
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Online Subgraph Skyline Analysis Over
Knowledge Graphs

Weiguo Zheng1,4, Xiang Lian2, Lei Zou1, Liang Hong3, Dongyan Zhao1

1Peking University, Beijing, China, 100080;
2University of Texas Rio Grande Valley, Edinburg, Texas, USA, 78539;

3Wuhan University, Wuhan, China, 430072;
4The Chinese University of Hong Kong, Hong Kong, China, 999077.

{zhengweiguo,zoulei,zhaody}@pku.edu.cn, xiang.lian@utrgv.edu

Abstract—Subgraph search is very useful in many real-world applications. However, users may be overwhelmed by the masses
of matches. In this paper, we propose a subgraph skyline analysis problem, denoted as S 2A, to support more complicated
analysis over graph data. Specifically, given a large graph G and a query graph q, we want to find all the subgraphs g in G, such
that g is graph isomorphic to q and not dominated by any other subgraphs. In order to improve the efficiency, we devise a hybrid
feature encoding incorporating both structural and numeric features based on a partitioning strategy, and discuss how to optimize
the space partitioning. We also present a skylayer index to facilitate the dynamic subgraph skyline computation. Moreover, an
attribute cluster-based method is proposed to deal with the curse of dimensionality. Extensive experiments over real datasets
confirm the effectiveness and efficiency of our algorithm.

Index Terms—Subgraph Skyline; Feature Encoding; Skylayer; High Dimensionality

F

1 INTRODUCTION

Recently, graphs have attracted the increasing attention
from the database community [1]. A lot of real-world
data (e.g., social networks [2], knowledge graphs [3],
heterogenous information networks [4], and the Semantic
Web [5]) can be represented by the graph model. In the
literature, various research problems over graphs have been
investigated, such as the shortest path query [6], subgraph
search [1], [7], the reachability query [8], and so on.

pid1

film1

film2

film3

pid2

"comedy"

genre

rating

gross

genderhasActor

hasActor writter

hasActor

hasActor

bornIn
marriedTo

directedBy

rating

budget

gross

rating

…

…

"7.3"

"105"

"59"

"9.1"

"82"

"6.1"

"43"

"1968.8"

hasActor

pid3

writter

pid5

pid4

bornIn

born
In

gender

"male"

directedBy

bornDate

releaseDate

gross

"1994.1.14"

country1

"125%"

hasCPIhasGDP

"1200B"

author
book1

Fig. 1. An example of knowledge graph.

As a well-known research problem, the subgraph search
problem is meaningful and useful in many applications.
For example, answering SPARQL queries in the Semantic
Web is equivalent to conducting the subgraph match over
graphs [5]. However, users may be overwhelmed by the
enormous matching results returned from queries. Owing to

different requirements in a variety of applications, it is non-
trivial how to design a generic function to measure/rank the
“goodness” of these matches. In this paper, we study the
subgraph skyline problem (Def. 2.5) on large graphs, which
can retrieve the matching subgraphs by considering both
graph structures and graph entity dominance relationships.

We first provide two motivation examples for the sub-
graph skyline problem below.

1.1 Motivating Example
Motivating Example 1. We want to find excellent NBA
player partners in the same team over the knowledge graph
as shown in Fig. 1. Specifically, one player is a “guard”
with excellent techniques in “assists” and “steals”. The
other player is a “forward” with excellent techniques in
“rebounds” and “blocks”. This query can be represented
by a graph in Fig. 2, where player1 is a “guard” and
player2 is a “forward”. The vertices labeled with ‘ * ’ are
their respective numeric attributes of technical statistics. In
this example, we want to find all the partners serving in
the same teams, who are not worse than other partners in
terms of these attributes. This type of query over knowledge

position
"Guard"

?player1

*

*

assists

steals

position

"Forward"

*

*

blocks

rebounds

?team

playIn

playIn
?player2

NBA player

isA
isA

Fig. 2. Excellent basketball partner analysis.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

graphs exactly corresponds to a subgraph skyline query, and
can find excellent NBA player partners.

Motivating Example 2. We can also explore excellent
actors/actresses in the USA who are singers as well. Specif-
ically, the gross of the film that the actor/actress starred
in and the number of his/her album copies are expected
to be large. Fig. 3 illustrates this query graph. In general,
the subgraph search query may return too many matches
if we do not consider numeric attributes in graph entities
(e.g., actor/actress). Hence, the subgraph skyline analysis
is useful over the knowledge graph to return American
actors/actresses/singers who have both high film gross and
a large number of album copies.

?person

gross

artist
hasActor copies

USA

bornIn
?album

?film

film

isA

isA
album*

*

?person
gross artisthasActor

copies
USA

bornIn ?album

?film

film

isA

isA album*

*

?persongross

artisthasActor

copies
USA

bornIn ?album

?film

film

isA

isA album

*

*

Fig. 3. Versatile artist analysis.

Motivated by the examples above, we propose the prob-
lem of Subgraph Skyline Analysis over large graphs (denot-
ed as S 2A). Specifically, given a large graph G and a user-
specified query graph pattern q (which contains numeric
attributes in graph entities), S 2A returns all the subgraphs
in G that are isomorphic to q and not dominated by any
other isomorphic subgraphs in terms of numeric attributes
in q (formally defined in Def. 2.5).

1.2 Challenges and Contributions
We address two major challenges to conduct S 2A efficient-
ly, and carefully design the corresponding solutions.

Challenge 1: Expensive structure checking. To answer
S 2A, we need to check the structural constraint (i.e.,
isomorphism checking) before reporting true S 2A answers.
For instance, an entity v cannot be in the answers if the
subgraphs containing v are not isomorphic to the query
graph q, even though v is in the skyline without considering
the structure constraint. However, it is NP-hard to check
the graph isomorphism [9]. In order to improve the time
efficiency, we should reduce the search space and avoid as
many costly subgraph isomorphism checkings as possible.
Thus, it is better to consider the structural feature, as well
as the numeric feature. Since there may be a mass of
numeric features (e.g., the numeric attributes) and structural
features (e.g., path, tree, and subgraph) especially when the
knowledge graph G is very large, we should carefully select
these features to enhance the pruning power, and organize
them in an efficient way so as to reduce the storage cost.

Challenge 2: Curse of dimensionality. In order to
improve the computing efficiency of skyline entities, it
is required to devise an efficient index for these numer-
ic attributes. However, there may be a large number of
numeric attributes (i.e., high dimensionality) in knowledge
graphs (e.g., DBpedia has 870 numeric attributes), which
indicates that the dominating relationships are very rare.
Hence, the computing efficiency and pruning ability de-
grade accordingly. This phenomenon is named as “curse of
dimensionality” [10].

TABLE 1
Frequently-used Notations

Notation Definition and Description
G the knowledge graph
q the query graph
D D = {d1, . . . , d|D|}, the numeric attribute space
u, v the vertices in q and G, respectively
n the number of numeric vertices in G
B a grid cell in the multi-dimensional space
c the minimal corner of B
K the number of grid cells
lbS tr(v) the local structure encoding of v
lbS tr(B) the local structure encoding of B
gbS tr(v) the global structure encoding of v
nbS tr(B) the numeric encoding of B
nbS tr(v) the numeric encoding of v
M(v) the vertices dominated by v

In order to tackle these challenges, we partition the data
space into grid cells so that we can compute skylines
cell by cell instead of entity by entity. We also carefully
devise a hybrid encoding incorporating both structural and
numeric features at low storage cost. To achieve better
pruning effectiveness, we propose optimizations on how
to find a good partitioning. Furthermore, we maintain the
grid cells using an efficient index to facilitate the dynamic
computation of skyline entities. More importantly, we prune
the unpromising cells that cannot generate true S 2A answers
by exploiting the encoding and partitioning strategies. In
order to deal with the curse of dimensionality, we propose
to cluster numeric attributes, and provide an efficient algo-
rithm to compute skylines over clusters of attributes.

In summary, we make the following contributions.
• We propose the problem of subgraph skyline analysis

(denoted by S 2A) over large graphs, and present an
efficient method to answer S 2A queries.

• We partition the data space into grid cells, and compute
skylines cell by cell, instead of entity by entity. Most
importantly, we propose optimizations on how to find
a good partitioning.

• We propose a hybrid feature encoding incorporating
both structural and numeric features to enhance the
pruning ability. We also maintain the grid cells using
an efficient index in order to facilitate the dynamic
computation of subgraph skyline.

• By clustering numeric attributes we devise an effective
method to deal with the curse of dimensionality.

• Extensive experiments over real dataset have demon-
strated the effectiveness and efficiency of our method.

2 SUBGRAPH SKYLINE
We formally define the subgraph skyline problem. Table 1
lists the frequently-used notations in this paper.

2.1 The Subgraph Skyline Analysis Problem
Definition 2.1: (Knowledge Graph). A knowledge

graph is defined as G = (V, E, L), where each vertex v ∈ V
represents an entity or a numeric value, each e = (vi, v j) ∈ E
represents a directed edge from vertex vi to vertex v j, and
L(v) (resp. L(e)) is the label of vertex v (resp. edge e).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Fig. 1 shows an example of knowledge graph. If entity
v has some numeric attributes, v is called a numeric entity.
Let v.d denote the value on numeric attribute d of v.

Definition 2.2: (Graph Isomorphism). Given two sub-
graphs g1 and g2 in graph G, g1 is graph isomorphic
to g2 iff there exists a bijective function f (.) such that
(1) for each vertex v ∈ g1 (excluding numeric values),
f (v) ∈ g2∧L(v) = L(f (v)); (2) for each e = (vi, v j) ∈ g1, we
have f (e) = (f (vi), f (v j)) ∈ g2, and L(e) = L(f (e)).

