
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 1

Improved Practical Matrix Sketching
with Guarantees

Amey Desai, Mina Ghashami, and Jeff M. Phillips

Abstract—Matrices have become essential data representations for many large-scale problems in data analytics, and
hence matrix sketching is a critical task. Although much research has focused on improving the error/size tradeoff under
various sketching paradigms, the many forms of error bounds make these approaches hard to compare in theory and in
practice. This paper attempts to categorize and compare the most known methods under row-wise streaming updates with
provable guarantees, and then to tweak some of these methods to gain practical improvements while retaining guarantees.
For instance, we observe that a simple heuristic iSVD, with no guarantees, tends to outperform all known approaches in
terms of size/error trade-off. We modify the best performing method with guarantees, FREQUENTDIRECTIONS, under the
size/error trade-off to match the performance of iSVD and retain its guarantees. We also demonstrate some adversarial
datasets where iSVD performs quite poorly. In comparing techniques in the time/error trade-off, techniques based on
hashing or sampling tend to perform better. In this setting we modify the most studied sampling regime to retain error
guarantee but obtain dramatic improvements in the time/error trade-off.
Finally, we provide easy replication of our studies on APT, a new testbed which makes available not only code and
datasets, but also a computing platform with fixed environmental settings.

Index Terms—Low-rank matrix approximation, Streaming algroithm, Frequent Directions

F

1 Introduction

M ATRIX sketching has become a central chal-
lenge [7], [28], [36], [46], [52] in large-scale data

analysis as many large data sets including customer rec-
ommendations, image databases, social graphs, document
feature vectors can be modeled as a matrix, and sketching
is either a necessary first step in data reduction or has di-
rect relationships to core techniques including PCA, LDA,
and clustering. There are several variants of this problem,
but in general the goal is to process an n × d matrix A
to somehow represent a matrix B so that ‖A − B‖2,F
or (examining the covariance) ‖ATA−BTB‖2 is small.
In both cases, the best rank-k approximation Ak can be
computed using the singular value decomposition (svd);
however this takes O(ndmin(n, d)) time and O(nd)
memory. This is prohibitive for modern applications which
usually desire a small space streaming approach, or even
an approach that works in parallel. For instance, diverse
applications receive data in a potentially unbounded and
time-varying stream and want to maintain some sketch B.
Examples of these applications include data feeds from
sensor networks [13], financial tickers [18], [62], on-line
auctions [11], and network traffic [40], [57].

In recent years, extensive works have been done to
improve theoretical bounds in the size of B. Random
projections [7], [56] and hashing [19], [60] approximate

Thanks to support by NSF CCF-1115677, CCF-1350888, IIS-
1251019, ACI-1443046, and CNS-1514520.

A as a random linear combination of rows and/or columns
of A. The column sampling methods [14], [27], [28], [30],
[33], [48], [55] choose a set of columns (and/or rows)
from A to represent B; the best bounds require multiple
passes over the data. We refer readers to recent works [19],
[39], [47], [61] for extensive discussion of various models
and error bounds. Recently Liberty [46] introduced a new
technique called as FREQUENTDIRECTIONS (abbreviated
as FD) which is deterministic, achieves a spectral bound on
covariance error ‖ATA− BTB‖2, and moreover greatly
outperforms the random projection, hashing, and column
sampling techniques in practice. In addition, there is a
family of heuristic techniques [16], [41], [42], [45], [54]
(which we refer to as iSVD, described relative to FD in
Section 2), which are used in many practical settings, but
are not known to have any error guarantees. Hence, this
problem has seen immense progress in the last decade with
a wide variety of algorithmic improvements in a variety of
models [7], [19], [20], [23], [27], [30], [30], [33], [39],
[46], [53], [56]; which we review thoroughly in Section 2
and assess comprehensively empirically in Section 5.

1.1 Notation and Problem Statement
We denote an n × d matrix A as a set of n rows
as [a1; a2; . . . ; an] where each ai is a row of length
d. Alternatively a matrix V can be written as a set
of columns [v1, v2, . . . , vd]. We assume d � n. We
will consider streaming algorithms where each element

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 2

of the stream is a row ai of A. Some of the algo-
rithms also work in a more general setting (e.g., allowing
deletions or distributed streams). The squared Frobenius
norm of a matrix A is defined ‖A‖2F =

∑
i=1 ‖ai‖2

where ‖ai‖ is Euclidean norm of row ai, and it intu-
itively represents the total size of A. The spectral norm
‖A‖2 = maxx:‖x‖=1 ‖Ax‖, and represents the maxi-
mum influence along any unit direction x. It follows that
‖ATA−BTB‖2 = maxx:‖x‖=1

∣∣‖Ax‖2 − ‖Bx‖2∣∣.
Given a matrix A and a low-rank matrix X , let

πX(A) = AX†X be a projection operation of A onto
the rowspace spanned by X; that is if X is of rank r, then
it projects to the r-dimensional subspace of points (e.g.
rows) in X . Here X† indicates taking the Moore-Penrose
pseudoinverse of X . The singular value decomposition of
A, written svd(A), produces three matrices [U, S, V] so
that A = USV T . The matrix U is n× n and orthogonal.
The matrix V is d × d and orthogonal; its columns
[v1, v2, . . . , vd] are the right singular vectors, describing
directions of the most covariance in ATA. The matrix
S is n × d and is all 0s except for the diagonal entries
{σ1, σ2, . . . , σr}, the singular values, where r ≤ d is
the rank of A. Note that σj ≥ σj+1, ‖A‖2 = σ1, and
σj = ‖Avj‖ describes the norm along direction vj .

1.1.1 Error measures

In this paper we focus on two classes of error measures
between input matrix A and its ` × d sketch B. The
covariance error ensures for any unit vector x ∈ Rd
that ‖Ax‖2 − ‖Bx‖2 is small. This can be mapped to
the covariance matrix ATA since max‖x‖=1 ‖Ax‖2 −
‖Bx‖2 = ‖ATA−BTB‖2. To normalize the covariance
error, we set

cov-err(A,B) = ‖ATA−BTB‖2/‖A‖2F

which is always greater than 0. 1 The projection error
describes the error in the subspace captured by B without
focusing on its scale. Here we compare the best rank k
subspace described by B (as Bk) against the same for
A (as Ak). We measure the error by comparing the tail
(what remains after projecting A onto this subspace) as
‖A−πBk

(A)‖2F . Specifically we normalize the projection
error so that it is comparable across datasets as

proj-err(A,B) = ‖A− πBk
(A)‖2F /‖A−Ak‖2F .

Note the denominator is equivalent to ‖A − πAk
(A)‖2,

so this ensures the projection error is at least 1. We set
k = 10 as a default value for rank parameter in all

1. The normalization term ‖A‖2F is invariant to the desired rank k
and unit vector x. Some methods have bounds on ‖Ax‖2 − ‖Bx‖2
that are relative to ‖A−Ak‖2 or ‖Ax‖2; as these introduce an extra
parameter they are harder to measure empirically.

the experiments.2 Although there are several other error
measures used in literature, in this paper we only focus on
these bounds. The reason is two fold. First, these cover
the two main abstract goals often associated with the
matrix sketching: subspace approximation (via proj-err)
and directional magnitude or covariance approximation
(via cov-err). Second, we are able to translate (or re-
derive) the worst case guarantees in terms of these bounds
for most known classes of algorithms, at least those for
which one can prove bounds. This allows us to see all
approaches in common terms. Finally, we can actually
evaluate these bounds empirically. This is not obviously
true for other bounds (e.g. maxx∈Rd ‖Ax‖/‖Bx‖).

1.2 Contributions
We survey and categorize the main approaches to matrix
sketching in a row-wise update stream. We consider three
categories: sampling, projection/hashing, and iterative, and
show how all approaches fit simply into one of these three
categories. For each family of algorithms, we map error
bounds onto the cov-err and the proj-err measures when
possible. We also provide an extensive set of experiments
to compare these algorithms along size, error (projection
and covariance), and runtime on real and synthetic data.

