategies predicts the next price
relatives via a set of similar historical price relatives. These
strategies contain a pattern matching step, which selects the
set of similar price relatives, and a portfolio optimization
step, which constructs an optimal portfolio. Nonparametric
kernel based moving window (BK ) [21] compares the patterns
using Euclidean distance, and constructs an optimal portfo-
lio as the BCRP on the obtained set of price relatives. Fol-
lowing the same framework, Nonparametric Nearest Neigh-
bor (BNN ) [22] locates the set of price relatives via near-
est neighbor methods, and Correlation-driven Nonparametric
learning (CORN) [23] measures the similarity via correlation.
Recently these results have been summarized and extended
by Györfi et.al in their published book [24].

Moreover, the third category of estimation is to predict
the next price relative via a single-value prediction. Exponen-
tial Gradient (EG) [9] estimates the next price relative as the
last price relative. Passive Aggressive Mean Reversion (PAMR)
[13] and Confidence Weighted Mean Reversion (CWMR) [5]
estimate next price as the inverse of last price relative, which
is in essence the “mean reversion” principle2. Recently, [8]
proposed Online Moving Average Reversion (OLMAR), which
predicts the next price relative using moving averages and
explores the multi-period mean reversion.

Finally, some algorithms do not focus on estimation,
either explicitly or implicitly. Universal portfolios (UP) [11]
is the historical performance weighted average of all CRPs.
Anti-Correlation (Anticor) [12] adopts the consistency of pos-
itive lagged cross-correlation and negative autocorrelation
to adjust the portfolio. There are also some algorithms
which focus on transaction cost. Online lazy updates (OLU)
[25] and online lazy updates with group sparsity (OLU-GS)
[26] with transaction cost take advantage of EG algorithm
[9], which rebalances the portfolio vector by lazy or sparse
updates of the parameters in the optimization model. Semi-
Constant rebalanced portfolio (SCRP) [27] and Semi-Universal
portfolios (SUP) [28] with transaction cost combine CRP and
UP with occasional trading, respectively.

3.1 Analysis of Existing Work
Now, let us focus on the estimation methods of existing
work. In practice, a Kelly portfolio manager [3], [29] firstly
predicts x̂t+1 in terms of k possible values x̂1

t+1, . . . , x̂
k
t+1

and their corresponding probabilities p1, . . . , pk, where each
x̂it+1 denotes one possible combination vector of individual
price relative predictions. Then he/she can figure out a
portfolio by maximizing the expected log return on the
possible combinations,

bt+1 = arg max
b∈∆d

k∑
i=1

pi log
(
bT x̂it+1

)
.

As different estimation methods give different x̂it+1 and
pi and lead to different portfolios, an accurate estimation
method is crucial to the success of a strategy.

2. PAMR and CWMR adopt the same estimation, while they exploit
the principle via different techniques.

Below, we analyze mainly the algorithms PAMR, CWMR
and OLMAR, which estimate the next price relative by a
single value prediction based on mean reversion or moving
average reversion. PAMR and CWMR implicitly assume
x̂1
t+1 = 1

xt
with p1 = 100%, i.e., they estimate the next

price relative as the inverse of last price relative, which
is in essence the mean reversion principle. From the price
perspective [13], they implicitly assume that next price p̂t+1

will revert to last price pt−1,

x̂t+1 =
1

xt
⇒ p̂t+1

pt
=

pt−1

pt
⇒ p̂t+1 = pt−1,

where x and p are all vectors and the above operations are
element-wise. Rather than p̂t+1 = pt−1, OLMAR estimates
the next price as a moving average at the end of the tth

period, that is, p̂t+1 = MAt (w) = 1
w

∑i=t
i=t−w+1 pi where

MAt (w) denotes the moving average with a w-window.
Though these estimation methods in PAMR/CWMR and
OLMAR are empirically effective on most datasets, they do
have potential problems. Firstly, PAMR and CWMR adopt
the single-period mean reversion assumption in designing
the algorithms, which is not always satisfied in the real
world. One real example [13] is the DJA dataset, on which
PAMR performs the worst among the state of the art.
Secondly, all three algorithms suffer from the frequently
fluctuating raw prices, which often contain a lot of noise and
outliers and thus substantially influences the effectiveness
of the algorithm and even the final cumulative wealth.
Considering these drawbacks of the existing works, we try
to develop a new robust reversion strategy.

It should be noted that in this paper we don’t consider
the transaction costs in our original algorithmic formulation.
Generally, there are two ways to deal with transaction cost
in the online PS. The first way is that one does not consider
the transaction cost during the PS process and evaluate the
impact of transaction costs in the back tests. This way has
been commonly adopted in the designing a online PS strate-
gies [8], [12], [30]. The second way is that the transaction
cost is directly involved in the PS process [31]. The online
PS strategies related this way is usually named transaction
cost aware strategies, such as OLU, SCRP and UP [25], [26],
[27], [28], and so on. Therefore, the strategies proposed in
this paper belongs to the first way and thus we did not
compare it with those transaction costs aware ones in the
later experiments. More details can be found in the section
5.2.3.

4 ROBUST MEDIAN REVERSION

In this section, we first give a motivating example and then
present the proposed RMR and RMR-Variant strategies.

4.1 Motivation

Empirical evidence [5], [13] shows that if the asset price
follows a normal distribution, the mean of historical prices
is the statistical optimal estimate. OLMAR, which estimates
the next price via a moving average, also achieves good
results on most datasets. However, due to noise and outliers
in the real market data [14] and the real markets are not
normally distributed, the price distribution often has a long
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Fig. 1. Normal distribution and distribution with longtail.

tail3 (see Fig. 1), and the previous estimation methods are
sub-optimal subject to the noise and outliers.

To illustrate the drawbacks of mean and moving aver-
age, let us see a toy example. The toy market consists of one
volatile stock, and ti(i ≥ 0) denotes the period that requires
estimation. Several sequences of market prices are listed
in Table 1. A0 and A1 are single-period price sequences
and their prices change by sequent factors of 2, 1

2 , 2,
1
2 , . . .

For example, let Pti be the price of the ith period, then
Pt1=Pt0×2=1×2=2, Pt2=Pt1× 1

2=2× 1
2=1, Pt3=Pt2×2 =

1×2=2, . . . B0 and B1 are two-period price sequences and
their prices change by sequent factor of 2, 2, 1

2 ,
1
2 , 2, 2, . . .

