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Abstract—In this paper, we study a new problem of continuous learning from doubly-streaming data where both data volume and
feature space increase over time. We refer to the doubly-streaming data as trapezoidal data streams and the corresponding learning
problem as online learning from trapezoidal data streams. The problem is challenging because both data volume and data dimension
increase over time, and existing online learning [1] [2], online feature selection [3], and streaming feature selection algorithms [4] [5] are
inapplicable. We propose a new Online Learning with Streaming Features algorithm (OLSF for short) and its two variants that combine
online learning [1] [2] and streaming feature selection [4] [5] to enable learning from trapezoidal data streams with infinite training
instances and features. Specifically, when a new training instance carrying new features arrives, a classifier updates the existing
features by following the passive-aggressive update rule [2] and updates the new features by following the structural risk minimization
principle. Then, feature sparsity is introduced by using the projected truncation technique. We derive performance bounds of the OLSF

algorithm and its variants. We also conduct experiments on real-world data sets to show the performance of the proposed algorithms.

Index Terms—Online Learning, Streaming Features, Sparsity, Trapezoidal Data Streams.

F

1 INTRODUCTION

R Ecently we have witnessed an increasing number of
applications on doubly-streaming data where both data

volume and data dimensions increase with time. For exam-
ple, in graph node classification, both the number of graph
nodes and the node features (e.g., the ego-network structure
of a social network node) often change dynamically. In text
classification and clustering, both the number of documents
and text vocabulary increase over time, such as the infinite
vocabulary topic model [6] to allow the addition, invention and
increased prominence of new terms to be captured. Fig. 1
gives an example of doubly-streaming text data where both
new documents and new text vocabulary arrive over time.

We refer to the above doubly-streaming data as trape-
zoidal data streams where data dynamically change in both
volume and feature dimension. The problem of learning
from trapezoidal data streams is much more difficult than
existing data stream mining and online learning problems
[7], [8]. The main challenge of learning from trapezoidal
data streams is how to design highly dynamic classifiers that
can learn from increasing training data with an expanding
feature space. Obviously, existing online learning [1], [9],
online feature selection [3] and streaming feature selection
algorithms [5] cannot be directly used to handle the problem
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Figure 1. Each column is a document set. We observe document sets
continuously arrive as a stream. In each column, words in colored boxes
are new words introduced by document sets and the number associates
with each word is the importance rank for classification. For example, in
document set 16, the word ”wolverin” in the blue box was first observed
and then became one of the most important words for classification in
Document set 39.

because they are not designed to deal with the simultaneous
change of data volume and data dimension.

Online learning algorithms [1] were proposed to solve
the problem where training instances arrive one by one but
the feature space is fixed and known a prior before learning.
The algorithms update classifiers using incoming instances
and allow the sum of training loss gradually to be bounded
[1]. To date, online learning algorithms, such as the Percep-
tron algorithm [10], the Passive Aggressive algorithm [2]
and the Confidence-Weighted algorithm [11], are commonly
used in data-driven optimizations, but cannot be directly
used to handle a dynamic feature space.

Online feature selection algorithms [1], [3] were pro-
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posed to perform feature selection in data streams where
data arrive sequentially with a fixed feature space. Online
feature selectors are only allowed to maintain a small num-
ber of active features for learning [3]. These algorithms use
sparse strategies, such as feature truncation, to select repre-
sentative features. Sparse online learning via truncated gra-
dient [1] and the OFS algorithm [3] are typical algorithms.
However, these algorithms cannot solve the trapezoidal data
stream mining problem because they assume the feature
space is fixed.

Online streaming feature selection algorithms [5] were
proposed to select features in a dynamic feature space where
features arrive continuously as streams. Each new feature is
processed upon its arrival and the goal is to select a “best
so far” set of features to train an efficient learning model.
It, in some ways, can be seen as the dual problem of online
learning [5]. Typical algorithms include the online streaming
feature selection (OSFS) algorithm [4] and the fast-OSFS [5]
algorithm. However, these algorithms consider only a fixed
training set where the number of training instances is given
in advance before learning.

In this paper, we propose a new Online Learning with
Streaming Features (OLSF ) algorithm and its two variants
OLSF -I and OLSF -II for mining trapezoidal data streams.
OLSF and its variants combine online learning and stream-
ing feature selection to continuously learn from trapezoidal
data streams. Specifically, when new training instances
carrying new features arrive, a classifier updates existing
features by following the passive-aggressive update rule
used in online learning and updates the new features by
following the structural risk minimization principle. Then,
feature sparsity is introduced by using feature projected
truncation. Theoretical and empirical studies validate the
performance of the proposed algorithms. The contributions
of the paper are summarized as follows:

1) We study a new problem of learning from trape-
zoidal data streams where training data change in
both data volume and feature space;

2) We propose a new learning algorithm OLSF and its
two variants. OLSF combines the merits of online
learning and streaming feature selection methods to
learn from doubly-streaming data;

3) We theoretically analyze the performance bounds of
the proposed algorithms;

4) We empirically validate the performance of the al-
gorithms extensively on 14 real-world data sets.

The remainder of the paper is organized as follows:
Section 2 surveys the related work. Section 3 introduces the
setting of the learning problem. Section 4 discusses the pro-
posed OLSF algorithm and its variants. Section 5 analyzes
the performance bounds. Section 6 conducts experiments
and Section 7 concludes the paper.

2 RELATED WORK

Our work is closely related to online learning, online feature
selection and online streaming feature selection.

Online learning represents an important family of effi-
cient and scalable data mining and machine learning algo-
rithms for massive data analysis [12] [13]. In general, online

learning algorithms can be grouped into two categories, the
first-order and second-order learning algorithms [12].

The first-order online learning algorithms exploit first order
information during update. The Perceptron algorithm [10]
[14] and Online Gradient Descent algorithm (OGD) [15]
are two well-known first-order online learning methods.
Moreover, a large number of first-order online learning
algorithms have been proposed recently by following the
criterion of maximum margin principle [3], such as the Pas-
sive Aggressive algorithms (PA) [2], Approximate Maximal
Margin Classification algorithm (ALMA) [16], and the Re-
laxed Online Maximum Margin algorithms (ROMMA) [16].

The second-order online learning algorithms, which can bet-
ter explore the underlying structure between features [12],
have been explored recently. Most second-order learning
algorithms assume that the weight vector follows a Gaus-
sian distribution. The model parameters, including both the
mean vector and the covariance matrix, are updated in the
online learning process [12]. The Second-Order Perceptron
(SOP) [17], Normal Herding method via Gaussian Herding
(NHERD) [18], Confidence-Weighted (CW) learning, Soft
Confidence Weighted algorithm(SCW) [11], online learning
algorithms by Improved Ellipsoid (IELLIP) [19], and Adap-
tive Regularization of Weight Vectors (AROW) [20], New
variant of Adaptive Regularization (NAROW) [21] are rep-
resentative of the second-order online learning algorithms.

