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Abstract

Introducing recent advances in the machine learning techniques to state-of-the-art discrete choice models, we develop an
approach to infer the unique and complex decision making process of a decision-maker (DM), which is characterized by the DM’s
priorities and attitudinal character, along with the attributes interaction, to name a few. On the basis of exemplary preference
information in the form of pairwise comparisons of alternatives, our method seeks to induce a DM’s preference model in terms of the
parameters of recent discrete choice models. To this end, we reduce our learning function to a constrained non-linear optimization
problem. Our learning approach is a simple one that takes into consideration the interaction among the attributes along with the
priorities and the unique attitudinal character of a DM. The experimental results on standard benchmark datasets suggest that our
approach is not only intuitively appealing and easily interpretable but also competitive to state-of-the-art methods.

Index Terms—Preference Learning; choice modelling; multi-attribute
decision making; attitudinal character; attributes interaction

1 Introduction
Multinomial logit (MNL) [2] is the easiest and most
widely used discrete choice model based on the principle of
utility maximization. The main reason for its popularity
is the easy interpretability. The popularity of the MNL
model can be gauged through its number of applications
in the last two decades. It has been applied in severity
analysis [24], [25], [34], price optimization [26], revenue
optimization [42], location planning [27], choice analysis
problems [29]–[31], [33], [47], risk analysis [28], [35], [38],
[39], [43], [44], demand analysis [32], [36], data analyt-
ics [37], [40], [45], regression analysis [41], [48], [50], causal
inference in medicine [46], and forecasting [49], to name a
few.
Since the appearance of the MNL model, several ex-

tensions of the same have appeared in the literature.
The nested logit [11], [12], GEV [13], multinomial probit
(MNP) [14], paired combinatorial logit (PCL) [3], [4],
cross-nested logit (CNL) [5], continuous CNL model [6],
generalized nested logit (GNL) model [7], generalized
MNL (GenMNL) model [8], mixed multinomial logit [9]
and the fuzzy integral MNL model [10] are some of
the popular variants of the MNL model. Recently, Cho-
quet MNL (CMNL) and its extension attitudinal CMNL
(ACMNL) are proposed in [57] to consider interaction
among the attribute values. ACMNL model also considers
the DM’s attitudinal character, besides the interaction
among the attributes.
The logit models bascially attempt to model the unique

decision-making approach of a DM. In principle, we can
infer the decision making model of a DM with the knowl-
edge of the DM’s choices, which can be used to predict

the DM’s choices for any set of alternatives. The problem
of empirically inferring an individual’s choice behaviour
is a very interesting problem for economists, marketers,
managers, and computer scientists alike. In this regard,
seminal pieces of work have appeared in the literature.
For instance, in [52], the attribute threshold values are
investigated to determine whether the concerned alterna-
tives stand a chance of being chosen or not. Some market
response measures are calculated in [51] to infer the effect
of marketing on consumer choices. An approach to prefer-
ence segementation for identification of the determinants
of brand switching and the consumers’ response to price
changes, is developed in [53].

These studies, however, do not make use of the pref-
erences to learn a DM’s predictive decision model that
can be validated. In this regard, the work in [54] is
quite relevant, in which the parameters of MNL model are
estimated on the basis of rank ordered data of the form
a � b � c � . . ., where a, b, c denote alternatives, and �
denotes the relation preferred to, for a DM. Guaranteeing
the rank ordering, across the complete set of alternatives,
in this learning approach is quite cumbersome, which
limits its application in practice. More importantly, the
crucial information regarding the interaction among the
attributes, and the specific attitudinal character of a DM,
is ignored in these works. Also, most of these works
are based on data collected from survey questionnaire,
and hence these models are neither fully verifiable, and
automatized, nor very scalable either.

1.1 Motivation
We often find it easier to compare two options (on the
basis of their desired attributes), and choose one, rather
than assigning a quality score to all the available options,
at once. Based on such pair-wise choices, it is possible to
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understand an individual’s decision behaviour, and predict
his/her preferences. Predicting the preferences of others on
the basis of their choices is a key part of social cognitive
development [59]. Young children demonstrate the ability
to make inferences about the preferences of others based
on their choices. Decision making is a complex process that
is specific to an individual. It involves different alternatives
that are described by multiple attributes, and, many a
times, there exists an interaction among the attributes, i.e.
a few attributes, if present together in an alternative are
much more (or less) valuable, than being individually. Be-
sides, a DM’s attitudinal character (tolerance) inevitably
adds to this complexity. There are also inconsistencies in a
DM’s own decision behaviour, which add to the difficulty
of infering the DM’s choices.

We are motivated to somehow learn the unique decision
behaviour of a DM, considering these features of human
decision making. While, some of the existing methods
have focussed on one of these features, our appraoach
is distinguished by the fact that we consider all these
practical aspects of human decision making, at the same
time. In this regard, preference learning (PL) that is
emerging as a new subfield of machine learning and data
mining, appears very much interesting. PL is inspired from
the human way of choosing the better of the two options,
on the basis of desired attributes under consideration. We
are concerned with the construction of preference model
from a DM’s preferences, with PL providing the techni-
cal background for learning through preferences, deeply
rooted in our cognition. More specifically, we introduce
recent algorithmic advances in PL to the area of choice
modelling. While the choice models are concerned with
an empirical analysis of a DM’s choice behaviour through
a quantitative approach, machine learning is a scientific
discipline that explores different algorithms to learn from
data. In this sense, choice models and machine learning
can be argued to be complementary, which may aid each
other. Traditionally, choice models put much emphasis on
the interpretability and intuitive appeal. Machine learning,
on the other side, is more focusing on computationally
efficient algorithms for inducing predictive models, and
prediction performance is given more importance than the
interpretability.

Pointing to this interesting compelementarity, we feel
interested to develop a preference learning approach to in-
fer the parameters of the recent choice models. By this, we
mean the idea of applying machine learning methods for
a preference-information driven construction of state-of-
the-art discrete choice models. More concretely, we apply
PL techniques to learn the parameters of MNL, CMNL
and ACMNL models. It would be worthwhile to mention
that studies in [61]–[63] also deal with preferences-based
learning, but with a different context. All these works
are concerned with active learning in sequential decision
making settings. They put an emphasis on selectively
picking the training samples for the applications where
the observations are time-consuming and/or expensive. In
comparison, the present study considers all the training

samples, at once, and is simpler by design.

1.2 The Proposed Work
We divide the sample of alternatives in multiple random
preference pairs (of a DM) such that a � b. These
preference tuples form the training information for learn-
ing a DM’s preference model. In essence, we induce the
behavioral model: Choose alternative a iff Ua > Ub. Both
discrete choice models and PL are concerned with the
construction of this kind of preference models of the form
a � b. This commonality has inspired us to combine
these two disciplines together to complement each other.
By this, we mean the idea of applying PL-based machine
learning methods for a preference-information driven con-
struction of choice models. What we consider specifically
interesting in this regard is the combination of the recent
choice modelling methods and machine learning algorithms
to infer a DM’s choice behaviour from his/her preferences.
Concretely, we use the learning-to-rank approach against
the background of PL for the induction of recent choice
models.

The paper is outlined as follows: Section 2 sets the
background for the paper with an overview of the related
concepts. Section 3 is concerned with modelling of the
human decision process that is unique to an individual.
In Section 4, we present a preferences-based approach to
learn some predictive decision models. Section 5 gives the
details of an experimental study to empirically validate
the proposed learning approach. In Section 6, we actually
learn the predictive models through an application of
the proposed approach on some real datasets. Section 7
concludes the study.

2 Background
2.1 MNL Model
MNL model postulates that each alternative can be seen as
a bundle of attributes. A DM makes choices among various
alternatives so as to maximize the utility, i.e. choosing the
alternative whose attributes collectively yield more utility
than those of all other alternatives. Mathematically, it
postulates that a DM derives from an alternative ai a
utility value Ui, given as:

Ui = Vi + εi

where, εi is the unestimated utility, and Vi is the represen-
tative or systematic utility that is based on the observed
attribute values and the attribute weight vector. If the
value of mth attribute of ai is, say a

(m)
i , and β(m) is

the corresponding weight that the DM attaches to mth

attribute. Then

Vi =
M∑
m=1

β(m)a
(m)
i (1)

where, M is the total number of attributes. It has been
shown in [2] that probability Pi of an alternative ai
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yielding the highest utility to the DM, and thus is chosen,
is given by

Pi = exp(Vi)∑K
i=1 exp(Vi)

=
exp(

∑M
m=1 β

(m)
i a

(m)
i )∑K

k=1 exp(
∑M
m=1 β

(m)
k a

(m)
k )

(2)

The weight vector can be seen as the DM’s tastes for
the attributes, and it characterizes the DM’s unique choice
behaviour. The net utility derived from an alternative is
computed as a function (weighted average) of the attribute
values and the attribute weight vector. While MNL model
reflects, to some extent, a DM’s priorities (or the attribute
weights), the individualistic characteristics such as the
degree of interaction among the attributes, and a DM’s
attitudinal character1 remain unrepresented. In order to
address these drawbacks, MNL model is extended as
Choquet MNL (CMNL) and attitudinal Choquet MNL
(ACMNL) models in [57]. Before we delve upon CMNL
and ACMNL models, we signify the characteristics of
these models such as attributes interaction and a DM’s
attitudinal character in modelling the real world decision
making.