Definition 2.3: (Dominant/Equivalent Entity). Given t-
wo numeric entities v1 and v2 in a knowledge graph G and
their numeric attribute set D, v1 dominates v2, denoted by
v1 ≺ v2, if (1) for each numeric attribute di, v1.di ≤ v2.di,
and (2) there exists at least one attribute d j such that
v1.d j < v2.d j. We say v1 is equivalent to v2, denoted by
v1 = v2, if v1.di = v2.di on each numeric attribute di ∈ D.

To facilitate the presentation, let v1 � v2 denote that
entity v1 dominates or is equivalent to entity v2.

Note that, a numeric entity v may not contain all the
|D| attribute values, i.e., v has missing values on some
dimensions. We can utilize the method in [11] to convert an
incomplete entity v to a complete one v′. It estimates a con-
crete value for each missing value by using a probabilistic
distribution function formed by the non-missing values on
the relevant dimension di.

Definition 2.4: (Subgraph Dominating Relationship).
Given two subgraphs g1 and g2 in G, g1 dominates g2, if
• g1 is graph isomorphic to g2 without considering

numeric values;
• It holds that vi � f (vi) for each numeric entity vi ∈ g1;
• There is at least a numeric entity v j ∈ g1 satisfying

that v j ≺ f (v j).
where f (·) is the mapping function defined in Def. 2.2.
Correspondingly, we also say g2 is dominated by g1.

Definition 2.5: (Subgraph Skyline). A subgraph g ∈ G
is in the subgraph skyline, if g is graph isomorphic to the
query graph q (without considering the numeric attributes
and values) and not dominated by any other subgraphs g′ ∈
G, on those specified numeric attributes in q.

Subgraph Skyline Analysis (denoted as S 2A). Given a
graph G and a query graph q containing numeric attributes,
the S 2A problem is to compute subgraph skylines on G.

Complexity Analysis. It is intuitive that the S 2A prob-
lem has high complexity due to the constraints of both
subgraph isomorphism and dominance relationships. If the
S 2A problem does not have the numeric constraint, it
is equivalent to a subgraph search problem. Since the
subgraph isomorphism is a classical NP-hard problem, S 2A
is also NP-hard and intractable from the perspective of the
time complexity.

2.2 Straightforward Methods
Naive method 1 - NaiveIso. High-level idea: In the offline
phase, we store the bitmaps of numeric entities. In the
online phase, we enumerate all subgraphs that are graph
isomorphic to the query. Then, we compute skyline entities
by employing previously maintained bitmaps to obtain the
final answers. The framework is outlined in Alg. 1.

To make it self-contained, we briefly review the bitmap
method [12]. Its main idea is to represent an object o =

{o1, . . . , o|D|} using an m-bit vector, where oi is the value
on dimension i, and oi is represented by ki bits. Since ki is
n at most, m is n · |D| in the worst case, where n and |D|
are the numbers of numeric entities and numeric attributes,
respectively. Then we can progressively determine whether
o is in the skyline by performing bitwise operations over
the corresponding bitmaps.

Obviously, this naive method is inefficient, since it in-
vokes expensive subgraph isomorphism matching to enu-
merate all subgraph candidates. Furthermore, its storage
cost is O(n2 · |D|), because there are n numeric entities,
and each entity o is represented by an (n · |D|)-bit vector in
the worst case as discussed above.
Naive method 2 - NaiveJoin. The main idea is that we first
utilize the skyline-join pruning techniques (i.e., filtering
those entities that are dominated by others) to obtain
skyline entities. Then, we verify the structural constraint by
performing the subgraph isomorphism checking. Obviously,
this method may generate too many skyline entities, which
incurs high cost of checking graph isomorphism.

3 HYBRID FEATURE ENCODING
Below, we propose to partition the data space into grid cells
in Section 3.1, and encode for each grid cell both structural
and numeric features in Section 3.2.

3.1 The Space Partitioning
The rationale of partitioning the data space (i.e., the space
consisting of numeric entities) is that: if we can compute the
skyline entities cell by cell instead of exhaustively searching
them one by one, then a lot of search cost can be saved.
Moreover, we maintain only encodings for cells rather than
entities, which greatly reduces the storage cost. Thus, we
propose to partition the data space into grid cells (Def. 3.1).

Definition 3.1: (Grid). Given a data space with numeric
attributes D = {d1, . . . , d|D|}, grids are obtained by parti-
tioning each dimension di ∈ D using a set of partitioning
lines p1

i , . . . , pk
i (p1

i < . . . < pk
i). A cell, denoted by B, is

the block bounded by two partitioning lines p j
i and p j+1

i on
each dimension di, i.e., p j

i < B.di ≤ p j+1
i

Definition 3.2: (Minimal Corner). Given a grid cell B
in the multi-dimensional data space, its minimal corner is
the point c ∈ B whose value on each dimension di ∈ D is
the minimum, i.e., c.di = p j

i .

Algorithm 1 NaiveIso
Input: A knowledge graph G; A query graph q;
Output: Subgraph skylines A over G.

1: Build the bitmaps for numeric entities
2: A← ∅
3: S ← subgraphs in G that are graph isomorphic to q
4: for each candidate graph g ∈ S do
5: if the numeric entities in g belong to skyline then
6: add g into A
7: return A

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

2

1

2

7 3 5

4
6

5

1

1

2

3

3

6 9

12

11

10

7

5
8

Fig. 4. A partitioning of the data space.

Example 1: The 2-dimensional space in Fig. 4 is parti-
tioned into 12 grid cells B1, . . . , B12. For instance, the grid
cell B7 contains v3, v4, v5, and v6. Its minimal corner is c7.

With minimal corners, we can compute the skyline
entities cell by cell, instead of entity by entity.

Definition 3.3: (Strict Dominance). Given two corners
c1 and c2 and a specified numeric attribute set D, we say
that c1 strictly dominates c2, denoted as c1 < c2, if on each
numeric attribute di ∈ D , c1.di < c2.di holds.

The strict dominance imposes more stringent restrictions
upon two objects. Clearly, if c1 < c2, it holds that c1 ≺

c2, which indicates that strict dominance is a special case
of dominating relationship. Moreover, we can derive the
following theorem.

Theorem 3.1: Given two minimal corners, c1 of the grid
cell B1 and c2 of the grid cell B2, if c1 < c2, then all the
entities in the grid cell B1 dominate that in B2.

Proof: For details, please refer to Part A in supple-
mentary materials.

Example 2: As shown in Fig. 4, since c5 strictly dom-
inates c7, i.e., c5 < c7, the entities (v1 and v2) in the grid
cell B5 dominate that (v3, v4, v5, and v6) in B7.

3.2 Space Partitioning Based Feature Encoding
With the partitioning of the data space, we present a hybrid
feature encoding in this subsection.

3.2.1 Structural Feature Encoding
Structural encoding for entities. Provided that u (in q)
can match a vertex v (in G), each u’s adjacent edge and
neighborhood vertex should match some v’s adjacent edge
and neighborhood vertex, respectively. Thus, if the entities
in q and G are encoded in the same method, we can check
the match according to their encodings.

Local Structural Encoding. We hash the local structure
of an entity v to a bitstring, denoted by lbS tr(v), which is
similar to, but different from, the previous work [5]. The
differences are listed as follows.
• We integrate the adjacent edge and its corresponding

neighbor vertex together (denoted by 1-hop path),
instead of considering them separately.

• We add more structural information, i.e., connecting
edges (Def. 3.4), to improve the pruning ability.

Definition 3.4: (Connecting Edge). Given a vertex v and
its neighbors Nei(v), v’s connecting edges are the edges
e = (vi, v j) between two neighbor vertices vi ∈ Nei(v) and
v j ∈ Nei(v).

The bitstring of v’s local structure lbS tr(v) contains
two parts: lbS tr(v).p and lbS tr(v).c, where the first part
lbS tr(v).p denotes the encoding for 1-hop path labels (v’s
adjacent edge label combining the corresponding neighbor
vertex label), and the second part lbS tr(v).c denotes the
encoding for connecting edge labels.

Bitstring Generation. Given a neighbor vertex v′ of v and
the corresponding edge e between v and v′, we combine
e.Label and v′.Label together to get the label (p.Label) of
v’s 1-hop path. We generate the bitstring for p.Label, i.e.,
lbS tr(v).p (|lbS tr(v).p| = M1). We utilize m different hash
functions to set m out of M1 bits in lbS tr(v).p to be ‘1’.
All the other bits are set to be ‘0’. Similarly, we can obtain
the other part lbS tr(v).c.

Example 3: Fig. 5(a) shows the local structure of entity
v (Tom Hanks). It has 4 adjacent edges and 2 connecting
edges. As shown in Fig. 5(b), lbStr(v) consists of lbStr(v).p
and lbStr(v).c, which are the unions of the bitstrings for v’
1-hop paths and connecting edges, respectively.

Using the same hash functions we can obtain the local
bitstring for each vertex u in q, denoted by lbStr(u). If
lbStr(u)&lbStr(v) , lbStr(u), where ‘&’ is the bitwise AND
operator, then we can determine that u cannot match v.
Therefore, the vertex v can be safely filtered out.

Tom

Hanks

Rita

Wilson

"male"

gender

actIn

bornIn

married

actIn

bornIn

California

Sleepless in

Seattle

(a) local structure

OR
actIn,Sleepless in Seattle

0100 1000 0000 0100
gender, male

married, Rita Wilson

lbStr(v).p

actIn

0001 0001
bornIn

connecting edges

1001 0011

OR

lbStr(v).c
+

lbStr(v) =

bornIn,CaliforniaTom Hanks,

0001 0010 0000 1000

0111 1110 0101 1100

0100 0100 0001 0000

0010 0010 0100 0000

1000 0010

0111 1110 0101 1100 1001 0011

Tom Hanks,

Tom Hanks,

Tom Hanks,

(b) local structural encoding

Fig. 5. The local structure of v and its encoding

Global Structural Encoding. Given a numeric entity v in
graph G, we collect the set of numeric entities NSh(v), such
that dist(v, v′) ≤ h for each v′ ∈ NSh(v), where dist(v, v′) is
the shortest path distance between v and v′.