Feature selection is a widely used technique for reduc-
ing dimensionality. Feature selection aims to select a small
subset of features minimizing redundancy and maximizing
relevance to the class label in classification. Feature selection
can be categorized into supervised [22] [23], unsupervised
[24] [25] and semi-supervised [26] [27] algorithms.

Supervised feature selection can be categorized into the
filter models, wrapper models and embedded models [28].
The filter models separate feature selection from classifier
learning so that the bias of a learning algorithm does not
interact with the bias of a feature selection algorithm. The
Relief [29], Fisher score [30] and Information Gain based
methods [31] [32] are the representative algorithms. The
wrapper models use the predictive accuracy of a prede-
termined learning algorithm to determine the quality of
selected features. The embedded methods [33] [34] [35] aim
to integrate feature selection into model training. It achieves
model fitting and feature selection simultaneously [36] [37].
The embedded methods are usually the fastest methods.

Unsupervised feature selection attempts to select features
that preserve the original data similarity or manifold struc-
tures, and it is difficult to evaluate the relevance of features
[38] [28]. Laplacian Score [39], spectral feature selection [40],
and recently proposed l2,1-norm regularized discriminative
feature selection [41] are representatives of unsupervised
feature selection. Semi-supervised feature selection is be-
tween the supervised methods and unsupervised methods.
Under the assumption that labeled and unlabeled data are
sampled from the same population generated by the target
concept, semi-supervised feature selection uses both labeled
and unlabeled data to estimate feature relevance [27].

Online feature selection [3] and sparse online learning [42]
[1] aim to learn a sparse linear classifier from a sequence
of high-dimensional training instances. Online feature se-
lection combines feature selection with online learning and
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Table 1
Symbols and Notations.

Symbol Description
B B ∈ [0, 1], proportion of selected features (projected feature space)
C C > 0, tradeoff in the objective function of OLSF -I and OLSF -II
dt, t = 1, . . . , T dt ≤ dt+1, dimension of instance xt

dwt , t = 1, . . . , T dimension of classifier wt

λ λ > 0, regularization parameter
lt, t = 1, . . . , T lt = l(w, (xt, yt)), hinge loss on instance (xt, yt)
l∗t , t = 1, . . . , T l∗t = l(Πxtu; (xt, yt)), hinge loss on instance (xt, yt) based on the classifier u ∈ Rdt

LT LT =
√∑T

t=1 l
2
t

M the number of false predictions by OLSF -I in Theorem 3
∇t, t = 1, . . . , T − 1 ∇t = ∥wt −Πwtu∥2 − ∥wt+1 −Πwt+1u∥2
R upper bound for the L1-norm of xt, t = 1, . . . , T
T T ∈ N+, total number of instances
u u ∈ RdT , arbitrary vector in RdT

UT UT =
√∑T

t=1(l
∗
t )

2

wt, t = 1, . . . , T wt ∈ Rdt−1 , t = 2, . . . , T, w1 ∈ Rd1 , classifier built at round t
|wt · xt|, t = 1, . . . , T confidence degree of xt with respect to classifier wt

w̃t+1, t = 1, . . . , T − 1 w̃t+1 = Πwtwt+1, vector of elements wt+1 projected to feature space wt

ŵt+1, t = 1, . . . , T − 1 ŵt+1 = Π¬wtwt+1, vector of elements wt+1 not projected to the feature space wt

w̄t+1, t = 1, . . . , T − 1 intermediate variable of new classifier after the update operation
w̌t+1, t = 1, . . . , T − 1 intermediate variable of new classifier on the L1 ball without truncation
Πwt+1/wt

u, t = 1, . . . , T − 1 vector of elements u projected to the feature space of wt+1 but not to wt

xt, t = 1, . . . , T xt ∈ Rdt , input training instance at time t in dt dimensions
x̃t, t = 2, . . . , T x̃t = Πwtxt, xt ∈ Rdt , wt ∈ Rdt−1 , dt−1 ≤ dt, vector of elements xt projected to the feature space of wt

x̂t, t = 2, . . . , T x̂t = Π¬wtxt, xt ∈ Rdt , wt ∈ Rdt−1 , dt−1 ≤ dt, vector of elements xt not projected to the feature space of wt

{(xt, yt)|t = 1, 2, . . . , T} sequence of input training data
ξ slack variable
yt, t = 1, . . . , T yt ∈ {−1,+1}, real label of instance xt

ŷt, t = 1, . . . , T ŷt = sign(wt ·Πwtxt), predicted label of instance xt

τt, t = 1, . . . , T learning rate variable

resolves the feature selection in an online fashion by devel-
oping online classifiers that involve only a small and fixed
number of features for classification. OFS and OFSP [3] are
the representative algorithms proposed recently.

Online streaming feature selection algorithms have been
studied recently [43] [5] where features arrive one by one
and training instances are available before the training pro-
cess starts. The number of training instances remains fixed
through the process [4]. The goal is to select a subset of
features and train an appropriate model at each time step
given the features observed so far.

Compared with the above learning methods, the prob-
lem studied in this paper is more challenging because of the
doubly streaming data scenario. Existing online learning,
online feature selection and online streaming feature selec-
tion algorithms are incapable of learning from trapezoidal
data streams.

3 PROBLEM SETTING

We consider the binary classification problem on trapezoidal
data streams. Let {(xt, yt)|t = 1, . . . , T} be a sequence
of input training data. Each xt ∈ Rdt is a dt dimension
vector where dt−1 ≤ dt and class label yt ∈ {−1,+1} for
all t. At each round, the classifier uses information on the
current instance to predict its label to be either +1 or −1.
After the prediction is made, the true label of the instance
is revealed and the algorithm suffers an instantaneous loss
which reflects the degree of infelicity of the prediction [2].
At the end of each round, the algorithm uses the newly
obtained instance-label pair to improve its prediction rule
for the rounds to come.

We restrict the discussion to a linear classifier based on a
vector of weights w which is the common setting in online
learning. The magnitude |w · x| is interpreted as the degree
of confidence in the prediction. wt ∈ Rdt−1 denotes the
classifier, i.e., the vector we aim to solve in the algorithm
at round t. wt has the same dimension of the instance xt−1,
and has either the same or less dimension as the current
instance xt, for all t = 2, . . . , T , and w1 is initialized with the
same dimension of x1. For the loss function, we choose the
hinge loss. Specifically, l(w, (xt, yt)) = max{0, 1−yt(w·xt)},
where w and xt are in the same dimension. In our study,
the ultimate dimension dT is very large, so we also intro-
duce feature selection into our learning algorithm. Table 1
demonstrates the symbols and notations used in the paper.