2.2 Attributes Interaction
The conventional discrete choice models (such as MNL and
its extensions) depend only on the attribute values and the
attribute weight vector. In practice, however, there often
exists some interaction among the attributes. That is, the
attributes may not always be additive as assumed in the
existing logit models of discrete choice. There may exist
a synergy or redundancy among the attributes, and hence
the importance (weight) depends upon the particular com-
bination of attributes. Suppose, for instance, a program-
ming task requires a mix of language and programming
skills from the sets A = {French, German, English}, and
B = {Java, c++}. Hence, the presence of the skills in
combination from both A and B is more valued than
their individual presence. If we represent the importance
of the set of elements A as µ(A), then formally, a positive
interaction can be expressed as: µ(A∪B) > µ(A) +µ(B).
In a situation, when a combination of skills from the

two sets A and B is utmost essential, then µ(A ∪ B)
can be high although µ(A) = µ(B) = 0, suggesting that
the mere presence of either of the skills from A and B
is unacceptable, as far as the task at hand is concerned.
Likewise, a negative interaction may also exist among
the attributes, when the attributes are redundant. For
example, if C = {J2EE, c#}, then B and C may be
redundant, and their utilities diminish in a combination.
That is, µ(B ∪ C) < µ(B) + µ(C). These considera-
tions motivate the use of the non-additive measures, also
called as capacities or fuzzy measures [55] in the discrete
choice models that assume that the attributes are always

1. The degree of conjunctiveness (and-ness) or disjunctiveness (or-
ness) in the aggregation of the attribute values

additive. In this regard, Choquet integral (CI) [56] is
an important aggregation function with the ability to
represent interaction among the attributes.

2.3 Individual Attitudinal Character
Another drawback of the existing discrete choice models
is the fact that it is very difficult to consider a DM’s
individual attitudinal character in arriving at the choice
probabilities. The weighted mean, used in the discrete
choice models, has no provision to consider the attitudinal
character. That is, the aggregation result of the weighted
averaging operator does not depend on the DM, and is only
a function of the attribute values and the attribute weight
vector. In the real world, however, the human aggregation
is a complex process, and a DM’s attitudinal character
plays an important role in the same. A tolerant DM may
be happy with just one of the attributes with an ‘or-like’
(disjunctive) behaviour, while his/her less tolerant coun-
terpart may emphasize upon satisfying all the attributes
with an ‘and-like’ (conjunctive) aggregation tendency. In
other words, every individual displays a varying degree
of compensation in the aggregation process. The more
tolerant a DM is, the more is the compensation in the
aggregation process, or it is more ‘or-like’ (disjunctive).

2.4 Choquet Multinomial Logit Models
Choquet multinomial logit (CMNL) model extends MNL
model to cater to the interactive attributes. It is based on
the concepts of game and capacity, defined on a vector
X = {1, . . . ,M}. A game µ on X is a set function,
µ : 2X → R satisfying µ(∅) = 0. For any two A,B ⊆ X,
a capacity (or fuzzy measure) µ on X is a game on X
satisfying µ(A) ≤ µ(B) whenever A ⊆ B. In particular, it
follows that µ : 2X → [0,∞). A capacity µ is normalized,
when µ(X) = 1. We consider a set of K alternatives
characterized by M attributes.

Choquet multinomial logit (CMNL) model has the rep-
resentative utility Vi given as a function of fuzzy measure
µ, computed through CI operator, and is shown as

Vi = CIµ =
M∑
m=1

a
(σ(m))
i (µ(B(m))− µ(B(m+1))) (3)

where, µ : 2X → [0, 1] is a fuzzy measure on a set
of M attribute values of ai, σ(m) indicates a permuta-
tion on M such that a(σ(1))

i ≤ . . . ≤ a
(σ(M))
i ; B(m) =

{σ(m), . . . , σ(M)}; and B(M+1) = ∅. The form in (3) can
be simplified using Möbius transform as follows:

CIµ =
∑
T⊆X

m(T ) min
{
a

(m)
i | m ∈ T

}
(4)

where, min
{
a

(m)
i | m ∈ T

}
:= min{

m|m∈T
}{a(m)

i }, µ denotes

fuzzy measure, and mµ refers to Möbius transform. For
all B ⊆ X, Möbius transform mµ of measure µ is defined
as follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) (5)
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The value mµ(A) can be interpreted as the weight that is
exclusively allocated to the subset of attributes A, instead
of being indirectly connected with A due to the interaction
with other subsets. The choice probability in CMNL model
is thus given as:

Pi = exp (Vi)∑K
k=1 exp(Vk)

=
exp

(∑M
m=1 a

(σ(m))
i

(
µ(B(m))− µ(B(m+1))

))
∑K
k=1 exp

(∑M
m=1 a

(σ(m))
k

(
µ(B(m))− µ(B(m+1))

))
=

exp
(∑

T⊆Xm(T ) min
{
a

(m)
i | m ∈ T

})
∑K
k=1 exp

(∑
T⊆Xm(T ) min

{
a

(m)
k | m ∈ T

})
(6)

where, min
{
a(m) | m ∈ T

}
:= min
{m∈T}

{a(m)}.

2.5 Attitudinal Choquet Multinomial Logit Model
ACMNL model considers the varying attitudes of the
DMs, along with the attributes interaction. It has the
representative utility Vi computed as a function of an
attitudinal parameter λ, fuzzy measure µ and the attribute
values through ACI operator [58], shown as:

Vi = logλ

(
M∑
m=1

(
µ(B(m))− µ(B(m+1))

)
λa

(σ(m))
i

)
=
∑
T⊆X

m(T )λmin
{
a

(m)
i |m∈T

} (7)

where, λ ∈ (0,∞] indicates the DM’s level of
disjunctiveness. The more it is, the more is the output
closer to max{a(m)}Mm=1. Depending on the different DMs
behavioural specifications represented by λ, one can have
a range of ACMNL models. ACMNL model caters to
the situations with interactive attribute values and the
varying attitudinal characters of the DMs. Accordingly,
the choice probability by ACMNL model is given as:

——————————————————————————————————————————————————

Pi =
exp

(
logλ

(∑M
m=1

(
µ(B(m))− µ(B(m+1))

)
λa

(σ(m))
i

))
∑K
k=1 exp

(
logλ

(∑M
m=1

(
µ(B(m))− µ(B(m+1))

)
λa

(σ(m))
k

))
=

∑M
m=1

(
µ(B(m))− µ(B(m+1))

)
λa

(σ(m))
i∑K

k=1
∑M
m=1

(
µ(B(m))− µ(B(m+1))

)
λa

(σ(m))
k

=
∑
T⊆Xm(T )λmin

{
a

(m)
i |m∈T

}
∑K
k=1

∑
T⊆Xm(T )λmin

{
a

(m)
k |m∈T

}
(8)

——————————————————————————————————————————————————-

3 Modelling Human Decision Process
In this section, we highlight the advantages of ACIµ,λ
operator in modelling a real world human decision. While
one DM (AND-like) may stress on meeting all the at-
tributes, another (OR-like) may be fine with only a few
of the attributes meeting the expectations. We model a
decision making mind in terms of the parameters µ and λ
of ACIµ,λ operator, indicating the attributes interaction
and attitudinal character, respectively. ACIµ,λ helps to
simultaneously model a DM’s level of conjunctiveness (or
disjunctiveness) in the aggregation process along with the
criteria interaction.

We consider a potential house-buyer who makes a choice
considering a pair of interactive attributes. He would like
to purchase a house with at least 4 rooms, and 2 garages.
If an alternative has any of the attribute’s value below the
corresponding threshold, then this alternative would re-
main out of purview. We generate a set of 200 data points
randomly, each indicating an available house for purchase,
with attributes’ values on a scale of [1 : 8]× [1 : 4].