C0 and C1 are the three-period price sequences, and the
price changes by sequent factor of 2, 2, 2, 1

2 ,
1
2 ,

1
2 , 2, 2, 2, . . .

Moreover, A0, B0 and C0 are exact price sequences, while
A1, B1 and C1 are the sequences contaminated by an outlier
of (10). “?” denotes the price to be estimated and “Acc” is
the accurate price. The estimated prices clearly show that
the next prices estimated by PAMR/CWMA and OLMAR
are far away from the accurate values, which thus leads to
inaccurate price relatives and sub-optimal portfolios.

To better exploit the (multiple period) reversion prop-
erty, we propose two new types of estimation methods
and a new type of algorithm for online PS, named “Robust
Median Reversion” (RMR). The essential idea is to exploit
multiple period reversion via robust L1-median estimator
[15], [16], [17] and online machine learning. Rather than
p̂t+1 = pt−1 or p̂t+1 = MAt(w), RMR estimates the next
price by robust L1-median estimator at the end of tth period,
that is, p̂t+1 = L1medt+1(w) = µ, where w is the window
size, µ denotes the L1-median estimator optimal value of
Optimization Problems 1 and 2 below (see section 4.2). Then
the expected price relative with L1-median estimator is

x̂t+1(w) =
L1medt+1(w)

pt
=
µ

pt
. (1)

Without detailing the calculation4, we list the estimated
next price of RMR in different toy markets in Table 1.
Clearly, for the multiple period price sequences B0, B1 and
C0, C1, RMR estimate is much closer to the Accurate values
than PAMR/CWMR, showing that RMR method can deal
with multiple period price sequence. For the contaminated

3. Fama have also indicated that the stock price is a heavy tail in his
well-known paper [32].

4. We calculate RMR’s expected price relative using Algorithm 1.

TABLE 1
Illustration of different price estimation methods on toy markets.
A0, A1; B0, B1 and C0, C1 represent single-period, two-period
and three-period price sequence respectively. A0, B0, C0 are

exact price sequence, and A1, B1, C1 are price sequence
contaminated by an outlier of 10. “Acc” is the accurate price.
Other three items represent three estimates based on three

different methods.

Price:t0 → t1 → . . . Acc PAMR/ OLMAR RMR
CWMR

A0 : 1, 2, 1, 2, ? 1 1 1.5 1.5
A1 : 1, 2, (10), 2, ? 1 10 3.75 2
B0 : 1, 2, 4, 2, ? 1 4 2.25 2
B1 : 1, 2, (10), 2, ? 1 10 3.75 2
C0 : 1, 2, 4, 8, 4, 2, ? 1 4 3.5 3
C1 : 1, 2, 4, 8, (10), 2, ? 1 10 4.5 3

price sequences A1, B1, C1, RMR is also closer to the Ac-
curate values than OLMAR and PAMR/CWMR estimates
which implies that RMR is a robust method. Hence, the
proposed methods provide better estimates and subsequent
better portfolios than mean and moving average estima-
tions. Note that although the toy example is on a single
asset, such estimate goodness can be easily extended to the
scenario of multiple assets.

4.2 Formulation

The proposed formulation, RMR, is to exploit median re-
version via robust L1-estimator and Passive Aggressive
online learning [33]. The basic idea is to obtain the next
price relative x̂t+1 using multivariate L1-median, and then
maximize the expected return b · x̂t+1 while keeping last
portfolio information via regularization.

In statistics, the L1-median (also named spatial median)
[34], [35] is solution of the problem of minimizing the
weighted sum of the Euclidean distances from k points in
Rn. This problem can be formulated in an even more general
form by Weber [15] (Fermat-Weber problem), referred as
location issues in industrial applications. In this article,
L1-median is the point with minimal sum of Euclidean
distances to the k given price data points. To calculate the
multivariate L1-median of a k-historical price window, we
adopt two types of L1-median estimator. The first is so
called ”Minimum-Average Absolute Deviation Median”
(MAADM), which satisfy the following optimization:

Optimization problem 1: L1-median-MAADM

µ = argmin
µ

k−1∑
i=0

‖pt−i − µ‖ , (2)

where ‖ · ‖ denotes the Euclidean norm. This L1-median
estimator is one of the classical statistics, which are robust
to outliers and noisy data. The minimum-average absolute
deviation median in Optimization problem 1 minimizes the
loss with respect to the absolute loss function.

There also exist some other loss functions which are
related to robust statistics [36]. One of such functions is
Huber loss function, which is used to construct an estimate
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that reduces the effect of outliers, while treating non-
outliers in a more standard way. Thus, to reduce the effect
of outliers and noisy data, we consider the second type of
robust median estimator, named ”Huber Loss Function-
Based Median” (HLFBM), which replace the absolute loss
function in Eq. (2) with the Huber loss function [37]:

Optimization problem 2 : L1-median-HLFBM

µ = argmin
µ

k−1∑
i=0

ρ (‖pt−i − µ‖) , (3)

where ‖ · ‖ denotes the Euclidean norm. Here, ρ() is the
Huber loss function defined as:

ρ(γ) =

{
γ2/2, |γ| ≤ c
c(|γ| − c/2), |γ| > c

. (4)

The Huber loss function is quadratic for small values of γ,
and linear for large values, with equal values when |γ| = c
[36], [37].

To this end, we can calculate the expected price relative
following the the idea of so called ”Median Reversion”
(MR). Based on the two types of median estimators, we can
infer two types of MR by equation (1),

Median Reversion: MR

x̂t+1(w) =
L1medianMAADMt+1(w)

pt
=
µ

pt
(5)

where w is the window size, µ denotes the value in L1-
median estimator that satisfied the Optimization Problem 1.

Median Reversion: MR-Variant

x̂t+1(w) =
L1medianHLFBMt+1(w)

pt
=
µ

pt
(6)

where w is the window size, µ denotes the value in L1-
median estimator that satisfied the Optimization Problem
2.

Based on the obtained price relative x̂t+1 in (5) and
(6), RMR further adopts the idea of an effective online
learning algorithm, that is, Passive Aggressive (PA) learning
[33], to exploit median reversion. Generally proposed for
classification, PA passively keeps the previous solutions if
the classification is correct, while aggressively approaches a
new solution if the classification is incorrect. After formu-
lating the proposed RMR optimization, we solve its closed
form update and design the proposed algorithm.