4 ONLINE LEARNING WITH TRAPEZOIDAL
DATA STREAMS

In this section we present the Online Learning with
Streaming Features algorithm (OLSF ) and its two variants
for mining trapezoidal data streams. There are two chal-
lenges to be addressed by the algorithms. The first challenge
is to update the classifier with an augmenting feature space.
The classifier update strategy is able to learn from new
features. We build the update strategy based on the margin-
maximum principle. The second challenge is to build a
feature selection method to achieve a sparse but efficient
model. As the dimension increases over time, it is essential
to use feature selection to prune redundant features. We
use a truncation strategy to obtain sparsity. Also, in order
to improve the truncation, a projection step is introduced
before the truncation.
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The pseudo-codes for the OLSF algorithm and its two
variants are given in Algorithms 1, 2 and 3 (OLSF -I and
OLSF -II are different to OLSF in parameter τt during up-
dates). The vector w1 is initialized to a zero vector with
dimension d1, i.e., w1 = (0, . . . , 0) ∈ Rd1 for all the three
algorithms, where d1 is the dimension of the first instance
for each algorithm. Then, online learning is divided into the
update step and the sparsity step.

Algorithm 1. The OLSF algorithm and
its two variants OLSF -I and OLSF -II

1: Input:
• C > 0: the tradeoff parameter of OLSF -I and

OLSF -II
• λ > 0: the regularization parameter
• B ∈ (0, 1]: the proportion of selected features

2: Initialize:
• w1 = (0, . . . , 0) ∈ Rd1

3: For t = 1, 2, . . . do
4: receive instance: xt ∈ Rdt

5: predict: ŷt = sign(wt ·Πwtxt)
6: receive correct label: yt ∈ {+1,−1}
7: suffer loss: lt = max{0, 1− yt(wt ·Πwtxt)}
8: update step:
9: • set parameter :
10: τt = Parameter Set(xt, lt, C)

(See Algorithm 2)
11: • update wt to w̄t+1:

w̄t+1 = [wt + τtytΠwtxt, τtytΠ¬wtxt]
12: sparsity step:
13: • project w̄t+1 to a L1 ball:

w̌t+1 = min{1, λ
∥w̄t+1∥1

}w̄t+1

14: • truncate w̌t+1 to wt+1:
wt+1 = Truncate(w̌t+1, B)

(See Algorithm 3)
15: end for

Algorithm 2. τt = Parameter Set(xt, lt, C)
1: if OLSF :

τt =
lt

∥xt∥2

2: else if OLSF -I:
τt = min{C, lt

∥xt∥2 }
3: else if OLSF -II:

τt =
lt

∥xt∥2+ 1
2C

4: end if

Algorithm 3. w = Truncate(w̌, B)
1: w̌ ∈ Rdw̌

2: if ∥w̌∥0 ≥ B · dw̌ then
3: w = w̌B

w̌B is w̌, and remain max{1, f loor(B · dw̌)}
largest elements; set others to zero, where
floor{x} is the largest integer smaller then x.

4: else
5: w = w̌
6: end if

The update strategy

The three algorithms are different in their update strat-
egy. We first focus on the update strategy of the basic
algorithm. At round t, with the classifier wt ∈ Rdt−1 , the
new classifier wt+1 = [w̃t+1, ŵt+1] ∈ Rdt is obtained as the

solution to the constrained optimization problem in Eq.(2),
where w̃ = Πwtwt+1 ∈ Rdt−1 represents a projection of the
feature space from dimension dt to dimension dt−1, it is a
vector consisting of elements of wt+1 which are in the same
feature space of wt, and ŵ = Π¬wtwt+1 ∈ Rdt−dt1 denotes
the vector consisting of elements of wt+1 which are not in
the feature space of wt,

wt+1 = [w̃t+1, ŵt+1]

= argmin
w = [w̃, ŵ] :
lt = 0

1

2
∥w̃ − wt∥2 +

1

2
∥ŵ∥2 (1)

where lt = l(w, (xt, yt)) is the loss at round t , which can be
written as,

lt = l(w, (xt, yt)) = max{0, 1− yt(w̃ · x̃t)− yt(ŵ · x̂t)}.
(2)

Note that the definition of x̃t = Πw̃xt and x̂t = Πŵxt are
similar to the ones of w̃ and ŵ respectively.

In the above constrained optimization problem, if the
existing classifier wt predicts the right label with the current
instance xt, i.e., lt = max{0, 1 − yt(wt · x̃t)} = 0, then we
can easily know that the optimal solution is w̃ = wt, ŵ =
(0, . . . , 0), that is, wt+1 = [wt, 0, . . . , 0].

On the other hand, if the existing classifier makes a
wrong prediction, the algorithm forces the updated classifier
to satisfy the constraint in Eq. (1). At the same time, it also
forces w̃t+1 close to wt in order to inherit information and
let ŵt+1 be small to minimize structural risk and avoid
overfitting. The solution to Eq. (1) has a simple closed form,

wt+1 = [wt + τtytx̃t, τtytx̂t], where τt = lt/∥xt∥2 (3)

We now discuss the derivation of the update strategy.

• In case that the dimension of the new classifier does
not change, i.e., dt = dt−1, the problem degenerates
to an online learning problem where ŵt+1 disappears
and wt+1 = w̃t+1.

• In case that dt > dt−1 and lt = 0, the optimal
solution is w̃t+1 = wt and ŵt+1 = (0, · · · , 0).

• In case that dt > dt−1 and lt > 0, we solve Eq. (1) to
obtain the solution.

