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Abstract—
Anomaly detection in mixed-type data is an important problem that has not been well addressed in the machine
learning field. Existing approaches focus on computational efficiency and their correlation modeling between mixed-
type attributes is heuristically driven, lacking a statistical foundation. In this paper, we propose MIxed-Type Robust
dEtection (MITRE), a robust error buffering approach for anomaly detection in mixed-type datasets. Because of its
non-Gaussian design, the problem is analytically intractable. Two novel Bayesian inference approaches are utilized
to solve the intractable inferences: Integrated-nested Laplace Approximation (INLA), and Expectation Propagation
(EP) with Variational Expectation-Maximization (EM). A set of algorithmic optimizations is implemented to improve
the computational efficiency. A comprehensive suite of experiments was conducted on both synthetic and real world
data to test the effectiveness and efficiency of MITRE.

Index Terms—Anomaly Detection, Mixed-type Data, Robust Estimation, Expectation Propagation, Variational Inference
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1 INTRODUCTION

Anomaly detection is an important problem that has re-
ceived a great deal of attention in recent years. The ob-
jective is to automatically detect abnormal patterns and
identify unusual instances, so-called anomalies. For exam-
ple, in signal processing, anomalies could be caused by
random hardware failures or sensor faults, whilst anomalies
in a credit card transaction dataset could represent fraudu-
lent transactions. Anomaly detection techniques have been
widely applied in a variety of domains, including cyber
security [1], health monitoring [2], financial systems [3],
and military surveillance [4].

Approaches to anomaly detection include distance based
[5] [6], local density based [7] [8], one-class classifier based
[9] [10], and statistical model based methods [11] [12]
[13]. Most of these approaches are designed for single-type
datasets, whereas most real world datasets are composed of
a mixture of different data types, such as numerical, binary,
ordinal, nominal, and count. In the KDD panel discussion
[14] and the resulting position paper [15], dealing with
mixed-type data was identified as one of the ten most
important challenges in data mining for the next decade.
However, the direct application of single-type approaches to
mixed-type data leads to the loss of significant correlations
between attributes, and their extension to mixed-type data
is technically challenging. For example, distance based
approaches rely on well-defined measures to calculate the
proximity between data observations but there is no uniform
measure that can be used for mixed-type attributes, while
the statistical model based approaches rely on modeling
the correlations between different attributes but there is

no uniform correlation measure available for mixed-type
attributes. The limited number of methods designed for
dealing with mixed-type data, including LOADED [16] and
RELOADED [17] all focus primarily on computational ef-
ficiency and their correlation modeling between mixed-type
attributes is heuristically driven, lacking a solid statistical
foundation. There are three main challenges for mixed-
type anomaly detection: 1) Modeling mutual correlations
between mixed-type attributes: Mixed-type datasets in-
volve more than one confounded dimension of dependency
between the attributes so the relationships among these
attributes in multivariate types need to be captured; 2)
Capturing large variations due to anomalies: Most
existing methods require a pure training dataset in order
to learn what constitutes normal behavior. However, in
the presence of anomalies, recognizing normal instances
is challenging for unsupervised frameworks because these
anomalies introduce large variations that can easily bias
the estimation of normal patterns; and 3) Analytically
intractable posterior inference: The likelihood of non-
Gaussian observations yields an analytically intractable dis-
tribution. Therefore, an approximation method is necessary
to estimate the inference for the particular observations.

In this paper, a statistical-based approach to address
the above challenges is proposed. We begin by presenting
a new variant of the generalized linear model (GLM)
that can capture the mutual correlations between mixed-
type attributes. Specifically, the mixed-type attributes are
mapped to latent numerical random variables that are
multivariate Gaussian in nature. Each attribute is mapped
to a corresponding latent numerical variable via a specific
link function, such as a logit function for binary attributes
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and a log function for count attributes. By adopting this
strategy, the dependency between mixed-type attributes is
captured by the relationship between their latent variables
using a variance-covariance matrix. Meanwhile, an “error
buffer” component based on the Student-t distribution is
incorporated to capture the large variations caused by
anomalies. While fitting the data into the model, the error
buffer absorbs all errors. The detection process then revisits
the error buffer and detects those abnormal instances with
irregular magnitudes of error. Unfortunately, the appli-
cation of GLM and Student-t prior make the inference
analytically intractable. We therefore propose an approach
that adapts an Integrated-Nested Laplace Approximation
(INLA) by applying optimization strategies to approxi-
mate the Bayesian inference. An alternative framework
that incorporates Expectation-Propagation (EP) [18] and
Variational Expectation-Maximization (VEM) framework is
also proposed. The main contributions of our study can be
summarized as follows:

1) Constructing a novel unsupervised framework: A
new unsupervised framework capable of performing
general purpose anomaly detection on mixed-type
data is proposed that does not require labeled training
data, which is in practice often difficult to obtain.

2) Capturing anomalies’ large variances and de-
pendencies among mixed-type observations: The
proposed model addresses the two main challenges
of detecting anomalies in a mixed-type model, i.e.,
modeling mutual correlations between mixed-type at-
tributes and capturing large variations due to anoma-
lies.

3) Designing more effective approaches for Bayesian
inference approximation: Two approaches are pro-
posed to approximate Bayesian inference, namely
Integrated Nested Laplace Approximation (INLA)
and Expectation Propagation with a Variational-EM
framework.

4) Conducting extensive experiments to validate the
effectiveness and efficiency: Our experimental re-
sults demonstrate that our proposed approaches out-
performed most of the existing approaches tested
on both synthetic and real benchmark datasets, with
comparable computational efficiency. The advantages
and limitations of the proposed approaches are also
explored via an experimental analysis.

The remainder of this paper is organized as follows.
Section 2 reviews the existing work in this area and Section
3 presents the problem formulation and the model design. In
Section 4, the framework for the anomaly detection process
is discussed, while the experiments on both simulated
and real datasets are presented in Section 5. The paper
concludes with a summary of the research and our finidings
in Section 6.

2 RELATED WORK

This section provides an overview of the status of current
research on anomaly detection, including both single-type

and mixed-type anomaly detection methods.
Single-type Anomaly Detection Methods: Early re-

search on anomaly detection can be categorized into five
groups, namely distance-based [5] [6], density-based [7]
[8], cluster-based [19], classification-based [9] [10], and
statistical-based [11] [12] [13] [20] methods.

Knorr et al. [5] presented the first distance based ap-
proach, which detects anomalies by applying a distance
threshold. Another early distance-based method was pro-
posed by Ramaswamy et al. [6], who extended the dis-
tance criterion by combining it with the k-nearest neigh-
bor (KNN) based method. This category of methods is
usually efficient, but the accuracy is compromised when
the data distribution is skewed. Besides these distance-
based approaches, density based approaches are also pop-
ular. For example, the local outlier factor (LOF) [7] and
local correlation integral (LOCI) [8] methods are based on
estimating the local densities around points of interest and
their neighbors.

Other anomaly detection approaches address the prob-
lem by framing it as traditional data mining problems.
The clustering-based method proposed in [19] first groups
similar data and then labels those instances that are not
well clustered as anomalies. Various classification-based
approaches have also been proposed that assume that the
designation of anomalies can be learned by a classification
algorithm. This is exemplified by Das et al. [9], who present
a one-class SVM based approach, and Roth [10], whose
method is based on kernel Fisher discriminants.

Statistical-based approaches assume that the data follow
a specific distribution, and detect anomalies by identifying
instances with low probability densities. One of the main
challenges here is to reduce the well-known masking and
swamping effects. Anomalies can bias the estimation of
distribution parameters, yielding biased probability den-
sities that cause normal objects to be misidentified as
anomalies, or vice versa. To address this issue, a number
of methods have been proposed that make different dis-
tribution assumptions, including techniques based on the
robust Mahalanobis distance [11], direction density ratio
estimation [12], and the minimum covariance determinant
estimator [13]. Recent advances have generally focused on
applying robust statistics for outlier detection [20].