To make this study easily and readily reproducible,
we implement all experiments on a new extension of
Emulab [5] called Adaptable Profile-Driven Testbed or
APT [3]. It allows one to check out a virtual machine
with the same specs as we run our experiments, load our
precise environments and code and datasets, and directly
reproduce all experiments. We also consider new variants
of these approaches which maintain error guarantees but
significantly improving performance. We introduce several
new variants of FD; one of them is α-FD that matches
or exceeds the performance of a popular heuristic, iSVD.
Before this new variant, iSVD is a top performer in
space/error trade-off, but has no guarantees, and as we
demonstrate on some adversarial datasets, can fail spec-
tacularly. We also show how to efficiently implement and
analyze without-replacement row sampling methods, and
how this can empirically improve upon more traditional
(and easier to analyze) with-replacement row sampling.

2 Matrix Sketching Algorithms
In this section, we review the main algorithms for sketch-
ing matrices. We divide them into 3 main categories: (1)

2. There are variations in bounds on this sort of error. Some
measure spectral (e.g. ‖ · ‖2) norm. Others provide a weaker error
bound on ‖A−[πB(A)]k‖2F , where the “best rank k approximation”
denoted by [·]k , is taken after the projection. This is less useful
since then for a very large rank B (might be rank 500) it is not
clear which subspace best approximates A until this projection is
performed. Additionally, some approaches create a set of (usually
three) matrices (e.g., CUR) whose product approximates Ak . This
provides a stronger constructive result which we do not consider in
this paper.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 3

sampling algorithms, these select a subset of rows from
A to use as the sketch B; (2) projection algorithms, these
project the n rows of A onto a random ` dimensional
subspace to construct the sketch B, sometimes they use
hashing; (3) iterative algorithms, these maintain B as a
low-rank version of A updated as more rows are added.

There exist other forms of matrix approximation, for
instance, using sparsification techniques [7], [12], [34],
or allowing more general element-wise updates at the
expense of larger sketch sizes [19], [20], [56]. We are
interested in preserving the right singular vectors and other
statistical properties on the rows of A.

2.1 Sampling Matrix Sketching
Sampling algorithms assign a probability pi to each row
ai and then select ` rows from A into B using this
probability. In B, each row has its squared norm rescaled
to wi as a function of pi and ‖ai‖. One can achieve
additive error bound using importance sampling with pi =
‖ai‖2/‖A‖2F and wi = ‖ai‖2/(`pi) = ‖A‖2F /`, as
analyzed by Drineas et al. [29] and [36]. These algorithms
typically advocate sampling ` items independently (with
replacement) using ` distinct reservoir samplers, taking
O(`) time per element. Another version [33] samples each
row independently, and only retains ` rows in expectation.
We discuss two improvements to this process in Section
3.2. Much of the related literature describes selecting
columns instead of rows (called the column subset selec-
tion problem) [15]. This is just a transpose of the data and
has no real difference from what is described here. There
are also techniques [33] that select both columns and rows,
but are orthogonal to our goals. This family of techniques
has the advantage that the resulting sketch is interpretable
in that each row of B corresponds to a data point in A,
not just a linear combination of them.

2.1.1 Leverage Sampling
An insightful adaptation changes the probability pi using
leverage scores [32] or simplex volume [25], [26]. These
techniques take into account more of the structure of the
problem than simply the rows norm, and can achieve
stronger relative error bounds. But they also require an
extra parameter k as part of the algorithm, and for the most
part require much more work to generate these modified
pi scores. We use Leverage Sampling [33] as a repre-
sentative; it samples rows according to leverage scores
(described below). Simplex volume calculations [25], [26]
were too involved to be practical. There are also re-
cent techniques to improve on the theoretical runtime
for leverage sampling [31] by approximating the desired
values pi, but as the exact approaches do not demonstrate
consistent tangible error improvements, we do not pursue
this complicated theoretical runtime improvement.

To calculate the leverage scores, we first calculate the
svd of A (the task we hoped to avoid). Let Uk be the
matrix of the top k left singular vectors, and let Uk(i)

represent the ith row of that matrix. Then the leverage
score for row i is si = ‖Uk(i)‖2, the fraction of squared
norm of ai along subspace Uk. Then set pi proportional
to si (e.g. pi = si/k, noting that

∑
i si = k).

2.1.2 Deterministic Leverage Scores

Another option is to deterministically select rows with
the highest si values instead of at random. It can be
implemented with a simple priority queue of size `. This
has been applied to using the leverage scores by Papail-
iopoulos et al. [53], which again first requires calculating
the svd of A. We refer to this algorithm as Deterministic
Leverage Sampling.

2.2 Projection Matrix Sketching

These methods construct the sketch by taking ran-
dom combination of n data points in A. A survey by
Woodruff [61] (especially Section 2.1) gives an excellent
account of this area. In the simplest version, each row
ai ∈ A would map to a row bj ∈ B with element sj,i (jth
row and ith column) of a projection matrix S, and each
sj,i is a Gaussian random variable with 0 mean and

√
n/`

standard deviation. That is, B = SA, where S is ` × n.
This follows from the celebrated Johnson-Lindenstrauss
lemma [43] as first shown by Sarlos [56] and strength-
ened by Clarkson and Woodruff [19]. Gaussian random
variables sj,i can be replaced with (appropriately scaled)
{−1, 0,+1} or {−1,+1} random variables [6]. We call
the version with scaled {−1,+1} random variables as
Random Projection.

2.2.1 Fast JLT

Using a sparse projection matrix S would improve the
runtime, but these lose guarantees if the input matrix A is
sparse and its non-zero elements do not align with non-
zeros of S. This is circumvented by rotating the space
with a Hadamard matrix [9], which can be applied more
efficiently using FFT tricks, despite being dense. More
precisely, we use three matrices: P ∈ R`×n that has en-
tries pi,j = 0 with probability 1−q, and otherwise pi,j ∼
N(0, `/q) with probability q = min{1,Θ((log2 n)/d)}.
The matrixH ∈ Rn×n is random Hadamard (this requires
n to be padded to a power of 2). The diagonal matrix
D with entries {±1} on diagonal. Then the projection
matrix is S = PHD, although algorithmically the ma-
trices are applied implicitly. We refer to this algorithm
as Fast JLT. Ultimately, the runtime is brought from
O(nd`) to O(nd log d+ (d/ε2) log n). The second term
in the runtime can be improved with more complicated
constructions [10], [23] which we do not pursue here; we
point the reader here [58] for a discussion of some of these
extensions.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 4

TABLE 1
Theoretical Bounds for Sampling Algorithms (O-notations are suppressed). The proj-err bounds are based on a slightly weaker
‖A− πB(A)‖2F numerator (instead of ‖A− πBk

(A)‖2F). (†) See [24]; the Leverage Sampling bound assumes a constant lower
bound on leverage scores. (?) Maximum of this and {k, (k/ε)1/(1+η)} where leverage scores follow power-law with decay exponent

1 + η.

` cov-err ` proj-err runtime
Norm Sampling d/ε2 ε (†) [30] k/ε2 1 + ε

‖A‖2F
‖A−Ak‖2F

[30] nnz(A) · `
Leverage Sampling d/ε2 ε (†) (k log k)/ε2 1 + ε [48] svd(A) + nnz(A) · `
Deterministic Leverage ` - (k/ηε)1/η(?) 1 + ε [53] svd(A) + nnz(A) · ` log `

TABLE 2
Theoretical Bounds for Projection Algorithms (via an `2 subspace embedding; see [24]), where ` is the number of rows maintained,

and ρ(A) = ‖A‖2F
‖A‖22

≥ 1 is the numeric rank of A. (O-notations are suppressed).

` cov-err ` proj-err runtime
Random Projection d/ε2 [56] ε/ρ(A) d/ε2 [56] 1 + ε nnz(A) · `
Fast JLT d/ε2 [56] ε/ρ(A) d/ε2 [56] 1 + ε nd log d+ (d/ε2) logn [9]
Hashing d2/ε2 [20], [51] ε/ρ(A) d2/ε2 [20], [51] 1 + ε nnz(A) + npoly(d/ε)
OSNAP d1+o(s/ε)/ε2 [51] ε/ρ(A) d1+o(s/ε)/ε2 [51] 1 + ε nnz(A) · s+ npoly(d/ε)

TABLE 3
Theoretical Bounds for Iterative Algorithms.