To solve Eq.(1), we use the Lagrangian function and the
Karush-Khun-Tucker conditions [44] on Eq.(2) and obtain

L(w, τ) =
1

2
∥w̃ − wt∥2 +

1

2
∥ŵ∥2

+ τ(1− yt(w̃ · x̃t)− yt(ŵ · x̂)),
w̃ = wt + τytx̃t; ŵ = τytx̂t

(4)

where τ is a Lagrange multiplier. Plugging the last two
equations into the first one, taking the derivative of L(τ)
with respect to τ and setting it to zero, we can obtain

L(τ) = −1

2
τ2∥x̃t∥2 −

1

2
τ2∥x̂∥2 + τ − τyt(wt · x̃)

τt =
1− yt(wt · x̃t)

∥x̃∥2 + ∥x̂t∥2
=

lt
∥xt∥2

(5)

So, the update strategy is wt+1 = [wt + τtytx̃t, τtytx̂t],
where τt = lt/∥xt∥2. In addition, this update rule is also
applied when lt = 0. So we can take it as a general update
rule.
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From Eq. (1), we can see that the update strategy of
the OLSF algorithm is rigorous because the new classifier
needs to predict the current instance correctly. This may
make the model sensitive to noise, especially label noise
[2]. In order to avoid this drawback, we give two general
updated variants of the OLSF algorithm which use the soft-
margin technique by introducing a slack variable ξ into the
optimization problem. The first one is abbreviated as OLSF -
I. Its objective function scales linearly with ξ, namely,

wt+1 = argmin
w = [w̃, ŵ] :
lt ≤ ξ; ξ ≥ 0

1

2
∥w̃ − wt∥2 +

1

2
∥ŵ∥2 + Cξ

(6)

The second one, OLSF -II, is the same as OLSF -I except
that its objective function scales quadratically with the slack
variable ξ, i.e.,

wt+1 = argmin
w = [w̃, ŵ] :
lt ≤ ξ

1

2
∥w̃ − wt∥2 +

1

2
∥ŵ∥2 + Cξ2

(7)

In these two optimization problems, parameter C is a
positive number which is a tradeoff between rigidness and
slackness. A larger value of C implies a more rigid update
step.

The update strategy of OLSF -I and OLSF -II also shares
the simple closed form wt+1 = [wt + τtyT x̃t, τytx̂t], where

τt = min{C, lt
∥xt∥2

} (I) or τt =
lt

∥xt∥2 + 1
2C

(II).

The update strategies of OLSF -I and OLSF -II are similar to
the OLSF algorithm, so we omit their details due to space
constraints.

The sparsity strategy

In many applications, the dimension of training in-
stances increases rapidly and we need to select a relatively
small number of features.

In our study, we introduce a parameter to control the
proportion of the features used. For example, in each trial
t, the learner presents a classifier wt ∈ Rdt−1 to classify
instance xt ∈ Rdt where dt−1 ≤ dt . After the update
operation, a projection and a truncation are introduced to
prune redundant features based on the parameter B, which
locates in [0, 1]. Namely, we require the learner only retain
at most a proportion of B nonzero elements of wt ∈ Rdwt ,
i.e. ∥wt∥0 ≤ B · dwt . Specifically, if the resulting classifier
wt has more than a proportion of B nonzero elements, we
will simply keep the proportion of B elements in wt with
the largest absolute weights, as demonstrated in Algorithm
3. In this way, at most a proportion of B features are used
in the model and sparsity is introduced.

We introduce a projection step because one single trun-
cation step does not work well. Although the truncation
selects the B largest elements, this does not guarantee the
numerical values of the unselected attributes are sufficiently
small and may potentially lead to poor performance [3].
When projecting a vector to an L1 ball, most of its numerical
values are concentrated to its largest elements, and then

removing the smallest elements will result in a small change
to the original vector. Specifically, the projection is,

w̌t+1 = min{1, λ

∥w̄t+1∥1
}w̄t+1, (8)

where λ is the a positive regularization parameter.

5 THEORETICAL ANALYSIS

In this section, we derive performance bounds of the OLSF

algorithm and its two variants OLSF -I and OLSF -II. There
are four theorems and one lemma in this section. The
first theorem discusses the upper bound of the cumulative
squared hinge loss of OLSF when data are linearly separa-
ble, and the second derives the bound when data are linearly
inseparable. The third and the fourth theorems relate to
the upper bounds of the OLSF -I and OLSF -II algorithms
respectively.

If instance xt is falsely predicted, then yt(wt ·Πwtxt) < 0,
and the loss function lt > 1. So the cumulative squared
hinge loss

∑
t l

2
t is an upper bound of the number of

false predictions [2]. Therefore, the loss bound will be the
upper bound of the total number of false predictions and
the cumulative squared hinge loss. Our bounds essentially
prove that our algorithms cannot do much worse than the
best fixed prediction, which is chosen in hindsight for any
sequence of instances.

For clarity, we use two abbreviations throughout the
paper. We denote by lt the instantaneous loss suffered by
our algorithm at round t. In addition, we denote by l∗t the
loss of an off-line predictor at round t. Formally, let u ∈ RdT

be an arbitrary vector in RdT , we define lt and l∗t as follows,

lt = l(wt; (Πwtxt, yt)) and l∗t = l(Πxtu; (xt, yt)) (9)

Then, we have Lemma 1 as follows.

Lemma 1. Let (x1, y1), . . . , (xT , yT ) be a sequence
of training instances, where xt ∈ Rdt , dt−1 ≤ dt and
yt ∈ {+1,−1} for all t. Let the learning rate τt ∈{

lt
∥xt∥2 ,min{C, lt

∥xt∥2 }, lt
∥xt∥2+ 1

2C

}
, as given in Algorithm 2.

Then, the following bound holds for any u ∈ RdT ,∑T
t=1 τt(2lt − τt∥xt∥2 − 2l∗t ) ≤ ∥u∥2

proof 1. Define ∇t to be ∥wt − Πwtu∥2 − ∥wt+1 −
Πwt+1u∥2. We prove the lemma by summing up all ∇t

over t in 1, . . . , T and bounding this sum. Note that∑
t ∇t is a telescopic sum which collapses to

T−1∑
t=1

∇t =
T−1∑
t=1

(∥wt −Πwtu∥2 − ∥wt+1 −Πwt+1u∥2)

= ∥w1 −Πw1u∥2 − ∥wT −ΠwT
u∥2,

(10)
where w1 is initialized as a zero vector, and ∥wT −
ΠwT

u∥2 ≥ 0 always holds. Thus, we can upper bound
the right-hand side of the above equation by ∥Πw1u∥2 ,

T−1∑
t=1

∇t ≤ ∥Πw1
u∥2. (11)

We now turn to bound every single ∇t. If the minimum
margin requirement is not violated on round t , i.e. lt
=0, then τt = 0 and hence ∇t ≤ 0. Now we only focus
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on rounds on which lt > 0. With the update strategy
w̄t+1 = [wt + τtytΠwtxt, τtytΠ¬wtxt] where Π¬wtxt is a
vector consisting of elements in x which are not in the
same feature space of wt. And in light of the fact that
w̌t+1 ≤ w̄t+1 and wt+1 ≤ w̌t+1 we have