Another approach that often used for outlier detection
is to apply robust Principle Component Analysis (PCA)
[21] [22] [23]. Particularly we suited to extracting the
most significant features from noisy datasets, these methods
are either driven by robust statistics, e.g., trimming off
extreme observations [21] or using median rather than mean
values [22], or operate by directly decomposing the dataset
into a low rank matrix and a sparse matrix [23]. In the
first case, the outliers will be those data instances with any
attributes deviating from a specific threshold value, while
the outliers in the latter case are those data instances with
any greater value in the sparse matrix.

Mixed-type Anomaly Detection Methods: Real world
data usually consist of a mixture of data types, with non-
numerical data presenting different features from numerical
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data. For instance, categorical data has no particular order
so it is not possible to quantify differences between data
points [24], which means that detection methods that are
suitable for numerical data might not necessarily provide a
good fit for mixed-type datasets. Tran et al. [25] model het-
erogeneous datasets using Restricted Boltzmann Machines,
where the dependency among data fields is captured by
latent binary variables. Although their approach can be
utilized as a classifier for discrete outputs or as a regression
tool for continuous outputs, it does not explicitly consider
any anomalies present in the datasets.

In the research reported in the literature, a popular
approach is to process individual data types separately and
then integrate the results for each data type to detect anoma-
lies [16] [17] [26] [27].Two mixed-type anomaly detection
approaches have been proposed by Otey et al., namely
LOADED [16] and RELOADED [17]. LOADED uses an
augmented lattice to calculate the support count of the
item sets for the categorical attributes and then computes a
correlation matrix for the numerical attributes. It detects
anomalies by assigning an anomaly score based on the
support of the item sets and the level of numerical attributes
confirming that correlation. In an effort to improve the per-
formance of LOADED, RELOADED reduces the memory
usage by replacing the covariance matrix with a set of
classifiers. These two algorithms achieve a high efficiency
as targeted, although their detection accuracy could be
further improved. Both LOADED and RELOADED are su-
pervised methods and thus require training datasets. Mixed-
type data can also be processed by integrating different
single-type approaches. Koufakou et al. [26] [28] propose
ODMAD for high dimensional datasets, which detects
outliers in categorical fields and numerical fields separately.
In particular, outliers in categorical fields are detected by
counting and outliers in numerical fields are detected based
on the data’s distance from the center of the numerical
fields. Although this method is relatively straightforward, it
does not consider the relationships between categorical and
numerical fields. Moreover, it requires a good understand-
ing of the instance space in order to feed in several user-
defined thresholds to filter out outliers. Tran and Jin [27]
apply a C4.5 decision tree to symbolic attributes and
a Gaussian Mixture Model (GMM) to model numerical
fields, with And anomalies being detected by comparing the
weighted sum of the score from the decision tree and the
score from the GMM to a predetermined threshold. Similar
to ODMAD, this method requires extensive fine-tuning
work when assigning optimal weights for both scores and
selecting a reasonable threshold for filtering out outliers.

Ye et al. [29] adopted a different approach, applying
a projected outlier detection method (PODM) that jointly
considers discrete fields and continuous fields to detect top-
k anomalies. The fundamental principle when detecting
anomalies is that an anomalous instance’s presence in a
lower dimension projection will be abnormally lower than
the average. The idea here is thus to convert all continuous
fields into discrete values and then partition data space into
several cells. Given a set of subspaces that all instances

are projected onto, a Gini entropy and an outlying degree
are computed to measure whether a particular subspace
is an anomaly or not. Finally, the outliers are identified
from low density cells in the anomalous subspaces. The
main drawback of this method is the need to choose a unit
interval, i.e. an equi-width, for discretizing the numerical
values. Due to the often widely variable range of the
numerical attributes concerned, all these fields have to be
preprocessed carefully.

The closest work to the new method proposed here was
suggested by Zhang and Jin [30]. They apply the notion
of the patterns observed in the majority of the data in
terms of their attributes, where the number of patterns
corresponds to the number of categorical data fields. Here,
a pattern is studied by applying a linear logistic regression
where the explanatory variables are numerical attributes and
the response variable is a single categorical attribute. The
advantage of a regression based model is that it reveals the
functional relationship among the attributes [31]. However,
although this approach models such relationships among
the attributes, the logistic regression is sensitive to outlier
effects.

On the other hand, regression based models have been
widely studied in robust statistics research. For example,
several robust linear regression approaches for numerical
data are introduced in literature [32] [33], and Liu [34] also
proposes a robust version of logistic regression and proves
its capability to tolerate anomalies. Building on the existing
work, the model we propose in this paper adopts a robust
statistical approach to capture attribute dependencies using
an input-output relationship with a Gaussian latent variable.
Combining the robust design with the generalized linear
models, the proposed approach is capable to handle mixed-
type data while maintaining its robustness to anomalies.
The new framework aims to provide a high detection
accuracy and deliver the results in an acceptable time. The
process detects anomalies from the input dataset directly,
with no training data set required.

3 MODEL DESIGN

This section begins by formalizing the problem in 3.1.
In 3.2, we discuss the modeling of mixed-attributes in
the framework of generalized linear models and an error
buffering component to handle anomalous effects. The
integrated Bayesian hierarchical model is presented in 3.3.

3.1 Problem Formulation
Consider N instances in a dataset S = {s1 · · · sN}, in
which each instance s has P response (or dependent) vari-
ables {y1(s) · · · yP (s)} and D explanatory (or independent)
variables {x1(s) · · ·xD(s)}. The separation of the response
(e.g., a house price) and explanatory (e.g., the house’s size
and number of rooms) variables is decided based on users’
domain knowledge, and all the variables could be regarded
as response (dependent) variables as a special case. The
dependent variables could consist of different data types,
combining numerical, binary, and/or categorical variables,
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whilst the explanatory attributes are typically set to be
numerical. The objective is to model the data distribution
and identify those instances that contain abnormal response
variables or explanatory attributes.

Types of Anomalies: Since the attributes have been sep-
arated into two types, the anomalies can also be introduced
as either abnormal response variables or unusual explana-
tory attributes. Thus, we define three types of anomalies
based on their originating attribute groups:

1) Type I Anomalies are caused by abnormal values in
the response variables.

2) Type II Anomalies are caused by abnormal values
in the explanatory attributes.

3) Type III Anomalies are caused by abnormal values
for both response variables and explanatory attributes.

Any object that has attributes that cause it to behave
as if it belongs to one of the above three categories
is defined as an anomaly. An anomalous object usually
deviates considerably from the normal trends in the data
and can hence be detected using our statistical model.

Predictive Process: The first step utilizes numerical
response variables, which are typically assumed to follow a
Gaussian distribution model. Thus, the Gaussian predictive
process can be applied here. The following regression
formulation represents the behavior of the instances:

Y (s) = X(s)β + ω(s) + ε(s) (1)

This formulation implies that similar instances should
have similar explanatory attributes. The regression effect
β is a P ×D matrix, which represents the weights of the
explanatory attributes with regard to the response variables.
The dependency effect ω(s) is a Gaussian process used to
capture the correlation between the response variables and
a local adjustment is provided for each response attribute.
The error effect ε(s) captures the difference between the
actual instance behavior and normal behavior. The instances
are assumed to be independent and identically distributed
(i.i.d.), which introduces the Gaussian likelihood as

π(Y (s)|η(s)) ∼ N (Y (s)|η(s), σ2
num), (2)

where η(s) = X(s)β + ω(s) + ε(s), and σ2
num is set to a

small number in order to allow the random effects for ω
and ε to be captured.

3.2 GLM and Robust Error Buffering
The underlying concept of GLM (Generalized Linear
Model) is to assume that non-numerical type data are
generated from a particular exponential family distribution.
Taking the binary response type as an example, each
response variable is assumed to follow a Bernoulli dis-
tribution, such that π(Y (s)|η(s)) ∼ Bernoulli(g(η(s))),
where g is a logit link function that converts the numerical
likelihood value to the success probability of the Bernoulli
distribution. In this case, a sigmoid function is applied
for the conversion, e.g., g(x) = 1

1+exp(−x) . GLM can
handle not only binary data, but also count, categorical,
multinomial, and other data types. In this work, we consider

4 data different types, namely numerical, binary, count, and
categorical. The specific usage of GLM in our model will
be discussed in the next subsection.