In order to understand the effect of the buyer’s atti-
tudinal character on his decision behaviour, we generate

decision boundaries for this buyer at different values of λ.
The attribute values are normalized through linear scaling
on an interval of [0, 1], and the buyer’s net evaluation for
each of these alternatives is determined throughACI oper-
ator at λ = 0.9, 1+, 5, 10, with a 2-fold cross validation. A
graphical illustration of the buyer’s decision boundaries is
given in a 3-dimensional plot in Figure 1. The aggregation
values shown are an average of the results obtained in
20 iterations. We take the normalized values of number
of rooms and the number of garages on X and Y axes
respectively, while giving the decision boundary on the Z-
axis. If the evaluation score for an alternative is more than
0.5, then it would be a prospective buy, else not.
We note that the decision boundaries obtained at λ =

5, 10 are much more informative and complex than that
obtained at λ = 1+ (CI operator), which is reflective of
a better consideration of the buyer’s specific attitudinal
character in the case of ACI. To some extent it can also
be explained by ACI operator’s flexibility to rescale the
original feature space, which helps in better modelling
the utility that an attribute value holds for the DM. In
comparison, CI operator, though models the criteria inter-
action, takes a neutral (constant) attitudinal character for
each DM. We perform the same exercise using CI, and the
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Fig. 1: The decision boundaries obtained with ACIµ,λ operator
at different λ values. X-axis indicates the number of rooms,
while Y-axis indicates the number of garages. It depicts the
decision boundaries obtained with 0.5 as a threshold for the
attitudinal Choquet integral, i.e. when the output is greater
than 0.5 the decision is ‘buy’ otherwise ‘not buy’. As seen, for
different values of λ, ACI serves more flexible decision bound-
ary compared to the conventional Choquet integral (λ = 1+).

decision boundary obtained is the same as that obtained
with ACI at λ = 1+. We observe that λ parameter in ACI
leads to providing multiple evaluation scores for the same
set of input attributes, thereby better modelling a DM’s
decision behaviour.

To the best of our knowledge, none of the existing
operators take account of both the attributes interaction
and the attitudinal character, at the same time. Perhaps
this is the reason behind the conventional operators failing
to give an aggregation output anyway close to the actual
aggregated evaluation of attributes by the subjects in [64]–
[66]. The flexibility on account of extra parameter λ and
a consideration of attributes interaction through µ in
ACI would be potentially of help in inferring the actual
aggregation behaviour of the subjects. 2

In the next section, we give an approach to empirically
learn the parameters µ and λ from the given data. We
verify the proposed approach in ascertaining the ability of
ACI operator in modelling human decision by applying
our approach to a set of datasets, in Section 5.

4 The Proposed Learning Model
4.1 The Basics of Our Learning Approach
In this section, we present a preferences-based approach
to learn the parameters λ and µ of ACMNL model. In the
real world, typically a DM faces a set of options (alter-
natives), and the DM chooses the alternative that yields
the maximum utility to him by virtue of its attributes.
For instance, a buyer chooses which product(s) to buy
among several competing ones; an organization needs to
determine the most profitable products to produce, best
production technology, or the best supplier. The present
work is about inferring a DM’s predictive choice model.
We give an outline of our work as follows:
• We observe a DM’s pair-wise preferences of alterna-

tives along with their corresponding attribute values.
• Through a collection of such preferences, we learn

the parameters of MNL, CMNL and ACMNL models.

2. For instance, the number of rooms (3 or 4) is instrumental in
deciding the buyer’s choice in this particular example, and leads to
his decision (buy or not buy). From the buyer’s point of view, there
is a big difference in the utility derived from a house with 3 rooms
and that with 4 rooms, or similarly between the houses with 1 and
2 garages.

Since, we deploy a PL-based learning methodology, we
refer to them as PL-MNL, PL-CMNL, PL-ACMNL,
respectively, in the sequel.

• Our learning objective is accomplished by using
the learning-to-rank machine learning methods. Our
model is probabilistic and, therefore, tolerant towards
mistakes, incorrect preference statements, or varia-
tions in the DM’s own attitudinal character.

• Having learned the DM’s preference model, we predict
a ranking for any new set of alternatives, a comparison
of which with the ground-truth ranking offers a means
to validate the performance of the proposed approach.

• We apply our learning approach on a set of 12
benchmark datasets. The prediction performances of
PL-MNL, PL-CMNL, PL-ACMNL models are com-
pared with those of state-of-the-art methods such
as RankSVM, TOPSIS, and polynomial kernel as
baselines.

We now present the settings of our learning model. We
consider to be given a set of K alternatives, each of
which is characterized by M attributes. An alternative a
is represented as:

a =
(
a(1), . . . , a(M)

)
∈ RM ,

where a(m) is the value of mth attribute of a. Each of
the values, comprising vector a are normalized values,
which can be obtained through either linear scaling of
the attribute values in the interval [0, 1] (as shown in
(37)), or through standardization appraoach (refer (38)).
We consider that these values are monotone in the sense
of the-higher-the-better, which leads to Pareto dominance
relation:

a � b if ∀m : a(m) > b(m) (9)

where, a � b implies that a is preferred to b. However,
very few instances may be found satisfying Pareto dom-
inance, as shown in (9). Therefore, a refinement of this
relation is sought to determine the total order (ordinal
ranking) of the set of alternatives (or atleast the best
alternative). Each DM has a unique model to determine
the best alternative. Our objective is to learn the choice
model of a DM from the DM’s observed pair-wise choices.

To this end, we fit MNL, CMNL and ACMNL models to
the observed preference data of the form a � b. That is,
given the preference tuples of the form (a, b), we learn the
parameters of MNL, CMNL and ACMNL models, specific
to the DM. We randomly divide the set of alternatives A
into two halves Atrain and Atest, such that Atrain is used
for training, and Atest is used as the testing dataset. From
Atrain, we select a set S = {s1, . . . , sN} of N pairwise
preferences of the form:

sn : an � bn, (10)

where an, bn ∈ Atrain. The set S = {s1, . . . , sN} con-
stitutes the training information. We infer β in MNL
model, λ in CMNL model and a pair of λ and µ =(
µ(B(1)), . . . , µ(B(M))

)
∈ RM in ACMNL model such that

manish
Highlight

manish
Highlight

manish
Highlight
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the preference relations of the form sn : an � bn observed
in Atrain are preserved.

4.2 PL-MNL Model
MNL model characterizes a DM’s choice behaviour
through the attribute weight vector β, specific to a DM.
The unique choice model of a DM is specified by β. Our
learning model takes a DM’s preference choices of the form
a � b, as exemplary training information. Concretely, for
the preference pair (a, b), our decision model is:

P (a � b|β) = exp(Va)
exp(Va) + exp(Vb)

, (11)

where, Va = V (β,a) = β.a =
∑M
m=1 β

(m)a(m). Here,
{a(m)}Mm=1 values, comprising a are the normalized values.
For the given preference pairs {sn : an � bn}n, we learn
β such that the relation a � b is preserved.

Our learning model is bascially a variant of Bradley-
Terry model [60], with a logistic (sigmoidal) link function.
We specify the ‘utility’ of a decision alternative a as
a function (weighted average) of the attributes and the
corresponding weights, leading to a model of the form,
shown in (11).

The advantages of this model is its simplicity, easy in-
terpretability, and high computational efficiency. By this,
we essentially mean that the probability of the preference
a � b increases with increasing attribute values of a
and decreasing attribute values of b. In the extreme cases

where Va → 0 or Vb → ∞, the probability of choosing a
goes to 0. Similarly, if Va = Vb, the DM is supposed to
choose one of the two randomly.