∇t =∥wt −Πwtu∥2 − ∥wt+1 −Πwt+1u∥2

≥∥wt −Πwtu∥2 − ∥wt + τtytΠwtxt −Πwtu∥2

− ∥τtytΠ¬wtxt −Πwt+1 wtu∥2

=− 2τtytΠwtxt(wt −Πwtu)− τ2t ∥Πwtxt∥2

− ∥τtytΠ¬wtxt −Πwt+1/wt
u∥2

(12)

From lt = 1− yt(wt ·Πwtxt) and l∗t ≥ 1− yt(Πxtu · xt),
we have yt(wt ·Πwtxt) = 1− lt and yt(Πwtu ·Πwtxt) +
yT (Πwt+1/wt

u · Πwt+1/wt
xt) ≥ 1 − l∗t . Using these two

facts in Eq. (12) gives,

∇t ≥2τt(ytΠwtxtΠwtu+ ytΠwt+1/wt
xtΠwt+1/wt

u

− ytΠwtxtwt)− τ2t ∥xt∥2 − ∥Πwt+1/wt
u∥2

≥τt(2lt − 2l∗t − τt∥xt∥2)− ∥Πwt+1/wt
u∥2.

(13)

Summing up ∇t over all t and comparing the lower
bound of Eq. (13) with the upper bound in Eq.(11), we
can obtain
T∑

t=1

τt(2lt − 2l∗t − τt∥xt∥2) ≤ ∥Πw1u∥2 +
T−1∑
t=1

∥Πwt+1/wt
u∥2.

The lemma is proved.

Below we first prove a loss bound for the OLSF algo-
rithm in the linearly separable case. We assume that there
is a classifier u ∈ RdT such that yt(Πxtu · xt) > 0 for all
t ∈ {1, . . . , T}. Without loss of generality, we assume that
classifier u is scaled such that yt(Πxtu ·xt) ≥ 1. The loss of u
is zero on all T instances in the sequence. Then, we have the
following bound of the cumulative squared loss of OLSF .

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of in-
stances where xt ∈ Rdt , dt−1 ≤ dt, yt ∈ {+1,−1} and
∥xt∥ ≤ R for all t. Assume that there exists a classifier u
such that l∗t = 0 for all t. Then, the cumulative squared
loss of OLSF on the sequence is bounded by

T∑
t=1

l2t ≤ ∥u∥2R2.

proof 2. Since l∗t = 0 for all t , Lemma 1 implies that,

T∑
t=1

τt(2lt − τt∥xt∥2) ≤ ∥u∥2. (14)

According to the definition τt =
lt

∥xt∥2 , we have

T∑
t=1

l2t
∥xt∥2

≤ ∥u∥2

and
T∑

t=1

l2t ≤ ∥u∥2R2.

Hence, the theorem is proved.

The following theorems generalize the linearly separable
case. We consider that the classifier u cannot perfectly sepa-
rate the training data. In addition, we assume that the input
sequence is normalized so that ∥xt∥2 = 1. Then, we have
the following bounds of the cumulative squared loss of the
OLSF algorithm.
Theorem 2. Let (x1, y1), . . . , (xT , yT ) be a sequence of in-

stances where xt ∈ Rdt , dt−1 ≤ dt, yt ∈ {+1,−1}
and ∥xt∥2 = 1 for all t. Then, for any vector u ∈ RdT ,
the cumulative squared loss of OLSF on the sequence is
bounded by

T∑
t=1

l2t ≤

∥u∥+ 2

√√√√ T∑
t=1

(l∗t )
2

2

. (15)

proof 3. Since ∥xt∥2 = 1 , τt and lt are equal, according
to Lemma 1, we have

∑T
t=1 l

2
t ≤ ∥u∥2 +

∑T
t+1 2lt · l∗t .

Denote

LT =

√√√√ T∑
t=1

l2t and UT =

√√√√ T∑
t=1

(l∗t )
2.

By using the Cauchy-Schwartz inequality to bound the
right-hand side of Eq.(15), we obtain

L2
T ≤ ∥u∥2 + 2LTUT .

Therefore, to obtain an upper bound of LT , we need to
find the largest solution of L2

T − 2UTLT −∥u∥2 = 0, i.e.,

UT +
√
U2
T + ∥u∥2.

Using the fact that
√
α+ β ≤

√
α+

√
β , we have

LT ≤ ∥u∥+ 2UT .

Furthermore, we can obtain

T∑
t=1

l2t ≤

∥u∥+ 2

√√√√ T∑
t=1

(l∗t )
2

2

and the theorem is proved.

Next we derive the bound for OLSF -I. The following
theorem provides an error rate bound of OLSF -I based on
the total number of falsely predicted instances that yt ̸=
sign(wt ·Πwt

xt) .
Theorem 3. Let (x1, y1), . . . , (xT , yT ) be a sequence of in-

stances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {+1,−1} and
∥xt∥2 ≤ R2 for all t. For any vector u ∈ RdT , the number
of false predictions by OLSF -I is bounded by,

max{R2,
1

C
}
(
∥u∥2 + 2C

T∑
t=1

l∗t

)
,

where C is the parameter in OLSF -I.

proof 4. If OLSF -I outputs a false prediction at round t,
then yt(wt ·Πwtxt) ≤ 0, so lt ≥ 1. Under the assumption
∥xt∥2 ≤ R2 and the definition τt = min{lt/∥xt∥2, C},
for the error occurring at round t, we have

min{ 1

R2
, C}M ≤

T∑
t=1

τtlt,
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where M is the number of false predictions by OLSF -I.
Based on the definition of τt , we know that τtl∗t ≤ Cl∗t
and τt∥xt∥2 ≤ lt . Plugging these two inequalities into
Lemma 1 gives the result,

T∑
t=1

τtlt ≤ ∥u∥2 + 2C
T∑

t=1

l∗t .

Combining the above two inequations, we obtain that

min{1/R2, C}M ≤ ∥u∥2 + 2C
T∑

t=1

l∗t .

The theorem is proved by multiplying both sides of the
above inequation with max{R2, 1/C}.

Now, we turn to the bound analysis for OLSF -II.
Theorem 4. Let (x1, y1), . . . , (xT , yT ) be a sequence of in-

stances where xt ∈ Rdt , dt−1 ≤ dt, yt ∈ {+1,−1} and
∥xt∥2 ≤ R for all t . Then, for any classifier (vector)
u ∈ RdT , the cumulative squared loss of OLSF -II is
bounded by,

T∑
t=1

l2t ≤
(
R2 +

1

2C

)(
∥u∥2 + 2C

T∑
t=1

(l∗t )
2

)
.

proof 5. Lemma 1 states that

∥u∥2 ≥
T∑

t=1

(2τtlt − τ2∥xt∥2 − 2τtl
∗
t ).