We first generate the bitstring for vi.Id (vi ∈ NSh(v)),
denoted as bStr(vi) (|bStr(vi)| = M2). Then, we utilize m
different hash functions to set m out of M2 bits in bStr(vi)
to be ‘1’. All other bits are set to be ‘0’. Then gbStr(v) is
generated by performing bitwise OR operation over the bit-
strings of vi ∈ NSh(v), i.e., gbStr(v) = bStr(v1)| . . . |bStr(vm).

1000 0000 0010 0100bStr(v2)

0100 0010 0010 0000
1101 1110 1010 1101

bStr(v5) 0001 0100 0000 1000

0000 1000 1000 0001

ORbStr(v6)

bStr(v8)

v2

v5

v6

v8

gbStr(v1)

Fig. 6. The global numeric encoding of entity v1

Example 4: Provided that NS3(v1) = {v2, v5, v6, v8}, as
shown in Fig. 6, we generate the bitstring for each entity
in NS3(v1), and then perform the OR bitwise operation over
these bitstrings to obtain gbStr(v1).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Structural encoding for grid cells. The intuition is as
follows. By summarizing the encodings for the entities in
a cell B, denoted as lbStr(B), we can check lbStr(B) before
accessing the entities in B. If a query entity does not match
lbStr(B), we can safely prune all entities in the grid cell B.

The structural encoding for a grid cell B, i.e., lbStr(B),
is formed by performing bitwise OR operation over the
local structural bitstrings of the entities in B. Formally,
lbStr(B) = lbStr(v1)| . . . |lbStr(vm), where vi ∈ B (1 ≤ i ≤
m). Thus, if lbStr(u) & lbStr(B) , lbStr(u), any numeric
entity in the grid cell B does not match u, where u is a
numeric entity in the query graph q.

3.2.2 Numeric Feature Encoding
The previous method Bitmap [12] can progressively de-
termine whether a point is in the skyline. However, as
discussed earlier, it is costly to maintain the Bitmap in
terms of storage cost. The numeric encoding nbStr(B) in
this paper is distinct from Bitmap [12]:
• We only encode the grid cells rather than the entities.

Hence, the size of nbStr(B) is smaller than Bitmap, i.e.,
K · |D| < n · |D|, where K, n, and |D| are the number
of cells, numeric entities and attributes, respectively.

• nbStr(B) is online generated if required.
We maintain a bitstring for each cell B, i.e., nbStr(B),

which consists of |D| parts: nbStr(B).d1, . . . , nbStr(B).d|D|.
The size of each part nbStr(B).di is K, where K is the

number of grid cells. If B j’s value on dimension di is better
than that of B on dimension di, i.e., B j.di < B.di, the jth
bit of nbStr(B).di is set to 1, otherwise it is set to 0.

grid Id: 101 2 3 4 5 6 7 8 9 11 12

01 1 1 0 0 0 0 0 0 0 0nbStr(B5).d1

00 0 1 0 0 1 0 0 1 0 1nbStr(B5).d2

Fig. 7. The numeric encoding of B5

Example 5: Consider the space partitioning in Fig. 4.
The numeric encoding of the grid cell B5 is shown in Fig. 7.

Obtaining the numeric encoding for B, we can determine
whether B is in the skyline on dimensions d1, . . . , dm (m ≤

|D|). Let X = nbStr(B).d1 & . . . & nbStr(B).dm, where ‘&’
represents the bitwise AND operation. If the result of the
operation X is non-zero, we can conclude that there must
be a certain cell strictly dominating B.

Similarly, we can also define the numeric encoding for
each numeric entity v, denoted by nbS tr(v).

4 SUBGRAPH SKYLINE COMPUTATION

In this section, we present an index for grid cells first, and
then give the process of computing subgraph skylines.

4.1 Grid Index - Skylayer
Since we partition the data space into grid cells and use
cells to represent the entities, the computation of skyline
entities is conducted over these cells. We propose skylayer
to facilitate the subgraph skyline computation.

Definition 4.1: (Skylayer). Given a set of minimal cor-
ners, we organize the corresponding cells in the several
layers such that every minimal corner ci does not strictly
dominate any other minimal corner c j in the same layer.

Example 6: Fig. 8 shows a skylayer example of the
dataset in Fig. 4. There are 4 layers: L1 ∼ L4, where Li

maintains the cells that do not strictly dominate each other.
Given the set of minimal corners, C, its skylayer is

easy to build by recursively employing any existing skyline
algorithms [13], [14], [15]. Specifically, we compute the
skyline cells over C to obtain the first layer L1. Then we
remove these cells (in L1) from C to obtain a new set C′,
i.e., C′ = C − L1. Recursively, we can compute the new
skyline cells over C′ to get Li (i > 1) until C′ = ∅.

Theorem 4.1: Any entity v in the layer L j does not
dominate any entity v′ in the layer Li, where i < j.

Proof: For details, please refer to Part B in supple-
mentary materials.

Theorem 4.1 guarantees that accessing the skylayers one
by one will not miss any skyline entities.

Obtaining a skyline cell B, we need to compute the
skyline entities in B. Here, we employ the bitmap technique
[12] to determine whether entity v (v ∈ B) is in the skyline.

Different from the work in [12], we generate the bitmaps
online instead of maintaining all the bitmaps at expensive
storage cost. Moreover, it is probable that not all the entities
need to be examined, that is, it may only involve a subset
of entities. Hence, it is unnecessary to generate bitmaps for
all entities. In the offline phase, entities are sorted on each
dimension, based on which the bitmap generation is very
simple (similar to the generation for cells in Section 3.2.2).
4.2 Subgraph Skyline Computation
The computing process contains three steps: candidate
generation (Alg. 2), cell-level pruning (Alg. 3), and entity-
level pruning (Alg. 4).

Candidate Generation (Alg. 2). Given a query graph q
which contains t numeric entities u1, . . . , ut, we generate the
local structural encoding lbS tr(ui) for each numeric entity
ui. Then we check whether ui can match each cell B in
the skylayer L. If lbS tr(u)&lbS tr(B) , lbS tr(u), we can
conclude that any entity in B can not match u (lines 4-
7 in Alg. 2). We also generate the candidate entities in
B, denoted by B.CE(ui), for each numeric entity ui (lines
8-12 in Alg. 2). Then we compute the subgraph skylines.
Based on the discussion in Section 4.1, we explore the cells
{B1, . . . , Bt} layer by layer so that we can find the answers
early and reduce the search space.

d2

d1

v3 v5

v4

v6

L1

v1

v2

L2
L3 L4

Fig. 8. An example of skylayer.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 2 Subgraph Skyline Computation
Input: A knowledge graph G, the hybrid feature encoding,

and a query graph q with t numeric entities u1, . . . , ut;
Output: The subgraph skyline in G.

1: for each numeric entity ui ∈ q do
2: canB(ui)← ∅
3: generate the local structural encoding lbS tr(ui)
4: for each skylayer L do
5: for each grid cell B in L do
6: if lbS tr(ui)&lbS tr(B) = lbS tr(ui) then
7: canB(ui)← canB(ui) ∪ B
8: B.CE(ui)← ∅
9: for each entity v ∈ Bi do

10: if lbS tr(ui)&lbS tr(v) = lbS tr(u) then
11: B.CE(ui)← B.CE(ui) ∪ v
12: for each {B1, . . . , Bt} ∈ canB(u1) .// canB(ut) do
13: GridSkyline(B1, . . . , Bt)

Algorithm 3 GridSkyline(B1, . . . , Bt)
Input: The grid cells B1, . . . , Bt;
Output: The subgraph skyline containing the numeric

entities in B1 .// Bt .
1: isS L← 0
2: for 1 ≤ i ≤ t do
3: Xi ← nbS tr(Bi).d1& . . .&nbS tr(Bi).dm

4: if Xi = 0 then
5: isS L← 1
6: go to line 7
7: if isS L = 1 then
8: for {v1, . . . , vt} ∈ B1.CE(u1) .// Bt.CE(ut) do
9: isEmpty← EntitySkyline(v1, . . . , vt)

10: if isEmpty = false then
11: add {B1, . . . , Bt} into VS B
12: else
13: if {B′1, . . . , B

′
t} has not been checked then

14: GridSkyline(B′1, . . . , B
′
t)

15: if {B1, . . . , Bt} is not dominated by VS B then
16: for {v1, . . . , vt} ∈ B1.CE(u1) .// Bt.CE(ut) do
17: isEmpty← EntitySkyline(v1, . . . , vt)
18: if isEmpty = false then
19: add {B1, . . . , Bt} into VS B

Grid-level Pruning (Alg. 3). After obtaining the candi-
date cells, we first compute the skyline cells. The pruning
principle is that if a set of cells do not belong to skylines,
the entities in the corresponding cells cannot be in the
skyline. Before the computation, we introduce valid skyline.

Definition 4.2: (Valid Skyline.) Entity v (or cell B) is in
valid skyline iff 1) v (or B) satisfies the structure constraint
specified in the query q, and 2) all the entities dominating
v (or B), if any, do not satisfy the structure constraint.

For instance, assume that B1 dominates B2, whereas B1
does not satisfy the structure constraint, and there exist no
other cells that dominate B2. Thus, B2 is in the valid skyline,
and B1 is an invalid skyline cell.