The proposed formulation, RMR, is to exploit median
reversion via online learning techniques. The basic idea is
to maximize the expected return b · x̂t+1 while keeping last
portfolio information via regularization using the online
passive-aggressive method. Thus, following the similar
idea PAMR and OLMAR [8], [13], we can formulate the
following optimization,

Optimization problem 3 : RMR

bt+1 = argmin
b∈∆d

1

2
‖b− bt‖2 s.t. bT x̂t+1 ≥ ε. (7)

The above formulation attempts to find an optimal portfolio
by minimizing the deviation from last portfolio bt under

the condition of bT x̂t+1 ≥ ε. Such formulation explicitly
reflects the reversion idea underlying the proposed RMR.
In fact, x̂t+1 is the price relative estimated via L1-median
estimators, while the constraint bT x̂t+1 ≥ ε means that
next price will revert to the L1-median. On the one hand,
if its constraint is satisfied, that is, the expected return is
higher than a threshold, then the resulting portfolio equals
to previous portfolio. On the other hand, if the constraint
is not satisfied, then the formulation will figure out a new
portfolio such that the expected return is higher than the
threshold, while the new portfolio is not far from previous
one.

Remark on median estimators. Note the L1-median estima-
tor is much better than mean estimators statistically. In fact,
the L1-median has an attractive statistical properties, that
is, its breakdown point is 0.5 [38], i.e., only if more than
50% of the data points are contaminated, the L1-median can
take values beyond all bounds. Note that breakdown point,
the proportion of incorrect observations an estimator can
handle, is a statistical metric of robustness. The higher the
breakdown point of an estimator is, the more robust it is.
However, the breakdown point of mean is 0, which means
that the mean estimator is sensitive to the noisy data and
outliers.

4.3 Algorithm

To obtain the L1-median-MAADM of historical prices, we
solve its optimization via the Modified Weiszfeld Algorithm
[17], which converges monotonically to the L1-median-
MAADM. The solution of L1-median-MAADM described
in Eq. (2) is illustrated in Proposition 1. Its derivations are
included in the Appendix.

Proposition 1. The solution of L1-median-MAADM opti-
mization problem 1 is calculated through iteration, and
the iteration process is described as:

µ→ T (µ) =

(
1− η(µ)

γ(µ)

)+

T̃ (µ) + min

(
1,
η(µ)

γ(µ)

)
µ,

where

η(µ) =

{
1 if µ = pt−i, i = 0, . . . , k − 1

0 otherwise
,

γ(µ) = ‖R̃(µ)‖, R̃(µ) =
∑

pt−i 6=µ
pt−i−µ
‖pt−i−µ‖ ,

T̃ (µ) =
{∑

pt−i 6=µ
1

‖pt−i−µ‖

}−1∑
pt−i 6=µ

pt−i

‖pt−i−µ‖ .

In general, we often practically set the convergence cri-
terion during the iteration. Here, once the constraint of
‖µι−1 − µι‖1 ≤ τ‖µι‖1 is satisfied, we terminate the iter-
ation. Note that τ represents a toleration level.

To obtain the L1-median-HLFBM of historical prices,
we apply the Quasi-Newton Algorithm [39]. In this
algorithm, we update the Hessian matrix by BFGS [40], and
calculate the scalar step length parameter by polynomial
interpolation line search based on Wolfe principle. The
solution of L1-median-HLFBM described in Eq. (3) is
illustrated below. We omit the detailed derivations.
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Proposition 2. The solution of L1-median-HLFBM Opti-
mization problem 2 is calculated through iteration, and
the iteration process is described as:

µi+1 = µi + αidi

where

di = −B−1
i 5 f(µi),

Bi = TB(Bi−1) = Bi−1 −
Bi−1si−1s

T
i−1Bi−1

sTi−1Bi−1si−1
+
yi−1y

T
i−1

sTi−1yi−1

si−1 = µi − µi−1, yi−1 = ∇f(µi)−∇f(µi−1)

and αi is calculated by polynomial interpolation line
search algorithm.

In general, we often practically set the convergence cri-
terion during the iteration. Here, once the constraint of
5f(µi) ≤ τ is satisfied, we terminate the iteration. Note
that τ represents convergence precision.

After obtaining the next price relative, we can obtain
the final PS formula by solving the Optimization problem
3, which is convex and thus straightforward to solve via
the Lagrange multiplier method [41]. Its derivations are
included in the Appendix.

Proposition 3. The solution of RMR Optimization problem
3 without considering the non-negativity constraint is

bt+1 = bt − αt+1(x̂t+1 − xt+1 · 1),

where xt+1 = 1
d (1 · x̂t+1) denotes the average predicted

price relative and αt+1 is the Lagrangian multiplier
calculated as,

αt+1 = min

{
0,

x̂Tt+1bt − ε
‖x̂t+1 − xt+1 · 1‖2

}
.

Note that it is possible that the obtained portfolio in Propo-
sition 3 goes out of the simplex domain since we do not
consider the non-negativity constraint following [9]. Thus,
to ensure that the portfolio is non-negative, we finally
project the above portfolio to the simplex domain [42].

To this end, we can design the proposed algorithms
based on the above Propositions. The estimated process
of price relative x̂t+1, mainly based on Proposition 1, is
illustrated in Algorithm 1. The estimated process of price
relative x̂t+1, mainly based on Proposition 2, is illustrated
in Algorithm 2. The proposed RMR procedure, following
Proposition 3, is shown in Algorithm 3. Finally, Algorith-
m 4 presents the online PS RMR and RMR-Variant which
correspond to the two types median reversion MR and MR-
Variant strategies.

Algorithm 1. L1-median-MAADM(pt, . . . ,pt−w+1,m, τ )

1: Input: data pt,pt−1, . . . ,pt−w+1; iteration maximum
m; toleration level τ

2: Output: estimated x̂t+1

3: Procedure:
4: Initialize µ1 = median(pt,pt−1, . . . ,pt−w+1).
5: for i = 2 to m do
6: µi = T (µi−1)
7: if ‖µi−1 − µi‖1 ≤ τ‖µi‖1 then

8: break
9: end if

10: end for
11: p̂t+1 = µi
12: x̂t+1 = p̂t+1/pt

Algorithm 2. L1-median-HLFBM(pt, . . . ,pt−w+1,m, τ )

1: Input: data pt,pt−1, . . . ,pt−w+1; iteration maximum
m; toleration level τ

2: Output: estimated x̂t+1

3: Procedure:
4: Initialize µ1 = Id. B1 = Id×d.
5: while 5f(µi) > τ and i < m do
6: di = −B−1

i 5 f(µi)
7: αi = value by polynomial interpolation line search
8: ui+1 = µi + αidi
9: Bi+1 = TB(Bi)

