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OMASS: One Memory Access Set Separation
Michael Mitzenmacher, Pedro Reviriego, and Salvatore Pontarelli

Abstract—In many applications there is a need to identify to which of a group of sets an element x belongs, if any. For example, in a
router, this functionality can be used to determine the next hop of an incoming packet. This problem is generally known as Set
Separation and has been widely studied. Most existing solutions make use of hash based algorithms, particularly when a small
percentage of false positives is allowed. A known approach is to use a collection of Bloom filters in parallel. Such schemes can require
several memory accesses, a significant limitation for some implementations. We propose an approach using Block Bloom Filters,
where each element is first hashed to a single memory block that stores a small Bloom filter that tracks the element and the set or sets
the element belongs too. In a naı̈ve solution, when an element x in a set S is stored, it necessarily increases the false positive
probability for finding that x is in another set T . In this paper, we introduce our One Memory Access Set Separation (OMASS) scheme
to avoid this problem. OMASS is designed so that for a given element x, the corresponding Bloom filter bits for each set map to
different positions in the memory word. This ensures that the false positive rates for the Bloom filters for element x under other sets are
not affected. In addition, OMASS requires fewer hash functions compared to the naı̈ve solution.

F

1 INTRODUCTION

IN many computer and networking applications, one
needs a data structure that can identify if an element

belongs to any of a group of s sets. For example, in routing
such a structure can be used to determine the outgoing port
of a packet [1]. The problem is known as Set Separation. In
some applications, a small probability of a false positive may
be acceptable, if allowing false positives reduces the imple-
mentation complexity or improves performance. Bloom fil-
ters [2], [3] are a popular choice of data structure for similar
problems when false positives are acceptable. A Bloom filter
provides a data structure for approximate membership for
a single set, where by approximate membership we mean
there is a small chance of a false positive. If one Bloom filter
is used for each of the s sets, this yields an approximate data
structure for Set Separation, as each filter can be checked to
determine which sets an element belongs to.

A check operation in a Bloom filter generally requires
several memory accesses. To improve performance, several
techniques that reduce the number of memory accesses
have been proposed. For example, the Block Bloom filter
[4] uses a first hash to select a block and then places all
the bits to be checked inside that block. When the size
of the block is that of one memory word, a check can be
completed in one memory access [5]. Similarly, the Shifting
Bloom filter [6] uses a set of hash functions to determine the
positions of half the bits to access and then uses offsets from
those bits to access the rest of the bits. This also reduces
the number of memory accesses. Other structures, such as
TinySet [7], have been proposed to perform approximate
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set membership checks in one memory access. In TinySet,
fingerprints of the elements are encoded onto a memory
word using a hash function. The encoding supports variable
length fingerprints so that the scheme can adjust to differ-
ent number of elements per memory word. Similar ideas
utilizing variable length fingerprints and bit reassignment
appeared previously in this context [8]. For Set Separation
the membership check has to be done against s sets and
therefore a straightforward implementation using a Bloom
filter or a TinySet for each set could require at least s
memory accesses. Another option is to use more complex
schemes such as SetSep [9] that implement set separation,
but SetSep again requires more than one memory access.
The same applies to other options proposed for multiple set
membership testing like Combinatorial Bloom filters [10] or
the Bloom Trees [11] that require a large number of memory
accesses. Reducing the number of memory accesses is key to
improve performance in systems that use a single memory
to store all the data. In specially designed system it may be
possible to use several memories, for example one for each
of the s sets, that can be accessed in parallel. However, using
several memories increases the cost and complexity of the
design.

In this paper, we present One Memory Access Set Sep-
aration (OMASS) to enable efficient implementation of Set
Separation with a single access to memory. A primary fur-
ther benefit of OMASS is its simplicity for implementation,
which allows efficient standalone hardware implementa-
tions.