` cov-err ` proj-err runtime
FD k + 1

ε
ε
‖A−Ak‖2F
‖A‖2F

[38] k
ε

1 + ε [39] nd`

ISVD ` - ` - nd`2

2.2.2 Sparse Random Projections
Clarkson and Woodruff [20] analyzed a very sparse pro-
jection matrix S, conceived of earlier [23], [60]; it has
exactly 1 non-zero element per column. To generate S,
for each column choose a random value between 1 and
` to be the non-zero, and then choose a −1 or +1 for
that location. Thus each row vector ai can be processed
in time proportional to its number of non-zeros; it is
randomly added or subtracted from 1 row of B, as a
count sketch [17] on rows instead of counts. We refer
to this as Hashing. A slight modification by Nelson and
Nguyen [51], called OSNAP, stacks s instances of the
projection matrix S on top of each other. If HASHING

used `′ rows, then OSNAP uses ` = s · `′ rows (we use
s = 4).

2.3 Iterative Matrix Sketching
The main structure of these algorithms is presented in
Algorithm 2.1, they maintain a sketch B[i] of A[i], the
first i rows of A. The sketch B[i−1] always uses at most
`− 1 rows. On seeing the ith row of A, it is appended to
B[i−1] and forms the new matrix B[i], and if needed the
sketch is reduced to use at most ` − 1 rows again using
some REDUCERANK procedure. Notationally, we use σj
as the jth singular value in S, and σ′j as the jth singular
value in S′.
2.3.1 Iterative SVD
The simplest variant of this procedure is a heuristic re-
discovered several times [16], [41], [42], [45], [54], with

Algorithm 2.1 (Generic) FD Algorithm

Input: `, α ∈ (0, 1], A ∈ Rn×d
B[0] ← all zeros matrix ∈ R`×d
for i ∈ [n] do

Insert ai into zero valued row of B[i−1]; result is B[i]

if (B[i] has no zero valued rows) then
[U, S, V]← svd(B[i])
C[i] = SV T # Only needed for proof notation
S′ ← REDUCERANK(S)
B[i] ← S′V T

return B = B[n]

a few minor modifications; we refer to it as iterative
SVD or iSVD. In iSVD, the ReduceRank(S) simply keeps
σ′j = σj for j < ` and sets σ′` = 0. This has no worst
case guarantees (despite several claims).

2.3.2 Frequent Directions

Recently Liberty [46] proposed an algorithm called Fre-
quent Directions (or FD), further analyzed by Ghashami
and Phillips [39], and then together jointly with
Woodruff [38]. The REDUCERANK step in FD, sets each
σ′j =

√
σ2
j − δi where δi = σ2

` . Liberty also presented a
faster variant, FastFD, that instead sets δi = σ2

`/2 and up-

dates new singular values to σ′j = max{0,
√
σ2
j − δi},

hence ensuring at most half of the rows are all zeros after
each such step. This reduces the runtime from O(nd`2) to
O(nd`) at expense of a sketch sometimes only using half
of its rows.

3 New Sketching Algorithms
Here we describe our new variants on FD that perform
better in practice and are backed with error guarantees.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 5

In addition, we explain a couple of new matrix sketching
techniques that makes subtle but tangible improvements to
the other state-of-the-art algorithms mentioned above.

3.1 Variants On Frequent Directions
Since all our proposed algorithms on FREQUENTDIREC-
TIONS share the same structure, to avoid repeating the
proof steps, we abstract out three properties that these
algorithms follow and prove that any algorithm with these
properties satisfy the desired error bounds. This slightly
generalizes (allowing for α 6= 1) a recent framework [38].
Some proofs are in the supplementary material.

Consider any algorithm that takes an input matrix
A ∈ Rn×d, outputs a matrix B ∈ R`×d and follows three
properties below for any unit vector x ∈ Rd (for some
parameter α ∈ (0, 1] and some value ∆ > 0):
• Property 1: ‖Ax‖2 − ‖Bx‖2 ≥ 0
• Property 2: ‖Ax‖2 − ‖Bx‖2 ≤ ∆
• Property 3: ‖A‖2F − ‖B‖2F ≥ α`∆

Lemma 3.1. Any B satisfying the above three properties
satisfies 0 ≤ ‖ATA−BTB‖2 ≤ 1

α`−k‖A−Ak‖
2
F , and

‖A − πBk
(A)‖2F ≤ α`

α`−k‖A − Ak‖2F , where πBk
(·)

represents the projection operator onto Bk, the top k
singular vectors of B.

Setting ` = (k+1/ε)/α achieves ‖ATA−BTB‖2 ≤
ε‖A−Ak‖2F , and setting ` = (k+k/ε)/α achieves ‖A−
πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F . FD maintains an `×d
matrix B (i.e. using O(`d) space), and it is shown [39]
that there exists a value ∆ such that FD satisfies three
above-mentioned properties with α = 1.

3.1.1 Parameterized FD
Parameterized FD uses Algorithm 3.1 to reduce the rank of
the sketch. This method has an extra parameter α ∈ [0, 1]
that describes the fraction of singular values which will
get affected in the REDUCERANK subroutine. Note that
iSVD has α = 0 and FD has α = 1. The intuition is that
the smaller singular values are more likely associated with
noise terms and the larger ones with signals, so we should
avoid altering the signal terms in the REDUCERANK step.

Algorithm 3.1 REDUCERANK-PFD(S, α)

δi ← σ2
`

return
diag(σ1, . . . , σ`(1−α),

√
σ2
`(1−α)+1 − δi, . . . ,

√
σ2
` − δi)

Here, we show error bounds asymptotically matching
FD for α-FD (for constant α > 0), by showing the three
Properties hold. We use ∆ =

∑n
i=1 δi.

Lemma 3.2. For any unit vector x and any α ∈ [0, 1]:
0 ≤ ‖C[i]x‖2 − ‖B[i]x‖2 ≤ δi.

Proof. The right hand side is shown by just expand-
ing ‖C[i]x‖2 − ‖B[i]x‖2 as ‖C[i]x‖2 − ‖B[i]x‖2 =

∑`
j=1 σ

2
j 〈vj , x〉2 −

∑`
j=1 σ

′2
j 〈vj , x〉2 =

∑`
j=1(σ2

j −
σ′

2
j)〈vj , x〉2 = δi

∑`
j=(1−α)`+1〈vj , x〉2 ≤ δi. For the

left side δi
∑`
j=(1−α)`+1〈vj , x〉2 ≥ 0.

Then summing over all steps of the algorithm (using
‖aix‖2 = ‖C[i]x‖2−‖B[i−1]x‖2) it follows (see Lemma
2.3 in [39]) that 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤

∑n
i=1 δi = ∆,

proving Property 1 and Property 2 about α-FD for any
α ∈ [0, 1].

Lemma 3.3. For any α ∈ (0, 1], ‖A‖2F −‖B‖2F = α`∆,
proving Property 3.

Proof. We expand ‖C[i]‖2F =
∑`
j=1 σ

2
j as ‖C[i]‖2F =∑(1−α)`

j=1 σ2
j +

∑`
j=(1−α)`+1 σ

2
j =

∑(1−α)`
j=1 σ′

2
j +∑`

j=(1−α)`+1(σ′
2
j + δi) = ‖B[i]‖2F + α`δi. By us-

ing ‖ai‖2 = ‖C[i]‖2F − ‖B[i−1]‖2F = (‖B[i]‖2F +
α`δi)−‖B[i−1]‖2F , and summing over i we get ‖A‖2F =∑n
i=1 ‖ai‖2 =

∑n
i=1 ‖B[i]‖2F − ‖B[i−1]‖2F + α`δi =

‖B‖2F + α`∆. Subtracting ‖B‖2F from both sides, com-
pletes the proof.