We accomplish our objective of learning β through the
maximum likelihood estimation (MLE). The probability
of the complete sample S is given by:

P (S|β) =
N∏
n=1

P (an � bn|β)

=
N∏
n=1

exp
(∑M

m=1 β
(m)a

(m)
n

)
exp

(∑M
m=1 β

(m)a
(m)
n

)
+ exp

(∑M
m=1 β

(m)b
(m)
n

)
(12)

This probability serves as a point of departure for the
estimation of β. The likelihood function for β, obtained
with MLE inference is given by

L(β) = P (S|β). (13)

The maximum likelihood estimator β∗ maximizes the
likelihood function L(β) such that

β∗ = arg max
β∈RM+

L(β) (14)

Since, log function is monotonically related to its
arguments, we take the logarithm of the likelihood
function in (13) for the computational convenience.
Towards finding the ML estimator β∗, we minimize
the negative logarithm. Thus our learning problem is
essentially an optimization problem that is given as:

—————————————————————————————————————————————————–

−`(β) = − log(L(β)) = −
N∑
n=1

Van +
N∑
n=1

log (exp (Van) + exp (Vbn)) −→ min

=⇒ −`(β) =

−
N∑
n=1

M∑
m=1

β(m)a(m)
n +

N∑
n=1

log
(
exp

(
M∑
m=1

β(m)a(m)
n

)
+ exp

(
M∑
m=1

β(m)b(m)
n

))
−→ min

(15)

—————————————————————————————————————————————————–

4.3 PL-CMNL Model
In practice, often there exists a positive or negative inter-
action among the attributes, and a DM’s choice behaviour
is shaped by the attributes interaction. CMNL model
explicitly considers the attributes interaction through CI
operator. We recall from (3) and (4) that Va in CMNL
model is given as:

Va = CIµ(a) =
∑
T⊆X

m(T ) min
{
a(m) | m ∈ T

}
(16)

We consider a DM’s latent utility function u(·) that specif-
ically determines the DM’s choice behaviour, and shown
as:

u(a) = CIµ(a) (17)
Given a set of pairs P =

{
(an, bn) | lan > lbn, 1 ≤ n ≤ N

}
,

where lan and lbn are the labels for an and
bn respectively, we learn the vector M =
{m(T )},∀T ∈ X of CIµ operator such that

—————————————————————————————————————————————————–∑
T⊆X

m(T ) min
{
a(m) | m ∈ T

}
>
∑
T⊆X

m(T ) min
{
b(m) | m ∈ T

}
(18)

——————————————————————————————————————————————————
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We accomplish this objective by using the empirical risk
minimization approach to find the optimal parameters.
More concretely, we maximize the margin between the
preferred alternatives to the non-preferred ones.

Let M denotes the margin (to be maximized), ξai ’s and
ξbi ’s be the slack variables related to soft margin, and γ
is a trade-off parameter that controls the flexibility of the
model, i.e. the higher the γ value, the more are the slacks
punished. Then our constrained optimization problem to
be solved can be formalized as follows:

`(M) = max
M ,ξ1,...,ξN

M − γ

|P|
∑

(an,bn)∈P

(
ξan + ξbn

)
(19)

s.t.
CIµ(a)− CIµ(b) > M − ξan − ξbn (20)

∀(an, bn) ∈ P
ξan ≥ 0, ξbn ≥ 0 ∀n ∈ {1, . . . , N} (21)∑
T⊆X

m(T ) = 1 (22)∑
B⊆A

m(B) ≥ 0 ∀A ⊆ X (23)∑
L⊆A

m(L) ≤
∑

L⊆B

m(L ) ∀A ⊂ B ⊆ X (24)

4.4 PL-ACMNL Model

ACMNL model extends CMNL model with a consideration
of a DM’s attitudinal character, besides the attributes
interaction. We recall from (7) that the representative
utility is given as:

Va = logλ

(
M∑
m=1

(
µ(B(m))− µ(B(m+1))

)
λa

(σ(m))

)
=
∑
T⊆X

m(T )λmin
{
a(m)|m∈T

}
(25)

where, the DM’s choice probability depends on µ and λ,
both of which are specific to the DM.
Here, we model u(.) through ACI operator. That is:

u(a) = ACIµ,λ(a) (26)

For a given P, we learn the parameters µ and λ of ACIµ,λ
operator such that∑
T⊆X

m(T )λmin
{
a(m)|m∈T

}
>
∑
T⊆X

m(T )λmin
{
b(m)|m∈T

}
(27)

We use the empirical risk minimization approach, and
maximize the margin between the preferred alternatives
to the non-preferred ones. The constrained optimization
problem is formalized as follows:

`(M) = max
M ,ξ1,...,ξN

M − γ

|P|
∑

(an,bn)∈P

(
ξan + ξbn

)
(28)

s.t.
ACIµ,λ(a)−ACIµ,λ(b) > M − ξan − ξbn (29)

∀(an, bn) ∈ P
ξan ≥ 0, ξbn ≥ 0 ∀n ∈ {1, . . . , N} (30)
λ > 0, λ 6= 1 (31)∑
T⊆X

m(T ) = 1 (32)∑
B⊆A

m(B) ≥ 0 ∀A ⊆ X (33)∑
L⊆A

m(L) ≤
∑

L⊆B

m(L ) ∀A ⊂ B ⊆ X (34)

4.5 Regularization
In order to prevent overfitting, we regularize our like-
lihood function by introducing an additional parameter
α ≥ 0. The regularization method is a standard means
for controlling the capacity of a model and, therefore, to
avoid a possible over-fitting of the data. We observe that
maximizing regularized version of our likelihood functions
proved to be useful. It also helped to deal with the cases
where MLE did not return a unique maxima by restricting
the norm of the parameter vector.

A common regularization approach in machine learning
is to minimize objective functions of the form

f(θ) = e(θ) + α.c(θ). (35)

where θ is a parameter vector specifying the learning
model, e(θ) is the loss or error function giving a measure
of the fitment of the model specified by θ with the data,
c(θ) denotes a measure of the model capacity, (.) is either
the L1 norm or the squared L2 norm, and α is a free
parameter that needs to be tuned empirically (typically
by cross-validation).

The regularization parameter α is introduced to achieve
a trade-off between generalization and the accuracy of the
learning model, i.e. to accurately reproduce the training
data while avoiding overly complex models. In our case,
the model error is given as the (negative) likelihood func-
tion (e(.) = −`(.)). Out of L1 and L2 norms, the use
of standard L2 regularization turned out to be better.
Thus our regularized objective function to be minimized
is shown as:

f(.) = −`(.) + α ‖.‖2
. (36)

For the implementation of the same, we use fmincon
function in the optimization toolbox of MATLAB.

5 Experimental Study
We test the validity of our learning approaches through an
experimental study in the context of learning-to-rank. We
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compare the results obtained with PL-MNL, PL-CMNL,
and PL-ACMNL models, with three standard and popular
learning-to-rank approaches as baselines, namely, ranking
support vector machine (RankSVM) [17], TOPSIS (short
for ‘technique for order preference by similarity to ideal
solution’) [16], and polynomial kernel logistic regression.

5.1 Data
Since the proposed method positions itself at the cross-
junction of choice modelling and machine learning, its
evaluation requires the datasets meeting the requirements
of both these disciplines. The learning-to-rank approach
that is commonly used in both machine learning as well
as choice models facilitates the empirical validation of our
model. For the task, we require the data in the form of
multiple instances, with each instance a vector of multi-
attribute values, along with the corresponding ordinal
ranking by the DM. More importantly, the attribute val-
ues should have a monotone influence on the ranking of
an instance. The real-world datasets meeting these twin
requirements are quite difficult to find.

Fortunately, we could make use of the same datasets
that have been considered in a learning model in [18].
The datasets give the ordinal rankings for alternatives
and are monotone. The datasets could be found in UCI
repository [19] and Weka machine learning framework [20].
Besides, the real world datasets about the evaluation of
mathematical journals [21] and houses in the city of Den
Bosch [22] are also used. We give a summary of the
datasets in Table 1. For a detailed description of the
datasets, we refer to [18].

Each of these datasets are characterized with the ordinal
class information that is used as the ground truth in our
model. By ordinal class, we mean that for an alternative
ak, the actual rank rk is a label (class) l(ak) ∈ L =
{l1, l2, . . . , lE}. The labels (for example, 1, 2, . . . ,) are such
that it is possible to sort them as l1 ≤ l2 ≤ . . . ≤ lE from
the worst l1 to the best lE . The presence of labels helps
to generate the pairwise preferences in our experiments.

As a preprocessing step, we normalize the data to ensure
commensurability in the attribute values. The data is
normalized by using two approaches. The first one is the
linear scaling of the attribute values to the unit interval.
Each attribute value a(m),m = 1, . . . ,M is scaled as

a(m) = a(m) − L(m)

U (m) − L(m) ∈ [0, 1] (37)

where, L(m) and U (m) denote, respectively, the largest and
smallest values among the attribute values a(m),∀a ∈ A.
In the second approach that is quite common in statistics,
we standardize the data to have zero mean and unit
variance. To this end, a(m) is replaced by

a(m) = a(m) − µ(m)

σ(m) (38)

where, µ(m) and σ(m) denote, respectively, the mean and
standard deviation in the attribute values a(m),∀a. For

the purpose of our experimental study, we tried both
normalized and standardized data, and found the latter
to be more suitable.