Alg. 3 gives the details to compute the valid cell skylines.

If the set of cells {B1, . . . , Bt} is not dominated by any
other cells, we explore the entities in the corresponding
cells. The set of cells {B1, . . . , Bt} is added into the valid
skylines VS B on condition that we find some subgraph
skylines utilizing the entities in {B1, . . . , Bt} (lines 7-11).

If the set of cells {B1, . . . , Bt} is dominated by another
set of cells {B′1, . . . , B

′
t}, we should determine whether

{B1, . . . , Bt} is in the valid skyline. If {B′1, . . . , B
′
t} has

not been checked, the procedure GridSkyline(B′1, . . . , B
′
t)

is invoked (lines 13-14). If the set {B1, . . . , Bt} is not
dominated by the cells in VS B, we need to explore the
entities in B1.CE(u1) .// Bt.CE(ut) (lines 15-19).

Algorithm 4 EntitySkyline(v1, . . . , vt)
Input: The numeric vertices v1, . . . , vt;
Output: The subgraph skyline containing v1, . . . , vt.

1: isS L← 0
2: for 1 ≤ i ≤ t do
3: Xi ← nbS tr(vi).d1& . . .&nbS tr(vi).dm

4: if Xi = 0 then
5: isS L← 1
6: go to line 7
7: if isS L = 1 then
8: perform the shortest-path-distance pruning
9: if a graph g containing {v1, . . . , vt} is isomorphic to

q then
10: report g as a result
11: add {v1, . . . , vt} into VS V
12: else
13: if {v′1, . . . , v

′
t} has not been checked then

14: EntitySkyline(v′1, . . . , v
′
t)

15: if {v1, . . . , vt} is not dominated by VS V then
16: perform the shortest-path-distance pruning
17: if a graph g containing {v1, . . . , vt} is isomorphic

to q then
18: report g as a result
19: add {v1, . . . , vt} into VS V

Entity-level Pruning (Alg. 4). For a set of entities
{v′1, . . . , v

′
t}, we first check whether it is dominated by any

other entities (lines 2-6). If it is not dominated by any other
entities, we perform the structure verification. The subgraph
g is reported as an answer if it is graph isomorphic to q
and contains the entities {v1, . . . , vt} (lines 7-11).

Analogous to that in the grid-level computation, if the set
of entities {v1, . . . , vt} is dominated by another set of enti-
ties {v′1, . . . , v

′
t}, we should determine whether {v1, . . . , vt}

is in the valid skyline. If {v′1, . . . , v
′
t} has not been checked,

the procedure EntitySkyline(v′1, . . . , v
′
t) is invoked (lines 13-

14). If the set {v1, . . . , vt} is not dominated by the entities
in VS V , we need to verify the structure (lines 15-19). The
state-of-the-art algorithms such as Ullmann [16] and VF2
[9] can be employed to perform this verification.

To improve the efficiency, we propose a shortest-path-
distance pruning technique before verifying the structure.
Provided that the shortest path distance between u1 and
u2, dist(u1, u2), is no larger than h, where h is a pre-
defined threshold based on which the global structural

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

encoding is generated. Entity v2 matches u2 only if v2 ∈

NS h(v1). It is easy to determine whether v2 belongs to
NS h(v1) using the global structure encoding gbS tr(v1). If
gbS tr(v1)&bS tr(v2) , bS tr(v2), we can conclude that the
candidate pair (v1, v2) does not match (u1, u2), where
bS tr(v1) is the bitstring of v2.Id.

5 OPTIMIZATION ON SPACE PARTITIONING
Since different partitionings result in different pruning
effects, we discuss how to obtain a good partitioning below.

5.1 What is a Good Partitioning?
Since it is required to check whether all the entities in
candidate cells are valid skyline entities, the less false
positives are generated, the better the partitioning will be.

Observation 1: A good partitioning should generate less
false positives.

Definition 5.1: (Dominating Edge). If entity v1 domi-
nates entity v2, a directed edge starting from v1 to v2 is
added. This directed edge is named as dominating edge.

Using the dominating edges, we can build a dominating
graph.

Definition 5.2: (Dominating Graph). Each vertex in the
dominating graph is an entity. If vertex v1 dominates vertex
v2, there is a directed edge from v1 to v2, i.e., the dominating
edge between v1 and v2.

d2

d1

v1
v2

v3

v5

v6

v7

v4

line1

line2

(a) Partitioning 1

d2

d1

v1
v2

v3

v5

v6

v7

v4

line1

line2

(b) Partitioning 2

Fig. 9. Two partitions for a dominating graph.

Fig. 9 shows a dominating graph and there are two
different partitionings for the data space. However, it is hard
to distinguish the effect of these two partitionings since both
of them destroy 6 common dominating relations. Actually,
the partitioning in Fig. 9(a) is better than that in Fig. 9(b),
because the cell consisting of v1, v2, and v4 only prunes
two entities (i.e., v6 and v7) in Fig. 9(b). In contrast, the
cell consisting of v1 and v2 in Fig. 9(a) can prune three
entities, i.e., v4, v6, and v7. Hence, we propose the weighted
dominating graph. Let M(v) denote the set of dominated
entities by v, T (v) denote the set of entities dominating v.

Definition 5.3: (Weighted Dominating Graph, denoted
by TD). Consider each two entities vi and v j in T (v) in a
dominating graph. If vi dominates v j, the dominating edge
between vi and v is removed. Each left edge e(vi, v j) is
assigned with a weight (1+|M(v j)|).

Example 7: Consider the data space in Fig. 9(a). Its
weighted dominating graph is shown in Fig. 10(a).

Given a partitioning P, we can sum up the weights of the
common destroyed edges, denoted by W(P) =

∑
e∈U w(e),

where U is the set of common destroyed edges and w(e) is
the edge weight.

d2

d1

v1
v2

v3

v5

v6

v7

v4

1

1

1

1

2
3

3
2

(a) Partitioning P1

d2

d1

v1
v2

v3

v5

v6

v7

v4

1

1

1

1

2
3

3
2

(b) Partitioning P2

Fig. 10. Two partitionings for TD.

Using the same partitioning lines in Fig. 9, we partition
the weighted dominating edges in Fig. 10. It is clear that
partitioning P1 in Fig. 10(a) is better than partitioning P2
in Fig. 10(b) because W(P1) = 6 ≥ W(P2) = 2. Therefore,
we obtain the following observation.

Observation 2: An effective partitioning P should gen-
erate larger W(P).

It has two advantages to utilize weighted dominating
graphs: (1) the pruning power is improved as discussed
above; (2) the computation cost is reduced benefiting from
the fewer dominating edges.

In real applications, we can determine the number of
cells based on storage cost. For simplicity, we assume that
the number of partitioning lines are given in the discussion.

Definition 5.4: (Maximum Weighted Common Parti-
tioning) (denoted as MWCP). Given the number of par-
titioning lines on each dimension and a space partitioning
P, if there exist no other partitioning P′ such that W(P) <
W(P′), P is the maximum weighted common partitioning.

Given a data space, it is better to find the maximum
weighted common partitioning to improve the pruning
power. However, it has been proven to be NP-hard.

Theorem 5.1: Given a set of data, computing the maxi-
mum weighted common partitioning is NP-hard.

Proof: For details, please refer to Part C in supple-
mentary materials.

5.2 Greedy Partitioning
The projections of all the dominating edges on dimension
di form a universe set Ei. A partitioning line between v j.di

and v j+1.di destroys a subset of Ei.
Example 8: There are 6 optional partitioning lines in

Fig. 11. The partitioning line between v3.d1 and v2.d1
destroys 2 edges, i.e., e(v1, v4) and e(v3, v6). Hence, the cor-
responding subset is {[e(v1, v4), 3], [e(v3, v6), 1]}. Similarly,
we can also obtain the other 5 subsets.

The intuition is: Since it requires destroying more com-
mon edges (edges that are destroyed on all dimensions)
with larger weights, we should intersect the selection on
dimension d with the current selected set U. More details
are presented in Alg. 5, which consists of three steps.

d2

d1

v1 v2

v3

v5

v6

v7

v4

1

1

1

1

2
3

3
2

v3 v2v1 v4 v6v5 v7

Fig. 11. Projections on dimension d1.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

• We obtain the family of dominating edge sets Fi =

{Ei
1, . . . E

i
n−1} on each dimension di (lines 1-5). As-

sume that v1.di < v2.di < . . . < vn.di. Each set Ei
j

(corresponding to the interval [v j.di, v j+1.di]) consists
of the edges in e(v j, ∗) ∪ Ei

j−1 \ e(∗, v j), where e(v j, ∗)
is the set of edges starting from vertex v j and e(∗, v j)
is the set of edges ending at v j. Initially, Ei

1 = e(v j, ∗).
• The set E(∈ Fi) with the largest weight is selected.

Then we remove all elements e ∈ E from the remaining
sets, and select the largest-weight set from the updated
sets in next loop. The selection process terminates until
k1 sets have been selected. The union of these selected
sets is denoted as U (lines 6-12).

• Considering the next dimension d j, we select the set
E ∈ F j such that the intersection of E and U (i.e., |E∩
U |) has the largest weight (line 16). Then we remove
all the elements e ∈ E from the remaining sets (lines
17-18). The selection process terminates until ki sets
have been selected. U is updated with the intersection
of R and U, i.e., U ∩ R. The algorithm stops when all
dimensions have been considered (lines 13-21).

Algorithm 5 Greedy Partitioning
Input:The numeric entities in dimensions D = {d1, . . . d|D|},

the weighted dominating graph TD, and the number of
partitioning lines ki on each dimension.