Since α-FD satisfies the three properties, due to Lemma
3.1 it obtains the following results.

Theorem 3.1. Given an input matrix A ∈ Rn×d, α-
FD with parameter ` returns a sketch B ∈ R`×d that
satisfies for all k > α`, 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A −
Ak‖2F /(α` − k) and projection of A onto Bk, the top k
rows ofB, satisfies ‖A−πBk

(A)‖2F ≤ α`
α`−k‖A−Ak‖

2
F .

Setting ` = (k+1/ε)/α yields 0 ≤ ‖Ax‖2−‖Bx‖2 ≤
ε‖A− Ak‖2F and setting ` = (k + k/ε)/α yields ‖A−
πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

3.1.2 Fast Parameterized FD
Fast Parameterized FD (or Fast α-FD) improves the
runtime performance of parameterized FD in the same way
Fast FD improves the performance of FD. More specifi-
cally, in REDUCERANK we set δi as the (` − `α/2)th
squared singular value, i.e. δi = σ2

t for t = ` − `α/2.
Then we update the sketch by only changing the last
α` singular values: we set σ′2j = max(σ2

j − δi, 0).
This sets at least α`/2 singular values to 0 once ev-
ery α`/2 steps. Thus the algorithm takes total time
O(nd+ n/(α`/2) · d`2) = O(nd`/α).

It is easy to see that Fast α-FD inherits the same worst
case bounds as α-FD on cov-err and proj-err, if we use
twice as many rows. That is, setting ` = 2(k + 1/ε)/α
yields ‖ATA−BTB‖2 ≤ ε‖A−Ak‖2F and setting ` =
2(k + k/ε)/α yields ‖A − πBk

(A)‖2F ≤ (1 + ε)‖A −
Ak‖2F . In experiments we consider Fast 0.2-FD.

3.1.3 SpaceSaving Directions
FD is inspired by an algorithm by Misra and Gries
(MG) [50] for the streaming frequent items problem. That
is, given a stream S = 〈s1, s2, . . . , sn〉, where each item

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 6

TABLE 4
Theoretical Bounds for New Iterative Algorithms.

` cov-err ` proj-err runtime
Fast α-FD (k + 1/ε)/α ε‖A−Ak‖2F /‖A‖

2
F k/(εα) 1 + ε nd`/α

SpaceSaving Directions k + 1/ε ε‖A−Ak‖2F /‖A‖
2
F k/ε 1 + ε nd`

Compensative FD k + 1/ε ε‖A−Ak‖2F /‖A‖
2
F k/ε 1 + ε nd`

si ∈ [u] = {1, 2, . . . , u}, and fj = |{si ∈ S | si = j}|
denotes the frequency of item j in the stream S, the MG
sketch uses O(1/ε) space to construct an estimate f̂j (for
all j ∈ [u]) so that 0 ≤ fj−f̂j ≤ εn. It keeps `−1 = 1/ε
counters, each labeled by some j ∈ [u]: it increments a
counter if the new item matches the associated label or for
an empty counter, and it decrements all counters if there is
no empty counter and none match the stream element. In-
tuitively, FD works similarly treating the singular vectors
of B as labels and the squared singular values as counters.

Motivated by an empirical study [22] showing that the
SpaceSaving algorithm [49] tends to outperform its analog
Misra-Gries [50] in practice, we design an algorithm called
SPACESAVING DIRECTIONS (abbreviated SSD) to try to
extend these ideas to matrix sketching. It uses Algorithm
3.2 for REDUCERANK. Like the SS algorithm for frequent
items, it assigns the counts for the second smallest counter
(in this case squared singular value σ2

`−1) to the direction
of the smallest. Unlike the SS algorithm, we do not use
σ2
`−1 as the squared norm along each direction orthogonal

to B, as that gives a consistent over-estimate.

Algorithm 3.2 REDUCERANK-SS(S)

δi ← σ2
`−1

return diag(σ1, . . . , σ`−2, 0,
√
σ2
` + δi).

We can also show similar error bounds for SSD; see
supplementary material for proofs. A simple transforma-
tion of the output sketch B ← SSD(A) satisfies the three
properties, although B itself does not.

Theorem 3.2. After obtaining a matrix B from SSD on a
matrix A with parameter `, the following properties hold:
• ‖A‖2F = ‖B‖2F .
• for any unit vector x and for k < `/2−1/2, we have
|‖Ax‖2−‖Bx‖2| ≤ ‖A−Ak‖2F /(`/2−1/2−k).
• for k < `/2 − 1 we have ‖A − πkB(A)‖2F ≤ ‖A −
Ak‖2F (`− 1)/(`− 1− 2k).

Setting ` = 2k+2/ε+1 yields 0 ≤ ‖Ax‖2−‖Bx‖2 ≤
ε‖A − Ak‖2F and setting ` = 2k + 1 + 2k/ε yields
‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

3.1.4 Compensative Frequent Directions
Inspired by the isomorphic transformation [8] between
the Misra-Gries [50] and the SpaceSaving sketch [49],
which performed better in practice on the frequent items
problem [22], we consider another variant of FD for matrix

sketching. In the frequent items problem, this would return
an identical result to SSD, but in the matrix setting it
does not. We call this approach COMPENSATIVE FRE-
QUENTDIRECTIONS (abbreviated CFD). In original FD,
the computed sketchB underestimates the Frobenius norm
of stream [39], in CFD we try to compensate for this.
Specifically, we keep track of the total mass ∆ =

∑n
i=1 δi

subtracted from squared singular values (this requires
only an extra counter). Then we slightly modify the FD
algorithm. In the final step where B = S′V T , we modify
S′ to Ŝ by setting each singular value σ̂j =

√
σ′2j + ∆,

then we instead return B = ŜV T .
It now follows that for any k ≤ `, including k = 0,

that ‖A‖2F = ‖B‖2F , that for any unit vector x we have
|‖Ax‖2F −‖Bx‖2F | ≤ ∆ ≤ ‖A−Ak‖2F /(`− k) for any
k < `, and since V is unchanged that ‖A− πkB(A)‖2F ≤
‖A−Ak‖2F ·`/(`−k). Also as in FD, setting ` = k+1/ε
yields 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ε‖A−Ak‖2F and setting
` = k/ε yields ‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

3.2 New Without Replacement
Sampling Algorithms

TABLE 5
Theoretical Bounds for New Sampling Algorithms.

` cov-err ` proj-err runtime
Priority d/ε2 ε ` - nnz(A) log `
VarOpt d/ε2 ε ` - nnz(A) log `

As mentioned above, most sampling algorithms use
sampling with replacement (SwR) of rows. This is likely
because, in contrast to sampling without replacement
(SwoR), it is easy to analyze and for weighted sam-
ples conceptually easy to compute. SwoR for unweighted
data can easily be done with variants of reservoir sam-
pling [59]; however, variants for weighted data have been
much less resolved until recently [21], [35].

3.2.1 Priority Sampling

A simple technique [35] for SwoR on weighted ele-
ments first assigns each element i a random number
ui ∈ Unif(0, 1). This implies a priority ρi = wi/ui, based
on its weight wi (for matrix rows wi = ‖a‖2i). We then
simply retain the ` rows with largest priorities, using a
priority queue of size `. Thus each step takes O(log `)
time, but on randomly ordered data would take only O(1)
time in expectation since elements with ρi ≤ τ , where τ is
the `th largest priority seen so far, are discarded. Retained

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 7

rows are given a squared norm ŵi = max(wi, τ). Rows
with wi ≥ τ are always retained with original norm.
Small weighted rows are kept proportional to their squared
norms. The technique, Priority Sampling, is simple to
implement, but requires a second pass on retained rows
to assign final weights.

3.2.2 VarOpt Sampling
VarOpt (or Variance Optimal) sampling [21] is a modifica-
tion of priority sampling that takes more care in selecting
the threshold τ . In priority sampling, τ is generated so
E[
∑
ai∈B ŵi] = ‖A‖2F , but if τ is set more carefully,

then we can achieve
∑
ai∈B ŵi = ‖A‖2F determinis-

tically. VarOpt selects each row with some probability
pi = min(1, wi/τ), with ŵi = max(wi, τ), and so
exactly ` rows are selected.