5.2 Baseline and the Proposed Methods
RankSVM: RankSVM [17] is a state-of-the-art method in
the field of learning-to-rank. Similar to the proposed PL-
CMNL and PL-ACMNL models, it is a pairwise method
based upon large margin maximization. The central prin-
ciple in this method is to minimize the regularized margin-
based pairwise loss. As in the case of our ranking model,
RankSVM model is also constructed from a set of pref-
erence pairs of the form s : (a � b) ∈ S, where
a, b ∈ Atrain. Once, such preference pairs are obtained,
a scoring function u(.) is induced from the preference
pairs sn, n = 1, . . . , N , preserving the preference relations
sn : an � bn|Nn=1. That is,

∀(an, bn) ∈ S : u(an) > u(bn) (39)

We implement rankSVM model by minimizing the ob-
jective function:

1
2‖β‖

2 + γ
∑
sn∈S

cξn

s.t. : β|an − bn| ≥ 1− ξn, ∀{sn : (an, bn)}
ξn ≥ 0

(40)

where, ‖β‖2 contributes to maximizing the margin, c
is a constant, ξn is a slack variable corresponding to
preference pair sn, and γ is the tradeoff parameter between
the margin size and magnitude of error. The pairwise
difference vectors |an− bn| constitute the support vectors
that satisfy the constraints, as given in (40). We have
chosen RankSVM model as a baseline, mainly because
of its popularity as a preferred preference model, high
prediction performance, and the commonalities with the
proposed model.

The proposed PL-based learning models and RankSVM
both use the pairwise preferences as the training infor-
mation. Secondly, while RankSVM is based upon mar-
gin maximization adding to the generalization in the
learning process, PL-MNL, PL-CMNL and PL-ACMNL
are probabilistic in nature based upon maximizing the
probability for (a � b). More specifically, we have used
the spider implementation3 of RankSVM with a linear
kernel. An important parameter in the RankSVM model
is the regularization parameter that is selected from
{10−6, 10−5, . . . , 106} by means of an internal 5-fold cross
validation on the training data.

TOPSIS: Technique for Order Preference by Similar-
ity to Ideal Solution (TOPSIS) [16] is a state-of-the-art
method from multi-attribute decison making (MADM)
area, and is used to solve the choice and ranking problems.
It helps to arrive at a total order (ranking) for a set of
alternatives A. In this method, one derives the positive
ideal solution (PIS) and a negative ideal solution (NIS)

3. http://people.kyb.tuebingen.mpg.de/spider/
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TABLE 1: Data sets and their properties

data set #instances #attributes #classes source
Scientific Journals (SJ) 172 5 4 [21]
CPU 209 6 4 UCI
Employee Selection (EMP) 488 4 4 WEKA
Mamographic (MAMMO) 830 5 2 UCI
Lecturers Evaluation (LEC) 1000 4 5 WEKA
Car Evaluation (CAR) 1728 6 4 UCI
Den Bosch (DB) 120 8 2 [22]
BreastCancer (BC) 286 9 2 UCI
Employee Acc/Rej (EMP) 1000 4 9 WEKA
Auto MPG (AUTO) 398 8 6 UCI
Social Workers (SW) 1000 8 5 WEKA
Concrete Compressive Strength (CONC) 1030 8 6 UCI

such that the benefit attributes attain the maximum
values (among all the respective evaluations of various
alternatives) while the cost attributes attain the minimum
in PIS, and the vice-versa in NIS. The various alternatives
are ranked such that the best alternative has the shortest
distance from PIS and the farthest distance from NIS
concurrently.

In our implementation of TOPSIS method, we perform
the following steps.

1) The attributes values from Atrain are standardized
as per (38).

2) Using the normalized data, we learn the ideal solu-
tions for Atrain. By learning, we mean that we look
for the maximum and minimum values in Atrain.
For example, if we are having 5 attributes, and the
maximum values for these 5 attributes across all the
alternatives in Atrain are 1, 1, 0.90, 1, 0.95, then PIS
would be (1, 1, 0.90, 1, 0.95). Naturally, the learnt
PIS and NIS are different in each iteration depending
upon the random selection of alternatives in Atrain
and Atest. Similarly, NIS is computed with minimum
values in Atrain.

3) The distance of alternative ai in Atest are computed
from the learnt PIS and NIS, and are ranked in the
increasing order of the closeness coefficient, given as

Di = ‖ai − a⊕‖
‖ai − a⊕‖+ ‖ai − a	‖

where, ‖.‖ denotes the 2-norm distance, and a⊕ and
a	 represent PIS and NIS, respectively. Di acts as
a kind of scoring function u(ai).

Polynomial Kernel: The proposed learning approach,
based on CMNL and ACMNL models can be seen as
an extension of the conventional logistic regression, with
the difference that while the logistic regression is linear
in the input attributes, CMNL and ACMNL models are
more flexible with their ability to model the non-linear
dependencies between the attributes, as well. Hence, in
order to study the increased flexibility in the proposed

approach, we consider as a baseline, the logistic regression
with polynomial kernel (POLY-kernel) that can also model
non-linear dependencies between variables. The degree of
the POLY-kernel is taken as 2, so as to consider low level
interactions too.

RBF-kernel: Since, radial basis function (RBF) is able
to capture interactions of the higher order through a
Gaussian function, and is very flexible, it is a natural
choice as a baseline. Like POLY-kernel, RBF also captures
the non-linear dependencies in the input attributes. The
RBF-kernel function is given as:

K(x,x∗) = exp
(
−‖x− x

∗‖2

2σ2

)
. (41)

The parameter σ ∈ R+ can drastically change the kernel
characteristics. For a large value of σ, RBF-kernel behaves
almost linearly, whereas for the smaller values, it yields a
non-linear decision boundary. There is a considerable influ-
ence of σ on the overall model, and typically it is adjusted
before the learning process. In our implementation, we
use a nested cross validation and have chosen the optimal
values among Σ = {10−3, 10−2, 10−1, 100, 101, 102}.

PL-MNL: Our model takes as input a subset of al-
ternatives (for example, a set of all books or movies),
Atrain → A, and produces as output the decision making
model of the DM in the form of the β vector that can be
deployed to predict the ranking (total order) of any set of
new alternatives, preserving the preference orders:

a � b⇔ β.a ≥ β.b
=⇒ u(a) ≥ u(b), ∀s : (a, b) ∈ S

Here, β performs the same role as the scoring function
u(.).

PL-CMNL and PL-ACMNL: Our model takes
as input a subset of alternatives (for example, a set of
all books or movies), A → Atrain, and gives the DM’s
decision model specified by µ and λ, which can be
deployed to predict the ranking (total order) for any set
of new alternatives, preserving the preference orders:

——————————————————————————————————————————————————–

a � b⇐⇒
∑
T⊆X

m(T ) min
{
a

(m)
i | m ∈ T

}
>
∑
T⊆X

m(T ) min
{
b

(m)
i | m ∈ T

}
=⇒ u(a) ≥ u(b),∀s : (a, b) ∈ S in PL-CMNL model and,
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a � b⇐⇒
∑
T⊆X

m(T )λmin
{
a

(m)
i |m∈T

}
>
∑
T⊆X

m(T )λmin
{
b

(m)
i |m∈T

}
=⇒ u(a) ≥ u(b),∀s : (a, b) ∈ S in PL-ACMNL model

——————————————————————————————————————————————————–

The scoring function u(.) is specified bym(T ) in CMNL
model and (m(T ), λ) in ACMNL model.

6 Empirical Evaluation
6.1 Experiment Steps
We implement TOPSIS, RankSVM, PL-MNL, PL-CMNL,
and PL-ACMNL methods on a set of 12 datasets shown
in Table 1 by performing the following steps:

1) First, the data is randomly divided into two halves
Atrain and Atest, for training and testing.

2) From Atrain, N = 500 preference pairs of the form
S = {sn : (an � bn)}N=500

n=1 are generated through
random sampling, which constitute the training in-
formation. For a fair comparison, it is ensured that S
remains the same across the methods, in an iteration.

3) The learning models are induced on the set S.
4) On the basis of the corresponding scoring function

learnt for each of the methods, the ranking of alter-
natives in Atest is predicted.

5) The performance accuracy value for each of the
methods is arrived at by comparing the predicted
ranking with the ground truth ranking through C-
index [23] (discussed next).

6) This whole procedure is repeated 100 times.
7) The average accuracy value along with the respective

standard deviation is reported in Table 2.