Define α = 1/
√
2C, and by subtracting the non-negative

term (ατt − l∗t /α)
2 from each result on the right-hand

side of the above inequality, we can obtain

∥u∥2 ≥
T∑

t=1

(2τtlt − τ2∥xt∥3 − 2τtl
∗
t − (ατt − l∗t /α)

2)

=
T∑

t=1

(2τtlt − τ2(∥xt∥2 + α2)− (l∗t )
2/α2).

(16)
Plugging in the definition of α, and using the definition
τt = lt/(∥xt∥2 + 1/(2C)), we can obtain the following
lower bound,

∥u∥2 ≥
T∑

t=1

(
l2t

∥xt∥2 + 1
2C

− 2C(l∗t )
2

)
.

Replacing ∥xt∥2 with its upper bound of R2 and rear-
ranging the terms gives the desired bound.

6 EXPERIMENTS

In this section, we empirically evaluate the performance of
OLSF and its two variants OLSF -I and OLSF -II1.

The experiments are conducted from four aspects.
Firstly, we evaluate the performance of the proposed three
algorithms with respect to classification accuracy, projected
feature space B, and tradeoff C in Section 6.1. Secondly, we
evaluate the update strategy and the sparse strategy used
in the three algorithms by comparing with three benchmark

1. The Matlab source codes are available online at
https://github.com/BlindReview/onlineLearning.

methods in Section 6.2. Thirdly, we compare the proposed
algorithms with the state-of-the-art online feature selection
algorithms in Section 6.3. Finally, we test the applications of
the proposed algorithms on two real-world trapezoidal data
streams in Section 6.4.

Experimental Setup. We test on 12 UCI data sets and
two real-world large-scale streams as listed in Table 2.

To simulate trapezoidal streams, we split the data sets
into 10 chunks, where each chunk carries only 10% instances
and a variant number of features. For example, the first
data chunk carries the first 10% instances with the first
10% features. The second data chunk carries the second 10%
instances with another 10% features (in total 20% features).

We measure the performance in terms of the average
prediction accuracy. The experiments are repeated 20 times
with a random permutation on the data sets. The results are
reported by an average over the 20 repeats.

We set λ to be 30, C from 10−4 to 104 with a step of 101,
and B from 0 to 1. The parameters are chosen with cross
validation.

Table 2
The data sets used in the experiments

Dataset ♯ instances ♯ Dimensions
wpbc 198 34
ionosphere 351 35
wdbc 569 31
isolet 600 618
wbc 699 10
german 1,000 24
svmguide3 1,234 21
splice 3,175 60
HAPT 3,266 562
spambase 4,601 57
magic04 19,020 10
a8a 32,561 123
rcv1 697,641 47,236
URL 2,396,130 3,231,961

6.1 Experiment I: Comparisons between OLSF and its
two variants
In this part, we present the empirical results of the three
algorithms on the 12 UCI benchmark data sets.

Table 3 summarizes the performance of the three algo-
rithms on a projected feature space. We can observe that
OLSF -I performs the best on six data sets, a8a, german,
HAPT, magic04, spambase, wpbc, OLSF -II performs the
best on the remaining six date sets, ionosphere, isolet, splice,
svmguide3, wbc, wdbc. Among the three algorithms, OLSF

performs the worst on all the 12 data sets. This is because
the 12 UCI data sets contain noise, OLSF which relies on a
strict update strategy overfits the noise and thus performs
the worst. In contrast, OLSF -I and OLSF -II using a “soft”
update strategy can avoid overfitting. Furthermore, we can
see that OLSF -I scales well on large data sets, while OLSF -II
performs the best on small data sets. This is because OLSF-I
scales linearly with the slack variable.

Fig. 2 shows the error rate with respect to the streaming
iterations on the 12 data sets. Similar to the above results,
we can observe that both OLSF -I and OLSF -II consistently
outperform OLSF . In addition, the performance gain of
OLSF-I and OLSF-II raises with a large probability when
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Figure 2. Comparison among the proposed three algorithms OLSF , OLSF -I and OLSF -II on the 12 UCI data sets. We can observe that OLSF -I
and OLSF -II outperform OLSF because their “soft” update strategies can avoid overfitting to noise.

Table 3
The average number of prediction errors on the 12 UCI data sets

Algorithms a8a german HAPT
OLSF 12673.5± 75.9 415.9± 15.6 257.0 ± 8.5
OLSF -I 11204.7±713.1 366.9±8.8 167.0 ± 7.1
OLSF -II 11317.2±233.1 366.9±12.8 191.0 ± 9.9
Algorithms ionosphere isolet magic04
OLSF 55.0 ± 2.8 23.5 ±4.9 8051.3± 49.0
OLSF -I 55.0 ±2.8 21.5±2.1 6732.3±73.3
OLSF -II 50.5 ± 6.4 18.0±4.2 6924.5± 39.6

Algorithms spambase splice svmguide3
OLSF 1132.1± 29.7 1314.6± 30.3 396.7± 15.8
OLSF -I 1004.5±25.6 1243.7± 13.6 359.1± 42.9
OLSF -II 1013.2±26.1 1238.8±16.8 357.5±26.9
Algorithm wbc wdbc wpbc
OLSF 37.5 ± 0.7 43.5 ± 3.5 88.5 ± 2.1
OLSF -I 35.5 ± 0.7 39.5 ± 0.7 82.0 ± 8.5
OLSF -II 34.0 ± 4.2 38.5 ± 4.9 83.0 ± 1.4

new training instances arrive. This observation validates
that OLSF -I and OLSF -II, by using slack variants to obtain
soft update, can avoid overfitting to noise.

Fig. 3 shows the performance of the three algorithms un-
der different projected feature space B. We can observe that
OLSF -I and OLSF -II often outperform OLSF . The results
show the robustness of OLSF -I and OLSF -II under different
subspace defined by B.

Fig. 4 shows the performance of the three algorithms
under different tradeoff C. From the results, we can observe
that varying the parameter C can alter the error rate of
OLSF -I and OLSF -II. The larger of C , the closer of OLSF -

I to OLSF . This is because the parameter τt in OLSF -I is
smaller than both parameter C and τt in OLSF . When C is
very large, OLSF -I degenerates to OLSF .

6.2 Experiment II: Comparisons with benchmarks
We compare the proposed algorithms with three benchmark
methods. According to the similar performance of OLSF -I
and OLSF -II, we use OLSF -I as the representative algorithm
in this part.