10: i = i+ 1
11: end while
12: p̂t+1 = µi
13: x̂t+1 = p̂t+1/pt

Algorithm 3. RMR(ε, x̂t+1,bt)

1: Input: reversion threshold ε > 1; predicted the next
price relative vector x̂t+1; current portfolio bt;

2: Output: next portfolio bt+1

3: Procedure:
4: Calculate the following variable:

αt+1 = min

{
0,

x̂Tt+1bt − ε
‖x̂t+1 − xt+1 · 1‖2

}
5: Update the portfolio:

bt+1 = bt − αt+1(x̂t+1 − xt+1 · 1)

6: Normalize bt+1: bt+1 = argminb∈∆d
‖b− bt+1‖2

Algorithm 4. PS with RMR and RMR-Variant

1: Input: reversion threshold ε > 1; iteration maximum m;
window size w ≥ 2; toleration level τ ; market sequence
xn1

2: Output: Sn: Cumulative wealth after nth periods
3: Procedure:
4: Initialization: b1 = 1

d1, S0 = 1,p0 = 1
5: for t = 1, 2, . . . , n do
6: Receive stock price: xt
7: Update cumulative return: St = St−1 × (bt · xt)
8: Predict the next price relative vector:

x̂t+1 =

{ L1medianMAADMt+1(w)
pt

MR
L1medianHLFBMt+1(w)

pt
MR-Variant
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TABLE 2
Summary of time complexity analysis. d denotes the number of stocks;
n is the number of trading periods; N denotes the number of experts;

m denotes the number of loops in Algorithm 1.

Time Time
Methods Complexity Methods Complexity
UP O

(
nd

)
/O

(
d7n8

)
ONS O

(
d3n

)
EG O (dn) Anticor O

(
N3d2n

)
PAMR/CWMR BK/BNN O

(
N2dn2

)
/OLMAR O (dn) /CORN +O

(
Ndn2

)
RMR O (dn) +O (mn)

9: Update the portfolio:

bt+1 = RMR(ε, x̂t+1,bt)

10: end for

4.4 Complexity Analysis
It is widely known that computational time is important
to certain trading environments, such as high frequency
trading [43], where trades occur in fractions of a second.
RMR’s time complexity is linear with respect to d and n,
where n is much larger than d. In the RMR implementation,
the max number of loop (Line 6 in Algorithm 1) can be
implemented in O(m). Thus, Algorithm 1 take O(m) time
per period. Moreover, Algorithm 3 takes O(d) per period. In
total, the whole time complexity is O(dn) + O(mn). Table
2 compares the computational time complexity of RMR
with that of existing strategies. Clearly, the proposed RMR
algorithm takes no more time than any others.

Remark on theoretical analysis. It is true that we only
provide empirical results for RMR and RMR-Variant in
this paper. RMR and RMR-Variant adopt the median rever-
sion property, which distinguishes the algorithms with the
theoretical guaranteed algorithms, such as UP/EG/ONS.
The property leads to the excellent empirical performance,
however, prevents us from providing the theoretical results.
Such claims can also be found from [8], [12].

5 EXPERIMENTS

In this section, we empirically evaluate our algorithms in
four real datasets and compare the performance with many
existing algorithms according to some different criteria. The
results show that our strategies are pretty well.

5.1 Datasets
In our experiments, we adopt the historical daily prices
in stock markets, which can be easily obtained and hence
available to other researchers. Data from other types of
markets, such as high frequency intra-day quotes, currency
and commodity markets, are either expensive or hard to
obtain and process, which can reduce the experimental re-
producibility. Table 3 summarizes the four real and diverse
datasets from stock markets and index markets 5 employed
in this paper.

5. All related codes and the datasets, including their compositions,
are available on http://olps.stevenhoi.org/.

TABLE 3
Summary of 4 real datasets.

Data set Region Time Frame #days #assets
NYSE(O) US 3/7/1962-31/12/1984 5651 36
NYSE(N) US 1/1/1985-30/6/2010 6431 23
DJA US 1/1/2001-14/1/2003 507 30
MSCI Global 1/4/2006-31/3/2010 1043 24

The first dataset is the well-known NYSE dataset, one
“standard” dataset pioneered by [11] and followed by most
subsequent researchers on the field of online PS in [5],
[7], [8], [9], [13], [21], [22], [23], [41]. This dataset contains
5651 daily price relatives of 36 stocks in New York Stock
Exchange (NYSE) for a 22-year period from Jul. 3rd 1962 to
Dec. 31st 1984. We refer to it as “NYSE(O)”.

The second dataset is the extended version of the above
NYSE dataset and is collected by [23]. For consistency, this
dataset is from Jan. 1st 1985 to Jun. 30th 2010, which consists
of 6431 trading days. We denote this dataset as “NYSE(N)”
for short. It is worth noting that this new dataset consists
of 23 stocks rather than the previous 36 stocks owing to
amalgamations and bankruptcies.

The third dataset “DJA” is collected by [12], which
consists of 30 stocks from Dow Jones Industrial Average
containing price relatives of 507 trading days, ranging from
Jan 1st 2011 to Jan 14th 2013.

The fourth dataset is “MSCI”, a collection of global
equity indices which are the constituents of MSCI World
Index. It contains 24 indices which represent the equity
markets of 24 countries around the world, and consists of
a total of 1043 trading days, ranging from Apr. 1st 2006 to
Mar. 31st 2010.

The above testbed covers much long trading periods
from 1962 to 2010 and diversified markets, which enables
us to examine how the proposed RMR strategy performs
under different events and crises. For example, it covers
several well-known events in the stock markets, such as dot-
com bubble from 1995 to 2000 and subprime mortgage crisis
from 2007 to 2009. The first three datasets are chosen to test
strategy capability on stocks, while the MSCI dataset aims
to test the proposed strategy on global indices, which may
be potentially applicable to “Fund of Funds” (FOF). As a
remark, although we numerically test the RMR algorithm
on stock markets, the proposed strategy could be generally
applied to any type of financial markets.

5.2 Experimental Setup and Metrics
In this section, we give detailed experimental setup, in-
cluding parameter seeting, performance measures and the
transaction costs issue.