6.2 Performance Evaluation
The ranking of an alternative a ∈ Atest is predicted
based upon the corresponding u(a), induced for each of
the methods. The performance of a method is evaluated
by comparing the predicted rankings for the alternatives
in Atest with the ground truth rankings. The extent of
this agreement would give the performance measure for
a method. Since, we have the ground truth for Atest in
the form of labels (classes) that can be linearly ordered,
an ordered partition of Atest can be generated as Atest =
{A1,A2, . . . ,AE}, where Ai = {ak ∈ Atest | rk = li}.
Based upon the concordance of actual and predicted

rankings, a performance measure termed as C-index is
proposed in [23] to handle such tasks. Mathematically, C-
index is defined as

C(u, Atest) =
∑

1≤i<j≤k
∑

(b,a)∈Ai×Aj F (u(b), u(a))∑
i<j |Ai| . |Aj |

(42)
where, |.| gives the cardinality of a set and

F (d, e) =
{

1 d > e

0 otherwise
(43)

indicates whether or not a pair of alternatives has the
correct preference order. Thus, for a preference tuple
(a � b) ∈ Atest, C-index checks if u(a) > u(b), i.e.
whether the model correctly suggests that a � b on the
basis of the learnt scoring function u(.). C-index yields
a fraction of correct pairwise comparisons of this kind.
It would be worthwhile to mention that in the case of
binary classification, C-index reduces to the area under
the receiver operating characteristic (ROC) curve.

The steps carried out to arrive at C-index accuracy are
summarized as follows:

1) A total ranking of the alternatives, {a} ∈ Atest,
along with their respective values for {u(a)} is ob-
tained by sorting the alternatives as per the decreas-
ing order of the ground truth ranking for Atest.

2) The number of correct orderings such that u(a) >
u(b) forms the numerator of the relation in (42).

3) The accuracy value is obtained by dividing the count
of correct comparisons by the total number of com-
parisons, as shown in (42).

6.3 Results
The accuracy results, in terms of the C-index accuracy,
are summarized in Table 2. The accuracy values reported
are the average of the 100 accuracy values along with
the standard deviation, obtained for each method and a
dataset. Against each accuracy value, the corresponding
rank is mentioned in parenthesis, with 1 as the best, and
5 as the worst. The overall performance of a method is
arrived at by taking an average of these ranks, which
is given in the last row. We observe that the proposed
approach performs quite well in accurately predicting the
choice probabilities, and the prediction performance is
competitive with the state-of-the-art methods.

Overall, PL-ACMNL and PL-CMNL methods methods
seem to be the outperformers. While CMNL model is
equipped to model the interaction among the attributes,
ACMNL model is even more flexible with its consid-
eration of the DM’s attitudinal character also. Clearly,
PL-ACMNL is a winner among all, perhaps due to its
flexibility. Theoretically, the better results obtained are
on account of the ability of the underlying CMNL and
ACMNL models to capture the non-linear dependencies
in the input attributes. The same is true for POLY-
kernel too, and hence the performance of POLY-kernel
and PL-CMNL is found to be comparable. In contrast,
PL-MNL model has not performed as well as its non-
linear counterparts, perhaps due to it being essentially a
linear model, and concomitantly its inability to model the
interaction among the attributes. The effect of increase of
an attribute is always the same in MNL model, regardless
of the presence of other attributes, which does not model
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the real world aggregation processes, as well. The DM’s
attitudinal character also remains unconsidered.

We also observe that rank-SVM has performed fairly
well, and better than TOPSIS, and PL-MNL, which
matches well with the expectations. Rank-SVM is a quite
complex model capable of better modelling the relation-
ships between input and output variables than TOPSIS
and PL-MNL models. Both TOPSIS and PL-MNL models
remain very much sensitive to any noisy value that can
cause the learning process to go completely erratic. We
also note that RBF-kernel’s overall performance is not as
good as its counterpart POLY-kernel. It indicates that in
the given datasets, the low level interactions are having
much more influence on the output variable than the
high level interactions, and that could be the reason of
outperformance of POLY-kernel over RBF-kernel.

On this note, we would also like to emphasize that
no one approach could be said to be the best approach,
as every learning approach has its own pros and cons.
For instance, while, a complex learning approach such
as rank-SVM or PL-ACMNL may be better in a few
situations, it comes at an increased computational and
implementation cost, which in a few situations may not
be desirable. In addition, these approaches may not be
as easily interpretable as TOPSIS and MNL. Lastly, and
more importantly, it also depends on the type of data.
In a dataset, with not much dependencies among the
attributes, the simpler approaches such as TOPSIS and
MNL may perform equally or even better than their
complex counterparts. The idea of this study is to show
the performance of different models on different datasets,
and thereby to compare the performance of PL-CMNL and
PL-ACMNL models with those of other extant models, on
standard datasets. Naturally, PL-ACMNL has performed
exceptionally well in those datasets, where both the at-
tributes interaction and the DM’s attitudinal character are
crucial for the output variable, such as EMP (employee
selection), LEC (lecture evaluation), DB(house evaluation
in Den Bosch), etc.

7 Conclusions
A novel framework is presented to learn the decision model
of a decision-maker (DM), which is a central problem
to areas within computer science, operations research,
marketing and econometrics. With this objective, and an
emphasis on the complementarity of choice modelling and
machine learning, we have shown new directions to com-
bine these two disciplines together against the background
of preference learning. The proposed approach is inspired
by the human cognition process of making inferences about
an individual’s decision behaviour by observing his/her
choices. It allows for learning a DM’s decision model from
observed preference information in the form of pairwise
comparisons. The proposed learning approach inherits the
advantages of interpretability and high prediction accu-
racy from the choice modelling techniques and machine
learning, respectively.

The empirical study on the real world datasets show
encouraging results in terms of prediction accuracy vis-a-
vis state-of-the-art methods such as RankSVM, TOPSIS,
POLY-kernel, and RBF-kernel. In contrast to these mod-
els, the proposed learning approach, based on the simple
probability of an alternative being preferred to another,
imparts robustness to the learning model. That is, the
learning model is not much sensitive to the inconsistencies
in a DM’s own decision behaviour, or a few erroneous
data. Besides, the proposed approach of learning from
preferences is quite simple, interpretable, intuitive, and
east to apply.

With regards to the future work, this work has many
applications. It can be used to infer a generic model
of customer choice (namely, distributions over preference
lists), and subsequently to predict revenues from an offer-
ing of a particular assortment of choices. A study of this
kind for a large customer base can help an organization
to shape its strategy of production or marketing. The
required preference data for such kind of a study can be
found through CRM (customer relationship management),
typically maintained by large organizations.

Learning the preference model of a DM holds a lot of
significance for individuals, businesses, and governments,
alike. With the knowledge of the same, businesses can
bring efficiency in cross-selling strategies by focussing
on the attributes of high importance; for instance by
generating personalized recommendations of the potential
products of a customer’s interests. In the same vein, the
model can be applied to analyze the citizens’ preferences
in response to a government regulation, say introduction
of a new tax, law, vehicle emmission standards, etc.

References
[1] R. Kohavi, F. Provost, Glossary of terms, Machine Learning, 30,

pp. 271–274, 1998.
[2] D. McFadden, (1973). Conditional Logit Analysis of Quantitative

Choice Behavior, in Zaremmbka P. (ed.), Frontier of Economet-
rics, Academic Press, New York.

[3] C. Chu, (1989) A Paired Combinatorial Logit Model for Travel
Demand Analysis, Proceedings of the Fifth World Conference on
Transportation Research, Vol. 4, Ventura, CA, 1989, pp. 295-309.

[4] F. S. Koppelman, C-H Wen, The paired combinatorial logit
model: properties, estimation and application, Transportation
Research Part B: Methodological, Volume 34, Issue 2, February
2000, pp. 75-89

[5] P. Vovsha, Application of cross-nested logit model to mode choice
in Tel Aviv, Israel, metropolitan area. Transportation Research
Record 1607, 6–15, 1997.

[6] J. D. Lemp, K. M. Kockelman, P. Damien, The continuous cross-
nested logit model: Formulation and application for departure
time choice, Transportation Research Part B: Methodological,
2010, 44, 646-661.

[7] C. H. Wen, F. S. Koppelman, The generalized nested logit model.
Transportation Research B 35/7, 627–641, 2001.

[8] J. Swait, Choice set generation within the generalized extreme
value family of discrete choice models, Transportation Research
Part B: Methodological, Volume 35, Issue 7, August 2001, pp.
643-666

[9] McFadden, D. and K. Train (2000) Mixed MNL models for
discrete response, Journal of Applied Econometrics, 15, 447-470.