Now we introduce the three benchmark methods. The
first algorithm is OLISF -all. Different from OLSF -I that only
uses a small projected feature space for learning, OLISF -
all uses all features for learning. The second algorithm
is OLISF -rand which uses randomly selected features for
learning. The third algorithm is OLISF -per which uses
the Perceptron update strategy for learning, i.e., wt+1 =
[wt + ytxt, ytxt] [10]. We still use the 12 UCI data sets for
our evaluation. The parameter settings are the same as in
Experiments I.

Table 4 lists the average number of error predictions of
the four algorithms on the 12 UCI data sets with different
values of the parameter B. First, we can observe that OLSF -
I obtains the best results on 10 data sets out of 12. It even
beats the OLISF -all algorithm which uses all the features
for learning. Compared to the other two algorithms OLISF -
rand and OLISF -per, OLSF -I outperforms them under dif-
ferent B. The OLSF I-rand algorithm randomly chooses a
fixed proportion of features which receives the worst per-
formance on all the 12 data sets. The OLSF I-per algorithm
which uses the Perceptron update strategy has higher error
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Figure 3. Performance comparison with respect to the projected feature space B. The results show that OLSF -I and OLSF -II are robust algorithms
under different projected subspaces B.

Table 4
The average number of error predictions on the 12 UCI data sets with respect to parameter B.

Algorithms a8a german HAPT magic04 ionosphere isolet

B = 0.04
OLSF -I 87.2 ± 8.8 56.8 ± 21.3 19020.0 ± 0.0 313.2 ± 55.2 788.4 ± 38.2 628.6 ± 42.5
OLSF I-rand 133.0 ± 4.5 190.2 ± 10.0 19020.0 ± 0.0 1318.6 ± 31.8 1041.0 ± 9.3 791.2 ± 11.1
OLSF I-per 141.9 ± 6.3 92.5 ± 40.6 19020.0 ± 0.0 737.0 ± 171.8 1034.7 ± 29.0 868.3 ± 18.2

B = 0.16
OLSF -I 83.2 ± 6.9 15.7 ± 3.9 7379.2 ± 98.2 164.1 ± 14.8 348.3 ± 49.4 402.2 ± 39.7
OLSF I-rand 112.5 ± 6.4 144.4 ± 8.3 13107.3 ± 53.1 1158.1 ± 27.9 720.3 ± 13.3 582.4 ± 11.3
OLSF I-per 141.2 ± 5.8 35.4 ± 12.4 13143.5 ± 52.7 441.0 ± 51.1 828.9 ± 51.2 711.9 ± 17.1

B = 0.64
OLSF -I 82.6 ± 3.7 25.6 ± 2.9 5882.2 ± 105.3 182.4 ± 41.9 364.4 ± 11.0 326.7 ± 7.0
OLSF I-rand 91.3 ± 4.8 69.7 ± 5.6 8361.8 ± 60.0 779.6 ± 15.2 570.2 ± 20.3 456.0 ± 18.9
OLSF I-per 83.4 ± 3.5 32.5 ± 3.1 6864.1 ± 49.5 420.6 ± 17.7 368.3 ± 51.7 365.0 ± 9.8

B = 1.00 OLSF I-all 79.3 ± 3.3 16.7±1.8 6634.3 ± 35.2 157.0 ± 8.9 360.9 ± 7.2 344.1 ± 7.1
Algorithms spambase splice svmguide3 wbc wdbc wpbc

B = 0.04
OLSF -I 108.7 ± 38.4 683.0 ± 0.0 100.9 ± 12.4 850.2 ± 69.9 1397.2 ± 176.1 7488.4 ± 93.7
OLSF I-rand 375.8 ± 7.3 683.0 ± 0.0 234.7 ± 6.3 2026.5 ± 26.5 2808.7 ± 28.1 18249.4 ± 59.3
OLSF I-per 469.4 ± 14.1 683.0 ± 0.0 225.3 ± 8.6 2221.1 ± 43.5 2980.9 ± 80.9 20265.0 ± 285.0

B = 0.16
OLSF -I 65.8 ± 13.1 77.2 ± 15.7 63.3 ± 8.7 728.1 ± 20.7 835.3 ± 109.0 8680.3 ± 316.9
OLSF I-rand 240.5 ± 10.4 405.5 ± 7.8 186.6 ± 6.4 1532.0 ± 30.4 1935.5 ± 38.0 16087.6 ± 102.8
OLSF I-per 327.0 ± 14.1 529.6 ± 8.5 220.5 ± 7.0 1308.8 ± 34.5 1248.8 ± 96.3 9659.6 ± 1444.9

B = 0.64
OLSF -I 40.6 ± 4.3 31.3 ± 3.0 54.8 ± 3.1 683.7 ± 14.2 571.1 ± 15.3 9265.4 ± 115.4
OLSF I-rand 87.4 ± 7.0 79.2 ± 7.7 115.9± 8.5 1464.2 ± 33.4 1601.9 ± 23.4 15341.5 ± 71.0
OLSF I-per 63.4 ± 3.8 85.9 ± 6.3 60.0 ± 4.7 1244.8 ± 25.3 1003.7 ± 26.9 11325.6 ± 127.5

B = 1.00 OLSF I-all 57.5 ± 3.7 82.9 ± 6.4 55.3 ± 2.7 1236.1 ± 29.5 983.6 ± 21.7 10243.0 ± 109.8

rates than OLSF -I on all the 12 data sets, which shows that
our update is better than the Perceptron update.

To sum up, the results show that the sparsity strategy in
OLSF -I can significantly improve the performance and our
update strategy outperforms the Perceptron update strategy.

Fig. 5 shows the results of the online average error
rates during the online learning on the 12 data sets. We
can observe that the error rate of the algorithms decreases

rapidly and becomes stable. OLSF -I obtains the best results
on all the data sets, which OLISF -rand obtains the worst
results. The observation validate the results in Table 4.

To further examine the performance of these four algo-
rithms, Fig. 6 shows the performance of the four algorithms
with respect to different feature sets. The OLSF -I algorithm
outperforms the other three benchmark algorithms under
the same feature sets. In particular, OLSF -I significantly
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Figure 4. The average number of error predictions with respect to parameter C. We can choose the best parameter for the algorithms on the 12
UCI data sets.
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Figure 5. Comparison of the four algorithms under online learning setting. We can observe that OLSF -I obtains the best results on all the 12 data
sets because its sparsity strategy can significantly improve the performance and outperforms the Perceptron update strategy.
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outperforms the others when the subspace is very sparse,
i.e., the parameter B is very small. The results show that the
OLSF -I algorithm can gain better sparsity and OLSF -I per-
forms well under a sparse feature space. This encouraging
result verifies the efficacy of the proposed algorithms. Com-
pared to OLSF I-all that uses all features for learning, OLSF -I
achieves better results with sparser feature available.