5.2.1 Parameter Settings
Regarding the parameter settings, there are two key param-
eters, i.e., w and ε in the proposed RMR algorithms and
the variant version of RMR algorithm. Additionally, there
is another key parameter c for the variant version of RMR
algorithm. w represents the length of window, ε is about
sensitivity parameter, and c is also the sensitivity param-
eter in the variant version. The parameter τ related with
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Preposition 2 is taken as 106. Roughly speaking, the best
values for these parameters are often dataset dependent. In
the experiments, we simply set these parameters empirically
without tuning for each dataset separately. Specifically, for
all datasets and experiments, we set w to 5 and ε to 5 in the
two algorithms and set c to 0.01 in the variant version. It
is worth noting that these choices for parameters are not al-
ways the best. Our experiments on the parameter sensitivity
in Section 5.4.4 show that the proposed algorithms are quite
robust with respect to different parameter settings.

5.2.2 Performance measures

One of the standard criteria to evaluate the performance
of a strategy is portfolio cumulative wealth achieved by the
strategy until the end of the whole trading period. In our
study, we simply set the initial wealth S0 = 1 and thus
the notation Sn also denotes portfolio cumulative wealth at
the end of the nth trading day, which is the ratio of the
portfolio cumulative wealth divided by the initial wealth.
Another equivalent criterion is Annualized Percentage Yield
(APY) which takes the compounding effect into account,
that is, APY = y

√
Sn−1, where y is the number of years cor-

responding to n trading days. Winning Ratio (WT) denotes
the percentage of cases when the proposed strategy beats
the BAH strategy. Typically, the higher the value of portfolio
cumulative wealth or annualized percentage yield and WT,
the more performance preferable the trading strategy is.

To test whether simple luck can generate the return
of the proposed strategy, we can also conduct a statis-
tical test to measure the probability of this situation, as
is popularly done in the fund management industry [13],
[44]. First, we separate the portfolio daily returns into
two components: one benchmark-related and the other
non-benchmark-related by regressing the portfolio excess
returns against the benchmark excess returns. Formally,
st−st(F ) = α+β(st(B)−st(F ))+ε(t), where st stands for
the portfolio daily returns, st(B) denotes the daily returns of
the benchmark (market index) and st(F ) is the daily returns
of the risk-free assets (here we simply choose Treasury bill
and set it to 1.000156, or equivalently, annual interest of 4%).
This regression estimates the portfolio’s alpha(α), which in-
dicates the performance of the investment after accounting
for the involved risk. Then we conduct a statistical t-test to
evaluate whether alpha is significantly different from zero,
by using the t statistic α

SE(α) , where SE(α) is the standard
error for the estimated alpha. Thus, by assuming the alpha is
normally distributed, we can obtain the probability that the
returns of the proposed strategy are generated by simple
luck. Generally speaking, the smaller the probability, the
higher confidence the trading strategy.

We also evaluate their performance by risk and risk-
adjusted return of portfolios [45], [46]. One common way
to achieve this is to use annualized standard deviation of
daily returns to measure the volatility risk and annualized
Sharpe Ratio (SR) to evaluate the risk-adjusted return. For
risk-adjusted return, we calculate annualized Sharpe Ratio
according to, SR =

APY−Rf

σp
, where Rf is the risk-free

return (typically the return of Treasury bills, fixed at 4%
in this work), and σp is the annualized standard devia-
tion of daily returns. Basically, higher annualized Sharpe

Ratios indicate better performance of a trading strategy
concerning the volatility risk. We also adopt Calmar Ratio
(CR) to measure the return relative of the drawdown risk
of a portfolio, calculated as CR = APY

MDD , where MDD is
the Maximum DrawDown and measures the downside risk
of different strategies. Generally speaking, higher Calmar
Ratios indicate better performance of a trading strategy
concerning the drawdown risk.

5.2.3 Practical issue

In reality, an important and unavoidable issue is transaction
cost. Generally, there are two ways to deal with this problem.
The first is that the PS process does not consider the transac-
tion cost while the following rebalancing incurs transaction
costs and this method has been commonly adopted by
learning to select portfolio strategies. The second way is that
the transaction cost is directly involved in the PS process
[31]. In our experiments, we take the first way and adopt
proportional transaction cost model, which is proposed by [12],
[30]. Specifically, rebalancing the portfolio incurs a transac-
tion cost on every buy and sell operation with regarding
to a transaction cost rate γ ∈ (0, 1). At the beginning of
the tth trading day, the portfolio manager rebalances the
portfolio from the previous closing price adjusted portfolio
b̂t−1 to a new portfolio b̂t, incurring a transaction cost of
γ
2 ×

∑
i |b(t,i) − b̂(t−1,i)|, where the initial portfolio is set to

(0, ..., 0). Thus, with transaction cost rate γ, the cumulative
wealth achieved by the end of the nth trading day can be
expressed as:

Sn = S0

n∏
t=1

[(bTt xt)× (1− γ

2
×
∑
i

|b(t,i) − b̂(t−1,i)|)].

To the best of our knowledge, this model can not work for
high frequency data, since even a small rate will cause all
methods approach zero.

5.3 Comparison approaches

In our experiments, we implement the proposed RMR strat-
egy and its variant, RMR-Variant. We compare them with a
number of benchmarks and existing strategies as describe
in Section 3. Below we summarize the list of compared
algorithms.

1) Market: Market strategy that is uniform Buy-And-
Hold (BAH) strategy;

2) Best-Stock: Best stock in a market that is obviously
a hindsight strategy;

3) BCRP: Best Constant Rebalanced Portfolios strategy
in hindsight;

4) UP: Cover’s Universal Portfolios implemented ac-
cording to [47];

5) EG: Exponential Gradient with the best parameter
η = 0.05 suggested by [9];

6) ONS: Online Newton Step with the parameters sug-
gested by [7], that is, η = 0, β = 1, γ = 1

8 .
7) Bk: Nonparametric kernel-based moving window

strategy with W = 5, L = 10 and threshold c = 1.0
for daily datasets that has the best empirical perfor-
mance according to [21];
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TABLE 4
Cumulative wealth achieved by various strategies on the four
datasets. The best results (excluding the best experts at the

bottom, which is in hindsight) in each dataset are highlighted in
bold.