[10] F-M Tseng, C-Y Yu, Partitioned fuzzy integral multinomial logit
model for Taiwan’s internet telephony market, Omega, Volume
33, Issue 3, June 2005, pp. 267-276



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2563434, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

[11] H.C.W.L. Williams, On the Formation of Travel Demand Mod-
els and Economic Evaluation Measures of User Benefit, Environ-
ment and Planning, 9A, 285-344, 1977.

[12] A. Daly, and S. Zachary (1979), Improved Multiple Choice
Models, in Determinants of Travel Choice, Hensher, D.A. and
M. Q. Dalvi (eds.), pp. 335-357, Prager, New York.

[13] D. McFadden, Modeling the Choice of Residential Location,
Transportation Research Record, No. 672, pp. 72-77, 1978.

[14] C. Daganzo, Multinomial Probit: The Theory and its Applica-
tion to Demand Forecasting. Academic Press, New York, 1979.

[15] P. E. Gill, W. Murray, M. H. Wright, 1981, Practical Optimiza-
tion. Academic Press: London.

[16] C. L. Hwang and K. Yoon. Multiple Attribute Decision Making:
Methods and Applications. Springer, 1981.

[17] R. Herbrich, T. Graepel, K. Obermayer, Large margin rank
boundaries for ordinal regression. In Advances in Large Margin
Classifiers, Smola A, Bartlett P, Scholkopf B, Schuurmans D
(eds), The MIT Press: Cambridge, Massachusetts, 2000, 115-132.

[18] Tehrani, A.F.; Weiwei Cheng; Hullermeier, E., Preference
Learning Using the Choquet Integral: The Case of Multipartite
Ranking, Fuzzy Systems, IEEE Transactions on , vol.20, no.6,
pp.1102–1113, Dec. 2012.

[19] A. Frank and A. Asuncion. UCI machine learning repository,
2010.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.
ACM SIGKDD Explorations Newsletter, 11(1), 10–18, 2009.

[21] G. Beliakov and S. James. Citation-based journal ranks: the use
of fuzzy measures, Fuzzy Sets and Syst., 167(1), 101-119, 2011.

[22] H. Daniels and B. Kamp. Applications of mlp networks to bond
rating and house pricing. Neural Computation and Applications,
8, 226–234, 1999.

[23] J. Furnkranz, E. Hullermeier, and S. Vanderlooy, Binary de-
composition methods for multipartite ranking. In W. Buntine,
M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors, Proc.
of the European Conf. on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pp. 359–374,
Springer, 2009.

[24] C. Chen, G. Zhang, R. Tarefder, J. Ma, H. Wei, H. Guan,
A multinomial logit model-Bayesian network hybrid approach
for driver injury severity analyses in rear-end crashes, Accident
Analysis & Prevention, Volume 80, July 2015, pp. 76-88.

[25] F. Ye, D. Lord, Comparing three commonly used crash severity
models on sample size requirements: Multinomial logit, ordered
probit and mixed logit models, Analytic Methods in Accident
Research, Volume 1, January 2014, pp. 72-85.

[26] R. Wang, Capacitated assortment and price optimization un-
der the multinomial logit model, Operations Research Letters,
Volume 40, Issue 6, November 2012, pp. 492-497.

[27] K. Haase, S. Muller, A comparison of linear reformulations for
multinomial logit choice probabilities in facility location models,
European J. of Operational Research, Volume 232, Issue 3, 1
February 2014, pp. 689-691.

[28] A. Kemal Celik, E. Oktay, A multinomial logit analysis of risk
factors influencing road traffic injury severities in the Erzurum
and Kars Provinces of Turkey, Accident Analysis & Prevention,
Volume 72, November 2014, pp. 66-77.

[29] T. H. Rashidi, J. Auld, A. (Kouros) Mohammadian, A behav-
ioral housing search model: Two-stage hazard-based and multino-
mial logit approach to choice-set formation and location selection,
Transportation Research Part A: Policy and Practice, Volume 46,
Issue 7, August 2012, pp. 1097-1107.

[30] S. Pulugurta, A. Arun, M. Errampalli, Use of Artificial Intel-
ligence for Mode Choice Analysis and Comparison with Tradi-
tional Multinomial Logit Model, Procedia - Social and Behavioral
Sciences, Volume 104, 2 December 2013, pp. 583-592.

[31] B. Li, The multinomial logit model revisited: A semi-parametric
approach in discrete choice analysis, Transportation Research
Part B: Methodological, Volume 45, Issue 3, March 2011, pp.
461-473.

[32] C. van Campen, I. B. Woittiez, Client demands and the alloca-
tion of home care in the Netherlands. A multinomial logit model
of client types, care needs and referrals, Health Policy, Volume
64, Issue 2, May 2003, pp. 229-241.

[33] A. B. Grigolon, A. W.J. Borgers, A. D.A.M. Kemperman, H.
J.P. Timmermans, Vacation length choice: A dynamic mixed

multinomial logit model, Tourism Management, Volume 41, April
2014, pp. 158-167.

[34] J. Maiti, A. Bhattacherjee, Evaluation of Risk of Occupational
Injuries Among Underground Coal MineWorkers Through Multi-
nomial Logit Analysis, Journal of Safety Research, Volume 30,
Issue 2, Summer 1999, pp. 93-101.

[35] G. Caggiano, P. Calice, L. Leonida, Early warning systems and
systemic banking crises in low income countries: A multinomial
logit approach, Journal of Banking & Finance, Volume 47, Octo-
ber 2014, pp. 258-269.

[36] P. Davis and P. Schiraldi, The flexible coefficient multinomial
logit (FC-MNL) model of demand for differentiated products,
The RAND Journal of Economics, Vol. 45, 1, 2014, Pp. 32–63.

[37] U. Gazder and N. T. Ratrout, A new logit-artificial neural
network ensemble for mode choice modeling: a case study for
border transport Journal of Advanced Transp., 2015.

[38] N. M. Boyson, C. W. Stahel and R. M. Stulz, Hedge Fund
Contagion and Liquidity Shocks, The Journal of Finance, Volume
65, Issue 5, October 2010, pp.: 1789–1816.

[39] N. Vozlyublennaia, Does Idiosyncratic Risk Matter for Individ-
ual Securities?, Financial Management, Volume 41, Issue 3, Fall
2012, pp.: 555–590

[40] P. Changpetch and D. K.J. Lin, Selection of multinomial logit
models via association rules analysis Wiley Interdisciplinary Re-
views: Computational Statistics, Volume 5, 1, January/February
2013, pp.: 68–77.

[41] X. Liu and Charles C. Engel, Predicting longitudinal trajectories
of health probabilities with random-effects multinomial logit re-
gression Statistics in Medicine, Volume 31, Issue 29, 20 December
2012, pp.: 4087–4101.

[42] J. Feldman and H. Topaloglu, Bounding Optimal Expected
Revenues for Assortment Optimization under Mixtures of Multi-
nomial Logits Production and Operations Management, 2015.

[43] D. A. Hensher, S. Jones andW. H. Greene, An Error Component
Logit Analysis of Corporate Bankruptcy and Insolvency Risk in
Australia Economic Record, Volume 83, Issue 260, March 2007,
pp.: 86–103.

[44] T. Astebro and J. K. Winter, More than a Dummy: The
Probability of Failure, Survival and Acquisition of Firms in
Financial Distress European Management Review, Volume 9,
Issue 1, Spring 2012, pp.: 1–17.

[45] Y. Bentz and D. Merunka, Neural networks and the multinomial
logit for brand choice modelling: a hybrid approach Journal of
Forecasting, Volume 19, Issue 3, April 2000, pp.: 177–200.

[46] R. Tchernis, M. Horvitz-Lennon and S.-L. T. Normand, On the
use of discrete choice models for causal inference Statistics in
Medicine, Volume 24, Issue 14, 30 July 2005, pp.: 2197–2212,

[47] S. Jackman, Bayesian Analysis of Choice Making Bayesian
Analysis for the Social Sci., pp.: 379–434, 2009

[48] P. Congdon, Multinomial and Ordinal Regression Models
Bayesian Statistical Modelling, Second Edition , pp.: 219–240,
2007

[49] D. A. Hensher and S. Jones, Forecasting Corporate Bankruptcy:
Optimizing the Performance of the Mixed Logit Model Abacus,
Vol. 43, 3, Sep. 2007, pp. 241–264,

[50] R. D. Retherford, M. K. Choe, Multinomial Logit Regression,
Statistical Models for Causal Analysis, pp. 151–165, 2011

[51] P. M. Guadagni, and J. D. C. Little, A logit model of brand
choice calibrated on scanner data, Marketing science, 2, 3, 1983,
pp. 203-238.