Output: A partitioning of the data space.
1: for Each dimension di ∈ D do
2: for 1 ≤ j ≤ n − 1 do
3: put the edges e(v j, ∗) ∪ Ei

j−1 into Ei
j

4: remove the edge e(∗, v j) from Ei
j

5: put Ei
j into Fi

6: U ← ∅ , s← 0
7: while s < k1 do
8: select the largest set E1 ∈ F1
9: for each E1

j ∈ F1 do
10: remove all the elements e ∈ E1 from E1

j
11: U ← U ∪ E1 , s← s + 1
12: remove E1 from F1
13: for each dimension di ∈ D ∧ i , 1 do
14: s← 0, R← ∅
15: while s < ki do
16: select the set Ei ∈ Fi with the largest Ei ∩ U
17: for each Ei

j ∈ Fi do
18: remove all the elements e ∈ Ei from Ei

j
19: R← R ∪ Ei , s← s + 1
20: remove Ei from Fi

21: U ← U ∩ R

Time complexity. In the first step (lines 1-5), we generate
the dominating sets Fi for each dimension. Since each set
Ei

j−1 contains n2 edges at most, it requires O(n2) to remove
the edges e(∗, v j) from Ei

j. Thus, the time complexity of the
first step is O(n3 · |D|). The time complexity of selecting the
largest set and updating the set Fi is O(n3). Thus, the time
complexity of selecting k sets on a dimension is O(n3 · k).
Hence, the overall time complexity of Alg. 5 is O(n3 ·|D|·k).

6 HIGH DIMENSIONALITY

In a heterogenous knowledge graph, there are enormous
numeric attributes associated with entities of different types.
Thus, the weighted dominating graph is usually flat, which
may result in too many cells in each single layer and
diminish the pruning ability definitely. This phenomenon
is actually the curse of dimensionality.

Note that entities in a knowledge graph G are naturally
distinguished by types. More importantly, it is not required
to check the dominating relation between entities of d-
ifferent types. Hence, it is reasonable to build index for
entities of each type separately. Hereon, all the following
discussions focus on the entities of a certain type.

6.1 Attribute Cluster
We propose a clustering method to solve the curse of
dimensionality. The main idea is: Given the set of attributes
D = {d1, d2, . . . , d|D|}, we divide the attributes into several
subsets C = {D1,D2, . . . ,Dk}, where Di ⊆ D (1 ≤ i ≤ k),
and the subsets are disjoint. Then we construct the corre-
sponding weighted dominating graph over each subset Di.

We design two metrics to measure the cluster as follows.
Cluster coverage. Considering a query q given online,

the numeric attributes involved in q, denoted by D(q), are
expected to be covered by a cluster Di, that is D(q) ⊆ Di,
so that the query can be searched in a single cluster Di.

In a universe of numeric attributes, i.e., the full attribute
space D, there are (2|D|−1) possible attribute subspaces that
may be involved in queries. For simplicity, we assume that
each attribute subspace is queried with identical probability.

Definition 6.1: (Cluster Coverage Rate). Given a clus-
tering result C = {D1,D2, . . . ,Dk} over the full attribute
space D, its cluster coverage rate is the proportion of
possible attribute subspaces covered by all the clusters,
formally defined as Equation 1.

ccr(C) =

∑k
1(2|Di | − 1)
2|D| − 1

(1)

Consider an extreme case that k = 1, i.e., there is
only one cluster D. The cluster coverage rate achieves the
maximum value. However, the weighted dominating graph
may be flat, which diminishes the pruning ability. Hence,
we propose dominating degree to evaluate a cluster.

Dominating degree. Generally, each two numeric enti-
ties should have a dominating/non-dominating relationship.
With the proportion of dominating edges increasing, the
flatness of the weighted dominating graph will decrease.

Definition 6.2: (Dominating Degree). Given a cluster-
ing result C = {D1,D2, . . . ,Dk} over the full attribute space
D, its dominating degree is formally defined as Equation 2,

dd(C) =

∑k
1(2 · S (Di))

k · n · (n − 1)
(2)

where S (Di) is the summation of all the edge weights in
the weighted dominating graph over subspace Di, n is the
number of numeric entities.

Note that the dominating degree achieves the maximum
when k = |D|, that is, each numeric attribute forms a cluster.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Combining both cluster coverage rate and dominating de-
gree, we give the following function to evaluate a clustering
result C, where α is a constant.

cd(C) = α · ccr(C) + (1 − α) · dd(C) (3)

Given a set of numeric attributes D, it is expected to obtain
C with the maximum cd(C). However, we have proved that
it is an NP-hard problem.

Theorem 6.1: Given a set of numeric attributes D, and
the number of clusters k, finding C with the maximum
cd(C) is NP hard.

Proof: For details, please refer to Part D in supple-
mentary materials.

6.2 Automatic Clustering
The high-level idea: Initially, we set k = |D|, that is, the en-
tities on each dimension di are sorted in the non-decreasing
order. Then, we perform a hierarchical clustering.

Since it requires constructing the weighted dominating
graph to compute the dominating degree in each step,
the clustering process is not efficient enough. Thereupon,
we propose an LCS (longest common subsequence)-based
method to avoid building the weighted dominating graph.

Definition 6.3: (Longest Common Subsequence). Giv-
en several sequences s1, s2, · · · , st, their longest common
subsequence, denoted by LCS, is the longest subsequence
ai1 , ai2 , · · · , aim common to all sequences.

Note that elements in the longest common subsequence
are not required to occupy consecutive positions within the
original sequences.

Assume Vdi = {vi1 , vi2 , . . . , vin } is the set of sorted numeric
entities over dimensions di. If v1 dominates v2 over the
subspace {di, d j}, it indicates that v1 is in front of v2 in
both Vdi and Vd j . Thus we have the following theorem.

Theorem 6.2: The height of the weighted dominating
graph TD1 over subspace D1 = {d1, . . . , d|D1 |} corresponds
to the longest common subsequence of Vd1 , . . . ,Vd|D1 |

.
Proof: For details, please refer to Part E in supplemen-

tary materials.
Example 9: Let us consider the entities in Fig. 10. We

project these entities on dimensions d1 and d2 to obtain
two sorted sequences Vd1 ={v1, v3, v2, v4, v6, v5, v7} and
Vd2 ={v2, v5, v1, v4, v7, v3, v6}. An LCS of Vd1 and Vd2 is
{v1, v4, v7}, which indicates the height of the weighted
dominating graph over {d1, d2} is 3.

In order to diminish the flatness, two dimensions, on
which the sorted sequences have larger |LCS |, should be
clustered together.

For ease of presentation, let LCS v(D1) denote the longest
common subsequence starting from the vertex v. Actually,
|LCS v(D1)| corresponds to the height of the subgraph rooted
at vertex v in TD1 ,

We propose the LCS-based score to determine the dom-
inating degree of a cluster.

Definition 6.4: The LCS-based dominating degree of the
subspace Di is defined as follows:

ddLCS (Di) =

∑
v 2 · |LCS v(Di)|

n · (n − 1)
(4)

Therefore, we can use the following equation to evaluate
a clustering result C efficiently.

c̃d(C) = α · ccr(C) + (1 − α) ·
∑

Di∈C ddLCS (Di)
k

(5)

Before presenting the clustering details, we discuss how
to compute |LCS v(Di)|. As shown in Algorithm 6, we first
initialize each |LCS v j (Di)| as 1. Then we compute ht(v j)
for each Vdt (t > 1), where ht(v j) represents the set of
vertices whose position number in Vdt are larger than that
of v j. The intersection of sets h2(v j) . . .∩h|Di |(v j) is denoted
by H(v j). Let max denote the maximum |LCS v(Di)| for all
vertices v ∈ H(v j). Adding max to |LCS v j (Di)| will lead to
|LCS v j (Di)|. Repeating the procedure above, we can obtain
|LCS v(Di)| for all vertices v ∈ Vd.

Algorithm 6 LCS v(Di)
Input: Vd1 ,Vd2 , · · · ,Vd|Di |

;
Output: |LCS v1 (Di)|, |LCS v2 (Di)|, · · · , |LCS vn (Di)|.

1: for Each vertex v in Vd1 do
2: |LCS v(Di)| ← 1
3: for Each v j ∈ Vd1 (j from n − 1 to 1) do
4: for Each t from 2 to |Di| do
5: compute ht(v j)
6: H(v j)← h2(v j) ∩ . . . ∩ h|Di |(v j)
7: max← maxv∈H(v j) |LCS v(Di)|
8: LCS v j (Di)← |LCS v j (Di)| + max
9: return |LCS v1 (Di)|, |LCS v2 (Di)|, · · · , |LCS vn (Di)|

Using Equation 5 we devise an efficient clustering algo-
rithm as presented in Algorithm 7.

Initially, C = {{d1}, . . . , {di}, . . . , {d j}, . . . , {dn}}, i.e., each
dimension is a cluster. First, we compute ddLCS ({Di,D j})
for each pair of subspaces Di and D j (lines 2-3). The
subspaces with the largest ddLCS ({Di,D j}) are clustered
together. Then we update ddLCS ({·, ·}) for each pair of sub-
spaces. Note that before continuing the clustering process,
we compute the ∆ = c̃d(C′) − c̃d(C), where C′ is the
newly generated cluster (lines 9-10). The process proceeds
recursively until ∆ ≤ 0.

Algorithm 7 Automatic Clustering
Input: C = {{d1}, . . . , {di}, . . . , {d j}, . . . , {d|D|}};
Output: C = {D1,D2, . . . ,Dk}.