Methods NYSE(O) NYSE(N) DJA MSCI
Market 14.50 18.06 0.76 0.91
Best-stock 54.14 83.51 1.19 1.50
BCRP 250.60 120.32 1.24 1.51
UP 26.68 31.49 0.81 0.92
EG 27.09 31.00 0.81 0.93
ONS 109.91 21.59 1.53 0.86
Bk 1.08E+09 4.64E+03 0.68 2.64
BNN 3.35E+11 6.80E+04 0.88 13.47
CORN 1.48E+13 5.37E+05 0.84 26.19

Anticor 2.41E+08 6.21E+06 2.29 3.22
PAMR 5.14E+15 1.25E+06 0.68 15.23
CWMR 6.49E+15 1.41E+06 0.68 17.28
OLMAR 4.04E+16 2.24E+08 2.05 16.33
RMR 1.64E+17 3.25E+ 08 2.67 16.76
RMR(max) 2.81E+17 4.73E+08 3.47 19.07
RMR-Var 1.67E+ 17 3.24E+08 2.67 17.48
RMR-Var(max) 2.83E+17 4.75E+08 3.48 19.07

8) BNN: Nonparametric nearest neighbor based strat-
egy with parameter W = 5, L = 10, and p` =
0.02 + 0.5 `−1

L−1 as suggested by [22];
9) CORN: Correlation-driven nonparametric learning

approach with parameter W = 5 and ρ = 0.1
suggested by [23];

10) Anticor: BAH30 (Anticor) as a variant of Anticor
to smooth the volatility, which is a better solution
proposed by [12];

11) PAMR: Passive aggressive mean reversion strategy
with parameter ε = 0.5 suggested by [13];

12) CWMR: Confidence Weighted Mean Reversion S-
trategy with parameter φ = 2, ε = 0.5 suggested
by [5];

13) OLMAR: Online Moving Average Reversion strate-
gy with parameter ε = 5, w = 5 [8];

5.4 Experimental Results
5.4.1 Experiment 1: evaluation of cumulative wealth
We first compare performance of the competing approaches
based on their cumulative wealth without considering the
transaction cost and the results are illustrated in Table 4.

From the results, we can draw several observation. First
of all, we find that almost all learning-to-trade algorithms
can beat the market index, that is, the uniform BAH strategy,
on all the datasets. This shows that it is promising to
investigate learning-to-trade algorithms for PS. Second, the
cumulative wealth achieved by RMR and RMR-Variant are
similar since they both use the robust estimators. Third,
compared with the existing mean reversion strategies (An-
itor, PAMR, CWMR and OLMAR), RMR and RMR-Variant
strategies obtained higher cumulative wealth on the dataset-
s NYSE(O), NYSE(N) and DJA. Moreover, RMR-Variant get
the better return than these mean reversion strategies on
MSCI dataset.

TABLE 5
Statistical Test of RMR.

Stat. NYSE(O) NYSE(N) DJA MSCI
Size 5651 6431 507 1043
MER(RMR) 0.0077 0.0036 0.0024 0.0030
MER(Market) 0.0005 0.0005 -0.0004 0.0000
Winning Ratio 0.5721 0.5332 0.5503 0.5925
α 0.0071 0.0031 0.0030 0.0030
β 1.2718 1.1628 1.2427 1.1885
t-statistics 15.7325 7.4222 2.5217 5.8380
p-value 0.0000 0.0000 0.0060 0.0000

TABLE 6
Statistical Test of RMR-Variant.

Stat. NYSE(O) NYSE(N) DJA MSCI
Size 5651 6431 507 1043
MER(RMR-Var) 0.0077 0.0037 0.0025 0.0031
MER(Market) 0.0005 0.0005 -0.0004 0.0000
Winning Ratio 0.5721 0.5332 0.5503 0.5935
α 0.0070 0.0031 0.0030 0.0031
β 1.2602 1.1613 1.2325 1.1908
t-statistics 15.7949 7.5149 2.5906 5.9752
p-value 0.0000 0.0000 0.0049 0.0000

Besides the preceding final cumulative wealth, we are
also interested in examining how the total wealth achieved
by various strategies change over different trading periods.
In Figure 2, we plot the wealth achieved by the proposed
RMR algorithm, state-of-the-art algorithms (PAMR, CWMR,
OLMAR), plus two benchmarks (Market and BCRP). As
RMR-Variant perform similar to the RMR algorithm, we
ignore it in these figures. From the results, we can see
that the proposed RMR strategy consistently surpassed the
benchmarks and the competing strategies over the entire
trading period on most datasets, which again validates the
efficacy of the proposed technique.

Finally, to measure whether the results are generated by
simple luck, we conduct widely accepted statistical test as
described in Section 5.2.2. Table 5 and Table 6 respectively
summarizes the statistical test results, which show that
there almost exists no chance that the cumulative wealth
is generated by luck. To be specific, the probabilities for
achieving the excess returns by luck are almost 0. So, the
results show that the RMR strategy is promising and reliable
PS technique to achieve high return with high confidence.
Besides, we can find that the winning ratio (WT) against Mar-
ket strategy is bigger than 50% on the four daily datasets,
which further shows the proposed strategies’ advantages.

5.4.2 Experiment 2: APY, Volatility, Sharpe Ratio, MDD, CR
We evaluated the performance of APY, volatility, annualized
Sharpe Ratio, MDD and CR of the compared strategies and
summarize results in Table 7. From the results, we observe
that on the NYSE(O), NYSE(N), and DJA datasets, both
RMR and RMR-Variant algorithms achieved higher APYs
and lower volatility than OLMAR. Moreover, the Sharpe
Ratio of proposed strategies is also higher than that of
OLMAR on the first three datasets. Although the volatility
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TABLE 7
The Comparison of APY, Volatility, Sharpe Ratio, MDD and CR

among OLMAR, RMR and RMR-Variant strategies.

Criteria Strategy NYSE(O) NYSE(N) DJA MSCI
OLMAR 4.6862 1.0950 0.4301 1.0101

APY RMR 5.0602 1.1250 0.6334 1.0234
RMR-Var 5.0653 1.1249 0.6334 1.0449
OLMAR 0.5646 0.5654 0.5225 0.3901

Volatility RMR 0.5639 0.5644 0.5117 0.3913
RMR-Var 0.5639 0.5644 0.5117 0.3929
OLMAR 8.2295 1.8659 0.7467 2.4869

Sharpe RMR 8.9031 1.9224 1.1597 2.5128
Ratio RMR-Var 8.9112 1.9222 1.1597 2.5574

OLMAR 0.4299 0.9329 0.4641 0.4552
MDD RMR 0.4243 0.9096 0.3469 0.4933

RMR-Var 0.4243 0.9098 0.3470 0.4933
OLMAR 10.9012 1.1738 0.9268 2.2189

CR RMR 11.9249 1.2368 1.8258 2.0747
RMR-Var 11.9370 1.2365 1.8255 2.1183

on dataset MSCI is higher for the proposed strategies, the
APYs and Sharpe Ratios of the proposed strategies is higher
than that of OLAMR. In addition, RMR and the variant
version algorithms achieve lower MDD and higher CR on
most datasets (except MSCI).