One of the major components in the proposed new algo-
rithm is the robust error buffer. A latent random variable is
included to absorb the error effect caused by measurement
error, noise, or abnormal behaviors. The purpose of this
mechanism is to separate the expected normal behavior
from the errors. Instead of a simple Gaussian distribution, a
Student-t distribution is utilized to model the error variation
ε. A Student-t distribution has a heavier tail than a Gaussian
distribution, and is widely used in robust statistics [15]. The
heaviness of the tail is controlled by setting the number
of degrees of freedom: when the degree of freedom ap-
proaches infinity, the Student-t distribution becomes equiv-
alent to a Gaussian distribution. The probability density
function of a Student-t distribution st(0, df, σ) is defined
as

p(ε) =
Γ(df+1

2 )

Γ(df/2)
(

1

πdfσ
)

1
2 (1 +

ε2

dfσ
)−

df
2 −

1
2 , (3)

where df represents the degrees of freedom, σ is the scale
parameter, and Γ is the gamma function. Our model treats
the error effect ε(s) as a zero mean Student-t process, with
a diagonal covariance matrix and a preset degree of free-
dom. There are two benefits to be gained by incorporating
this error buffer in the model. First, the parameter estima-
tion becomes robust and the normal behavior is modeled
more accurately. Second, the errors are absorbed by this
latent variable, making it possible to detect anomalies by
checking the values of the variables.

3.3 A Bayesian Hierarchical Model
Integrating the components introduced in the above subsec-
tions allows us to complete the design of the new algorithm.
Figure 1 shows the graphical representation of our model.

Fig. 1: Graphical Model Representation

The proposed model is based on a Bayesian hierarchical
model, which enables the parameters to be automatically
learned while also reserving the option for users to assign
values to the hyper-parameters based on their prior knowl-
edge.

The first (observation) level of the hierarchical model
captures the relationships between the response variables.
This level refers to the predictive process and the GLM,
and models the relationships between the latent effects and
the response variables. Here, 4 different types of data are
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TABLE 1: GLM Information

Type Likelihood Link Function
Numerical Gaussian Identity

Binary Bernoulli Logit Function
Count Poisson Log Function

Categorical Nominal Logit Function

considered: numerical, binary, count, and categorical. Each
of the data types is associated with a specific type of like-
lihood. We model these data types in the traditional GLM
manner, which assumes Gaussian, Bernoulli, and Poisson
distributions for numerical, binary, and count, respectively.
For categorical data, we follow the modeling strategy
described in [35]. The categorical response variable is
extended to K binary variables, where K is the number of
categories of the variable. Table 1 lists the GLM likelihood
and link function of each data type.

The second (latent variable) level is the latent variable
level. This level contains the latent elements that refer to
the effects of the error buffer and the correlation effect i.e.,
ω and ε. The main purpose of this level is to model the re-
lationships between the latent variables and the parameters.
More specifically, we can form the following equations:

ω(s) ∼ N (ω(s)|0,Σω), (4)
ε(s) ∼ St(ε(s)|0, σε, df), (5)

where Σω is the covariance matrix used to model the
covariance between the response variables, σε is a diagonal
covariance matrix that indicates the variances of the error
effects, and df denotes the degree of freedom parameter.
For convenience, we will use the symbol ν to denote the
latent variable set.

The third (parameter) level defines the regression
coefficients and conjugate priors for the model parameters,
including the covariance matrix of ω and the covariance
matrix of ε, designated Σω and σε, respectively.

The prior distribution of the regression coefficients β can
be represented by

βp ∼ N (β|µβp,Σβp), (6)

where βp is the regression coefficient corresponding to the
p-th response variable, and µβp and Σβp are the hyper-
parameters that define the Gaussian distribution of each βp.

To reduce the dimensionality of θ, we retain only the
variance of ω and ε in each response variable and the
correlation between response variables:

σ2
εp ∼ IG(aεp, bεp), (7)

Σω ∼ IW (Φ, dfω), (8)

The variance σ2
εp for each response variable is assigned an

inverse gamma distribution, and the covariance matrix of
ω is assigned an inverse Wishart distribution. The symbols
aεp, bεp, Φ ,and dfω denote the hyper-parameters of these
prior distributions. The model is now well defined and the
next step is to fit the model based on the dataset. In the
next section, we introduce the entire anomaly detection

framework and describe the method used to approximate
the Bayesian inference for the model.

4 FRAMEWORK AND INFERENCE

This section presents the framework of the anomaly de-
tection process, the statistical inference for the model, the
computational cost, and the optimization schemes. Two new
frameworks have been devised in this paper, one utilizing
the INLA framework and the other an EP framework.

4.1 INLA Framework
First, we propose an approach adapted from the Integrated
Nested Laplace Approximation (INLA) [36], which is a
relatively new technique for approximating Bayesian in-
ference. The Laplace approximation (LA) method approxi-
mates an arbitrary distribution to Gaussian by taking the
mode as the mean and the second order derivative at
the mode as the variance (or covariance matrix in multi-
variate distribution). The general idea of INLA is to use
the Laplace Approximation iteratively to approximate the
marginal posteriors for the latent variables. The advantage
here is that the fitting process of INLA is particularly effec-
tive in a lower dimensional space for the model parameters.

4.1.1 Framework

Algorithm 1 MITRE-INLA
Require: The response variables Y and explanatory attributes X
Ensure: The anomalous instances

1: set θ = θ0
2: while θ 6= argmaxθ(p(θ|Y )) do
3: setν = ν0
4: while ν 6= argmaxν(p(ν|Y, θ)) do
5: ν = update ν
6: end while
7: ν̂ = ν
8: L = likelihoodofp(θ|Y, ν̂)
9: θ = update θ(L)

10: end while
11: θsample = sample from neighborhood of θ
12: set Lθsamples , ν̂θsample = φ
13: for all θs in θsamples do
14: ν̂θs = argmaxν(p(ν|Y, θs))
15: Lθs = likelihoodofp(θ|Y, ν̂θ,s)
16: put ν̂θs into ν̂θsamples

17: put Lθs into Lθsamples

18: end for
19: weight = normalize(Lθsamples)
20: ν∗ = ν̂θsamples ∗ weight
21: ε∗ = getErrorBuffer(ν∗)
22: set AnomalySet = φ
23: for all ε∗s in ε∗ do
24: if ε∗s > ErrorThreshold then
25: put s in AnomalySet
26: end if
27: end for
28: return AnomalySet

Algorithm 1 presents the framework for MITRE-INLA,
which is composed of three major components: the Laplace
approximation, variable estimation, and anomaly detection.



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2583429, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Phase 1 - Laplace Approximation. Steps 1 to 10
show how the INLA framework is established by two
Laplace approximations in a nested structure. The outer
loop performs a maximum a posteriori (MAP) to θ. Since
we can represent the posterior distribution of θ in the form:

p(θ|Y ) ∝ p(ν, Y, θ)

p(ν|Y, θ)
, (9)

and our objective is to maximize p(θ|Y ), we can treat the
posterior density function p(θ|Y ) as an objective function
and this then becomes an optimization problem. The next
step is to assign values for each input to this objective
function p(θ|Y ). Thus, the inner loop (steps 4-6) runs
for the Laplace approximation to p(ν|Y, θ). Applying a
Taylor expansion to p(ν|Y, θ), we can achieve an analytical
formulation that restructures this density function into the
quadratic form:

p(ν|Y, θ) = −1

2
νTQν + νT b. (10)

Then, for each iteration at step 5, the latent variable set ν
can be updated by ν = Q−1b. After a few iterations, ν will
converge to a local optimum. This updating method, known
as Iterative Reweighted Least-Squares (IRLS) [37], usually
converges within 5 iterations. Steps 7-9 calculate the value
of the objective function p(θ|Y ) at the local optimum ν̂,
and update θ according to this value. The iterations are
continued until θ converges.

Phase 2 - Variable Estimation. After obtaining the
mode of p(θ|Y ), say θ̂, samples can be collected from the
neighbors of θ̂ in the space of θ and used to estimate the
optimum values of θ and ν. This is similar to the importance
sampling [38] approach often used for numerical analysis,
the difference being that samples are only collected from
the mode region in the space. Steps 11-19 demonstrate this
process.