1: ∆ = 1
2: for Each two subspaces Di and D j in C do
3: compute ddLCS ({Di,D j})
4: while ∆ > 0 do
5: C←− C′
6: subspace pair (Di,D j)←− arg max ddLCS ({Di,D j})
7: combine Di and D j to form a subspace Di j = {Di,D j}

8: let C′ be the new clustering result
9: compute c̃d(C) and c̃d(C′)

10: ∆ = c̃d(C′) − c̃d(C)
11: compute each ddLCS ({Di j, ·})
12: return C

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

Time Complexity. The time complexity of the initial
phase (lines 2-3) is O(|D|2 · n2), where n is the num-
ber of entities. Since it requires O(n2|D| log n) to com-
pute ddLCS ({Di j, ·}), the time complexity of each iteration
(lines 5-11) is O(n2|D|2 log n) in the worst case. Hence, the
time complexity of automatic clustering (Algorithm 7) is
O(n2|D|3 log n).

6.3 Query Processing With Clusters
In order to solve the curse of dimensionality, we organize
the numeric attributes into several subspaces (i.e., clusters)
for entities of each type and build a skylayer for each
subspace. If the numeric attributes of an entity in the query
q are covered by a subspace, the methods presented in
Section 4 can be utilized directly. Otherwise, it requires
several subspaces to cover the entity. Here, we design an
efficient strategy to determine the skyline candidates.

Theorem 6.3: If an entity v is in the skyline over the
subspace Di, it must be in the skyline over the subspace
D j, where Di ⊆ D j.

Proof: For details, please refer to Part F in supplemen-
tary materials.

The procedure starts from the first layer of a subspace
Di that covers one or more dimensions of u ∈ q. If the
candidate entity v is in the skyline over Di, we check the
structure constraint directly. Otherwise, we need to check
whether v is in skyline on the dimensions involved in u. All
the candidates dominated by v are denoted as Mv(Di). The
candidates in the intersection of all Mv(Di) can be pruned.

7 EXPERIMENTAL STUDY
In this section, we evaluate our proposed method through
extensive experiments.

7.1 Experiment Setup
We use two real datasets in our experiments.

Dataset 1. We use the dataset Freebase1 which integrates
NBA2 and IMDB3 to evaluate our method. It contains
12,130,534 vertices, 232,671,328 edges, 7,634,315 numeric
entities, and 35 numeric attributes.

Dataset 2. DBpedia is a knowledge base derived
from Wikipedia4 to support sophisticated queries. It
has 870 numeric attributes, such as “populationDensity”,
“height”, “numberOfPages”, “areaLand”, and ,“runtime”.
This dataset contains 3,220,134 vertices, 40,504,436 edges,
and 1,422,102 numeric entities.

Regarding the queries, we generate some query graphs to
study the effectiveness of our method. More examples will
be presented in Section 7.2. In order to study the efficiency,
we randomly extract some subgraphs containing numeric
entities, and vary the size of these query graphs.

All the experiments were conducted on a PC with
2.9GHz CPU and 16GB main memory running Linux op-
erating system. For comparison, we implement the simple

1. http://www.freebase.com/
2. http://databasebasketball.com.
3. http://www.imdb.com/interfaces.
4. http://en.wikipedia.org/wiki/Main Page.

position

"Guard"

Bryant Kobe

4.674

assists

steals

position

"Forward"

blocks

rebounds

Lakers

playIn
playIn

Gasol Pau

NBA player

isA
isA

1.499

9.046

1.683

position

"Guard"

James LeBron

6.96

assists

steals

position

blocks

rebounds

Miami Heart

playIn
playIn

Bosh Chris

NBA player

isA

isA

1.721

9.244

1.108

"Forward"

Fig. 12. Golden basketball partner finding.

Michael Jackson

gross

artisthasActor

copies

bornIn
Thriller

Men in

Black II

film

isA isA

album

$425M
USA

110M

Barbra Streisand

gross

artisthasActor

copies

bornIn
Guilty

Meet the

Fockers

film

isA isA

album

$516M
USA

20M

Fig. 13. Excellent versatile artist finding.

methods presented in Section 2.2, denoted as “NaiveIso”
and “NaiveJoin”, respectively. Our newly proposed cluster-
based method in this paper is denoted as “parCode+”. We
also compare it with the previous method “parCode” [17],
which does not deal with the curse of dimensionality. All
programs were implemented in C++.

7.2 Effectiveness Evaluation
In order to verify the effectiveness of our method, we first
give two case-study examples followed by the user study.
Golden Basketball Partner Finding. As mentioned in Sec-
tion 1.1, assume that we want to find one guard and one
forward who play in the same team and have excellent
techniques. The query graph is shown in Fig. 2. Fig. 12
presents a subset of the results. As expected, we find several
great partners, such as Gasol Pau and Bryant Kobe.
Excellent Versatile Artist Finding. We want to seek Amer-
ican outstanding artist who is both a singer with a large
number of his/her album copies and an actor/actress with
high gross of his/her films (as shown in Fig. 3). Fig. 13
gives a fraction of the results. For example, Michael Jack-
son is in the skyline.

Before presenting the details of the user study, we
report the average number of subgraph matches (i.e.,
the subgraphs matching the query q without considering
the numeric constraint, denoted by #subgraphMatch) and
subgraph skyline answers (denoted by #subgraphS kyline)
by varying the number of numeric entities. As shown
in Table 2, both #subgraphMatch and #subgraphS kyline
increase with the growth of the number of entities. Note that
#subgraphS kyline is much smaller than #subgraphMatch.
If the number of subgraph skyline answers is still too large,
we can define the top-k skyline answers as returning k
subgraphs with the largest dominating score, where the
dominating score of a subgraph g can be defined as the
number of subgraphs that are dominated by g.
User study. Since answers in this paper have no order, we u-
tilize the metric Normalized Cumulative Gain (NCG@k) to
evaluate the returned results. NCG@k = 1

|Q|
∑

q∈Q Zk
∑k

i=1 ri,
where Q is the set of queries, ri is the score of the result at
position i, and Zk is a normalization term to let the perfect
match have score 1. As suggested in [18], we set ri to 3

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 2
The number of results

Dataset Freebase DBpedia
#numeric entities 1 2 3 1 2 3
#subgraphMatch 712 1,307 2,273 216 658 1,052
#subgraphSkyline 13 37 92 9 32 61

TABLE 3
Manual evaluation (NCG@k)

Dataset Freebase DBpedia
NCG@k k = 3 k = 5 k = 7 k = 3 k = 5 k = 7

subgraphMatch 0.262 0.333 0.396 0.318 0.354 0.427
subgraphSkyline 0.851 0.866 0.877 0.865 0.882 0.904

TABLE 4
Storage cost (MB)

Datasets NaiveIso NaiveJoin parCode parCode+

Freebase 7,342 458 873 1,634
DBpedia 1,593 76 205 782

for the good match, 1 for the relevant match and 0 for
the bad match. To simplify the evaluation, we randomly
select k answers from the complete answers. 50 queries
are constructed for both Freebase and DBpedia datasets.
10 students help evaluate the answers including subgraph
matches and subgraph skylines. The students assign each
answer with a label, i.e., good, relevant or bad, according to
their knowledge. Table 3 presents the quality of the returned
answers. The results confirm the usefulness of subgraph
skylines.

7.3 Efficiency Evaluation
In this subsection, we evaluate the performance of our
proposed method and compare it with its competitors.

7.3.1 Offline Performance
Evaluate storage cost. Table 4 shows the storage costs of
these methods. Since NaiveIso computes the bitmap for
each numeric entity and maintains these bitmaps, it con-
sumes the most storage. NaiveJoin does not utilize compli-
cated structure feature. Hence, its space cost is the lowest.
Our newly proposed method parCode+ consumes more
space than parCode, because parCode+ adopts cluster-
based technique to handle the curse of dimensionality.
Evaluate index building time. Table 5 gives the index
building time over Freebase and DBpedia. It is obvious
that NaiveIso requires the most time, since it encodes all
the numeric entities one by one. In contrast, instead of
encoding each entity, parCode just encodes the minimal
corner of each cell. What is more, the time consumed by
parCode is much less than that consumed by NaiveIso.
parCode+ consumes more time compared with parCode
due to optimizations on high dimensionality.

7.3.2 Online Performance
In this subsection, we adopt two metrics, i.e., the query
response time and pruning power, to evaluate the online
performance, where the pruning power is the ratio of

TABLE 5
Index building time (s)

Datasets NaiveIso NaiveJoin parCode parCode+

Freebase 23,452 614 5,011 7,324
DBpedia 6,675 102 918 1,823

candidates that are filtered out, i.e., the number of pruned
entities divided by all candidates.
Evaluate the effect of K (the number of cells). We fix the
query size (the number of vertices) of q to be 8, and vary the
number of cells. Each query may contain one or multiple
numeric entities. Both the query response time and pruning
power are averaged over all results.

As discussed in Section 6, we build index for each type
of vertex separately. Figs. 14(a) and 14(b) investigate the
query response time of the two algorithms with respect
to NBA and artist analyses over Freebase. It shows that
when K is too small or large, the response time increases.
Extremely, if K = 1 or K = n, it is equivalent to
the case without any partitioning in actual. According to
this experiments, it indicates that K is better to be about
√

n. Since NaiveIso and NaiveJoin are independent of
partitionings, their query response time are horizontal lines.

Fig. 15 gives the results over two types of entities “city”
and “person” (in DBpedia), respectively. Similar to that in
Fig. 14, parCode+ is the most efficient. Note that the gap
between parCode and parCode+ in Fig. 15 is larger than
that in Fig. 14. The main reason is that there are more
numeric attributes in DBpedia, and parCode does not adopt
any techniques to deal with the curse of dimensionality.

We also study the effect of K on pruning power, i.e., the
ratio of entities that are filtered out. As shown in Fig. 16,
parCode+ has stronger pruning ability than parCode espe-
cially over the entities of type person, which indicates that
our attribute cluster-based method is effective.
Evaluate the effect of Nq. We fix the number of cells, and
vary the number of numeric entities, Nq, in q from 1 to 5.