[52] T. J. Gilbride, and G. M. Allenby, A choice model with conjunc-
tive, disjunctive, and compensatory screening rules, Marketing
Science, 23, 3, 2004, 391-406.

[53] W. A. Kamakura and G. Russell, A probabilistic choice model
for market segmentation and elasticity structure, Journal of
Marketing Research, 26, 1989, pp. 379-390.

[54] R. G. Chapman and R. Staelin, Exploiting rank ordered choice
set data within the stochastic utility model, Journal of marketing
research, 1982, pp. 288-301.

[55] M. Sugeno, Theory of fuzzy integral and its application. Docto-
rial dissertation, Tokyo Institute of Tech., 1974.

[56] G. Choquet, Theory of capacities, Ann. Inst. Fourier, Grenoble
5, pp. 131295, 1953.

[57] M. Aggarwal, Discrete Choice Models for Interactive Attributes,
European J. of Oper. Res. (under review), 2015.

[58] M. Aggarwal, Attitudinal Choquet Integrals, Omega (under
review), 2015.



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2563434, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

[59] C. Lucas, T. L. Griffiths, F. Xu, C. Fawcett, A rational model of
preference learning and choice prediction by children, Advances
in Neural Information Processing Systems, 21, pp. 985-92, 2009.

[60] M. Peterson, 2009, An Introduction to Decision Theory. Cam-
bridge Univ. Press: Cambridge, UK.

[61] E. Brochu, N. de Freitas, and A. Ghosh. Active preference learn-
ing with discrete choice data. In Advances in Neural Information
Processing Systems 21, 2007.

[62] M. Tesch, J. Schneider, and H. Choset, Expensive Function
Optimization with Stochastic Binary Outcomes. In International
Conference on Machine Learning, 12831291, 2013.

[63] Y. Wang, C. Wang, W. Powell, The Knowledge Gradient with
Logistic Belief Models for Binary Classification, Cornell Univer-
sity Library, 2015.

[64] H.J. Zimmermann, P. Zysno, Latent connectives in human
decision making,Fuzzy Sets Syst. 4 (1980) 3751.

[65] M.K. Luhandjula, Compensatory operators in fuzzy linear pro-
gramming withmultiple objectives, Fuzzy Sets Syst. 8 (September
(3)) (1982) 245252.

[66] H. Dyckhoff, W. Pedrycz, Generalized means as a model of
compensation con-nectives, Fuzzy Sets Syst. 14 (1984) 143154.

Manish Aggarwal received his B.E in CSE in 2000,
M.Tech in Computer Applications and Ph.D. in In-
formation Technology from Indian Institute of Tech-
nology (IIT) Delhi in 2006 and 2014, respectively.
His research interests include multi attribute de-
cision making, machine learning techniques, pref-
erence learning, fuzzy optimization, fuzzy decision
analysis, fuzzy sets and system analysis, rough set
theory, aggregation operators, non-classical logics,

approximate reasoning, and plausible and analogical reasoning with
applications to artificial intelligence. He has published extensively in
his areas of interest in journals such as IEEE Transactions on Fuzzy
Systems, Information Sciences, Applied Soft Computing, International
J. of Intelligent Systems, J. of Intelligent and Fuzzy Systems, J. of
Multi Criteria Decision Analysis, International J. of Machine Learning
and Cybernetics, and alike.



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2563434, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

T A
B
LE

2:
R
es
ul
ts

ob
ta
in
ed

fo
r
th
e
di
ffe

re
nt

m
et
ho

ds
in

te
rm

s
of
C
-in

de
x
(m

ea
n
±

st
d.

de
vi
at
io
n
(r
an

k)
)

D
at
a
se
t

R
an

kS
V
M

T
O
P
SI
S

P
O
LY

-k
er
ne

l
R
B
F-
K
er
ne

l
P
L-
M
N
L

P
L-
C
M
N
L

P
L-
A
C
M
N
L

SJ
0.
79

02
±

0.
00

95
(5
)

0.
77

25
±

0.
00

00
(7
)

0.
78

55
±

0.
01

11
(6
)

0.
84

15
±

0.
00

00
(4
)

0.
89

55
±

0.
02

53
(2
)

0.
87

13
±

0.
00

35
(3
)

0.
92

14
±

0.
00

08
(1
)

C
P
U

0.
93

16
±

0.
00

66
(6
)

0.
88

10
±

0.
00

05
(7
)

0.
95

32
±

0.
01

01
(4
)

0.
94

80
±

0.
00

80
(5
)

0.
96

85
±

0.
00

55
(2
)

0.
97

15
±

0.
00

40
(1
)

0.
95

89
±

0.
00

65
(3
)

E
M
P

0.
92

45
±

0.
00

98
(5
)

0.
93

15
±

0.
00

23
(4
)

0.
96

12
±

0.
00

35
(1
)

0.
91

34
±

0.
01

11
(6
)

0.
85

14
±

0.
00

36
(7
)

0.
93

21
±

0.
00

83
(3
)

0.
95

15
±

0.
00

98
(2
)

M
A
M
M
O

0.
83

58
±

0.
02

13
(4
)

0.
81

32
±

0.
00

24
(7
)

0.
82

35
±

0.
00

96
(6
)

0.
83

11
±

0.
00

81
(5
)

0.
89

19
±

0.
01

02
(1
)

0.
85

66
±

0.
01

11
(3
)

0.
86

11
±

0.
01

01
(2
)

LE
C

0.
87

14
±

0.
01

11
(2
)

0.
79

30
±

0.
00

00
(7
)

0.
85

98
±

0.
01

22
(4
)

0.
83

98
±

0.
02

22
(6
)

0.
86

99
±

0.
00

91
(3
)

0.
84

11
±

0.
02

12
(5
)

0.
88

25
±

0.
01

11
(1
)

C
A
R

0.
93

81
±

0.
00

94
(2
)

0.
92

11
±

0.
00

05
(6
)

0.
93

21
±

0.
00

86
(3
)

0.
86

01
±

0.
01

12
(7
)

0.
92

32
±

0.
02

15
(5
)

0.
94

66
±

0.
01

01
(1
)

0.
92

88
±

0.
01

51
(4
)

D
B

0.
90

55
±

0.
00

91
(5
)

0.
90

12
±

0.
00

00
(6
)

0.
93

81
±

0.
00

89
(3
)

0.
92

85
±

0.
02

55
(4
)

0.
89

18
±

0.
01

09
(7
)

0.
94

11
±

0.
04

52
(2
)

0.
96

16
±

0.
02

22
(1
)

B
C

0.
79

59
±

0.
00

95
(1
)

0.
71

52
±

0.
00

11
(6
)

0.
78

95
±

0.
00

85
(2
)

0.
74

95
±

0.
05

12
(4
)

0.
76

11
±

0.
04

31
(3
)

0.
68

25
±

0.
05

81
(7
)

0.
72

15
±

0.
03

35
(5
)

E
M
P

0.
76

19
±

0.
00

46
(2
)

0.
71

25
±

0.
00

03
(6
)

0.
77

65
±

0.
01

13
(1
)

0.
69

25
±

0.
03

33
(7
)

0.
72

85
±

0.
00

88
(5
)

0.
73

89
±

0.
02

22
(3
)

0.
73

11
±

0.
02

42
(4
)

A
U
T
O

0.
88

12
±

0.
00

81
(6
)

0.
89

85
±

0.
00

12
(7
)

0.
91

32
±

0.
00

56
(5
)

0.
92

81
±

0.
01

87
(3
)

0.
91

92
±

0.
01

19
(4
)

0.
93

38
±

0.
01

13
(2
)

0.
94

15
±

0.
03

15
(1
)

SW
0.
72

55
±

0.
00

92
(6
)

0.
73

65
±

0.
00

18
(4
)

0.
76

89
±

0.
00

93
(2
)

0.
73

06
±

0.
01

91
(5
)

0.
72

15
±

0.
01

29
(7
)

0.
76

12
±

0.
05

02
(3
)

0.
78

13
±

0.
00

91
(1
)

C
O
N
C

0.
86

15
±

0.
00

81
(1
)

0.
81

25
±

0.
00

62
(5
)

0.
84

28
±

0.
00

82
(2
)

0.
69

24
±

0.
01

11
(7
)

0.
83

21
±

0.
01

39
(3
)

0.
76

14
±

0.
01

10
(6
)

0.
82

26
±

0.
03

43
(4
)

Av
g.

ra
nk

3.
75

6
3.
25

5.
25

4.
08

3.
25

2.
41