Phase 3 - Anomaly Detection. Finally, steps 20-28 show
the process used to detect anomalies. Having identified the
optimum ν, say ν∗, we are able to use the optimized latent
variable set to perform anomaly detection. We begin by ex-
tracting the fitted error buffer ε∗ from ν∗, and examining its
contents. Step 24 indicates how the anomalies are detected
in terms of a pre-determined threshold. This threshold is
typically set to 3 times the standard deviation, i.e., the
absolute Z-score equals 3, just as in labeling anomalies for
a Gaussian distribution.

4.1.2 Computational Cost and Optimization
The computational cost is usually a concern for statisti-
cal modeling techniques; if the method is to be applied
as an online method, the efficiency becomes especially
important. Here, the strategy is to approximate complex
computations, accepting a slight drop in accuracy to gain a
significant increase in efficiency. These optimizations have
been successfully tested experimentally, as described in the
Experimental Results section.

Latent Computational Optimization: In Algorithm 1,
step 5 is a major bottleneck in the framework shown . The

high dimensionality of the latent variable set makes the
computation of the matrix inversion very slow. To optimize
this step, the update is approximated by separating ν into
ε, ω, β and then updating these three variables iteratively, as
in the Gibbs sampling method. Algorithm 2 demonstrates
the idea behind the approximation process. Steps 1-9 show
how the original process breaks down into three smaller
processes. Steps 2, 5, and 8 update the latent variables in
the same sense as the original one. A Taylor expansion is
performed on each of the three latent variables separately
and inserted into the Gaussian quadratic form in equa-
tion (10) and updated by IRLS, i.e. iteratively performing
β = Q−1β bβ , ε = Q−1ε bε, and ω = Q−1ω bω . In each call
on update ν, two of the variables are fixed and the third
updated, substantially reducing the computational cost as
a result. The complexity of the original INLA update is
O((P (2N + D))3), which refers to the size of the latent
variable set in the matrix inversion, while the complexity
of the optimized update is reduced to O(N3).

Algorithm 2 update ν
Require: The original latent variable ε, ω, β
Ensure: The updated latent variable εnew, ωnew, βnew

1: while β 6= argmaxβ(p(β|Y, θ, ε, ω)) do
2: β = update β(ε, ω)
3: end while
4: while ε 6= argmaxε(p(ε|Y, θ, β, ω)) do
5: ε = update ε(β, ω)
6: end while
7: while ω 6= argmaxω(p(ω|Y, θ, ε, β)) do
8: ω = update ω(ε, β)
9: end while

10: return εnew = ε, ωnew = ω, βnew = β

Approximate Parameter Estimation: Another bottle-
neck in Algorithm 1 is that when the dimension of the pa-
rameter space is huge, sampling and evaluating the weight
from the θ̂ neighborhood is computationally intensive. We
therefore approximate the optimum estimation by reducing
the size of the samples in step 11. Although the estimated
parameters will not exactly match the optimum, the latent
variable set still follows approximately the same trend if
the estimated parameters are close to the optimum, and
our experience indicates that the approximated θ̂ is usually
sufficiently close to the optimum solution of θ. Since the
anomaly detection framework is only interested in the latent
variables, having a minor bias in the parameter estimation
will not actually affect the detection results.

4.2 EP Framework
Although the INLA method can provide a good approxi-
mation of the inference, the grid integration scheme in the
neighborhood of θ (Line 11 of Algorithm 1) introduces
a significant growth in the computational cost when the
dimension of θ becomes large [39]. As an alternative
solution, we therefore developed an approximate Bayesian
inference approach for the MITRE model using Expectation
Propagation (EP) with the Variational-EM framework. EP
has been shown to give results that outperform Laplace’s
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method on accuracy in terms of predictive distributions and
marginal likelihood estimations [18].

4.2.1 Framework

Under this framework, we can apply EP for the inference
of the latent variables. Based on mean-field theory, the
inference is embedded into an Expectation-Maximization
loop to estimate the optimal model parameters θ. Algorithm
3 presents the framework of MITRE-EP.

Phase 1 - Approximate Inference. Steps 1 to 10
show the approximate inference using EP-EM, which will
be introduced in the next subsection. The inner loop
performs Expectation Propagation (EP) to estimate the
latent variables, and the outer loop performs Expectation
Maximization (EM) algorithm to estimate the parameter
set θ. The details of this process are discussed in the next
subsection.

Phase 2 - Anomaly Detection. This phase applies the
same procedures as in the INLA framework. We extract the
fitted error buffer ε∗ from the estimated ν∗, and examine its
contents to detect any anomalies. Steps 15-17 indicate how
the anomalies are detected in terms of a pre-determined
threshold. This threshold is typically set to 3 times the
standard deviation, i.e., the Z-score equals 3, just as when
labeling the anomalies for a Gaussian distribution.

Algorithm 3 MITRE-EP
Require: The response variables Y and explanatory attributes X
Ensure: The anomalous instances

1: set θ = θ0
2: while θ 6= argmaxθ(p(θ|Y )) do
3: set ν = ν0
4: while ν 6= argmaxν(p(ν|Y, θ)) do
5: ν = update ν
6: end while
7: ν̂ = ν
8: L = likelihoodofp(θ|Y, ν̂)
9: θ = update θ(L)

10: end while
11: set ν∗ = mode(p(ν|Y, θ))
12: ε∗ = getErrorBuffer(ν∗)
13: set AnomalySet = φ
14: for all ε∗s in ε∗ do
15: if ε∗s > ErrorThreshold then
16: put s in AnomalySet
17: end if
18: end for
19: return AnomalySet

4.2.2 Approximate Inference

The E-step of the EM algorithm estimates the expectation of
the posterior distribution p(θ|Y ). Applying Bayes’ theorem,
the posterior is shown to be proportional to the joint
distribution.

p(θ|Y ) ∝ p(Y |θ)p(θ) (11)

Thus, the expectation of the complete-data log posterior for
a general θ value is given by

Q(θ, θold)

= Eν [ln p(ν, Y |θ)|θold] + ln p(θ) + Const

where θold denotes the parameter values in the current iter-
ation, and Const presents the constant that does not depend
on θ. In the M-step, the updated parameter estimation θnew

is determined by maximizing the expectation Q, such that

θnew = arg max
θ
Q(θ, θold) (12)

The first objective is to estimate the expectation
Eν [ln p(ν, Y |θ)|θold]. As mentioned above, the mixed-type
GLM and the student-t prior introduce a complicated joint
distribution, rendering the inference intractable. Therefore,
Expectation Propagation is applied here to approximate the
inference.

When initiating the inner EP process, we begin by
expanding p(ν, Y |θ):

p(ν, Y |θ) = p(Y |ν, θ)p(ν|θ) (13)

According to the model structure shown in Fig 1, the
likelihood component can be written in a product form:

p(Y |ν, θ) =
∏N
n=1

∏P
p=1 p(ynp|βp, ωnp, εnp) (14)

and
p(ν|θ) =

∏N
n=1 p(ωn|θ)

∏P
p=1 p(εnp|θ) (15)

Thus, the joint distribution becomes

p(ν, Y |θ)

=
N∏
n=1

p(ωn|θ)
P∏
p=1

p(εnp|θ)p(y|βp, ωnp, εnp)

By utilizing EP, the complicated distribution p(ν, Y |θ)
can be approximated to a Gaussian distribution. The ap-
proximated Gaussian is denoted by q(ν):

q(ν) =
1

Z
q0(ν)

N∏
n=1

P∏
p=1

qnp(ν)

= N (ν|h,C) (16)

where q0(ν) =
∏N
n=1 p(ω|θ) is the prior, and each qn(ν)

approximates the product of the likelihood and the student-t
prior according to the n-th entity, i.e.,

qnp(ν) = N (ν|mnp, Rnp) ≈ p(εnp|θ)p(y|βp, ωnp, εnp)