These encouraging results show that RMR is able to
reach a good trade-off between return and risk, even though
we do not explicitly consider risk in our formulation.

5.4.3 Experiment 3: Turnover

We use the turnover of the portfolio to measure the stability
of the portfolio. Roughly speaking, turnover often measures
what percentage of a portfolio’s assets are bought and sold
in a given year. Because the data in our four datasets
spreads out many years, the turnover indicated here is the
mean value of turnover of every trading period which is
calculated by

∑T
t=2

||bt−b̂t−1||
2(T−1) , where ||bt − b̂t−1||/2 is the

turnover of one period. The portfolio manager rebalances
the portfolio from the previous closing price adjusted port-
folio b̂t−1 to a new portfolio b̂t. In our experiment, we
compare the turnover of RMR strategy with that of the
state-of-the-art strategy (OLMAR). RMR and OLMAR are
both multiple-period reversion strategies, so the compari-
son among them is more significant. Table 8 presents the
explicit turnover of the portfolio of the strategies. As we
observe, the turnover of the portfolio of RMR is smaller than
that of OLMAR on the four datasets. Moreover, the RMR-
Variant strategy achieve the smaller turnover than RMR.
Generally, the smaller turnover means that the portfolio is
more stable, which can be attributed to the resistance to the
noisy data or outliers. Thus, the small turnover empirically
show the robustness of the proposed strategy. Furthermore,
the smaller turnover usually results in less transaction cost.
As analyzed in the above study, we get that RMR achieve
higher wealth than OLMAR strategy when transaction cost
is not considered. In the experiment, we know that the RMR
achieve smaller turnover, thus, it may also achieve better
results when transaction cost is taken into account.

TABLE 8
The Comparison of turnover among OLMAR, RMR and

RMR-Variant strategies.

Strategy NYSE(O) NYSE(N) DJA MSCI
OLMAR 72.7495% 68.4152% 70.6738% 73.8301%
RMR 68.1331% 63.4909% 65.0425% 69.3997%
RMR-Var 68.1325% 63.4898% 65.0451% 69.2816%

5.4.4 Experiment 4: Evaluation of Parameters Sensitivity

We now experimentally evaluate how different choices of
parameters affect the cumulative wealth performance. RMR
and RMR-Variant contain two parameters, that is, the sensi-
tivity parameter ε and window size w. Additionally, another
parameter c is needed for RMR-Variant strategy.

First, we examine the performance of the RMR algorithm
by varying sensitivity parameter ε from 0 to 100 with fixed
w = 5. Figure 3 shows the effects of varied ε values
for the RMR algorithm and two benchmarks Market and
BCRP strategies on the four datasets. The results show that
cumulative wealth sharply grows as ε increases and then
flattens when ε crosses a threshold. Second, we evaluate
the other important parameter for RMR algorithm, that is,
window w. With fixed ε = 5, Figure 4 show the cumulative
wealth of RMR algorithm by varying w from 3 to 100. The
cumulative wealth decrease as w grows bigger on most
datasets (except DJA). The two figure show that ε = 5 and
w = 5 are not the optimal parameters, and RMR is robust
w.r.t. different parameters and it is convenient to choose
satisfying parameters.

In addition, we evaluate another parameter c for RMR-
Variant algorithm. As the sensitivity results of parameters ε
and w for RMR-Variant are similar to the RMR algorithm,
we only present sensitivity results of c for RMR-Variant
algorithm. Figure 5 shows the performance of the RMR-
Variant algorithm by varying c from 0.001 to 98 with fixed
ε = 5, w = 5. The results show that the performance keeps
stable when c is within the neighbor of two ends of c, which
can be useful to select the optimal parameter.

5.4.5 Experiment 5: Transaction costs

In practice, transaction cost is an important and unavoidable
issue that should be addressed. In our experiment, we adopt
proportional transaction cost model stated in Section 5.2.3.
We test the effect of proportional transaction cost when
the transaction cost rate γ varies from 0 to 1%, plus the
cumulative wealth achieved by two benchmarks (Market
and BCRP) and the state-of-the-arts (PAMR and OLMAR).

Figure 6 and Figure 7, present the results of RMR and
RMR-Variant, respectively. As we can observe, the perfor-
mance with transaction costs is market dependent. When
the transaction cost increases, the total wealth achieved by
RMR and RMR-Variant strategies drops considerably. How-
ever, we found that even with a rather high transaction cost,
the two strategies still performs convincingly well. Com-
pared with the benchmarks, the results clearly demonstrate
that on all datasets, the two algorithms are fairly robust with
respect to the transaction costs, where the break-even rates
ranges from 0.3% to 0.9%. Thus, the proposed strategies



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2563433, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0 1500 3000 4500
10

0

10
5

10
10

10
15

10
20

Trading Periods

T
ot

al
 W

ea
lth

 A
ch

ie
ve

d

 

 
RMR

OLMAR

CWMR

PAMR

BCRP

MARKET

(a)

0 1500 3000 4500 6000
10

0

10
5

10
10

Trading Periods

T
ot

al
 W

ea
lth

 A
ch

ie
ve

d

 

 
RMR

OLMAR

CWMR

PAMR

BCRP

MARKET

(b)

0 100 200 300 400 500
0

1

2

3

4

5

Trading Periods

T
ot

al
 W

ea
lth

 A
ch

ie
ve

d

 

 
RMR

OLMAR

CWMR

PAMR

BCRP

MARKET

(c)

0 300 600 900

1

5

10

15

Trading Periods

T
ot

al
 W

ea
lth

 A
ch

ie
ve

d

 

 

RMR

OLMAR

CWMR

PAMR

BCRP

MARKET

(d)

Fig. 2. Trend of cumulative wealth achieved by various strategies during the entire period on the four daily datasets (i.e., (a) NYSE(O),
(b) NYSE(N), (c) DJA and (d) MSCI).
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Fig. 3. Parameter sensitivity of RMR w.r.t. ε with fixed w (w=5) on the four datasets (i.e., (a) NYSE(O), (b) NYSE(N), (c) DJA and (d)
MSCI).
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Fig. 4. Parameter sensitivity of RMR w.r.t. w with fixed ε (ε = 5) on the four datasets (i.e., (a) NYSE(O), (b) NYSE(N), (c) DJA and
(d) MSCI).
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Fig. 5. Parameter sensitivity of RMR-Varint w.r.t. c with fixed ε, w (ε = 5 and w = 5) on the four datasets (i.e., (a) NYSE(O), (b)
NYSE(N), (c) DJA and (d) MSCI).
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Fig. 6. Scalability of the total wealth achieved by RMR with respect to transaction cost rate γ% on the four datasets (i.e., (a) NYSE(O),
(b) NYSE(N), (c) DJA and (d) MSCI).
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Fig. 7. Scalability of the total wealth achieved by RMR-Variant with respect to transaction cost rate γ% on the four datasets (i.e., (a)
NYSE(O), (b) NYSE(N), (c) DJA and (d) MSCI).

can withstand moderate transaction costs even though we
do not explicitly tackle it during the PS process.