6.3 Experiment III: Comparisons with the state-of-the-
art online feature selection algorithms

In this section, we compare the proposed OLSF -I and OLSF -
II algorithms with the Online Feature Selection algorithms
(OFS for short) proposed by J. Wang et al. [3] and its variant
OFSP , i.e., OFS with partial feature sets.

The OFS algorithm can access all the features for training
and efficiently identify a fixed number of relevant features
for prediction by using a gradient-based online learning up-
date strategy and an l2-norm projected truncation approach.
OFSP assumes only a partial number of features can be
selected based on a Bernoulli distribution and then used
for learning. The original codes of OFS and OFSP can be
obtained online http://OFS.stevenhoi.org/.

In this part, we set the parameter B = 0.1, i.e., we
use 10% features for learning at each round t. The tradeoff
parameter C ranges from 10−4 to 104. OLSF -I and OLSF -
II use 50% of the features for learning before 10% training
instances are observed. Then, the algorithm continuously
observes additional 10% features at each new data chunk.

Table 5 and Fig. 7 show the average number of error
predictions of the four algorithms. We can observe that
OLSF -I obtains the lowest error rate on the six data sets.
Moreover, OLSF -I significantly outperforms both OFS and
OFSP . When comparing OLSF -II with OFSP and OFS, we
can observe that OLSF -II performs better on the six data
sets than OFSP . OLSF -II also outperforms OFS on four
data sets. This is because OLSF -I and OLSF -II have better
update strategies than OFS and OFSP by adding a flexible
learning rate τt. We can also observe that OLSF -I and OLSF -
II are more stable because their standard deviations are
significantly lower than OFS and OFSP .

Table 5
Comparison with respect to the average number of error predictions.

Algorithms a8a german magic04
OFS 9424.4 ± 2545.8 432.8 ± 13.6 6023.4 ± 1342.3
OFSP 16931.0 ± 164.6 589.3 ± 33.9 10274.2 ± 172.1
OLSF -I 9322.7 ± 41.1 318.5 ± 7.3 5858.4 ± 29.6
OLSF -II 10709.3 ± 56.0 348.7 ± 11.6 5917.9 ± 55.9
Algorithms spambase splice svmguide3
OFS 913.1 ± 157.8 735.4 ± 68.3 400.9 ± 66.8
OFSP 1954.2 ± 78.7 1418.1 ± 70.5 701.5 ± 42.5
OLSF -I 616.6 ± 12.2 725.5 ± 18.8 374.2 ± 10.8
OLSF -II 690.7 ± 14.0 748.7 ± 16.0 382.1 ± 11.4

Furthermore, we compare the online prediction perfor-
mance in Fig. 8. We can observe that the error rate varies
at each iteration, where the curves of OLSF -I and OLSF -
II descend much faster than those of OFS and OFSP and
eventually become stable with better results.

Datasets

 

magic04svmguide3 german splice spambase a8a
0

500

1000

1500

2000

STSD−II
STSD−I

Figure 7. Comparison with respect to the average number of error
predictions. We can observe that OLSF -I and OLSF -II performs better
than OFS and OFSP by adding a flexible learning rate τt.

Table 6
Comparison with respect to the average number of error predictions

(B = 0.001).

Algorithms rcv1 URL
OLSF -I 239582.0±1104.2 599352.0±8888.1
OLSF I-all 235280.8±1459.4 607019.6±8051.6
OLSF I-rand 482310.1±443.5 1520743.8±12546.3
OLSF I-per 329572.6±1113.5 602546.8±9063.3

6.4 Experiment IV: Applications to real-world trape-
zoidal data streams

In this part, we evaluate the performance of the proposed
algorithms on two real-world data streams. The data sets
can be downloaded online [45].

The task of the URL dataset [46] is to detect malicious
URLs from Webpage streams using lexical and host-based
features of URLs. In the task, URLs arrive continuously
as streams, where each URL carries lexical and host-based
features that we have never seen before. The purpose is
to continuously learn a URL classifier that can identify
malicious Webpages from normal ones. Thus, the learning
problem can be formulated as online learning from trape-
zoidal data streams. The task of rcv1 text classification is to
categorize the JMLR articles into different groups. Because
new articles are published continuously with new research
topics, the problem can be also defined as online learning
from trapezoidal data streams.

Table 6 shows the experimental results of the average
number of error predictions of the four algorithms. We set
the parameter B = 0.001. The tradeoff parameter C = 0.1.
From the results, we can observe that OLSF-I that uses only
0.1% features performs similarly to OLSF-all that uses all
the features on rcv1 dataset. Fig. 9 shows the performance
of the algorithms with respect to the number of training
instances when B = 0.01, i.e., using 1% features to learn. We
can observe that OLSF -I, OLSF -all, OLSF -per converge fast
when the number of training instances increases. Moreover,
OLSF -I performs better than the other three algorithms and
converges to the lowest error rates.

6.5 Discussions

Multi-class classification. There are two methods One vs
Rest and One vs One [47] that can extend the proposed
algorithms to multi-class classification by converting the
problem to be multiple binary classification problems [48].
For a c-class problem in One vs One, it often requires to build
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Figure 6. Online classification accuracy with respect to the parameter B. We can observe that OLSF -I performs the best especially when the feature
space is sparse, i.e., B is very small.
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Figure 8. Comparison with respect to online prediction. We can observe that the curves of OLSF -I and OLSF -II descend much faster than those of
OFS and OFSP and eventually become stable with lower error rates.
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Figure 9. Performance on real trapezoidal data streams(B = 0.01).

c(c − 1)/2 binary classifiers. From the model formulation
perspective, we can directly extend the vector-based models
to matrix-based models.

Semi-supervised classification. In many applications,
labels are provided only for a few data points [49] [50]. Here,
pseudo-labels can be used to enlarge a labeled training set.
Specifically, we can use the classifiers trained from labeled
examples to predict class labels (pseudo-labels) of unlabeled
examples. Then, a semi-supervised learner can be built from
both labeled and pseudo-labeled examples.

7 CONCLUSIONS

In this paper we studied a new problem of online learning
from trapezoidal data streams where both data volume and
feature space increase by time. We proposed a new Online
Learning with Streaming Features algorithm (OLSF ) and its
two variants OLSF -I and OLSF -II as the solution. Theoret-
ical and empirical analysis have shown the performance of
the proposed algorithms.
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