Since GLM is integrated to the model, this yields
p(yn|β, ωn, εn), with different forms for different data
types. Specifically, each instance n may consist of P
response variables in variant types. To denote this, we
use the subscript p to denote the index of the response
variables of an instance. For example, for numerical data,
the likelihood is assumed to follow a Gaussian distribution

p(ynp|βp, ωnp, εnp) = N (ynp|xnβp + ωnp + εnp, λ) (17)
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To make the equations terse, we use ηnpν to denote
xnβp + ωnp + εnp, where ηnp is a (2 + D) ∗ P vector.
The EP algorithm iterates over all elements with regard
to the subscripts n and p, and updates the approximated
distribution using the deletion/inclusion scheme described
in [18], i.e., deletion, moment matching, and updating. The
following process is performed until m and R converge:

1) Deletion: remove qnp from the full proposal distri-
bution q

q\n,p(ν) = N (ν|h\n,p, C\n,p) (18)

where

h\n,p = h+ C\n,pR−1np (h−mnp) (19)

C\n,p = (C−1 −R−1np )−1 (20)

2) Moment Matching: find the new approximated pro-
posal distribution q(new) ∼ N (h(new), C(new)) by
matching the moment of

qprop(ν) = q\n,p(ν)p(εnp|θ)p(y|βp, ωnp, εnp)

The mean and variance of q\n,p can be found using
Iterated Re-weighted Least Squares (IRLS). By ex-
panding the Taylor series to the combined distribution
at the point ν0,

qprop(ν) = qprop(ν0) +∇νqprop(ν0)(ν − ν0)

+
1

2
∇∇νqprop(ν0)(ν − ν0)

(21)

Rearrange the series into squared form

qprop(ν) = −1

2
νTQν + bν + const

such that a local optimum can be found at Q−1b. By
matching the coefficient of the above equations,

b(ν0) = ∇∇νqprop(ν0)ν0 −∇νqprop(ν0)

Q(ν0) = ∇∇νqprop(ν0)

IRLS finds the mode of qprop iteratively by setting

ν(i+1) = Q−1(ν(i))b(ν(i)) (22)

in each iteration, given a starting point ν(0).
Since different likelihood functions are assumed for
different data types, this step is handled in various
ways according to the corresponding data type. The
gradient and Hessian of the numerical likelihood are
as follows:

∇νqprop(ν) =
−ηnp
λ

(ηTnpν − Ynp)

− C\n,p
−1

(ν − h\n,p)

− (df + 1)εnp
dfσε + ε2np

ηεnp

∇∇νqprop(ν) =
−1

λ
ηnpη

T
np − C\n,p

−1

−
(df + 1)(σεdf − ε2np)

(σεdf + ε2np)
2

ηεnp
ηTεnp

The equations for the other data types can be derived
in a similar way.

3) Update: update each approximated distribution by

qnp(ν) =
q(new)

q\n,p
(23)

From equation (23) and the definition above we have

R−1np = C(new)−1

− C\n,p
−1

(24)

mnp = Rnp(C
(new)−1

h(new) − C\n,p
−1

h\n,p)

After the expectation for the latent variable ν has been
approximated, the first part of the expectation can be
formulated using the following expression:

Eν [ln p(ν, Y |θ)|θold]

=
N∑
n=1

lnN (ω̂n|0,Σω) +
N∑
n=1

P∑
p=1

lnST (ε̂np|0, σεp)

where ν̂ is the expected value of ν.
The expectation of the log distribution function θ is

Q(θ, θold)

= Eν [ln p(ν, Y |θ)|θold] + ln p(θ)

=

N∑
n=1

P∑
p=1

ln p(ynp|βp, ω̂np, ε̂np) +

P∑
p=1

lnN (βp|µβp,Σβp)

+
N∑
n=1

lnN (ω̂n|0,Σω) +
N∑
n=1

P∑
p=1

lnST (ε̂np|0, σεp)

+ ln IW (Σω|Φ, dfω) +
P∑
p=1

ln IG(σεp |aεp , bεp) (25)

To make the statement clearer, Q(θ, θold) is separated
into β, ω ,and ε components.

Q(β)(θ, θold)

=
P∑
p=1

N∑
n=1

ln p(Ynp|Xnβp + ω̂np + ε̂np)+
P∑
p=1

ln p(βp)

Q(ω)(θ, θold)

=
N∑
n=1

(
− ln 2π − 1

2
ln |Σω| −

1

2
ω̂TnΣωω̂n

)
+
dfω
2
|Φ|−dfω ln 2− ln Γ2(

dfω
2

)

− dfω + 3

2
ln |Σω| −

1

2
tr(ΦΣ−1ω )

Q(ε)(θ, θold)

=
N∑
n=1

P∑
p=1

(
ln Γ(

df + 1

2
)− ln Γ(

df

2
)− 1

2
lnπdf

−1

2
lnσ2

εp +
df + 1

2
ln

(
1 +

ε̂2np
2σ2

εp

))

+
P∑
p=1

(
a ln b− ln Γ(a)− (a+ 1) lnσ2

εp −
b

σ2
εp

)
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The M-Step maximizes the objective by finding the root
of Q(θ, θold). Because this is also an intractable problem,
IRLS is applied once again here to seek an approximated
solution. Iteratively updating the value by inputing the
gradient and Hessian from equation 22, the root of θ can
be approximated.

For σ2
εp the gradient and Hessian are:

∂

∂σ2
εp

Q(ε)(θ, θold)

= − N

2σ2
εp

+ (
df + 1

2
)
N∑
n=1

(
−ε̂2np

4σ2
εp − 2ε̂2np

)

+

(
−(a+ 1)

σ2
εp

+
2b

(σ2
εp)

2

)
(26)

∂2

∂2σ2
εp

Q(ε)(θ, θold)

=
2N

4(σ2
εp)

2
+ (

df + 1

2
)
N∑
n=1

(
4σ2

εpε̂
2
np − (ε̂2np)

2

(4σ2
εp − 2ε̂2np)

2

)
+

a+ 1

(σ2
εp)

2
− 4b

(σ2
εp)

3
(27)

Since β corresponds to different likelihood functions for
different data types, the maximization for each type can
be calculated separately. Here we show only the equations
for numerical data, for other data types, the β can be
approximated using Laplace approximation (see supple-
mental material). For the βp corresponding to the numerical
data type, the root can be found by setting the first-order
derivation to zero. Thus, βp can be updated by

β(new)
p

= (
1

λ

N∑
n=1

XT
nXn + Σ−1βp

)−1

× (
1

λ

N∑
n=1

XT
n (Ynp − ω̂np − ε̂np) + Σ−1βp

µβp) (28)

4.2.3 Computational Optimizations
In order to further boost the efficiency of the framework,
several optimization schemes are proposed in this subsec-
tion. Here, the strategy is to approximate these complex
computations, accepting a slight drop in accuracy in order
to gain a significant increase in efficiency. These optimiza-
tions have also been successfully tested experimentally, as
described in the Experimental Results section.

Correlation Parameter Reduction: Since the complex-
ity of the process is proportional to the dimensionality of
the parameters, one way to reduce the complexity is to
reduce the number of parameters. For this optimization,
we applied a Mutual Information [40] method to calculate
the scores of the dependencies between each pair of the
response attributes. By applying a user-defined parameter
K, it is only necessary to consider the top K attribute
correlations to be fitted. This approximation reduces the

correlation parameter from
(
P
2

)
to K. When P is a large

number, this approximation significantly reduces the com-
putational cost.

Sub-sampling Fitting: When the data size is large, we
can further reduce the complexity by sampling only a small
portion of the data and then detect the anomalies using the
model built by the samples. When the size of these sampled
instances and the number of sample batches are sufficient,
the accuracy is maintained. This optimization also appies
to the INLA based framework.

5 EXPERIMENTS
Comprehensive experiments on MITRE were conducted
to evaluate the following performance elements: detection
accuracy, time efficiency, and impact of parameters. The
results of the experimental analyses are presented in this
section and organized as follows: Section 5.1 introduces the
benchmark approaches. Section 5.2 discusses the detection
accuracy, time efficiency, and the impact of parameters with
synthetic data sets, and Section 5.3 provides an in-depth
evaluation of MITRE’s effectiveness when applied to real-
life data sets. The results of these analyses are discussed
in Section 5.4. All sets of the experiment were conducted
on a Windows 7 machine with a 2.4 GHz Intel Dual Core
CPU and 8GB of RAM.