The above implies that for a set L of ` rows maintained,
there is a fixed threshold τ that creates the equality. We
maintain this value τ as well as the t weights smaller than
τ inductively in L. If we have seen at least `+ 1 items in
the stream, there must be at least one weight less than τ .
On seeing a new item, we use the stored priorities ρi =
wi/ui for each item in L to either (a) discard the new item,
or (b) keep it and drop another item from the reservoir.
As the priorities increase, the threshold τ must always
increase. It takes amortized constant time to discard a new
item or O(log `) time to keep the new item, and does not
require a final pass on L. We refer to it as VarOpt.

A similar algorithm using priority sampling was con-
sidered in a distributed streaming setting [37], which
provided a high probability bound on cov-err. A con-
stant probability of failure bound for ` = O(d/ε2) and
cov-err ≤ ε, follows with minor modification from [24].
It is an open question to bound the projection error for
these algorithms, but we conjecture the bounds will match
those of Norm Sampling.

4 Experimental Setup
We used an OpenSUSE 12.3 machine with 32 cores of
Intel(R) Core(TM) i7-4770S CPU(3.10 GHz) and 32GB
of RAM. Randomized algorithms were run five times; we
report the median error value.

Datasets. We compare performance of the algorithms
on both synthetic and real datasets. In addition, we gen-
erate adversarial data to show that iSVD performs poorly
under specific circumstances, this explains why there is no
theoretical guarantee. Each data set is an n × d matrix
A, and the n rows are processed one-by-one in a stream.
Table 6 lists all datasets with information about their
n, d, rank(A), numeric rank ‖A‖2F /‖A‖22, percentage
of non-zeros (as nnz%, measuring sparsity), and excess
kurtosis. We follow Fisher’s distribution with baseline
kurtosis (from normal distribution) is 0; positive excess
kurtosis reflects heavier tails and negative excess kurtosis
represents thinner tails. For Random Noisy, we generate
the input n × d matrix A synthetically, mimicking the

approach by Liberty [46]. We composeA = SDU+F/ζ ,
where SDU is the m-dimensional signal (for m < d) and
F/ζ is the (full) d-dimensional noise with ζ controlling
the signal to noise ratio. Each entry Fi,j of F is generated
i.i.d. from a normal distribution N(0, 1), and we set
ζ = 10. For the signal, S ∈ Rn×m again we generate
each Si,j ∼ N(0, 1) i.i.d; D is diagonal with entries
Di,i = 1− (i−1)/d linearly decreasing; and U ∈ Rm×d
is just a random rotation. We use n = 10000, d = 500,
and consider m ∈ {10, 20, 30, 50} with m = 30 as
default. In order to create Adversarial data, we constructed
two orthogonal subspaces S1 = Rm1 and S2 = Rm2

(m1 = 400 and m2 = 4). Then we picked two separate
sets of random vectors Y and Z and projected them on S1

and S2, respectively. Normalizing the projected vectors
and concatenating them gives us the input matrix A. All
vectors in πS1

(Y) appear in the stream before πS2
(Z);

this represents a very sudden and orthogonal shift. As
the theorems predict, FD and our proposed iterative al-
gorithms adjust to this change and properly compensate
for it. However, since m1 ≥ `, then iSVD cannot adjust
and always discards all new rows in S2 since they always
represent the smallest singular value of B[i].

We consider 4 real-world datasets. ConnectUS is taken
from the University of Florida Sparse Matrix collec-
tion [4]. ConnectUS represents a recommendation system.
Each column is a user, and each row is a webpage, tagged
1 if favorable, 0 otherwise. It contains 171 users that share
no webpage preferences with any other users. Birds [1] has
each row represent an image of a bird, and each column
a feature. PCA is a common first approach in analyzing
this data, so we center the matrix. Spam [2] has each row
represent a spam message, and each column some feature;
it has dramatic and abrupt feature drift over the stream,
but not as much as Adversarial. CIFAR-10 is a standard
computer vision benchmark dataset for deep learning [44].
We will focus most of our experiments on three data
sets Birds (dense, tall, large numeric rank), Spam (sparse,
not tall, negative kurtosis, high numeric rank), and Ran-
dom Noisy (dense, tall, synthetic). However, for some
distinctions between algorithms require considering much
larger datasets; for these we use CIFAR-10 (dense, not
as tall, small numeric rank) and ConnectUS (sparse, tall,
medium numeric rank). Finally, Adversarial and, perhaps
surprisingly ConnectUS are used to show that using iSVD
(which has no guarantees) does not always perform well.

5 Experimental Evaluation
We divide our experimental evaluation into four sections:
The first three sections contain comparisons within algo-
rithms of each group (sampling, projection, and iterative),
while the fourth compares accuracy and run time of
exemplar algorithm in each group against each other.

We measure error for all algorithms as we change
the parameter ` (Sketch Size) determining the number

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 8

TABLE 6
Dataset Statistics.

DataSet # datapoints # attributes rank numeric rank nnz% excess kurtosis ‖A‖2F /‖A−A10‖2F
Birds 11789 312 312 12.50 100 1.72 2.1658

Random Noisy 10000 500 500 14.93 100 0.95 9.1054
CIFAR-10 60000 3072 3072 1.19 99.75 1.34 13.4492
Connectus 394792 512 512 4.83 0.0055 17.60 2.0243

Spam 9324 499 499 3.25 0.07 3.79 2.0461
Adversarial 10000 500 500 1.69 100 5.80 6.4623

of rows in matrix B. We measure covariance error as
err = ‖ATA − BTB‖2/‖A‖2F (Covariance Error); this
indicates for instance for FD, that err should be at most
1/`, but could be dramatically less if ‖A−Ak‖2F is much
less than ‖A‖2F for some not so large k. We consider
proj-err = ‖A − πBk

(A)‖2F /‖A − Ak‖2F , always using
k = 10 (Projection Error); for FD we should have proj-
err ≤ `/(` − 10), and ≥ 1 in general. We also measure
run-time as sketch size varies. Within each class, the
algorithms are not dramatically different across sketch
sizes. But across classes, they vary in other ways, and so in
the global comparison, we will also show plots comparing
runtime to cov-err or proj-err, which will help demonstrate
and compare these trade-offs.

5.1 Sampling Algorithms
Fig.1 shows the covariance error, projection error, and
runtime for the sampling algorithms as a function of sketch
size, run on the Birds, Spam, and Random Noisy(30)
datasets with sketch sizes from ` = 20 to 100. We use pa-
rameter k = 10 for Leverage Sampling, the same k used
to evaluate proj-err. First note that Deterministic Leverage
performs quite differently than all other algorithms. The
error rates can be drastically different: smaller on Random
Noisy proj-err and Birds proj-err, while higher on Spam
proj-err and all cov-err plots. The proven guarantees are
only for matrices with Zipfian leverage score sequences
and proj-err, and so when this does not hold it can perform
worse. But when the conditions are right it outperforms the
randomized algorithms since it deterministically chooses
the best rows.

Otherwise, there is very small difference between the
error performance of all randomized algorithms, within
random variation. The small difference is perhaps sur-
prising since Leverage Sampling has a stronger error
guarantee, achieving a relative proj-err bound instead of
an additive error of Norm Sampling, Priority Sampling
and VarOpt Sampling which only use the row norms.
Moreover Leverage Sampling and Deterministic Lever-
age Sampling are significantly slower than the other
approaches since they require first computing the SVD and
leverage scores. We note that if ‖A − Ak‖2F > c‖A‖2F
for a large enough constant c, then for that choice of
k, the tail is effectively heavy, and thus not much is
gained by the relative error bounds. Moreover, Leverage

Sampling bounds are only stronger than Norm Sampling
in a variant of proj-err where [πB(A)]k (with best rank k
applied after projection) instead of πBk

(A), and cov-err
bounds are only known (see [24]) under some restrictions
for Leverage Sampling, while unrestricted for the other
randomized sampling algorithms.