6 CONCLUSION

In this paper, we propose a novel multiple period online PS
strategy named “robust median reversion” (RMR), which
exploits the reversion phenomenon of stock prices by robust
L1-median estimator and online learning technologies. The
proposed approaches overcome the limitations of many
existing online PS strategies that often suffer from noise and
outliers in real-world markets. Our empirical studies show
that the proposed RMR algorithm can substantially beat the
market and the best stock, and also consistently suppasses
a variety of state-of-the-art algorithms.

In the future, we plan to study the following aspects.
Firstly, RMR’s universality is still an open question, al-
though this may not be required in real investment. Second-
ly, more financial issues need to be studied, for example,
bankrup assets. It is interesting to study the behaviors of
the bankrupt assets and design strategies to exploit them.
Finally, though RMR handles the issue of transaction costs
well, it is not formally addressed in our problem formula-
tion. It would be interesting to incorporate the transaction
cost issue when formulating the problem, especially, in case
of high transaction costs and high frequency trading.

APPENDIX A
PROOF OF THE PROPOSITION 1
Lemma 1. This lemma can be got from [17]. Let x1, ...,xm

be m distinct points in Rd and η1, ..., ηm be m positive

numbers. Think of the ηis as weights of the xis, and let
C(y) denote the weighted sum of distance of y from
x1, ...,xm:

C(y) =
∑
i

ηidi(y) (8)

where di(y) = ‖y−xi‖, the Euclidean distance between
y and xi in Rd. Then a point y ∈ Rd that minimizes the
”cost function” C(y), i.e., to find

M = M(x1, ...,xm; η1, ..., ηm)

= arg min{C(y) : y ∈ Rd}
(9)

can be calculated through iteration, and the iteration
process is:

y→ T (y) =

(
1− η(y)

γ(y)

)+

T̃ (y) + min

(
1,
η(y)

γ(y)

)
y

(10)
with the convention 0/0=0 in the computation of
η(y)/γ(y), where T̃ (y) is as

T̃ (y) =

∑
xi 6=y

ηi
‖y − xi‖


−1 ∑

xi 6=y

ηixi
‖y − xi‖

(11)

η(y) =

{
ηk if y = xk, k = 1, . . . ,m

0 otherwise
, (12)

r(y) = ‖R̃(y)‖, R̃(y) =
∑
xi 6=y

ηi
xi − y

‖xi − y‖
(13)

Proof 1. Based on Lemma 1, if we set ηi = 1, m = k − 1,
x1 = pt, ...,xm = pt−k+1, then Equation (9) is same
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to the equation (2), and we can get the conclusion of
proposition 1:

T̃ (y) =
{∑

pt−i 6=y
1

‖y−pt−i‖

}−1∑
xi 6=y

pt−i

‖y−pt−i‖ ,

η(y) =

{
1 if y = pt−i, i = 0, . . . , k − 1

0 otherwise
,

R̃(y) =
∑

pt−i 6=y
pt−i−y
‖pt−i−y‖ .

APPENDIX B
PROOF OF THE PROPOSITION 3
Proof 2.

If x̂Tt+1bt − ε ≥ 0, then b = bt.

If x̂Tt+1bt − ε < 0, then

L(b, α, λ) =
1

2
‖b− bt‖2 + α(x̂Tt+1bt − ε)

+ λ(bT1− 1)
(14)

so,
∂L

∂b
= (b− bt) + αx̂t+1 + λ1 = 0 (15)

λ = −α1
T x̂t+1

d
= −αxt+11 (16)

Substituting Eq. (16) into Eq. (15) leads to

b = bt − α(x̂t+1 − xt+11) (17)

To substitute Eq. (16) and Eq. (17) into Eq. (14), we can
get

L = 1
2α

2‖x̂t+1 − xt+11‖2 + α[x̂Tt+1(bt − α(x̂t+1−
xt+11))− ε]

= 1
2α

2‖x̂t+1 − xt+11‖2 + αx̂Tt+1bt − α2(x̂Tt+1x̂t+1

−x̂Tt+1xt+11)− αε
Moreover,

‖x̂t+1 − xt+11‖2

= (x̂t+1 − xt+11)T (x̂t+1 − xt+11)

= (x̂Tt+1 − xt+11
T )(x̂t+1 − xt+11)

= x̂Tt+1x̂t+1 − x̂Tt+1xt+11− xt+11
T x̂t+1 + xt+11

Txt+11

= x̂Tt+1x̂t+1 − x̂Tt+1xt+11− xt+11
T x̂t+1 + x2

t+1d

= x̂Tt+1x̂t+1 − x̂Tt+1xt+11− xt+11
T x̂t+1 + xt+11

T x̂t+1

= x̂Tt+1x̂t+1 − x̂Tt+1xt+11

Thus, we have

L = 1
2α

2‖x̂t+1 − xt+11‖2 + αx̂Tt+1bt

−α2‖x̂t+1 − xt+11‖2 − αε
= − 1

2α
2‖x̂t+1 − xt+11‖2 + αx̂Tt+1bt − αε

∂L
∂α = −α‖x̂t+1 − xt+11‖2 + x̂Tt+1bt − ε = 0

α =
x̂T
t+1bt−ε

‖x̂t+1−xt+11‖2

Therefore, we have the result of Proposition 3:

bt+1 = bt − αt+1(x̂t+1 − xt+1 · 1),

where αt+1 is the Lagrangian multiplier calculated as,

αt+1 = min

{
0,

x̂Tt+1bt − ε
‖x̂t+1 − xt+1 · 1‖2

}
.
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