5.1 Benchmark Approaches
Eight benchmark approaches were evaluated, namely
LOADED [16], RELOADED [17], KNN-CT, LOF-CECT,
OCS-PCT, OCS-RBF, FB-LOF [41], and ODMAD [26].
LOADED, RELOADED, and ODMAD are mixed-type
anomaly detection methods; OCS-RBF (One-class SVM
with RBF kernel) and FB-LOF (Feature bagging with an
LOF base) are general numerical type anomaly detection
methods. For OCS-RBF and FB-LOF, we preprocessed
the dataset by converting categorical fields into their bi-
nary representation, and performing min-max normalization
on all fields. The remaining three methods are all inte-
grated single-type anomaly detection methods made up of
combinations of six single-type anomaly detection meth-
ods, including three numerical anomaly detection methods
(KNN, LOF [7] and OCS (One-class SVM) [9]) and three
categorical anomaly detection methods (CT, CECT and
PCT, all from [42]). Das and Schneider [42] have shown
that these methods outperformed other categorical methods,
leading to their selection as the benchmark methods for the
categorical attributes in the current study. The integrated
methods performed the detection procedures separately, and
combined the scores into the same measure via a normaliza-
tion process. For both LOADED and RELOADED, popular
settings of the model parameters (correlation threshold =
[0.1, 0.2, 0.3, 0.5, 0.8, 1]; frequency threshold = [0, 10, 20];
τ = [1,2,3,5]) were utilized, and the best results for each
dataset reported here based on the true anomaly labels. For
the other three approaches, the parameters were selected
based on 10-fold cross validations. For ODMAD, we set
the minsup value to be the reciprocal of the number of
categories of each categorical field.
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5.2 Synthetic Study
For the synthetic data study, we examined the detection
accuracy of the proposed frameworks, compared the time
costs against the benchmark methods, and analyzed the
impact of the parameter settings.

5.2.1 Data sets
The synthetic data were generated based on the following
model:

Z(s) = X(s)β + ω(s) (29)

We first generated N × D explanatory attributes X from
a Gaussian distribution, with a set of β : D × P and the
covariance between the attributes, to obtain a set of Z =
[Z1, . . . , ZP ]. For each Zi, we converted the Zi to different
types, such that

Y (s) = gtype(Z(s)), (30)

where g is the link function for the specific types, such
as binary or categorical. The anomalies were injected by
randomly shifting the values of Y (s) by a specific amount,
for example, by swapping the classes of the categorical
observations. In the following experiments, we generated
a variety synthetic datasets according to the objective of
each test. Each dataset was generated to contain 8-10%
anomalous instances.

5.2.2 Detection Accuracy
In this set of experiments, we tested the model inference
performance on 4 sets of synthetic data based on differ-
ent combinations of data types, namely SynNB, SynNC,
SynBC, and SynNBC. The symbols N, B, and C refer to
numerical, binary, and categorical data types, respectively.
The detection accuracy was examined among the synthetic
datasets as shown in Table 2. MITRE-EP and MITRE-
INLA significantly outperformed the other benchmark
methods because there was a strong input-output relation
in these simulated datasets. Although a synthetic study is
not always convincing due to the presumptions involved
in generating the data, these results clearly demonstrate
that when the input-output relationships are strong and
the pre-knowledge is available to the dataset, MITRE is
capable of delivering markedly better results than any of
the benchmark methods tested.

5.2.3 Time Cost
This set of experiments compared the time costs incurred
by MITRE and the benchmark methods. We conducted
these experiments on synthetic datasets in which the normal
instances were generated based on a GLM that models
mixed-type attributes, and the anomalous instances were
generated by random shifting. Table 3 shows the time cost
comparison among the various methods for datasets with
different instance sizes. Experiments that ran over 2 hours
are considered as failure. Overall, although our approach
suffered from a higher time cost than the benchmark
methods, it delivered much higher detection accuracy in a

TABLE 3: Time Cost Comparison in terms of Size of N
(seconds)

PPPPPPMethod
Size 300 500 1K 10K 100K 1M 2M

MITRE-EP 2.74 4.39 8.72 97.58 113.43 1662.17 >7200
MITRE-INLA 1.99 8.38 32.65 133.54 >7200 >7200 >7200

KNN-CT 0.01 0.02 0.07 5.80 313.28 >7200 >7200
LOF-CECT 0.01 0.03 0.11 29.31 N/A N/A N/A
OCS-PCT 0.02 0.03 0.12 12.11 N/A N/A N/A

RELOADED 0.01 0.14 0.19 0.44 4.48 87.90 258.77
LOADED 0.07 0.10 0.22 2.54 23.59 249.13 484.02
OCS-RBF 0.02 0.03 0.07 8.38 606.84 >7200 >7200
FB-LOF 0.05 0.13 0.29 14.66 708.66 >7200 >7200
ODMAD 0.01 0.01 0.03 0.24 3.39 46.80 169.50

Experiments that exceeded the available memory resources are denoted by N/A

Experiments that ran over 2 hours are considered as failure

TABLE 4: Time Cost Comparison in terms of Size of P
(seconds)

PPPPPPMethod
Size 10 25 50 100 200 300

MITRE-EP 8.77 19.06 153.30 1020.43 9344.83 >7200
MITRE-INLA 42.05 319.37 >7200 >7200 >7200 >7200

KNN-CT 0.14 158.24 >7200 >7200 >7200 >7200
LOF-CECT 6.69 596.32 >7200 >7200 >7200 >7200
OCS-PCT 0.24 >7200 >7200 >7200 >7200 >7200

RELOADED 0.24 0.46 1.02 2.26 5.44 7.86
LOADED 1.16 60.83 >7200 >7200 >7200 >7200
OCS-RBF 0.01 0.01 0.01 0.01 0.02 0.02
FB-LOF 0.30 0.37 0.51 0.87 1.63 2.11
ODMAD 0.018 >7200 >7200 >7200 >7200 >7200

Experiments that ran over 2 hours are considered as failure

comparable time as discussed in Section 5.2.2 and the later
experimental results for real-life data. Table 4 shows the
time consumption with increasing size of P . Most of the
benchmark methods failed to handle the higher dimension
data. For example, ODMAD’s computational cost grew
exponentially with the number of categorical fields due
to its exhaustive searching scheme. MITRE-INLA also
suffered from a high dimension of P size, due to the
θ estimation process (Section 4.1.1 Phase 2). MITRE-EP
demonstrated its ability to accomplish a run with a P size
of 100 within one hour.

5.2.4 Impact of Parameters

Two major user input parameters in our new framework
design are the threshold for determining anomalies, and
the degree of freedom of the Student-t prior. The choice of
these two parameters does affect the performance. We con-
ducted this set of experiments using the synthetic datasets
described previously, namely SynNB, SynNC, SynBC,
SynNBC, for various sizes of instances. Threshold of
Anomalies: This set of experiments analyzed the impact
of the threshold used to determine anomalies. We used
SynNB, SynNC, SynBC, SynNBC as described previously,
with N equals to 100, 300, 500, and 1000. For each type-
size combination, 10 variant realizations were generated.
The threshold was tested over the range from 1 to 7 at
0.5 increments. Fig. 2 compares the effect of the different
thresholds for the average precision, recall, and F-measure.
Fig. 2 (a) shows that all the datasets follow the same
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TABLE 2: Detection Rate Comparison among Synthetic Datasets (Precision, Recall)

Dataset MITRE-EP MITRE-INLA KNN-CT LOF-CECT OCS-PCT RELOADED LOADED OCS-RBF FB-LOF ODMAD

SynNB 1.00, 0.69 1.00, 0.89 0.11, 0.11 0.25, 0.50 0.29, 0.56 0.29, 0.56 0.28, 0.56 0.72, 0.72 0.06, 0.06 0.08, 0.61
SynNC 0.89, 0.82 1.00, 0.89 0.06, 0.06 0.40, 0.33 0.28, 0.56 0.29, 0.56 0.27, 0.56 0.72, 0.72 0.33, 0.33 0.06, 0.50
SynBC 0.89, 0.67 0.71, 0.67 0.06, 0.06 0.33, 0.17 0.20, 0.39 0.20, 0.39 0.03, 0.06 0.33, 0.33 0.11, 0.11 0.08, 0.50