5.2 Projection Algorithms
Fig.2 plots the covariance and projection error, as well as
the runtime for various sketch sizes of 20 to 100 for the
projection algorithms. All algorithms perform about the
same in projection and covariance error up to the variation
from randomness. Fast JLT performs a bit better than
others in cov-err on Birds and Noisy Random, but we have
chosen the best q parameter (sampling rate) by trial and
error, so this may give an unfair advantage. But for runtime
Hashing and OSNAP are significantly faster, especially as
the sketch size grows. While Random Projections and
Fast JLT appear to grow in time roughly linearly with
sketch size, Hashing and OSNAP are basically constant.

5.3 Iterative Algorithms
Here we consider variants of FD. We first explore the α
parameter in Parametrized FD, writing each version as α-
FD. Then we compare against all of the other variants
using exemplars from Parametrized FD.

In Fig.3 and 4, we explore the effect of the parameter α,
and run variants with α ∈ {0.2, 0.4, 0.6, 0.8}, comparing
against FD (α = 1) and iSVD (α = 0). Note that the
guaranteed error gets worse for smaller α, so performance
being equal, it is preferable to have larger α. Yet, we ob-
serve empirically on datasets Birds, Spam, and Random
Noisy that FD is consistently the worst algorithm, and
iSVD is fairly consistently the best, and as α decreases,
the observed error improves. The difference can be quite
dramatic; for instance in the Spam dataset, for ` = 20,
FD has err = 0.032 while iSVD and 0.2-FD have err =
0.008. Yet, as ` approaches 100, all algorithms seems to
be approaching the same small error. In Fig.4, we explore
the effect of α-FD on Random Noisy data by varying
m ∈ {10, 20, 50}, and m = 30 in Fig.3. We observe
that all algorithms get smaller error for smaller m (there
are fewer “directions” to approximate), but that each α-
FD variant reaches 0.005 err before ` = 100, sooner for
smaller α; eventually “snapping” to a smaller 0.002 err
level. Next in Fig.5, we compare iSVD, FD, and 0.2-FD

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 9

Birds Spam Random Noisy(30)

20 30 40 50 60 70 80 90 100
Sketch Size

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Co
va

ria
nc

e
Er

ro
r

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
va

ria
nc

e
Er

ro
r

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Co
va

ria
nc

e
Er

ro
r

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Pr
oj

ec
tio

n
Er

ro
r

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Pr
oj

ec
tio

n
Er

ro
r

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Pr
oj

ec
tio

n
Er

ro
r

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

0

2

4

6

8

10

12

14

16

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

20 30 40 50 60 70 80 90 100
Sketch Size

0

1

2

3

4

5

6

7

8

9

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Norm Sampling
Leverage Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling

Fig. 1. Sampling algorithms on Birds(left), Spam(middle), and Random Noisy(30)(right).

with two groups of variants: one based on SS streaming
algorithm (CFD and SSD) and another based on Fast FD.
We see that CFD and SSD typically perform slightly better
than FD in cov-err and same or worse in proj-err, but
not nearly as good as 0.2-FD and iSVD. Perhaps it is
surprising that although SpaceSavings variants empirically
improve upon MG variants for frequent items, 0.2-FD
(based on MG) can largely outperform all the SS variants
on matrix sketching. All variants achieve a very small
error, but 0.2-FD, iSVD, and Fast 0.2-FD consistently
matche or outperform others in both cov-err and proj-
err while Fast FD incurs more error compared to other
algorithms. We also observe that Fast FD and Fast 0.2-
FD are significantly (sometimes 10 times) faster than FD,
iSVD, and 0.2-FD. Fast FD takes less time, sometimes
half as much compared to Fast 0.2-FD, however, given its
much smaller error Fast 0.2-FD seems to have the best
all-around performance.

5.3.1 Data adversarial to iSVD

Next, using the Adversarial construction we show that
iSVD is not always better in practice. In Fig.6, in image
on the left, we see that iSVD can perform much worse
than other techniques. Although at ` = 20, iSVD and FD

roughly perform the same (with about err = 0.09), iSVD
does not improve much as ` increases, obtaining only err
= 0.08 for ` = 100. On the other hand, FD (as well as
CFD and SSD) decrease markedly and consistently to err
= 0.02 for ` = 100. The large-norm directions are the first
4 singular vectors (from the second part of the stream) and
once these directions are recognized as having the largest
singular vectors, they are no longer decremented in any of
algorithms. Middle and right images of Fig.6 demonstrate
the scalability of these approaches on a much larger real
data set ConnectUS. As the derived bounds on covariance
error based on sketch size do not depend on n, the number
of rows in A, it is not surprising that the performance
of most algorithms is unchanged. There are just a couple
differences to point out. First, no algorithm in the middle
and right figures of Fig.6 converges as close to 0 error as
with the the smaller data sets (left figure of Fig.6); this
is likely because with the much larger size, there is some
variation that can not be captured even with ` = 100 rows
of a sketch. Second, iSVD performs noticeably worse than
the other FD-based algorithms (although still significantly
better than the leading randomized algorithms). This likely
has to do with the sparsity of ConnectUS combined with

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 10

Birds Spam Random Noisy(30)

20 30 40 50 60 70 80 90 100
Sketch Size

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Co
va

ria
nc

e
Er

ro
r

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

0.05

0.10

0.15

0.20

0.25

Co
va

ria
nc

e
Er

ro
r

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Co
va

ria
nc

e
Er

ro
r

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

1.10

1.15

1.20

1.25

1.30

Pr
oj

ec
tio

n
Er

ro
r

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

Pr
oj

ec
tio

n
Er

ro
r

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Pr
oj

ec
tio

n
Er

ro
r

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

0

1

2

3

4

5

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Random Projection
Fast JLT
Hashing
OSNAP

20 30 40 50 60 70 80 90 100
Sketch Size

0

1

2

3

4

5

6

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Random Projection
Fast JLT
Hashing
OSNAP

Fig. 2. Projection algorithms on Birds(left), Spam(middle), and Random Noisy(30)(right).

Birds Spam Random Noisy(30)

20 30 40 50 60 70 80 90 100

Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

C
o
v
a
ri

a
n
ce

 E
rr

o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

20 30 40 50 60 70 80 90 100
Sketch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Co
va

ria
nc

e
Er

ro
r

ISVD
Frequent Directions (FD)
0.2FD
0.4FD
0.6FD
0.8FD

20 30 40 50 60 70 80 90 100

Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

C
o
v
a
ri

a
n
ce

 E
rr

o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

Fig. 3. Parametrized FD on Birds (left), and Spam (middle), Random Noisy(30) (right).

a data drift. After building up a sketch on the first part of
the matrix, sparse rows are observed orthogonal to existing
directions. The orthogonality, the same difficult property
as in Adversarial, likely occurs here because the new rows
have a small number of non-zero entrees, and all rows in
the sketch have zeros in these locations; these correspond
to the webpages marked by one of the unconnected users.

5.4 Global Comparison
Fig.7 shows the covariance error, projection error, as well
as the runtime for various sketch sizes of ` = 20 to 100

for the the leading algorithms from each category. We
can observe that the iterative algorithms achieve much
smaller errors, both covariance and projection, than all
other algorithms, sometimes matched by Deterministic
Leverage. However, they are also significantly slower
(sometimes a factor of 20 or more) than other algorithms.
The exception is Fast FD and Fast 0.2-FD, which are
slower than the other algorithms, but not significantly so.

We also observe that for the most part, there is a negli-
gible difference in the performance between the sampling
algorithms and the projection algorithms, except for the

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 11

Birds Spam Random Noisy(30)

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05
Co

va
ria

nc
e

Er
ro

r
ISVD
Frequent Directions (FD)
0.2FD
0.4FD
0.6FD
0.8FD

20 30 40 50 60 70 80 90 100
Sketch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Co
va

ria
nc

e
Er

ro
r

ISVD
Frequent Directions (FD)
0.2FD
0.4FD
0.6FD
0.8FD

20 30 40 50 60 70 80 90 100

Sketch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

C
o
v
a
ri

a
n
ce

 E
rr

o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

Fig. 4. Parametrized FD on Random Noisy for m = 50 (left), 20 (middle), 10 (right).