1 20 40 60 80 100 5001000

10
−2

10
−1

10
0

10
1

10
2

10
3

ru
nn

in
g

tim
e

(s
ec

)

K

NaiveIso
NaiveJoin

parCode
parCode+

(a) Results w.r.t. NBA

500 1000 1500 5000 10000
10

0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

K

NaiveIso
NaiveJoin

parCode
parCode+

(b) Results w.r.t. Artist

Fig. 14. Query response time vs. K (Freebase).

10 50 150 200 250 300 5001000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ru
nn

in
g

tim
e

(s
ec

)

K

NaiveIso
NaiveJoin

parCode
parCode+

(a) Results w.r.t. City

100 1000 2000 4000 5000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

K

NaiveIso
NaiveJoin

parCode
parCode+

(b) Results w.r.t. Person

Fig. 15. Query response time vs. K (DBpedia).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

500 1000 1500 5000 10000
70

80

90

100
pr

un
in

g
ra

tio
 (

%
)

K

parCode

parCode+

(a) Results w.r.t. Artist (Freebase)

100 1000 2000 4000 5000
50

60

70

80

90

100

pr
un

in
g

ra
tio

 (
%

)

K

parCode

parCode+

(b) Results w.r.t. Person (DBpedia)

Fig. 16. Pruning power vs. K.

1 2 3 4 5
10

−1

10
0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

N
q

NaiveIso
NaiveJoin

parCode
parCode+

(a) Results w.r.t. Freebase

1 2 3 4 5
10

−1

10
0

10
1

10
2

10
3

ru
nn

in
g

tim
e

(s
ec

)

N
q

NaiveIso
NaiveJoin

parCode
parCode+

(b) Results w.r.t. DBpedia

Fig. 17. Query response time vs. Nq.

As depicted in Fig. 17, the response time of all methods
increase with the growth of Nq. Our newly proposed method
parCode+ outperforms NaiveIso and NaiveJoin orders of
magnitudes in terms of time efficiency. Furthermore, the
performance gap between parCode+ and parCode becomes
larger over the DBpedia dataset as shown in Fig. 17(b).

In order to study the pruning power of these two methods
parCode and parCode+, we vary Nq from 1 to 5. As
shown in Fig. 18, most of the candidates are pruned
without invoking subgraph isomorphism verification, which
contributes to the efficiency of our method.

When Nq is larger, the pruning ability of parCode
over DBpedia degrades greatly. It is because that there
are more numeric attributes in DBpedia and the index of
parCode becomes ineffective. In comparison, parCode+

utilizes the weighted dominating graph and attribute cluster
based techniques. Hence, its pruning effect is much better.
Evaluate the effect of |V(q)|. We study effect of the number
of vertices in q. Fig. 20 shows that the time consumed of
each method increases with the growth of |V(q)| (the edge
number is enclosed in parenthesis beside the vertex num-
ber). Obviously, if there are more vertices in q, more time
will be consumed by the subgraph isomorphism checking.
Evaluate the effect of |E(q)|. Fixing the number of vertices
(|V(q)| = 7), we vary the number of edges from 6 to 14.
As presented in Fig. 20, although the time efficiency of all
methods decreases when there are more edges, parCode+

is still the most efficient, which confirms the superiorities

1 2 3 4 5
70

80

90

100

pr
un

in
g

ra
tio

 (
%

)

N
q

parCode

parCode+

(a) Results w.r.t. Freebase

1 2 3 4 5
70

80

90

100

pr
un

in
g

ra
tio

 (
%

)

N
q

parCode

parCode+

(b) Results w.r.t. DBpedia

Fig. 18. Pruning power vs. Nq.

4(3) 5(4) 6(6) 7(8) 8(10) 9(11)10(13)
10

0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

|V
q
|

NaiveIso
NaiveJoin

parCode
parCode+

(a) Results w.r.t. Freebase

4(3) 5(4) 6(7) 7(8) 8(10) 9(12)10(13)
10

−1

10
0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

|V
q
|

NaiveIso
NaiveJoin

parCode
parCode+

(b) Results w.r.t. DBpedia

Fig. 19. Query response time vs. |V(q)|.

6 8 10 12 14 16
10

0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

|E
q
|

NaiveIso
NaiveJoin

parCode
parCode+

(a) Results w.r.t. Freebase

6 8 10 12 14 16
10

−1

10
0

10
1

10
2

10
3

10
4

ru
nn

in
g

tim
e

(s
ec

)

|E
q
|

NaiveIso
NaiveJoin

parCode
parCode+

(b) Results w.r.t. DBpedia

Fig. 20. Query response time vs. |E(q)|.

of our proposed techniques.
Evaluate the effect of |C|. We vary the effect of the number
of clusters |C| to study its effect on the pruning power.
Figure 21 shows the results over places and person. When
|C| = 1, i.e., all numeric attributes are clustered in a single
cluster, the pruning effect is the worst since dominating
degree is the smallest in this case. On the other hand, if
each numeric attribute is clustered separately (i.e., |C| = 12
and |C| = 8), the pruning power degrades as well.

8 RELATED WORK
In this section, we briefly review previous works on the
skyline computation and subgraph search.

Skyline Computation. Most existing skyline literature
focus on multi-dimensional relational data. Their inputs are
relational tables. They can be classified into two categories,
i.e., single-relation skyline and join-based skyline.

BNL [13] is a block-nested-loops algorithm to compute
the skyline. Its main idea is: each point p is compared with
every other point p′, and p is reported as a skyline result
if there exists no any other point that dominates p. Based
on the same principle, DC [13] divides the data space into
several regions, and produces the final results from points
in the regional skylines. Instead of going over the entire
dataset, Bitmap [12] represents a data point p using an
m-bit vector, which encodes the points having no smaller
coordinate than p on each dimension. Then the skyline
points can be progressively obtained by performing bitwise

1 3 5 7 9 12
60

70

80

90

100

pr
un

in
g

ra
tio

 (
%

)

|C|
(a) Results w.r.t. Place

1 2 4 6 8
70

80

90

100

pr
un

in
g

ra
tio

 (
%

)

|C|
(b) Results w.r.t. Person

Fig. 21. Pruning power vs. |C| (DBpedia).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

operation over the corresponding bitmaps. However, the
storage cost of Bitmap is O(n2), which is costly especially
when there are a large number of points.

Both NN [19] and BBS [20] compute the skyline ex-
ploiting an R-tree. In order to answer subspace skyline
queries, SUBSKY [14] converts each multi-dimensional
point to 1D values, and index these converted values by
a single B-tree. Jin et al. [21] pre-computes the “better”
and “equal” subspaces for each pair of objects, and group
pairs that share the same subspaces into maximal space
index. In practice, this method still suffers from expensive
storage cost. Similar to the relational aggregation operator
“data cube” [22], Pei et al. [23] and Yuan et al. [24]
independently propose the sky cube, which consists of
skylines in all possible non-empty subspaces. In summary,
these algorithms are custom devised for a single relation.
Thus, it is oblivious to directly employ them to solve S 2A.

Given two tables R1 and R2 with a set of join attributes,
the join-based skyline problem is to find skylines over
the joined table R1 ./ R2. To compute the join-based
skyline efficiently, several techniques have been proposed
[25], [26], [27]. Jin et al. [25] integrate state-of-the-art join
methods, such as sort-merge join and nested loop join, with
single-relation skyline algorithm. However, it involves a
non-trivial processing cost since it needs to access both
relations multiple times to generate the correct result. Sun
et al. [28] extend the SaLSa [29] algorithm to compute the
join-based skyline in a distributed environment and propose
an algorithm which prunes the search space iteratively.
SFSJ (sort-first-skyline-join) [26] computes the skylines by
accessing only a subset of the input tuples. Its main idea is
to sort the tuples on each skyline attribute and exploit the
property of early termination to determine whether it has
accessed sufficient tuples to produce the complete skylines.
Instead of performing tuple-to-tuple dominance checks,
S 2J (skyline-sensitive join) [27] employs a layer/region
pruning strategy. There are some other works aiming to
compute the join-based skyline, such as FlexPref [30],
SKIN [31], and Prefjoin [32].

Notice that an important pruning principle of the existing
algorithms is: tuples that do not belong to group skylines
[26] cannot contribute to the join skyline. However, group
skylines are very hard to compute in the graph scenario.
Furthermore, they do not consider any structural feature
to facilitate query process. In contrast, we combine the
numeric pruning and the structural pruning based on the
data space partitioning.

There are some literatures that try to combine skylines
and pattern mining [33], [34], [35]. Papadopoulos et al. [33]
define the dominating relation between subgraphs gi and g j

in G as: gi dominates g j if and only if both the connectivity
and the number of gi are no smaller than those of N(g j), and
at least one of the two properties of gi is strictly larger than
that of g j. The task is to find the SkyGraph, i.e., the set of
subgraphs that are not dominated by any other subgraphs.
Similarly, Shelokar et al. [35] define the dominating relation
utilizing two objectives, support and size of the extracted
subgraphs. The idea of skyline queries is integrated into

the pattern discovery process to mine skyline patterns [34],
which allows users to express the personal preferences
easily according to a dominance relation.