2 PROBLEM DEFINITION AND NAÏVE SOLUTION

We formally describe the set separation problem. We have
a universe U , a set of elements X ⊂ U , and a collection of
sets S1, S2, . . . , Ss, where each element x ∈ X is an element
of one or more of the sets Si. Each element in U −X is not
a member of any set. Let us define c(x, i) so that c(x, i) = 1
if the element is in the set Si and zero otherwise. Then the
set separation problem is to provide a data structure that
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Fig. 1. Illustration of the naı̈ve scheme.

allows us to compute, given an element x in U , the values
of i for which c(x, i) = 1. For approximate set separation,
we allow a small percentage of false positives. That is, we
allow a structure that computes a function c′(x, i), where
c′(x, i) = 1 whenever c(x, i) = 1 (no false negatives), but
when c(x, i) = 0, there is a small probability that c′(x, i) = 1
(false positives). Our goal is to design a data structure for
this problem that works in one memory access. This is in-
teresting for implementations that use external memory on
which the access to the memory is a performance bottleneck.
As it turns out, our data structure will also be especially
effective in determining whether x is in Si, given x and
i. It is important to emphasize that there are two types of
false positives : traditional and stored. A traditional false
positive may give that c(x, i) = 1 when x ∈ U − X , that
is the element is not in any set. Alternatively, a stored false
positive may give for some x ∈ X that c(x, j) = 1 when
c(x, j) = 0 but c(x, i) = 1 for some i 6= j, that is an
element appears to be in a set beyond the one it is in. The
importance of each type depends on the specific application.
For example, approximate set separation has been proposed
to determine the next hop of an incoming packet in a
router [1]. In this case, most packets will match a route and
therefore will have an associated set. The few packets that
do not have a defined route but yield the first type of false
positive will eventually be dropped downstream, slightly
increasing the Internet background radiation1. The effect of
the second type of false positive is to increase the worst case
latency of packets for which more than one output port is
selected. Such packets must undergo more detailed analysis
of some form, or may temporarily take an incorrect route
toward its destination.

From the description, a natural seeming solution for
approximate set separation would be to use a group of s
Bloom filters. A Bloom filter is a simple data structure for
approximate set membership that uses a table of bits, with
all bits initially set to 0. To insert an element x, k hash
functions h1, . . . , hk are computed and the bits with those
positions in the table are set to 1. Conversely, to check if an
element is present, those same positions are accessed and
checked; if all of them are 1, the element is assumed to be in
the set, and if any position is 0, the element is known not to
be in the set. Note that there may be false positives (but not
false negatives).

In particular, we could use a collection of s Block Bloom

1. Internet background radiation consists of data packets on the
Internet which are addressed to unreachable destinations or are created
by unsolicited network control messages, or are the result of port scans
and worm activities.

filters [4], for which the block size is that of a memory word
[5]. To insert an element x in the j-th set, in the j-th Block
Bloom Filter a block is selected using a hash function hjb(x),
and then the selected block is used as a Bloom filter using
k bit selection hash functions hj1, . . . , hjk. When the size
of the block is the same as a memory word, the check for
an element in a filter requires only one memory access.
However, in our case, as we need to check a group of s
distinct Block Bloom Filters it would seem that s memory
accesses are required.

A natural improvement is to have all s Block Bloom
Filters use the same blocking and share memory. The naı̈ve
solution of this form uses s Block Bloom Filters such that
the block selection hash function hb(x) is the same for all
of them, and the bit selection hash functions hj1, . . . , hjk,
where hji is the i-th hash function for the j-th set, are
different and chosen independently. This is illustrated on
Figure 1. With this scheme, all s filters can be checked with
a single memory access.

Inserting an element x for a set j increases the false
positive probability for any other element y that hashes to
that block, for all possible sets. However, potentially more
problematic for the approach above is that the insertion
of element x on filter j contributes to the false positive
probability when considering whether x itself is in another
set. Moreover, the effect will be noticeable; using a Block
Bloom Filter, where the size of the block is a memory word,
the number of elements stored in each word will be small to
achieve a low false positive rate, and the additional element
x will have substantial effect on the false positive rate for x
in other sets.