Birds Spam Random Noisy(30)

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Co
va

ria
nc

e
Er

ro
r

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Co
va

ria
nc

e
Er

ro
r

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Co
va

ria
nc

e
Er

ro
r

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

1.00

1.05

1.10

1.15

Pr
oj

ec
tio

n
Er

ro
r

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Pr
oj

ec
tio

n
Er

ro
r

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Pr
oj

ec
tio

n
Er

ro
r

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

0

20

40

60

80

100

120

140

160

180

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

0

50

100

150

200

250

300

350

400

450

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100
Sketch Size

0

50

100

150

200

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Frequent Directions (FD)
FastFD
ISVD
0.2-FD
Fast 0.2FD
SpaceSaving
CompensativeFD

Fig. 5. Iterative algorithms on Birds(left), Spam(middle), and Random Noisy(30)(right).

20 30 40 50 60 70 80 90 100
Sketch Size

0.000

0.002

0.004

0.006

0.008

0.010

Co
va

ria
nc

e
Er

ro
r

ISVD
Frequent Directions (FD)
0.2FD
SpaceSaving
CompensativeFD

20 30 40 50 60 70 80 90 100

Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

C
o
v
a
ri

a
n
ce

 E
rr

o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

20 30 40 50 60 70 80 90 100

Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

C
o
v
a
ri

a
n
ce

 E
rr

o
r

ISVD

Frequent Directions (FD)

0.2FD

SpaceSaving

CompensativeFD

Fig. 6. Demonstrating dangers of iSVD on Adversarial data(left), Parameterized FD on ConnectUS dataset(middle); other iterative
algorithms (right) on ConnectUS dataset.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 12

Birds Spam Random Noisy(30)

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Co
va

ria
nc

e
Er

ro
r

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
va

ria
nc

e
Er

ro
r

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Co
va

ria
nc

e
Er

ro
r

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Pr
oj

ec
tio

n
Er

ro
r

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Pr
oj

ec
tio

n
Er

ro
r

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

1.0

1.1

1.2

1.3

1.4

Pr
oj

ec
tio

n
Er

ro
r

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

0

20

40

60

80

100

120

140

160

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

0

100

200

300

400

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

20 30 40 50 60 70 80 90 100
Sketch Size

0

50

100

150

200

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Norm Sampling
Deterministic Leverage
Priority Sampling
VarOpt Sampling
Random Projection
Hashing

OSNAP
iSVD
Fast FD
0.2-FD
Fast 0.2-FD

Fig. 7. Leading algorithms on Birds(left), Spam(middle), and Random Noisy(30)(right).

Birds ConnectUS CIFAR-10

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Projection Error

0

1

2

3

4

5

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Error Threshold

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Projection Error

0

500

1000

1500

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Covariance Error

0

20

40

60

80

100

120

140

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Projection Error

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Error Threshold Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Projection Error

0

10

20

30

40

50

Ru
nn

in
g

Ti
m

e
(s

ec
s)

Error Threshold

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Covariance Error

0

1

2

3

4

5

Ru
nn

in
g

Ti
m

e
(s

ec
s) Error Threshold

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

Fig. 8. Projection error versus time on Birds and ConnectUS as well as Covariance error versus time on CIFAR-10. The second
line shows close-ups

Random Noisy dataset where Hashing and OSNAP result
in worse projection error. However, if we allow a much

large sketch size for faster runtime and small error, then
these plots do not effectively demonstrate which algorithm

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 13

performs best. Thus in Fig.8 we run the leading algorithms
on Birds as well as larger datasets, ConnectUS which is
sparse and CIFAR-10 which is dense. We plot the error
versus the runtime for various sketch sizes ranging up to
` = 10,000. The top row of the plots shows most data
points to give a holistic view, and the second row zooms
in on the relevant portion. For some plots, we draw an
Error Threshold vertical line corresponding to the error
achieved by Fast 0.2-FD using ` = 20. Since this error is
typically very low, but in comparison to the sampling or
projection algorithms Fast 0.2-FD is slow, this threshold is
a useful target error rate for the other leading algorithms.
We observe that Fast FD can sometimes match this error
with slightly less time (see on Birds), but requires a larger
sketch size of ` = 100. Additionally VarOpt, Priority
Sampling, Hashing, and OSNAP can often meet this
threshold. Their runtimes can be roughly 100 to 200 times
faster, but require sketch sizes on the order of ` = 10,000
to match the error of Fast 0.2-FD with ` = 20. Among
these fast algorithms requiring large sketch sizes we ob-
serve that VarOpt scales better than Priority Sampling, and
that these two perform best on CIFAR-10, the large dense
dataset. They also noticeably outperform Norm Sampling
both in runtime and error for the same sketch size. On
the sparse dataset ConnectUS, algorithms Hashing and
OSNAP seem to dominate Priority Sampling and VarOpt,
and of those two Hashing performs slightly better. To put
the space in perspective, on CIFAR-10 (n = 60,000 rows,
1.4GB memory footprint), to approximately reach the
error threshold Hashing needs ` = 10,000 and 234MB
in 2.4 seconds, VarOpt Sampling requires ` = 5,000 and
117MB in 1.2 seconds, Fast FD requires ` = 100 and
2.3MB in 130 seconds, and Fast 0.2-FD requires ` = 20
and 0.48MB in 128 seconds. All of these will easily
fit in memory of most modern machines. The smaller
sketch by Fast 0.2-FD will allow expensive downstream
applications (such as deep learning) to run much faster.
Alternatively, the output from VarOpt Sampling (which
maintains interpretability of original rows) could be fed
into Fast 0.2-FD to get a compressed sketch in less time.

5.4.1 Reproducibility

Our results are publicly available at
http://aptlab.net/p/MatrixApx/
MatrixApproxComparision. This testbed facility,
APT [3], allows researchers to perform experiments and
keep them public for verification and validation.

References
[1] http://www.vision.caltech.edu/visipedia/CUB-200-2011.html.
[2] http://mlkd.csd.auth.gr/concept drift.html.
[3] https://www.flux.utah.edu/project/apt.
[4] http://www.cise.ufl.edu/research/sparse/matrices.
[5] http://www.flux.utah.edu/project/emulab.
[6] Dimitris Achlioptas. Database-friendly random projections:

Johnson-Lindenstrauss with binary coins. Journal of computer
and System Sciences, 66:671–687, 2003.

[7] Dimitris Achlioptas and Frank McSherry. Fast computation of
low rank matrix approximations. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing, 2001.

[8] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang,
Jeff M. Phillips, Zhewei Wei, and Ke Yi. Mergeable sum-
maries. In Proceedings of the 31st Symposium on Principles
of Database Systems, 2012.

[9] Nir Ailon and Bernard Chazelle. Approximate nearest neigh-
bors and the fast Johnson-Lindenstrauss transform. In Proceed-
ings of 38th ACM symposium on Theory of computing, 2006.

[10] Nir Ailon and Edo Liberty. An almost optimal unrestricted
fast Johnson-Lindenstrauss transform. In Proceedings of 22nd
ACM-SIAM Symposium on Discrete Algorithms, 2011.

[11] Arvind Arasu, Shivnath Babu, and Jennifer Widom. An abstract
semantics and concrete language for continuous queries over
streams and relations. 2002.

[12] Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random
sampling algorithm for sparsifying matrices. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 2006.

[13] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. To-
wards sensor database systems. Lecture Notes in Computer
Science, pages 3–14, 2001.

[14] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail.
Near optimal column-based matrix reconstruction. In Proceed-
ings of 52nd Annual Symposium on Foundations of Computer
Science, 2011.

[15] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas.
An improved approximation algorithm for the column subset
selection problem. In Proceedings of 20th ACM-SIAM Sympo-
sium on Discrete Algorithms, 2009.

[16] Matthew Brand. Incremental singular value decomposition of
uncertain data with missing values. In Proceedings of the 7th
European Conference on Computer Vision, 2002.