Subgraph Search. The subgraph search problem has
been extensively studied in the past decades [16], [9].
Ullmann [16] and VF2 [9] are two classic algorithms to
verify the subgraph isomorphism between two graphs. In
order to improve the efficiency in the subgraph search, most
of the proposed algorithms follow filtering-and-verification
framework. In the filtering phase, some structural features,
including frequent paths [36], trees [37], or subgraphs [38],
are chosen as basic index units. A major drawback of
these methods is that mining and maintaining the structural
features is non-trivial. Therefore, some non-feature-based
methods are proposed, such as GCodeing [39], NOVA [40],
and SPath [7]. Most of them employ the neighborhood
information of vertices, and avoid expensive time and space
cost of mining structure features over graphs. Recently,
there are emerging researches on querying knowledge
graphs [41], [42], [43], [44]. To avoid costly graph isomor-
phism and edit distance computation, NeMa [41] exploits
a neighborhood-based subgraph matching technique for
querying real-life networks. GQBE [42] queries knowledge
graphs by example entity tuples to improve the usability of
knowledge graphs. Mottin et al. introduce exemplar queries
and consider the user query to indicate the type of elements
that are expected to be in the results [43]. In order to
achieve query-specific ranking, Su et al. propose to improve
graph queries by relevance feedback [44].

9 CONCLUSION AND FUTURE WORK

In this paper, we formalize the problem of subgraph skyline
analysis (denoted as S 2A) over large graphs and propose an
efficient algorithm to answer S 2A queries. To improve the
efficiency, we propose to partition the data space into grid
cells, based on which we carefully design feature encoding
to facilitate the query process. In order to handle the curse
of dimensionality, we propose an attribute cluster-based
method. The experimental results on real datasets validate
both the effectiveness and efficiency of our method.

As our future work, there are some issues to be ad-
dressed. For example, if the number of subgraph skyline
answers is still quite large, we can define the top-k subgraph
skyline as discussed in Section 7.2; Since finding subgraphs
that exactly match the queries issued by users is difficult,
it is very interesting to redefine the subgraph skyline by
considering the structural similarity as a dimension.

REFERENCES

[1] T. Neumann and G. Weikum, “Rdf-3x: a risc-style engine for rdf,”
PVLDB, vol. 1, no. 1, 2008.

[2] J. Tang, S. Wu, and J. Sun, “Confluence: conformity influence in
large social networks,” in KDD, 2013.

[3] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Query-
ing knowledge graphs by example entity tuples,” CoRR, vol. ab-
s/1311.2100, 2013.

[4] X. Yu, Y. Sun, P. Zhao, and J. Han, “Query-driven discovery of
semantically similar substructures in heterogeneous networks,” in
KDD, 2012.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2530063, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[5] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao, “gstore:
Answering sparql queries via subgraph matching,” PVLDB, vol. 4,
no. 8, 2011.

[6] E. P. F. Chan and H. Lim, “Optimization and evaluation of shortest
path queries,” VLDB J., vol. 16, no. 3, 2007.

[7] P. Zhao and J. Han, “On graph query optimization in large networks,”
PVLDB, vol. 3, no. 1, 2010.

[8] R. Jin, N. Ruan, S. Dey, and J. X. Yu, “Scarab: scaling reachability
computation on large graphs,” in SIGMOD, 2012.

[9] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans.
PAMI, vol. 26, no. 10, 2004.

[10] C. Y. Chan, H. V. Jagadish, K. Tan, A. K. H. Tung, and Z. Zhang,
“Finding k-dominant skylines in high dimensional space,” in SIG-
MOD, Chicago, Illinois, USA, June 27-29, 2006, pp. 503–514.

[11] Z. Zhang, H. Lu, B. C. Ooi, and A. K. H. Tung, “Understanding the
meaning of a shifted sky: a general framework on extending skyline
query,” VLDB J., vol. 19, no. 2, pp. 181–201, 2010.

[12] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in VLDB, 2001.

[13] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in ICDE, 2001.

[14] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient computation of
skylines in subspaces,” in ICDE, 2006.

[15] C. Sheng and Y. Tao, “Worst-case i/o-efficient skyline algorithms,”
ACM Trans. Database Syst., vol. 37, no. 4, 2012.

[16] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, 1976.

[17] W. Zheng, L. Zou, X. Lian, L. Hong, and D. Zhao, “Efficient
subgraph skyline search over large graphs,” in CIKM, 2014, pp.
1529–1538.

[18] S. Yang, Y. Wu, H. Sun, and X. Yan, “Schemaless and structureless
graph querying,” PVLDB, vol. 7, no. 7, pp. 565–576, 2014.

[19] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky:
An online algorithm for skyline queries,” in VLDB, 2002.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst.,
vol. 30, no. 1, 2005.

[21] W. Jin, A. K. H. Tung, M. Ester, and J. Han, “On efficient processing
of subspace skyline queries on high dimensional data,” in SSDBM,
2007.

[22] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and
sub-total,” in ICDE, 1996.

[23] J. Pei, W. Jin, M. Ester, and Y. Tao, “Catching the best views
of skyline: A semantic approach based on decisive subspaces,” in
VLDB, 2005.

[24] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, “Efficient
computation of the skyline cube,” in VLDB, 2005.

[25] W. Jin, M. Ester, Z. Hu, and J. Han, “The multi-relational skyline
operator,” in ICDE, 2007.

[26] A. Vlachou, C. Doulkeridis, and N. Polyzotis, “Skyline query
processing over joins,” in SIGMOD, 2011.

[27] M. Nagendra and K. S. Candan, “Skyline-sensitive joins with lr-
pruning,” in EDBT, 2012.

[28] D. Sun, S. Wu, J. Li, and A. K. H. Tung, “Skyline-join in distributed
databases,” in ICDE Workshops, 2008.

[29] I. Bartolini, P. Ciaccia, and M. Patella, “Salsa: computing the skyline
without scanning the whole sky,” in CIKM, 2006.

[30] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa, “Flexpref: A
framework for extensible preference evaluation in database systems,”
in ICDE, 2010.

[31] V. Raghavan, E. A. Rundensteiner, and S. Srivastava, “Skyline and
mapping aware join query evaluation,” Inf. Syst., vol. 36, no. 6, 2011.

[32] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Prefjoin: An
efficient preference-aware join operator,” in ICDE, 2011.

[33] A. N. Papadopoulos, A. Lyritsis, and Y. Manolopoulos, “Skygraph:
an algorithm for important subgraph discovery in relational graphs,”
Data Min. Knowl. Discov., vol. 17, no. 1, pp. 57–76, 2008.

[34] A. Soulet, C. Raı̈ssi, M. Plantevit, and B. Crémilleux, “Mining
dominant patterns in the sky,” in ICDM, 2011, pp. 655–664.

[35] P. Shelokar, A. Quirin, and O. Cordón, “A multiobjective evolution-
ary programming framework for graph-based data mining,” Inf. Sci.,
vol. 237, pp. 118–136, 2013.

[36] Y. Tian and J. M. Patel, “Tale: A tool for approximate large graph
matching,” in ICDE, 2008.

[37] S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph indexing
method,” in ICDE, 2007.

[38] J. Cheng, Y. Ke, W. Ng, and A. Lu, “ f g-index: Towards verification-
free query processing on graph databases.” in SIGMOD, 2007.

[39] L. Zou, L. Chen, J. X. Yu, and Y. Lu, “A novel spectral coding in
a large graph database,” in EDBT, 2008.

[40] K. Zhu, Y. Zhang, X. Lin, G. Zhu, and W. Wang, “Nova: A novel
and efficient framework for finding subgraph isomorphism mappings
in large graphs,” in DASFAA (1), 2010.

[41] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “Nema: Fast graph
search with label similarity,” PVLDB, vol. 6.

[42] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 10, pp. 2797–2811, 2015.

[43] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: Give me an example of what you need,” PVLDB, vol. 7,
no. 5, pp. 365–376, 2014.

[44] Y. Su, S. Yang, H. Sun, M. Srivatsa, S. Kase, M. Vanni, and
X. Yan, “Exploiting relevance feedback in knowledge graph search,”
in SIGKDD, 2015, pp. 1135–1144.

[45] U. Feige, V. S. Mirrokni, and J. Vondrák, “Maximizing non-
monotone submodular functions,” in FOCS, Providence, RI, USA,
2007, pp. 461–471.

[46] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness
of euclidean sum-of-squares clustering,” Machine Learning, vol. 75,
no. 2, pp. 245–248, 2009.

Weiguo Zheng received his B.E. degree in
School of Computer Science and Technology
from China University of Mining and Technol-
ogy (CUMT), in 2010, and the Ph.D. degree
in computer science from Peking University.
He is now a postdoctoral research fellow in
the Chinese University of Hong Kong, focus-
ing on graph database management.

Xiang Lian received the B.S. degree from
Nanjing University in 2003, and the Ph.D.
degree in computer science from the Hong
Kong University of Science and Technology.
He is now an assistant professor in the De-
partment of Computer Science at the Univer-
sity of Texas Rio Grande Valley. His research
interests include probabilistic data manage-
ment and probabilistic RDF graphs.

Lei Zou received his B.S. degree and Ph.D.
degree in Computer Science at Huazhong U-
niversity of Science and Technology (HUST)
in 2003 and 2009, respectively. Now, he is
an associate professor in Institute of Com-
puter Science and Technology of Peking Uni-
versity. His research interests include graph
database and semantic data management.

Liang Hong received his BS degree and
Ph.D. degree in Computer Science at
Huazhong University of Science and Tech-
nology (HUST) in 2003 and 2009, respec-
tively. Now, he is an associate professor
in School of Information Management of
Wuhan University. His research interests in-
clude graph database, spatio-temporal data
management and social networks.

Dongyan Zhao received the B.S. degree,
M.S. degree and Ph.D. degree from Peking
University in 1991, 1994 and 2000, respec-
tively. Now, he is a professor in Institute of
Computer Science and Technology of Peking
University. His research interest is on in-
formation processing and knowledge man-
agement, including computer network, graph
database, and intelligent agent.