We present the mathematics that elucidate why this is
the case. The false positive rate of Block Bloom filters has
been recently studied [12] and can be expressed as:
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where n is the number of elements stored in the filter,
l the number of blocks, w the size of the blocks, and k the
number of bit selection hash functions used. The last term
in parentheses is the false positive rate for a Bloom filter
of size w in which z elements have been stored [13], [14].
For the naı̈ve solution, the same false positive rate would
be obtained for elements that are not present in any of the s
filters. However, for elements that are in one of the sets, the
false positive probability for that element for any other set
will be:
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That is, the number of elements present in a block will
be at least one as we know that x is stored there. This can
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Fig. 2. Illustration of OMASS.

have a significant effect on the false positive rate when the
block size w is small.

3 ONE MEMORY ACCESS SET SEPARATION
(OMASS)
To improve the naı̈ve solution, the One Memory Access
Set Separation scheme arranges so that for an element x,
the k bits selected for x for each possible set are disjoint.
This avoids the problem of an element x causing false
positives with itself. While there are many approaches for
this, we suggest the following for when the number of
sets s is at most w/k. We divide each block into k sub-
blocks, and associate the i-th hash function with the i-th
sub-block, so that now each hash function selects a random
bit from its associated sub-block. That is, each sub-block
will have size b = w/k, and each hash function takes
values 0, . . . , b − 1. For the first set, we use standard hash
functions (h11, . . . , h1k), but the rest of the sets use hash
functions derived from those as follows: for the j-th set,
hji(x) = (h1i(x)+(j−1)) mod b. This construction ensures
by design that hji(x) 6= hj′i′(x) when s is equal or smaller
than b. Therefore the insertion of x in one set does not affect
the false positive rate when checking x on the other s − 1
sets. As an example, for w = 64 and k = 4, b = 16 and
therefore up to 16 sets can be separated. This is illustrated
on Figure 2. The false positive rate is the same regardless of
whether the element is stored on one of the filters or not and
is given by:

fpr =
n∑

z=0

(
n

z

)
·
(
1

l

)z

·
(
1− 1

l

)n−z

· b!

b(z+1)

b∑
i=1

i∑
j=1

(−1)i−j jzi

(b− i)!j!(i− j)!

k (3)

The main change is that the last term is now the false
positive for a Bloom filter of size b that uses a single bit
selection hash function to the power of k. This is equivalent
to a Bloom filter that uses k tables instead of one. It is well
known that its false positive rate increases slightly due to
partitioning for small tables but is asymptotically the same
as that of a Bloom filter that uses a single table when the
size of the tables is large [3]. Therefore, when the tables are
small the false positive rate will be slightly larger than that
of the naı̈ve solution for elements that are not present in any
set. However, for elements that are present in a set, the false

positive rate will be significantly smaller than in the naı̈ve
scheme. Finally, it is worth mentioning that OMASS requires
only k hash functions compared to the k × s hash functions
needed in the naı̈ve scheme due to the one memory access
requirement. If more memory accesses are permitted, each
set can use a different block selection function and thus the
same bit selection hash functions can be used for all the sets.