SynNBC 0.92, 0.73 0.80, 0.77 0.04, 0.04 0.75, 0.33 0.33, 0.63 0.32, 0.59 0.21, 0.41 0.59, 0.59 0.04, 0.04 0.12, 0.58
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Fig. 2: Impact of Error Threshold
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Fig. 3: Impact of Degree of Freedom

pattern, with precision increasing significantly from 1 to
3.5, and then becoming moderate after 3.5. When the
threshold equaled to 5, all of the datasets reached their
maximum precision. Fig. 2 (b) shows that for all data
types, the recall generally declined gradually. In Fig. 2 (c),
the F-measure demonstrates a more obvious pattern. Here,
for all data types, the peaks fall between the thresholds
of 3 to 4, which confirms our hypothesis regarding the
setting of the threshold. Degree of Freedom: This set
of experiments analyzed the impact of degree of freedom
df in the proposed model. We used the same synthetic
data sets as in the previous set of experiments. When
testing the impact of degree of freedom, the error threshold
was fixed at 3. Fig. 3 shows that setting a lower df
generally delivers higher precision, because the absorbed
error highlights the difference between abnormal instances
and normal instances. A slight increase in the F-measure
from df=1 to df=3 has a visible effect; the inference was
not able to converge to the global optimum in a limited
number of iterations with the df set at less than 3.

5.3 Real-life Data Study

5.3.1 Data sets

We validated our approach using 14 real datasets, all of
which can be found in the UCI machine learning repository
[43]. Table 5 shows detailed information on these datasets.
In the table, the types are denoted by N, B, and C for nu-
merical, binary, and categorical, respectively. The response
fields shown in Table 5 we used as Y and the remaining

TABLE 5: Information in Real Datasets

Dataset Instances Attrs Type Response
Abalone 4177 9 C, N 1, 9

Yeast 1324 9 C, N 1, 6
WineQuality 4898 12 C, N 1, 12

Heart 163 11 C, B 3, 6
Autompg 398 8 C, N 1, 8

Wine 178 13 C, N 1, 2
ILPD 583 10 B, N 1, 2
Blood 748 5 B, N 4, 5

Concrete 103 10 B, N 8, 9, 10
Parkinsons 197 23 B, N 2, 18

Pima 768 8 B, N 3, 9
KEGG 53414 23 B, N 5, 7, 12, 13

MagicGamma 19020 11 B, N 1, 2, 11
Census 299285 42 C, N 6, 19, 25, 42

attributes as X in our experiment; the number refers to the
n-th column of the raw dataset.

5.3.2 Anomaly Labels

Because the above datasets do not provide true anomaly
labels, we preprocessed the data to obtain true anomaly
labels in two different ways:

1. Rare Classes. For the first group of datasets (Abalone,
Yeast, WineQuality, Heart and Autompg), we identified sev-
eral rare categorical classes in the datasets. By following the
same strategy as those used by existing anomaly detection
studies [44], [45], these rare class instances were defined
as true anomalies.

2. Random Shifting. For the remainig datasets, we
regarded all the data objects as normal objects and followed
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TABLE 6: Detection Rate Comparison among Real Datasets (Precision, Recall, F-measure, AUC)

Dataset MITRE-EP MITRE-INLA KNN-CT LOF-CECT OCS-PCT

Abalone 0.78, 0.29, 0.42, 0.94 0.25, 0.62, 0.36, 0.98 0.16, 0.33, 0.22, 0.69 0.02, 0.04, 0.03, 0.49 0.20, 0.42, 0.27, 0.67
Yeast 1.00, 0.47, 0.64, 1.00 0.55, 0.67, 0.60, 0.59 0.29, 0.57, 0.38, 0.28 0.05, 0.10, 0.07, 0.15 0.21, 0.44, 0.28, 0.62

WineQuality 0.50, 0.29, 0.36, 0.93 0.33, 0.65, 0.44, 0.95 0.03, 0.06, 0.04, 0.03 0.02, 0.04, 0.03, 0.03 0.04, 0.07, 0.05, 0.09
Heart 1.00, 0.57, 0.72, 0.99 0.95, 0.75, 0.84, 0.98 0.46, 0.76, 0.57, 0.50 0.45, 0.75, 0.56, 0.50 0.24, 0.43, 0.31, 0.50

Autompg 0.47, 1.00, 0.64, 1.00 0.47, 1.00, 0.64, 0.99 0.00, 0.00, 0.00, 0.00 0.00, 0.00, 0.00, 0.00 0.47, 1.00, 0.64, 0.99

Wine 0.22, 0.66, 0.33, 0.67 0.33, 0.30, 0.31, 0.63 0.09, 0.17, 0.12, 0.50 0.09, 0.17, 0.12, 0.50 0.09, 0.18, 0.12, 0.51
ILPD 0.22, 0.70, 0.33, 0.78 0.84, 0.18, 0.30, 0.77 0.26, 0.49, 0.34, 0.60 0.12, 0.23, 0.16, 0.57 0.25, 0.49, 0.33, 0.59
Blood 0.70, 0.35, 0.47, 0.74 0.56, 0.15, 0.24, 0.82 0.23, 0.44, 0.30, 0.37 0.08, 0.15, 0.10, 0.35 0.24, 0.48, 0.32, 0.57

Concrete 0.57, 0.84, 0.68, 0.95 0.79, 0.59, 0.68, 0.92 0.07, 0.13, 0.09, 0.51 0.07, 0.14, 0.09, 0.50 0.09, 0.40, 0.15, 0.52
Parkinsons 0.60, 0.74, 0.67, 0.94 0.78, 0.46, 0.58, 0.91 0.21, 0.42, 0.28, 0.37 0.23, 0.44, 0.30, 0.38 0.21, 0.41, 0.28, 0.50

Pima 0.79, 0.55, 0.65, 0.78 0.83, 0.27, 0.40, 0.82 0.25, 0.48, 0.33, 0.44 0.06, 0.11, 0.08, 0.40 0.25, 0.49, 0.33, 0.66
KEGG 0.87, 0.65, 0.77, 0.75 0.59, 0.41, 0.48, 0.53 0.24, 0.46, 0.31, 0.37 N/A N/A

MagicGamma 0.67, 0.66, 0.66, 0.83 0.60, 0.55, 0.57, 0.82 0.14, 0.28, 0.19, 0.45 N/A N/A
Census 0.60, 0.71, 0.65, 0.81 0.51, 0.58, 0.54, 0.71 N/A N/A N/A

Dataset RELOADED LOADED OCS-RBF FB-LOF ODMAD

Abalone 0.00, 0.00, 0.00, 0.29 0.00, 0.00, 0.00, 0.50 0.25, 0.25, 0.25, 0.99 0.04, 0.04, 0.04, 0.74 0.01, 0.62, 0.02, 0.58
Yeast 0.00, 0.00, 0.00, 0.35 0.66, 0.66, 0.66, 0.58 0.63, 0.63, 0.63, 0.96 0.21, 0.21, 0.21, 0.50 0.05, 0.88, 0.09, 0.91

WineQuality 0.00, 0.00, 0.00, 0.43 0.12, 0.12, 0.12, 0.51 0.11, 0.11, 0.11, 0.81 0.19, 0.19, 0.19, 0.75 0.12, 1.00, 0.21, 0.91
Heart 0.51, 0.51, 0.51, 0.89 1.00, 0.16, 0.28, 0.72 0.65, 0.65, 0.65, 0.89 0.35, 0.35, 0.35, 0.57 0.99, 0.99, 0.99, 0.99

Autompg 0.29, 0.29, 0.29, 0.70 0.33, 0.57, 0.42, 0.74 0.57, 0.57, 0.57, 0.98 0.10, 0.10, 0.10, 0.85 0.04, 1.00, 0.08, 0.99