[17] Moses Charikan, Kevin Chen, and Martin Farach-Colton. Find-
ing frequent items in data streams. In Proceedings of Inter-
national Colloquium on Automata, Languanges, and Program-
ming, 2002.

[18] Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang.
Niagaracq: A scalable continuous query system for internet
databases. ACM SIGMOD Record, 29:379–390, 2000.

[19] Kenneth L. Clarkson and David P. Woodruff. Numerical linear
algebra in the streaming model. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, 2009.

[20] Kenneth L Clarkson and David P Woodruff. Low rank approx-
imation and regression in input sparsity time. In Proceedings
of the 45th Annual ACM symposium on Theory of computing,
2013.

[21] Edith Cohen, Nick Duffield, Haim Kaplan, Carsten Lund, and
Mikkel Thorup. Stream sampling for variance-optimal estima-
tion of subset sums. In Proceedings of the 20th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2009.

[22] Graham Cormode and Marios Hadjieleftheriou. Finding fre-
quent items in data streams. In Proceedings of the 34th
International Conference on Very Large Data Bases, 2008.

[23] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse
Johnson-Lindenstrauss transform. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, 2010.

[24] Amey Desai, Mina Ghashami, and Jeff M Phillips. Improved
practical matrix sketching with guarantees. arXiv preprint
arXiv:1501.06561, 2015.

[25] Amit Deshpande and Luis Radamacher. Efficient volume
sampling for row/column subset selection. In Proceedings of
51st IEEE Symposium on Foundations of Computer Science,
2010.

[26] Amit Deshpande, Luis Rademacher, Santosh Vempala, and
Grant Wang. Matrix approximation and projective clustering
via volume sampling. In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithm, 2006.

[27] Amit Deshpande and Santosh Vempala. Adaptive sampling
and fast low-rank matrix approximation. In Approximation,

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2539943, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , APRIL 2015 14

Randomization, and Combinatorial Optimization. Algorithms
and Techniques. 2006.

[28] Petros Drineas and Ravi Kannan. Pass efficient algorithms
for approximating large matrices. In Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[29] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast
monte carlo algorithms for matrices I: Approximating matrix
multiplication. SIAM Journal on Computing, 36:132–157,
2006.

[30] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast
monte carlo algorithms for matrices II: Computing a low-
rank approximation to a matrix. SIAM Journal on Computing,
36:158–183, 2006.

[31] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney,
and David P. Woodruff. Fast approximation of statistical
leverage. Journal of Machine Learning Research, 13:3475–
3506, 2012.

[32] Petros Drineas and Michael W. Mahoney. Effective resistances,
statistical leverage, and applications to linear equation solving.
In arXiv:1005.3097, 2010.

[33] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan.
Relative-error CUR matrix decompositions. SIAM Journal on
Matrix Analysis and Applications, 30:844–881, 2008.

[34] Petros Drineas and Anastasios Zouzias. A note on element-wise
matrix sparsification via a matrix-valued bernstein inequality.
Information Processing Letters, 111:385–389, 2011.

[35] Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority
sampling for estimation of arbitrary subset sums. Journal of
the ACM, 54:32, 2007.

[36] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-
Carlo algorithms for finding low-rank approximations. Journal
of the ACM, 51:1025–1041, 2004.

[37] Mina Ghashami, Feifei Li, and Jeff M. Phillips. Continuous
matrix approximation on distributed data. In Proceedings of the
40th International Conference on Very Large Data Bases, 2014.

[38] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P
Woodruff. Frequent directions: Simple and deterministic matrix
sketching. arXiv preprint arXiv:1501.01711, 2015.

[39] Mina Ghashami and Jeff M Phillips. Relative errors for
deterministic low-rank matrix approximations. In Proceedings
of 25th ACM-SIAM Symposium on Discrete Algorithms, 2014.

[40] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin
Strauss. Quicksand: Quick summary and analysis of network
data. Technical report, DIMACS Technical Report, 2001.

[41] Gene H Golub and Charles F Van Loan. Matrix computations,
volume 3. JHUP, 2012.

[42] Peter Hall, David Marshall, and Ralph Martin. Incremental
eigenanalysis for classification. In Proceedings of the British
Machine Vision Conference, 1998.

[43] William B Johnson and Joram Lindenstrauss. Extensions of
lipschitz mappings into a hilbert space. Contemporary mathe-
matics, 26:189–206, 1984.

[44] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. Computer Science Department,
University of Toronto, Technical Report, 2009.

[45] A. Levey and Michael Lindenbaum. Sequential Karhunen-
Loeve basis extraction and its application to images. IEEE
Transactions on Image Processing, 9:1371–1374, 2000.

[46] Edo Liberty. Simple and deterministic matrix sketching. In Pro-
ceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2013.

[47] Michael W. Mahoney. Randomized algorithms for matrices
and data. Foundations and Trends in Machine Learning, NOW
Publishers, 3(2), 2011.

[48] Michael W. Mahoney and Petros Drineas. CUR matrix de-
compositions for improved data analysis. Proceedings of the
National Academy of Sciences, 106:697–702, 2009.

[49] Ahmed Metwally, Divyakant Agrawal, and Amr El. Abbadi.
An integrated efficient solution for computing frequent and top-
k elements in data streams. ACM Transactions on Database
Systems, 31:1095–1133, 2006.

[50] Jayadev Misra and David Gries. Finding repeated elements.
Science of computer programming, 2:143–152, 1982.

[51] Jelani Nelson and Huy L. Nguyen. OSNAP: Faster numerical
linear algebra algorithms via sparser subspace embeddings.
In Proceedings of 54th IEEE Symposium on Foundations of
Computer Science, 2013.

[52] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan,
and Santosh Vempala. Latent semantic indexing: A probabilistic
analysis. In Proceedings of the 17th ACM Symposium on
Principles of Database Systems, 1998.

[53] Dimitris Papapailiopoulos, Anastasios Kyrillidis, and Christos
Boutsidis. Provable deterministic leverage score sampling. In
Proceedings of 20th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2014.

[54] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-
Hsuan Yang. Incremental learning for robust visual tracking.
International Journal of Computer Vision, 77:125–141, 2008.

[55] Mark Rudelson and Roman Vershynin. Sampling from large
matrices: An approach through geometric functional analysis.
Journal of the ACM, 54:21, 2007.

[56] Tamas Sarlos. Improved approximation algorithms for large
matrices via random projections. In Proceedings of 47th Annual
IEEE Symposium on Foundations of Computer Science, 2006.

[57] Mark Sullivan and Andrew Heybey. A system for managing
large databases of network traffic. In Proceedings of USENIX
Annual Technical Conference, 1998.

[58] Suresh Venkatasubramanian and Qiushi Wang. The Johnson-
Lindenstrauss transform: An empirical study. In Proceedings
of ALENEX Workshop on Algorithms Engineering and Experi-
mentation, 2011.

[59] Jeffrey S Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11:37–57, 1985.

[60] Killian Weinberger, Anirban Dasgupta, John Langford, Alex
Smola, and Josh Attenberg. Feature hashing for large scale
multitask learning. In Proceedings of 26th Interantional Con-
ference on Machine Learning, 2009.

[61] David P. Woodruff. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10:1–157, 2014.

[62] Yunyue Zhu and Dennis Shasha. Statstream: Statistical moni-
toring of thousands of data streams in real time. In Proceedings
of the 28th International Conference on Very Large Data Bases,
2002.

Amey Desai received a M.Sc. degree in Computer Science
from University of Utah, and currently works as a software
engineer at Urban Engines in California.

Mina Ghashami received a M.Sc. degree in Software En-
gineering at Sharif University of Technology and is currently
completing a Ph.D. in Computer Science at University of Utah.

Jeff M. Phillips received a BS in Computer Science and BA
in Math from Rice University. He earned a Ph.D. from Duke
University in Computer Science. He was a CI Postdoctoral
Fellow at the University of Utah. Currently he is an Assistant
Professor in the School of Computing at University of Utah.