4 EVALUATION

We have simulated and compared the proposed scheme
with the naı̈ve solution. To do so, the false positive rate for a
single set membership check is used. This makes the results
independent of the number of sets used and allows a direct
comparison with equations (1) to (3). However, we recall
that in a set separation application, for each element x, there
are s set membership checks corresponding to the s possible
sets that x may be in. Therefore the false positive rate per
element for the application would be approximately s times
the Bloom filter false positive probability for an element not
present in any set and s − 1 times this probability for an
element present in one set when the probability is much
smaller than one. In the simulations, we used block sizes
of 64 and 512 bits, which correspond to typical values of
word sizes and cache line sizes in modern computers (Intel
i3/i5/i7 CPUs have a last level cache of 512 bits [15]). The
total memory was 1Mbit and therefore in the first case there
were 16K blocks and in the second 2K blocks. In both cases,
four hash functions were used in the Bloom filters for the
naı̈ve solution. Correspondingly, four sub-blocks were used
for OMASS. This enables the use of up to 16 and 128 sets for
the 64 and 512 bits blocks.The tests were done for 16 sets in
both cases. Therefore, 64 hash functions are needed in the
naı̈ve scheme and only 4 for OMASS. We use a range of 10
to 80 bits per element in our simulations so that we achieve
small false positive rates suitable for many applications.
To evaluate the false positive rate elements were inserted
until the number of bits per element value was achieved.
Then searches for elements not present and for elements
present in another set were done. For elements present on
a set, all the elements on the filter were tested. The process
was repeated as many times as needed to test one hundred
million elements for each configuration. The results for a
word size of 64 bits are shown in Figure 3.a) for searches
on an element x that is not present in any set. In this case,
the naı̈ve scheme has a slightly lower false positive rate.
This is due to the use of sub-blocks as explained before.
Figure 3.b) shows the results for searches on an element x
in set j when element x is present in another set. It can be
observed that OMASS provides a significant reduction of
the false positive rate, especially when the number of bits
per element is high. Finally, in both cases the simulation
results match the theoretical ones predicted by equations (1)
to (3). The results for a word size of 512 bits are shown in
Figures 4.a) and 4.b). In this case, the differences in false
positive rates are almost negligible for elements that are not
present in a set. For elements present in a set, the benefits of
using OMASS are also reduced but still significant for low
false positive rates. As a summary, the benefits of OMASS
are larger for small block sizes. Finally, it is worth mentionig
that the optimal value for the number of hash functions k
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a) b)

Fig. 3. a): False Positive Rate versus Number of Bits per Element for searches on elements not present in any set for a block size of 64 bits. b):
False Positive Rate versus Number of Bits per Element for searches on elements present in another set for a block size of 64 bits.

Fig. 4. a): False Positive Rate versus Number of Bits per Element for searches on elements not present in any set for a block size of 512 bits.
b):False Positive Rate versus Number of Bits per Element for searches on elements present in another set for a block size of 512 bits.

Fig. 5. Elements stored in two sets. a): False Positive Rate versus Number of Bits per Element for searches on elements not present in any set for
a block size of 64 bits. b): False Positive Rate versus Number of Bits per Element for searches on elements present in another two sets for a block
size of 64 bits.
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for a given number of bits per element can be computed
by evaluating equation 3 for the different values of k and
selecting the one that gives the lowest value.

The OMASS scheme can also be used for applications on
which an element may be present in more than one set. In
that case, the effect of reducing the false positives caused by
the same element being present in several sets will be larger,
as in the naı̈ve scheme each insertion of an element into a
set affects the false positive probability of that element for
the remaining sets. On the other hand, there will also be
an increase on the false positive rate for other elements as
each element that is inserted in more than one set will on
average set more bits to one than in the naı̈ve scheme. This
is illustrated on Figures 5.a) and 5.b) for the case on which
elements are always inserted in exactly two of the sets for
blocks of 64 bits. In a general case, the false positive rate of
OMASS when elements are inserted in several sets depends
on the distribution of the sets an element is stored in. An
analysis of this general case is mathematically complex and
beyond the scope of this paper.

5 CONCLUSIONS

The number of memory accesses is commonly a perfor-
mance bottleneck for hash-based data structures, including
those for Set Separation. Memory access times are generally
orders of magnitude lager than the processor clock cycle,
while parallel memory accesses increase cost and complex-
ity. In principle, a Block Bloom filter can be used to imple-
ment set separation with one memory access. However, in
the naı̈ve solution the insertion of an element in one set
can induce false positives for the same element on the other
sets. This increases the false positive rate and introduces a
significant penalty when the memory word size is small.
This paper has presented One Memory Access Set Separa-
tion (OMASS), an alternative technique to implement set
separation in one memory access. In OMASS, the insertion
of an element in a set does not affect the false positive
rate for that element on the rest of the sets. This reduces
significantly the false positive rate for elements that are
stored in one of the sets when the word size is small. OMASS
also reduces the number of hash functions needed to insert
or check for an element and can be implemented efficiently.
The only disadvantage of OMASS is a very small increase in
the false positive rate when checking for elements that are
not present on any of the sets.