Wine 0.17, 0.36, 0.23, 0.59 0.12, 0.12, 0.12, 0.50 0.24, 0.24, 0.24, 0.77 0.16, 0.16, 0.16, 0.60 0.10, 0.70, 0.17, 0.56
ILPD 0.00, 0.00, 0.00, 0.50 0.09, 0.09, 0.09, 0.50 0.23, 0.23, 0.23, 0.68 0.09, 0.09, 0.09, 0.50 0.14, 0.71, 0.23, 0.45
Blood 0.03, 0.01, 0.02, 0.51 0.09, 0.09, 0.09, 0.50 0.39, 0.39, 0.39, 0.79 0.14, 0.14, 0.14, 0.58 0.19, 0.52, 0.28, 0.64

Concrete 0.13, 0.26, 0.17, 0.58 0.08, 0.08, 0.08, 0.50 0.32, 0.32, 0.32, 0.72 0.17, 0.17, 0.17, 0.59 0.08, 0.43, 0.13, 0.49
Parkinsons 0.29, 0.21, 0.24, 0.59 0.07, 0.07, 0.07, 0.50 0.14, 0.14, 0.14, 0.72 0.21, 0.21, 0.21, 0.60 0.18, 0.53, 0.27, 0.65

Pima 0.10, 0.28, 0.15, 0.59 0.05, 0.05, 0.05, 0.50 0.52, 0.52, 0.52, 0.78 0.07, 0.07, 0.07, 0.52 0.31, 0.28, 0.29, 0.51
KEGG 0.78, 0.26, 0.39, 0.61 0.10, 0.10, 0.10, 0.50 0.51, 0.51, 0.51, 0.95 N/A 0.98, 0.26, 0.41, 0.63

MagicGamma 0.28, 0.02, 0.04, 0.56 0.10, 0.10, 0.10, 0.50 0.29, 0.29, 0.29, 0.81 N/A 0.12, 0.46, 0.19, 0.55
Census 0.27, 0.30, 0.28, 0.64 0.10, 0.10, 0.10, 0.50 N/A N/A 0.33, 0.29, 0.31, 0.61

Experiments that the methods failed to process are denoted by N/A

TABLE 7: Performance (AUC) Comparison for Various Random
Shift Values

MITRE-EP MITRE-INLA
PPPPPPDataset

Shift 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

Wine 0.59 0.58 0.63 0.67 0.67 0.62 0.61 0.59 0.63 0.64
ILPD 0.66 0.69 0.75 0.78 0.80 0.66 0.68 0.71 0.77 0.75
Blood 0.68 0.77 0.75 0.74 0.87 0.69 0.77 0.80 0.82 0.84

Concrete 0.74 0.84 0.93 0.95 0.97 0.81 0.82 0.93 0.92 0.97
Parkinsons 0.79 0.87 0.91 0.94 0.94 0.79 0.89 0.88 0.91 0.91

Pima 0.71 0.79 0.82 0.78 0.89 0.67 0.72 0.73 0.82 0.78
KEGG 0.60 0.59 0.67 0.75 0.74 0.54 0.55 0.53 0.53 0.68

MagicGamma 0.76 0.77 0.80 0.83 0.84 0.73 0.74 0.80 0.82 0.82
Census 0.70 0.71 0.74 0.81 0.79 0.69 0.68 0.72 0.71 0.76

the standard contamination procedure described in [11] and
[13] to generate anomalies. We randomly selected 10%
instances, and shifted the values on random fields. For the
numerical attributes, we shifted the numerical values by
2.5 standard deviations and for the binary and categorical
attributes, we switched the binary values to alternative
values. The data for each dataset were preprocessed with 20
different artificial anomaly combinations and the average of
the 20 results were calculated for each test.

5.3.3 Detection Accuracy
The main purpose of these experiments on real datasets
was to validate our proposed anomaly detection method. Ta-
ble 6 compares the metrics for precision, recall, F-measure,
and Area Under Curve (AUC) for a number of different
approaches. The results show that MITRE outperformed

the benchmark approaches in terms of average precision
and recall, which means that in most cases, the instances
identified as anomalies by MITRE were true positives.
MITRE also achieved the highest average AUC, signifying
that our anomalous score measure always delivered the
highest detection rate. Although several other benchmark
approaches also achieved a high AUC, they also suffered
from a high false positive rate or high false negative rate.
For example, ODMAD achieved an AUC of over 0.9 on
the Yeast, WineQuality, and Auto-mpg datasets, with nearly
perfect recalls, but its performance in precisions did not
exceed 0.12 because the estimated threshold set for anoma-
lous scores was too low, so many normal instances were
mistakenly labeled as anomalies. RELOADED, LOADED,
and ODMAD required several parameters to be input as
a set of hard thresholds, which significantly affected the
performance of these methods. These approaches have
the capacity to perform well after some parameter tuning
process if the ground truth is known, but they will likely
fail on many practical scenarios when the scale and the
basis are unknown. In contrast, the proposed new method,
MITRE, utilized the absolute value of the Z-score as the
anomalous score with a statistical cutoff threshold under the
Gaussian assumption, which is widely applied in many real
world cases. Regardless of the scale of the different data
attributes, this score represents the statistical significance
and indicates to what extent it deviates from the normal
behavior in the normalized basis.

The results also demonstrate the effectiveness of MITRE
on large real-world datasets such as Census. The sub-



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2583429, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

sampling fitting scheme (discussed in Section 4.2.3) effec-
tively reduced the computational cost, while at the same
time maintaining a good detection rate. In contrast, due to
computation storage and time limitations, the benchmark
methods LOF-CECT and OCS-PCT failed to process any of
the datasets containing large number of instances ( KEGG,
MagicGamma, and Census) as they exceeded the available
memory resources; KNN-CT, OCS-RBF, and FB-LOF also
had problems with these large datasets as their running
times were over 2 hours.

The impact of the outlier significance in the random
shift data sets is shown in Table 7. We compared the
AUC of random shifting significance levels ranging from
one standard deviation to 3 times the standard deviation.
Generally, shifted values of 1.5 the times standard deviation
or less were difficult to be detect, although in some cases,
our methods still performed well even when the anomalies
were not significantly shifted. Based on our observations of
datasets consisting of mixed-type data, and the shifting level
only made a difference for numerical attributes, the binary
and categorical anomalies were both detected accurately
and the anomalous scores of these instances presented the
correct ranking.

5.4 Result Analysis
The above experimental results demonstrate that MITRE-
EP is an effective and efficient method for detecting anoma-
lies in mixed-type data sets. It has a significantly better
detection quality than the other benchmark approaches
tested, achieving around 10-30% improvement over KNN-
CT, LOF-CECT, OCS-PCT, OCS-RBF, and ODMAD and
20-40% over LOADED, RELOADED, and FB-LOF. The
experimental results verified three main observations.

1) Efficient Approximation Process: The proposed
approximate inference schemes provide faster and more
accurate detection results. Compared with the INLA based
method, MITRE-EP has better computational efficiency and
higher detection accuracy on more of the real-life data sets.

2) Effectiveness on Large Mixed-type Datasets: When
processing more sophisticated data sets, such as Census,
KEGG, and MagicGamma, LOF-CECT and OCS-PCT
failed to complete the process due to the significant growth
of their memory usage. KNN-CT, OCS-RBF, and FB-
LOF failed on the Census dataset due to their high time
complexity. Our proposed methods were able to finish
the process in a comparable time without any capacity
problems.

3) Input-Output Relationship: When the datasets
present strong input-output relationships for the explanatory
attributes to the response variables, the MITRE methods
deliver a much better performance on detection accuracy
than the benchmark methods. Note that in making these
comparisons, we followed the relationships suggested by
the dataset providers for most of the real-life datasets.

6 CONCLUSIONS
This paper proposes a novel unsupervised framework for
general purpose anomaly detection on mixed-type data. The

new method integrates multivariate predictive process mod-
els with approximate Bayesian inference using Expectation
Propagation and variational Expectation-Maximization. The
predictive model consists of generalized linear models and
robust error buffering latent variables. The approximation
process and the optimization schemes provide more accu-
rate and faster inference for the proposed predictive process
model. Experimental results on synthetic and real datasets
conclusively demonstrated that our proposed anomaly de-
tection framework achieved much better performance on
detection accuracy.
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