ACKNOWLEDGMENT

Michael Mitzenmacher is supported in part by NSF grants
CCF-1535795, CCF-1320231, and CNS-1228598. Pedro Re-
viriego is partially supported by the excellence network
Elastic Networks TEC2015-71932-REDT funded by the
Spanish Ministry of Economy and Competitiveness. Sal-
vatore Pontarelli is partially supported by the European
Union in the context of the BEBA project (Grant Agreement:
644122).

REFERENCES

[1] M. Yu, A. Fabrikant and J. Rexford, BUFFALO: Bloom Filter
Forwarding Architecture for Large Organizations, Proceedings of
the 5th International Conference on Emerging Networking Experi-
ments and Technologies, pp. 313-324, 2009.

[2] B. Bloom, Space/time tradeoffs in hash coding with allowable
errors, Communications of the ACM, vol. 13, no. 7, pp. 422-426,
1970.

[3] A. Broder and M. Mitzenmacher, Network Applications of Bloom
Filters: A Survey, Internet Mathematics, vol. 1, no. 4, pp. 485-509,
2003.

[4] U. Manber and S. Wu, An algorithm for approximate membership
checking with application to password security, Information Pro-
cessing Letters, vol. 50, no. 4 pp. 191-197, May 1994.

[5] Y. Qiao, T. Li, and S. Chen, Fast Bloom Filters and Their General-
ization, IEEE Transactions on Parallel and Distributed Systems, vol.
25, no. 1, pp. 93-103, Jan. 2014.

[6] T. Yang, A. X. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, G. Xie
and X. Li A Shifting Bloom Filter Framework for Set Queries,
http://export.arxiv.org/pdf/1510.03019v1.

[7] G. Einziger and R. Friedman: TinySet - An Access Efficient Self
Adjusting Bloom Filter Construction, Proceedings of the 24th Inter-
national Conference on Computer Communication and Networks,
pp. 1-9, 2015.

[8] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-
ese. Bloom Filters via d-Left Hashing and Dynamic Bit Reassign-
ment (Extended Abstract), Proceedings of the 44th Annual Allerton
Conference, pp. 877-883, 2006.

[9] D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzen-
macher, R. Wang and A. Singh, Scaling Up Clustered Network
Appliances with ScaleBricks, Proceedings of ACM SIGCOMM, pp.
241-254, 2015.

[10] F. Hao, M. Kodialam, T. Lakshman, and H. Song, Fast Dynamic
Multiple-Set Membership Testing Using Combinatorial Bloom Fil-
ters, IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp.
295-304, Feb. 2012.

[11] M. Yoon, J. Son, and S. Shin, Bloom Tree: A Search Tree Based on
Bloom Filters for Multiple-Set Membership Testing, Proc. of IEEE
INFOCOM’14.

[12] P. Reviriego, K. Christensen, J.A. Maestro, A Comment on ’Fast
Bloom Filters and Their Generalization’, IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 1, pp. 303-304, Jan.
2016.

[13] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid and Y. Tang, On the false-positive rate of Bloom filters,
Information Processing Letters, vol. 108, no. 4, pp. 210213, Oct. 2008.

[14] K. Christensen, A. Roginsky, and M. Jimeno, A New Analysis of
the False-Positive Rate of a Bloom Filter, Information Processing
Letters, vol. 110, no. 21, pp. 944-949, Oct. 2010.

[15] O. Lempel, ”‘2nd generation Intel core processor family: Intel core
i7, i5 and i3”’, Hot Chips. 2011.


